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ABSTRACT. We shall introduce the approximate representability and the
Rohlin property for coactions of a finite dimensional C∗-Hopf algebra on a
unital C∗-algebra and discuss their basic properties. We shall give an example
of a coaction of a finite dimensional C∗-Hopf algebra on a simple unital C∗-
algebra, which has the above two properties and give the 1-cohomology and
the 2-cohomology vanishing theorems for a finite dimensional C∗-Hopf alge-
bra (twisted) coactions on a unital C∗-algebra. Furthermore, we shall show
that if ρ and σ, coactions of a finite dimensional C∗-Hopf algebra on a sepa-
rable unital C∗-algebra A, which have the Rohlin property, are approximately
unitarily equivalent, then there is an approximately inner automorphism α on
A such that σ = (α⊗ id) ◦ ρ ◦ α−1.
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1. INTRODUCTION

Let A be a unital C∗-algebra and H a finite dimensional C∗-Hopf algebra
with the comultiplication ∆. In this paper, we shall introduce the approximate
representability and the Rohlin property for coactions of H on A and discuss
some basic properties of approximately representable coactions and coactions
with the Rohlin property of H on A. Also, we shall give an example of an ap-
proximately representable coaction of a finite dimensional C∗-Hopf algebra on a
simple unital C∗-algebra which has also the Rohlin property and we shall give
the following 1-cohomology vanishing theorem: Let ρ be a coaction of H on A
with the Rohlin property. Let v be a unitary element in A⊗ H with

(v⊗ 1)(ρ⊗ id)(v) = (id⊗∆)(v)
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and let σ be the coaction of H on A defined by σ = Ad(v) ◦ ρ. Then there is a
unitary element x ∈ A such that

σ = Ad(x⊗ 1) ◦ ρ ◦Ad(x∗).

Furthermore, we shall give the following 2-cohomology vanishing theorem: Let
(ρ, u) be a twisted coaction of H on A with the Rohlin property. Then there is a
unitary element x ∈ A⊗ H such that

(x⊗ 1)(ρ⊗ id)(x)u(id⊗∆)(x)∗ = 1⊗ 1⊗ 1.

Finally, we shall introduce the notion of the approximately unitary equivalence
of coactions of H and show that if ρ and σ, coactions of H on a separable uni-
tal C∗-algebra A, which have the Rohlin property, are approximately unitarily
equivalent, then there is an approximately inner automorphism α on A such that

σ = (α⊗ id) ◦ ρ ◦ α−1.

The above results in the case of finite group actions on a unital C∗-algebra can be
found in Izumi [4].

For an algebra X, we denote by 1X and idX the unit element in X and the
identity map on X, respectively. If no confusion arises, we denote them by 1 and
id, respectively. For projections p, q in a C∗-algebra C, we write p ∼ q in C if p is
Murray–von Neumann equivalent to q in C. For each n ∈ N, we denote by Mn(C)
the n× n-matrix algebra over C and In denotes the unit element in Mn(C).

2. PRELIMINARIES

Let H be a finite dimensional C∗-Hopf algebra. We denote its comultipli-
cation, counit and antipode by ∆, ε and S. We shall use Sweedler’s notation
∆(h) = h(1) ⊗ h(2) for any h ∈ H which suppresses a possible summation when
we write the comultiplications. We denote by N the dimension of H. Let H0 be
the dual C∗-Hopf algebra of H. We denote its comultiplication, counit and an-
tipode by ∆0, ε0 and S0. There is the distinguished projection e in H. We note
that e is the Haar trace on H0. Also, there is the distinguished projection τ in H0

which is the Haar trace on H.
Throughout this paper, H denotes a finite dimensional C∗-Hopf algebra and

H0 its dual C∗-Hopf algebra. Since H is finite dimensional, H ∼=
L⊕

k=1
M fk

(C) and

H0 ∼=
K⊕

k=1
Mdk

(C) as C∗-algebras. Let {vk
ij : k = 1, 2, . . . , L, i, j = 1, 2, . . . , fk} be

a system of matrix units of H. Let {wk
ij : k = 1, 2, . . . , K, i, j = 1, 2, . . . , dk} be a

basis of H satisfying Szymański and Peligrad’s Theorem 2.2, 2 in [10]. We call it a
system of comatrix units of H. Also, let {φk

ij : k = 1, 2, . . . , K, i, j = 1, 2, . . . , dk} and

{ωk
ij : k = 1, 2, . . . , L, i, j = 1, 2, . . . , fk} be systems of matrix units and comatrix
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units of H0, respectively. Furthermore, let ρA
H be the trivial coaction of H on A

defined by ρA
H(a) = a⊗ 1 for any a ∈ A.

Following Masuda and Tomatsu [7], we shall define a twisted coaction of H
on A and its exterior equivalence.

DEFINITION 2.1. Let ρ be a weak coaction of H on A which is defined in
Definition 2.4 of [6] and u a unitary element in A ⊗ H ⊗ H. The pair (ρ, u) is a
twisted coaction of H on A if the following conditions hold:

(i) (ρ⊗ id) ◦ ρ = Ad(u) ◦ (id⊗∆) ◦ ρ,
(ii) (u⊗ 1)(id⊗∆⊗ id)(u) = (ρ⊗ id⊗ id)(u)(id⊗ id⊗∆)(u),

(iii) (id⊗ φ⊗ ε)(u) = (id⊗ ε⊗ φ)(u) = φ(1)1 for any φ ∈ H0.

DEFINITION 2.2. For i = 1, 2, let (ρi, ui) be a twisted coaction of H on A. We
say that (ρ1, u1) is exterior equivalent to (ρ2, u2) if there is a unitary element v in
A⊗ H satisfying the following conditions:

(i) ρ2 = Ad(v) ◦ ρ1,
(ii) u2 = (v⊗ 1)(ρ1 ⊗ id)(v)u1(id⊗∆)(v∗).

By routine computations, (id⊗ ε)(v) = 1 and the above equivalence is an
equivalence relation. We write (ρ1, u1) ∼ (ρ2, u2) if (ρ1, u1) is exterior equivalent
to (ρ2, u2).

REMARK 2.3. Let (ρ, u) be a twisted coaction of H on A and v be any unitary
element in A⊗ H with (id⊗ ε)(v) = 1. Let

ρ1 = Ad(v) ◦ ρ, u1 = (v⊗ 1)(ρ⊗ id)(v)u(id⊗∆)(v∗).

Then (ρ1, u1) is a twisted coaction of H on A by easy computations.

Let Hom(H0, A) be the linear space of all linear maps from H0 to A. By
Sweedler ([9], pp. 69–70) it becomes a unital ∗-algebra which is also defined in
Sections 2 and 3 of [6]. In the same way as Sections 2 and 3 of [6], we define a
unital ∗-algebra Hom(H0 ⊗ H0, A). As mentioned in Blattner, Cohen and Mont-
gomery ([2], pp. 163), there are an isomorphism ı of A⊗ H onto Hom(H0, A) and
an isomorphism  of A⊗ H ⊗ H onto Hom(H0 ⊗ H0, A) defined by

ı(a⊗ h)(φ) = φ(h)a, (a⊗ h⊗ l)(φ, ψ) = φ(h)ψ(l)a

for any a ∈ A, h, l ∈ H and φ, ψ ∈ H0. For any x ∈ A⊗ H, y ∈ A⊗ H ⊗ H, we
denote ı(x), (y), by x̂, ŷ, respectively.

For any weak coaction ρ of H on A, we can construct the weak action “ ·ρ ”
of H0 on A as follows: For any a ∈ A and φ ∈ H0

φ ·ρ a = ı(ρ(a)) = ρ(a)̂(φ) = (id⊗ φ)(ρ(a)).

If no confusion arises, we denote φ ·ρ a by φ · a for any a ∈ A and φ ∈ H0.
Furthermore, if (ρ, u) is a twisted coaction of H on A, û is a unitary cocycle for
the above weak action induced by ρ. We call the pair of the weak action and the
unitary cocycle û the twisted action of H0 on A induced by (ρ, u). By Section 3 of
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[6], we can construct the twisted crossed product of A by H0 which is denoted
by A oρ,u H0. Let ρ̂ be the dual coaction of ρ, which is defined for any a ∈ A,
φ ∈ H0, by

ρ̂(a oρ,u φ) = (a oρ,u φ(1))⊗ φ(2),

where a oρ,u φ denotes the element in A oρ,u H0 induced by a ∈ A and φ ∈ H0.
If no confusion arises, we denote it by a o φ.

Let (ρ, u) be a twisted coaction of H on A and Aoρ,u H0 the twisted crossed
product induced by (ρ, u). Let Eρ

1 be the canonical conditional expectation from
A oρ,u H0 onto A defined by Eρ

1(aoφ)=φ(e)a for any a∈A, φ∈H0. We note that
Eρ

1 is faithful by Lemma 3.14 of [6]. Also, let V̂ be an element in Hom(H0, A oρ,u

H0) defined by V̂(φ) = 1 o φ for any φ ∈ H0. Let V be an element in (A oρ,u

H0)⊗H induced by V̂. By Lemma 3.12 of [6], we can see that V and V̂ are unitary
elements in (A oρ,u H0)⊗ H and Hom(H0, A oρ,u H0), respectively and that

u = (V ⊗ 1)(ρ
Aoρ,u H0

H ⊗ id)(V)(id⊗∆)(V∗).

Thus, for any φ, ψ ∈ H0

(i) û(φ, ψ) = V̂(φ(1))V̂(ψ(1))V̂∗(φ(2)ψ(2)),

(ii) û∗(φ, ψ) = V̂(φ(1)ψ(1))V̂∗(ψ(2))V̂∗(φ(2)).

LEMMA 2.4. For i = 1, 2 let (ρi, ui) be a twisted coaction of H on A with (ρ1, u1)
∼ (ρ2, u2). Let Eρi

1 be the canonical conditional expectation from A oρi ,ui H0 onto A for
i = 1, 2. Then there is an isomorphism Φ of A oρ1,u1 H0 onto A oρ2,u2 H0 satisfying
that Φ(a) = a for any a ∈ A and Eρ1

1 = Eρ2
1 ◦Φ, where A is identified with A oρi ,ui 10

for i = 1, 2.

Proof. Since (ρ1, u1) ∼ (ρ2, u2), there is a unitary element in v in A ⊗ H
satisfying

ρ2 = Ad(v) ◦ ρ1, u2 = (v⊗ 1)(ρ1 ⊗ id)(v)u1(id⊗∆)(v∗).

Let Φ be a map from A oρ1,u1 H0 to A oρ2,u2 H0 defined by Φ(a oρ1,u1 φ) =

av̂∗(φ(1))oρ2,u2 φ(2) for any a ∈ A, φ ∈ H0. Then by routine computations, Φ

is a homomorphism of A oρ1,u1 H0 to A oρ2,u2 H0. Also, let Ψ be a map from
A oρ2,u2 H0 to A oρ1,u1 H0 defined by Ψ(a oρ2,u2 φ) = av̂(φ(1)) oρ1,u1 φ(2) for
any a ∈ A, φ ∈ H0. By routine computations, Ψ is also a homomorphism of
A oρ2,u2 H0 to A oρ1,u1 H0 and Φ ◦Ψ = id and Ψ ◦Φ = id. Therefore, we obtain
the conclusion.

Let ρ be a coaction of H on A and Aρ the fixed point C∗-subalgebra of A for
ρ, that is,

Aρ = {a ∈ A : ρ(a) = a⊗ 1}.
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Let Eρ be the canonical conditional expectation from A onto Aρ defined by for
any a ∈ A, Eρ(a) = τ ·ρ a = (id⊗ τ)(ρ(a)). We note that Eρ is faithful by Propo-
sition 2.12 of [10].

DEFINITION 2.5. We say that ρ is saturated if the action of H0 on A induced
by ρ is saturated in the sense of [10].

In Sections 4, 5 and 6 of [6], we suppose that the action of H on A is satu-
rated. But, without saturation, we can see that all the statements in Sections 4 and
5 and Theorem 6.4 of [6] hold. Hence we obtain the following proposition.

PROPOSITION 2.6. Let ρ be a coaction of H on A such that ρ̂(1 o τ) ∼ (1 o
τ)⊗ 10 in (A oρ H0)⊗ H0. Then there are a twisted coaction (σ, u) of H0 on Aρ and
an isomorphism π of Aρ oσ,u H onto A such that Eσ

1 = Eρ ◦π and ρ ◦π = (π⊗ id) ◦ σ̂.

COROLLARY 2.7. Let ρ be a coaction of H on A such that ρ̂(1 o τ) ∼ (1 o τ)⊗
10 in (A oρ H0)⊗ H0. Then ρ is saturated.

Proof. Since the dual coaction of a twisted coaction is saturated, this is im-
mediate by Proposition 2.6.

3. DUALITY

In this section we shall show the duality theorem for a twisted coaction of
H0 on A. It has already been proved, but we shall present it in a form useful for
this paper.

Let (ρ, u) be a twisted coaction of H0 on A. Let Λ be the set of all triplets

(i, j, k), where i, j = 1, 2, . . . , dk and k = 1, 2, . . . , K and
K
∑

k=1
d2

k = N. For any

I = (i, j, k) ∈ Λ, let WI and VI be elements in A oρ,u H oρ̂ H0 defined by

WI =
√

dk oρ,u wk
ij, VI = (1 oρ̂ τ)(WI oρ̂ 10).

LEMMA 3.1. With the above notations, we have

VIV∗J =

{
1 oρ̂ τ if I = J,
0 if I 6= J.

Proof. Let I = (i, j, k) and J = (s, t, r) be any elements in Λ. Then

VIV∗J = (1 oρ̂ τ)(WI oρ̂ 10)(W∗J oρ̂ 10)(1 oρ̂ τ)

= [τ ·ρ̂ WIW∗J ]oρ̂ τ = Eρ
1(WIW∗J )oρ̂ τ.

Here, by Lemma 3.3 (1) of [6] and Theorem 2.2 of [10]

WIW∗J = ∑
t1,t2,j1,j2,m

√
dkdr[wk

j2i ·ρ,u û(S(wr
t2t1

), wr
st2
)]∗û(wk

j2 j1 , wr∗
t1m)oρ,u wk

j1 jw
r∗
mt
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= ∑
t1,t2,t3,j1,j2,j3,m

√
dkdr[û(wk

j2 j3 , S(wr
t3t1

))û(wk
j3iS(w

r
t2t3

), wr
st2
)]∗

× û(wk
j2 j1 , wr∗

t1m)oρ,u wk
j1 jw

r∗
mt

= ∑
t1,t2,t3,j1,j2,j3,m

√
dkdrû(wk

j3iS(w
r
t2t3

), wr
st2
)∗û∗(wk

j3 j2 , wr∗
t3t1

)

× û(wk
j2 j1 , wr∗

t1m)oρ,u wk
j1 jw

r∗
mt

= ∑
t2,t3,j3

√
dkdrû(wk

j3iS(w
r
t2t3

), wr
st2
)∗ oρ,u wk

j3 jw
r∗
t3t.

Thus, by Theorem 2.2 of [10]

VIV∗J = ∑
t2,t3,j3

√
dkdrτ(wk

j3 jw
r∗
t3t)û

∗(wk
ij3 wr∗

t2t3
, wr

t2s)oρ̂ τ.

If k 6= r or j 6= t, then VIV∗J = 0. We suppose that k = r and j = t. Then

VIV∗J = ∑
t2,t3

û∗(wk
it3

S(wk
t3t2

), wk
t2s)oρ̂ τ = ε(wk

is)oρ̂ τ = δis oρ̂ τ,

where δis is the Kronecker delta. Therefore, we obtain the conclusion.

Let Ψ be a map from MN(A) to A oρ,u H oρ̂ H0 defined by

Ψ([aI J ]) = ∑
I,J

V∗I (aI J oρ,u 1 oρ̂ 10)VJ

for any [aI J ] ∈ MN(A). Clearly Ψ is a linear map.

PROPOSITION 3.2. The map Ψ is an isomorphism of MN(A) onto Aoρ,u Hoρ̂H0.

Proof. For any [aI J ], [bI J ] ∈ MN(A),

Ψ([aI J ]Ψ([bI J ]) = ∑
I,J,L

V∗I (1 oρ̂ τ)(aI JbJL oρ,u 1 oρ̂ 10)VL = Ψ([aI J ][bI J ])

by Lemma 3.1. For any [aI J ] ∈ MN(A),

Ψ([aI J ])
∗ = ∑

I,J
V∗J (a∗I J oρ,u 1 oρ̂ 10)VI = Ψ([a∗J I ]).

Hence Ψ is a homomorphism of MN(A) to A oρ,u H oρ̂ H0. Since ρ̂ is saturated,
for any z ∈ A oρ,u H oρ̂ H0, we can write that

z =
n

∑
i=1

(xi oρ̂ 10)(1 oρ̂ τ)(yi oρ̂ 10)

by Proposition 4.5 of [10], where xi, yi ∈ A oρ,u H for i = 1, 2, . . . , n. Thus, in
order to prove that Ψ is surjective, it suffices to show that for any x, y ∈ Aoρ,u H,
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there is an element [aI J ] ∈ MN(A) such that Ψ([aI J ]) = (xoρ̂ 10)(1oρ̂ τ)(yoρ̂ 10).
Since {(W∗I , WI}) is a quasi-basis for Eρ

1 by Proposition 3.18 of [6],

x = ∑
I

W∗I Eρ
1(WI x) = ∑

I
W∗I (Eρ

1(WI x)oρ,u 1),

y = ∑
I

Eρ
1(yW∗I )WI = ∑

I
(Eρ

1(yW∗I )oρ,u 1)WI .

Hence

(x oρ̂ 10)(1 oρ̂ τ)(y oρ̂ 10) = ∑
I,J

V∗I (Eρ
1(WI x)Eρ

1(yW∗J )oρ,u 1 oρ̂ 10)VJ

= Ψ([Eρ
1(WI x)Eρ

1(yW∗J )]I,J).

Next, we shall show that Ψ is injective. We suppose that for an element [aI J ] ∈
MN(A), Ψ([aI J ]) = 0. Then ∑

I,J
V∗I (aI J oρ,u 1oρ̂ 10)VJ = 0. Thus for any M, L ∈ Λ,

0 = VM ∑
I,J

V∗I (aI J oρ,u 1 oρ̂ 10)VJV∗L = aML oρ,u 1 oρ̂ 10

by Lemma 3.1. Hence aML = 0 for any M, L ∈ Λ. Therefore, Ψ is injective.

Since VIV∗I = 1 oρ̂ τ for any I ∈ Λ by Lemma 3.1, the set {V∗I VI}I∈Λ is a
family of orthogonal projections in A oρ,u H oρ̂ H0. Let PI = V∗I VI for any I ∈ Λ.
By Lemma 3.1 and Proposition 3.2,

1 = Ψ(1⊗ IN) = ∑
I∈Λ

V∗I VI = ∑
I∈Λ

PI ,

where IN is the unit element in MN(C).
We recall that V̂ is a unitary element in Hom(H, A oρ,u H) defined for any

h ∈ H by V̂(h) = 1 oρ,u h. Let V be the unitary element in (A oρ,u H) ⊗ H0

induced by V̂. We regard A oρ,u H as a C∗-subalgebra A oρ,u H oρ̂ 10 of A oρ,u

H oρ̂ H0. Thus we regard V as a unitary element in (A oρ,u H oρ̂ H0)⊗ H0. For
any I ∈ Λ, let

UI = (V∗I ⊗ 10)V̂̂ρ(VI) ∈ (A oρ,u H oρ̂ H0)⊗ H0.

Then for any I ∈ Λ, UIU∗I = PI ⊗ 10 and U∗I UI = ̂̂ρ(PI) sincê̂ρ(1 oρ̂ τ) = V∗[(1 oρ̂ τ)⊗ 10]V

by the proof of Proposition 3.19 in [6]. Let U = ∑
I∈Λ

UI . Then U is a unitary

element in (A oρ,u H oρ̂ H0)⊗ H0. Since (ρ, u) is a twisted coaction of H0 on A,
(ρ⊗ idMN(C), u⊗ IN) is also a twisted coaction of H0 on MN(A). Then by easy
computations,

((Ψ⊗ idH0) ◦ (ρ⊗ idMN(C)) ◦Ψ−1, (Ψ⊗ idH0 ⊗ idH0)(u⊗ IN))
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is a twisted coaction of H0 on A oρ,u H oρ̂ H0, where we identify A⊗MN(C)⊗
H0 ⊗ H0 with A⊗ H0 ⊗ H0 ⊗MN(C).

THEOREM 3.3. Let A be a unital C∗-algebra and H a finite dimensional C∗-Hopf
algebra with its dual C∗-Hopf algebra H0. Let (ρ, u) be a twisted coaction of H0 on A.
Then there are an isomorphism Ψ of MN(A) onto Aoρ,u Hoρ̂ H0 and a unitary element
U ∈ (A oρ,u H oρ̂ H0)⊗ H0 such that

Ad(U) ◦ ̂̂ρ = (Ψ⊗ idH0) ◦ (ρ⊗ idMN(C)) ◦Ψ−1,

(Ψ⊗ idH0 ⊗ idH0)(u⊗ IN) = (U ⊗ 10)(̂̂ρ⊗ idH0)(U)(id⊗∆0)(U∗).

That is, ̂̂ρ is exterior equivalent to the twisted coaction

((Ψ⊗ idH0) ◦ (ρ⊗ idMN(C)) ◦Ψ−1, (Ψ⊗ idH0 ⊗ idH0)(u⊗ IN)).

Proof. Let Ψ be the isomorphism of MN(C) onto A oρ,u H oρ̂ H0 defined in
Proposition 3.2 and let U be a unitary element in (A oρ,u H oρ̂ H0)⊗ H0 defined
above. Let [aI J ]I,J∈Λ be any element in MN(A). Then

(Ad(U)◦̂̂ρ)(Ψ([aI J ])c)=∑
I,J
(V∗I ⊗10)V̂̂ρ(1oρ̂τ)̂̂ρ(aI Joρ,u1oρ̂10)̂̂ρ(1oρ̂τ)V∗(VJ⊗10)

= c ∑
I,J
(V∗I ⊗ 10)ρ(aI J oρ,u 1 oρ̂ 10)(VJ ⊗ 10)

since ̂̂ρ(1oρ̂ τ) = V∗[(1oρ̂ τ)⊗ 10]V by Proposition 3.19 of [6] and ρ(a) = V(a×
10)(V∗) for any a ∈ A by the proof of Lemma 3.12(1) in [6], where we identify A
with A oρ,u 1 and A oρ,u 1 oρ̂ 10. On the other hand,

((Ψ⊗ idH0) ◦ (ρ⊗ id))([aI J ]) = (Ψ⊗ idH0)([ρ(aI J oρ,u 1 oρ̂ 10)]).

Since ρ(aI J oρ,u 1 oρ̂ 10) ∈ A⊗ H0, we can write that

ρ(aI J oρ,u 1 oρ̂ 10) = ∑
i
(bI Ji oρ,u 1 oρ̂ 10)⊗ φI Ji,

where bI Ji ∈ A and φI Ji ∈ H0 for any I, J, i. Hence

(Ψ⊗idH0)([ρ(aI Joρ,u1oρ̂10)])=∑
I,J,i

(V∗I ⊗10)[(bI Jioρ,u1oρ̂10)⊗φI J i](VJ⊗10)

=∑
I,J
(V∗I ⊗ 10)ρ(aI J oρ,u 1 oρ̂ 10)(VJ ⊗ 10).

Thus we obtain that

Ad(U) ◦ ̂̂ρ ◦Ψ = (Ψ⊗ idH0) ◦ (ρ⊗ idMN(C)).

Next, we shall show that

(Ψ⊗ idH0 ⊗ idH0)(u⊗ IN) = (U ⊗ 10)(̂̂ρ⊗ idH0)(U)(id⊗∆0)(U∗).
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Since u ∈ A⊗ H0 ⊗ H0, we can write that u = ∑
i,j

aij ⊗ φi ⊗ ψj, where aij ∈ A and

φi, ψj ∈ H0 for any i, j. Thus for any h, l ∈ H

(Ψ⊗ idH0 ⊗ idH0)(u⊗ IN )̂(h, l) = ∑
I,i,j

V∗I (aij oρ,u 1 oρ̂ 10)VIφi(h)ψj(l)

= ∑
I

V∗I (û(h, l)oρ,u 1 oρ̂ 10)VI .

On the other hand, by Lemma 3.1 and Proposition 3.19 of [6]

(U ⊗ 10)(̂̂ρ⊗ idH0)(U)(id⊗∆0)(U∗)

= ∑
I
(V∗I ⊗ 10 ⊗ 10)((1 oρ̂ τ)⊗ 10 ⊗ 10)(V ⊗ 10)(̂̂ρ⊗ idH0)(V)

× (id⊗∆0)(V∗)((1 oρ̂ τ)⊗ 10 ⊗ 10)(VI ⊗ 10 ⊗ 10)

= ∑
I
(V∗I ⊗ 10 ⊗ 10)(V ⊗ 10)(̂̂ρ⊗ idH0)(V)(id⊗∆0)(V∗)

× (VI ⊗ 10 ⊗ 10).

Thus for any h, l ∈ H,

[(U ⊗ 10)(ρ̂⊗ idH0)(U)(id⊗∆0)(U∗)]̂(h, l)

= ∑
I

V∗I [(V ⊗ 10)(̂̂ρ⊗ idH0)(V)(id⊗∆0)(V∗)]̂(h, l)VI .

Here for any h, l ∈ H

[(V ⊗ 10)(̂̂ρ⊗ idH0)(V)(id⊗∆0)(V∗)]̂(h, l)

= V̂(h(1))[h(2) ·̂̂ρ (1 oρ,u l(1) oρ̂ 10)]V̂∗(h(3)l(2))

= V̂(h(1))V̂(l(1))V̂
∗(h(2)l(2)) = û(h, l)

by Lemma 3.12 of [6]. Thus

(V ⊗ 10)(̂̂ρ⊗ idH0)(V)(id⊗∆0)(V∗) = u.

Therefore

(Ψ⊗ idH0 ⊗ idH0)(u⊗ IN) = (U ⊗ 10)(̂̂ρ⊗ idH0)(U)(id⊗∆0)(U∗).

4. APPROXIMATELY REPRESENTABLE COACTIONS

For a unital C∗-algebra A, we set

c0(A) =
{
(an) ∈ l∞(N, A) : lim

n→∞
‖an‖ = 0

}
, A∞ = l∞(N, A)/c0(A).
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We denote an element in A∞ by the same symbol (an) in l∞(N, A). We identify
A with the C∗-subalgebra of A∞ consisting of the equivalence classes of constant
sequences and set

A∞ = A∞ ∩ A′.

For a weak coaction of H0 on A, let ρ∞ be the weak coaction of H0 on A∞ defined
by ρ∞((an)) = (ρ(an)) for any (an) ∈ A∞. Hence for a twisted coaction (ρ, u) of
H0 on A, we can define the twisted coaction (ρ∞, u) of H0 on A∞. We have the
following easy lemmas.

LEMMA 4.1. Let (ρ, u) be a twisted coaction of H0 on A and (ρ∞, u) the twisted
coaction of H0 on A∞ induced by (ρ, u). Then

A∞ oρ∞ ,u H ∼= (A oρ,u H)∞

as C∗-algebras.

Proof. Let Φ be a map from A∞ oρ∞ ,u H to (Aoρ,u H)∞ defined by Φ((an)o
h) = (an o h) for any (an) ∈ A∞ and h ∈ H. For any (an), (bn) ∈ A∞ with
(an) = (bn) in A∞,

‖an o h− bn o h‖ 6 ‖an − bn‖‖h‖ → 0 (n→ ∞).

Hence Φ is well-defined. Also, clearly Φ is linear. For x ∈ A∞ oρ∞ ,u H, we
suppose that Φ(x) = 0. Then we can write that x = ∑

i
(xni)o hi, where xni ∈ A

and {hi} is a basis of H such that τ(hih∗j ) = δij and δij is the Kronecker delta.

Since Φ(x) = 0,
∥∥∥∑

i
xni oρ,u hi

∥∥∥→ 0 as n→ ∞. Hence

∥∥∥(∑
i

xni oρ,u hi

)(
∑

j
xnj oρ,u hj

)∗∥∥∥→ 0 (n→ ∞).

Also, by the proof of Lemma 3.14 in [6]

Eρ
1

((
∑

i
xni oρ,u hi

)(
∑

j
xnj oρ,u hj

)∗)
= ∑

i
xnix∗ni.

Thus
∥∥∥∑

i
xnix∗ni

∥∥∥ → 0 as n → ∞. Hence for any i, xni → 0 as n → 0. That

is, x = 0. Thus Φ is injective. For any x ∈ (A oρ,u H)∞, we write x = (xn),
xn = ∑

i
xni o hi, where xni ∈ A. Then y = ∑

i
(xni)o hi is an element in A∞ oρ∞ ,u H

and Φ(y) = x. Hence Φ is surjective. Furthermore, by routine computations, we
see that Φ is a homomorphism of A∞ oρ∞ ,u H to (A oρ,u H)∞. Therefore, we
obtain the conclusion.

By the isomorphism defined in the above lemma, we identify A∞ oρ∞ ,u H

with (A oρ,u H)∞. Thus (̂ρ∞) = (ρ̂)∞. We denote them by the same symbol ρ̂∞.
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LEMMA 4.2. Let ρ be a coaction of H0 on A and ρ∞ the coaction of H0 on A∞

induced by ρ. Then (A∞)ρ∞
= (Aρ)∞.

Proof. It is clear that (Aρ)∞ ⊂ (A∞)ρ∞
. We shall show that (Aρ)∞ ⊃ (A∞)ρ∞

.
Let Eρ and (E)ρ∞

be the canonical conditional expectations from A and A∞ onto
Aρ and (A∞)ρ∞

, respectively. Then (A∞)ρ∞
= (E)ρ∞

(A∞) and Aρ = Eρ(A). Let
(an)n ∈ (A∞)ρ∞

. We note that

(an)n = (E)ρ∞
((an)n) = e ·ρ∞ (an)n = (e ·ρ an)n = (Eρ(an))n.

Hence ‖Eρ(an) − an‖ → 0 (n → ∞). Let bn = Eρ(an) for any n ∈ N. Since
bn ∈ Aρ, (bn) ∈ (Aρ)∞. Then ‖bn − an‖ = ‖Eρ(an)− an‖ → 0 (n → ∞). Thus
(bn) = (an) in A∞. Therefore, (an) ∈ (Aρ)∞.

Since (A∞)ρ∞
= (Aρ)∞ by the above lemma, we can identify (E)ρ∞

with
(Eρ)∞ the conditional expectation from A∞ onto (Aρ)∞. We denote them by the
same symbol Eρ∞

.

DEFINITION 4.3. Let (ρ, u) be a twisted coaction of H on A. We say that
(ρ, u) is approximately representable if there is a unitary element w ∈ A∞ ⊗ H satis-
fying the following conditions:

(i) ρ(a) = (Ad(w) ◦ ρA
H)(a) for any a ∈ A,

(ii) u = (w⊗ 1)(ρA∞

H ⊗ id)(w)(id⊗∆)(w∗),
(iii) u = (ρ∞ ⊗ id)(w)(w⊗ 1)(id⊗∆)(w∗).

LEMMA 4.4. For i = 1, 2, let (ρi, ui) be a twisted coaction of H on A. We suppose
that (ρ1, u1) is exterior equivalent to (ρ2, u2). Then (ρ1, u1) is approximately repre-
sentable if and only if (ρ2, u2) is approximately representable.

Proof. Since (ρ1, u1) and (ρ2, u2) are exterior equivalent, there is a unitary
element v ∈ A ⊗ H satisfying conditions (i), (ii) in Definition 2.2. We suppose
that (ρ1, u1) is approximately representable. Then there is a unitary element w1 ∈
A∞ ⊗ H satisfying conditions (i)–(iii) in Definition 4.3 for (ρ1, u1). Let w2 = vw1.
Then by routine computations, we can see that w2 is a unitary element in A∞⊗H
satisfying conditions (i)–(iii) in Definition 4.3 for (ρ2, u2). Therefore, we obtain
the conclusion.

LEMMA 4.5. Let (ρ, u) be a twisted coaction of H on A and let (ρ⊗ id, u⊗ In)
be the twisted coaction of H on A⊗ Mn(C) induced by (ρ, u), where we identify A⊗
Mn(C)⊗ H with A⊗ H ⊗Mn(C). Then (ρ, u) is approximately representable if and
only if (ρ⊗ id, u⊗ In) is approximately representable.

Proof. We suppose that (ρ, u) is approximately representable. Then there is
a unitary element w ∈ A∞ ⊗ H satisfying conditions (i)–(iii) in Definition 4.3 for
(ρ, u). Let W = w ⊗ In. By routine computations, we can see that W satisfies
conditions (i)–(iii) in Definition 4.3 for (ρ ⊗ id, u ⊗ In). Next, we suppose that
(ρ⊗ id, u⊗ In) is approximately representable. Then there is a unitary element
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W ∈ A⊗Mn(C)⊗H satisfying conditions (i)–(iii) in Definition 4.3 for (ρ⊗ id, u⊗
In). Let f be a minimal projection in Mn(C) and let p0 = 1A ⊗ f ⊗ 1H . Let
w = p0W p0. Since ρ⊗ idMn(C) = Ad(W) ◦ ρ

A⊗Mn(C)
H on A⊗Mn(C), W p0 = p0W.

By routine computations and identifying A⊗Mn(C)⊗ H with A⊗ H ⊗Mn(C),
we can see that the element w satisfies conditions (i)–(iii) in Definition 4.3 for
(ρ, u). Therefore, we obtain the conclusion.

PROPOSITION 4.6. Let (ρ, u) be a twisted coaction of H on A. Then (ρ, u) is
approximately representable if and only if so is ̂̂ρ.

The proof is immediate by Theorem 3.3 and Lemmas 4.4, 4.5.
In the rest of this section, we shall show that the approximate representabil-

ity of coactions of finite dimensional C∗-Hopf algebras is an extension of the ap-
proximate representability of actions of finite groups in the sense of Remark 3.7
in [4].

Let G be a finite group of order n and α an action of G on A. We consider
the coaction of C(G) on A induced by the action α of G on A. We denote it by the
same symbol α. That is,

α : A→ A⊗ C(G), a 7−→ ∑
t∈G

αt(a)⊗ δt

for any a ∈ A, where for any t ∈ G, δt is a projection in C(G) defined by

δt(s) =

{
0 if s 6= t,
1 if s = t.

PROPOSITION 4.7. With the above notations, the following conditions are equiv-
alent:

(i) the action α of G on A is approximately representable,
(ii) the coaction α of C(G) on A is approximately representable.

Proof. We suppose condition (i). Then there is a unitary representation u of
G in A∞ such that

αt(a) = u(t)au(t)∗ a ∈ A, t ∈ G,

α∞
t (u(s)) = u(tst−1) s, t ∈ G,

where α∞ is the automorphism of A∞ induced by α. Let w be a unitary element
in A∞ ⊗ C(G) defined by w = ∑

t∈G
u(t)⊗ δt. Since u is a unitary representation

of G in A∞, we obtain condition (ii) in Definition 4.3 for the coaction α. Also, by
the above two conditions, we obtain conditions (i) and (iii) in Definition 4.3 for
the coaction α. Next we suppose condition (ii). Then there is a unitary element
w ∈ A∞ ⊗ C(G) satisfying conditions (i)–(iii) in Definition 4.3 for the coaction
α. We can regard A∞ ⊗ C(G) as the C∗-algebra of all A∞-valued functions on G.
Hence there is a function from G to A∞ corresponding to w. We denote it by u.
Since w is a unitary element in A∞ ⊗ C(G), u(t) is a unitary element in A∞ for
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any t ∈ G. By easy computations, condition (ii) in Definition 4.3 for the coaction
α implies that u is a unitary representation of G in A∞. Also, conditions (i) and
(iii) in Definition 4.3 for the coaction α imply that

αt(a) = u(t)au(t)∗ a ∈ A, t ∈ G,

α∞
t (u(s)) = u(tst−1) s, t ∈ G.

Therefore, we obtain the conclusion.

5. COACTIONS WITH THE ROHLIN PROPERTY

In this section, we shall introduce the Rohlin property for coactions of a
finite dimensional C∗-Hopf algebra on a unital C∗-algebra.

DEFINITION 5.1. Let (ρ, u) be a twisted coaction of H0 on A. We say that
(ρ, u) has the Rohlin property if the dual coaction ρ̂ of H on A oρ,u H is approxi-
mately representable.

First, we shall begin with the following easy propositions.

PROPOSITION 5.2. Let ρ be a coaction of H0 on A with the Rohlin property. Then
ρ is saturated.

The proof is immediate by Corollary 2.7.

PROPOSITION 5.3. Let (ρ, u) be a twisted coaction of H0 on A. Then (ρ, u) has
the Rohlin property if and only if so does ̂̂ρ.

The proof is immediate by Proposition 4.6.
Let (ρ, u) be a twisted coaction of H0 on A with the Rohlin property. Then

there is a unitary element w ∈ (A∞ oρ∞ ,u H)⊗ H satisfying that:

ρ̂(x) = (Ad(w) ◦ ρ
Aoρ,u H
H )(x) for any x ∈ A oρ,u H,(5.1)

(w⊗ 1)(ρ
A∞oρ∞ ,u H
H ⊗ idH)(w) = (idA∞oρ∞ ,u H ⊗∆)(w),(5.2)

(ρ̂∞ ⊗ idH)(w)(w⊗ 1) = (idA∞oρ∞ ,u H ⊗∆)(w).(5.3)

Let ŵ be the element in Hom(H0, A∞ oρ∞ ,u H) induced by w.

LEMMA 5.4. With the above notations, ŵ is a homomorphism of H0 to (A∞ oρ∞ ,u
H) ∩ A′ satisfying the following conditions:

(i) ŵ(10) = 1A∞ ,
(ii) the element ŵ(τ) is a projection in A∞,

(iii) ŵ(τ)xŵ(τ) = Eρ
1(x)ŵ(τ) for any x ∈ A oρ,u H.

Proof. By equation (5.2), ŵ ∈ Alg(H0, A∞ oρ∞ H). Furthermore, by Lem-
ma 1.16 of [2], ŵ∗ = ŵ ◦ S0. Thus for any φ ∈ H0, ŵ(φ)∗ = ŵ∗(S0(φ∗)) =
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ŵ(φ∗). Hence ŵ is a homomorphism of H0 to A∞ oρ∞ H. Next we shall show
that ŵ(φ)(a o 1) = (a o 1)ŵ(φ) for any a ∈ A. By equation (5.1), for any a ∈ A,

(a o 1)⊗ 1 = w[(a o 1)⊗ 1]w∗.

Thus [(a o 1)⊗ 1]w = w[(a o 1)⊗ 1]. Hence for any φ ∈ H0

(a o 1)ŵ(φ) = ŵ(φ)(a o 1).

Hence ŵ is a homomorphism of H0 to (A∞oρ∞ ,u H)∩A′. Also, by equation (5.2),

(idA∞oρ∞ ,u H ⊗ ε⊗ idH)((w⊗ 1)(ρ
A∞oρ∞ ,u H
H ⊗ idH)(w))

= (idA∞oρ∞ ,u H ⊗ ε⊗ idH)((idA∞oρ∞ ,u H ⊗∆)(w)).

Thus [(idA∞oρ∞ ,u H ⊗ ε)(w)⊗ 1]w = w. Since w is a unitary element in (A∞ oρ∞ ,u

H)⊗ H, (idA∞oρ∞ ,u H ⊗ ε)(w) = 1, that is, ŵ(10) = 1. Furthermore, since τ is a

projection in H0 and ŵ is a homomorphism of H0 to A∞ oρ∞ H, ŵ(τ) is a projec-
tion. Also, by equation (5.3), for any φ ∈ H0

φ ·ρ̂∞ ŵ(τ) = ŵ(φ(1)τ)ŵ
∗(φ(2)) = ŵ(τ)ŵ∗(φ) = ε0(φ)ŵ(τ).

Hence by Lemma 3.17 of [6], ŵ(τ) ∈ A∞ ∩ A′ = A∞. Finally, we shall show
that ŵ(τ)xŵ(τ) = Eρ

1(x)ŵ(τ) for any x ∈ A oρ,u H. For any a ∈ A, h ∈ H,
ρ̂(a o h) = w[(a o h)⊗ 1]w∗. Thus

(a o h(1))τ(h(2)) = ŵ(τ(1))(a o h)ŵ∗(τ(2)).

That is, τ(h)(a o 1) = ŵ(τ(1))(a o h)ŵ∗(τ(2)). Since Eρ
1(a o h) = τ(h)(a o 1) and

ŵ∗ = ŵ ◦ S0,

Eρ
1(a o h)ŵ(τ) = ŵ(τ(1))(a o h)ŵ∗(τ(2))ŵ(τ) = ŵ(τ)(a o h)ŵ(τ).

Thus we obtain the last condition.

PROPOSITION 5.5. For i = 1, 2, let (ρi, ui) be a twisted coaction of H0 on A with
(ρ1, u1) ∼ (ρ2, u2). Then (ρ1, u1) has the Rohlin property if and only if so does (ρ2, u2).

Proof. Since (ρ1, u1) ∼ (ρ2, u2), there is a unitary element v ∈ A⊗ H0 satis-
fying that

ρ2 = Ad(v) ◦ ρ1, u2 = (v⊗ 10)(ρ1 ⊗ id)(v)u1(id⊗∆0)(v∗).

Then there is an isomorphism Φ of A oρ1,u1 H onto A oρ2,u2 H defined in Lem-
ma 2.4. By easy computations, we can see that the following conditions hold:

(i) ρ̂2 ◦Φ = (Φ⊗ idH) ◦ ρ̂1,

(ii) ρ
Aoρ2,u2 H
H ◦Φ = (Φ⊗ idH) ◦ ρ

Aoρ1,u1 H
H ,

(iii) (idAoρ2,u2 H ⊗∆) ◦ (Φ⊗ idH) = (Φ⊗ idH ⊗ idH) ◦ (idAoρ1,u1 H ⊗∆).

Let Φ∞ be the isomorphism of A∞ oρ1,u1 H onto A∞ oρ2,u2 H induced by Φ.
We suppose that (ρ1, u1) has the Rohlin property and let w1 be a unitary element
in (A oρ1,u1 H)⊗ H satisfying equations (5.1)–(5.3) for the coaction ρ̂1. Let w2 =
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(Φ∞ ⊗ idH)(w1). By conditions (i)–(iii), we can see that w2 satisfies equations
(5.1)–(5.3) for the coaction ρ̂2. Therefore we obtain the conclusion.

LEMMA 5.6. For i = 1, 2, let (ρi, ui) be a twisted coaction of H0 on A with
(ρ1, u1) ∼ (ρ2, u2). We suppose that (ρi, ui) has the Rohlin property for i = 1, 2. Let wi
be as in the above proof for i = 1, 2. Then ŵ1(τ) = ŵ2(τ).

Proof. Let w1 = ∑
i,j
(aij oρ1,u1 hi)⊗ lj, where aij ∈ A∞. Then

w2 = ∑
i,j
(aijv̂∗(hi(1))oρ2,u2 hi(2))⊗ lj,

where v is a unitary element in A⊗ H0 defined in the above proof. Thus

ŵ2(τ) = ∑
i,j
(aijv̂∗(hi(1))oρ2,u2 hi(2))τ(lj) = Φ(ŵ1(τ)),

where Φ is the isomorphism of A oρ1,u1 H onto A oρ2,u2 H defined in the above
proof. On the other hand, since ŵ1(τ) ∈ A∞ ⊂ A∞ by Lemma 5.4, ŵ2(τ) =
Φ(ŵ1(τ)) = ŵ1(τ).

Let (ρ, u) be a twisted coaction of H on A with the Rohlin property. Let w
be a unitary element in (A∞ oρ∞ ,u H)⊗ H satisfying equations (5.1)–(5.3) for ρ̂.

LEMMA 5.7. With the above notations, e · ŵ(τ) = 1
N .

Proof. We note that ρ̂(1 o h) = w[(1 o h) ⊗ 1]w∗ for any h ∈ H. Since
ŵ∗ = ŵ ◦ S0, we see that for any h ∈ H, (1 o h)ŵ(S0(τ)) = ŵ(S0(τ(1)))(1 o
h(1))τ(2)(h(2)). Hence for any h ∈ H, V̂(h)ŵ(τ) = ŵ(S0(τ(1)))V̂(h(1))τ(2)(h(2)).

Then since h · a = V̂(h(1))(a o 1)V̂∗(h(2)) for any a ∈ A, h ∈ H and e = ∑
i,k

dk
N wk

ii,

e · ŵ(τ) = ∑
i,j,k,j1

dk
N

ŵ(S0(τ(1)))(1 o wk
ij1)(1 o wk

ij)
∗τ(2)(w

k
j1 j)

= ∑
i,j,k,j1,j2,j3

dk
N

ŵ(S0(τ(1)))τ(2)(w
k
j1 j)(1 o wk

ij1)(û(S(w
k
j2 j3), wk

ij2)
∗ o wk∗

j3 j)

= ∑
i,j,k,j1,j2,j3,j4,j5,s

dk
N

ŵ(S0(τ(1)))τ(2)(w
k
j1 j)[w

k
ij4 · û(S(w

k
j2 j3), wk

ij2)
∗]

× û(wk
j4 j5 , wk∗

j3s)o wk
j5 j1 wk∗

sj

since wk∗
ij = S(wk

ji) for any i, j, k by Theorem 2.2 2 of [10]. Since e · ŵ(τ) ∈ A∞,

Eρ∞

1 (e · ŵ(τ)) = e · ŵ(τ). Thus since τ(wk
ijw

r∗
st ) = 1

dk
δkrδisδjt by Theorem 2.2, 2

of [10], by Lemma 3.3(1) of [6] and Lemma 5.4(i),

e · ŵ(τ) = ∑
i,j,k,j2,j3,j4,s

1
N

ŵ(S0(τ(1)))τ(2)(w
k
jj)[wj4i · û(S(wk

j2 j3), wk
ij2)]

∗ × û(wk
j4s, wk∗

j3s)
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= ∑
i,j,k,j2,j3,j4,s,t,r

1
N

ŵ(S0(τ(1)))τ(2)(w
k
jj)û
∗(wk

itS(w
k
rj2), wk

j2i)

× û∗(wk
tj4 , wk∗

rj3)û(w
k
j4s, wk∗

j3s)

= ∑
i,j,k,j2,s

1
N

ŵ(S0(τ(1)))τ(2)(w
k
jj)û
∗(wk

isS(wk
sj2), wk

j2i)

= ∑
i,j,k

1
N

ŵ(S0(τ(1)))τ(2)(w
k
jj)ε(w

k
ii) = ŵ(S0(τ(1)))τ(2)(e) =

1
N

.

Therefore, we obtain the conclusion.

By Lemmas 5.4(ii) and 5.7, we can see that if ρ is a coaction of H0 on A with
the Rohlin property, then there is a projection p ∈ A∞ such that e · p = 1

N . We
shall show the inverse direction with the assumption that ρ is saturated. Let ρ be
a saturated coaction of H0 on A. We suppose that there is a projection p ∈ A∞
such that e · p = 1

N .

LEMMA 5.8. With the above notations and assumptions, for any x ∈ A o H,
(p o 1)x(p o 1) = Eρ

1(x)(p o 1).

Proof. Let q = N(p o 1)(1 o e)(p o 1). Then q is a projection in A∞ oρ∞ H.
Indeed, q∗ = q. Also, q2 = N2(p o 1)([e · p]o e)(p o 1) = q by the assumption.
Furthermore, Eρ∞

1 (q) = p = Eρ∞

1 (p o 1). Since q 6 p and Eρ∞

1 is faithful, we
obtain that p = q. That is, p = N(p o 1)(1 o e)(p o 1). For any a, b ∈ A,

(p o 1)(a o 1)(1 o e)(b o 1)(p o 1) =
1
N
(ab o 1)(p o 1).

Since ρ is saturated, A(1 o e)A = A oρ H. Hence we obtain the conclusion.

By Watatani’s results ([11], Proposition 2.2.7 and Lemma 2.2.9) and Lem-
ma 5.8, we can see that there is a homomorphism π of Aoρ H oρ̂ H0 to A∞ oρ∞ H
such that

π((x o 10)(1A o 1H o τ)(y o 10)) = x(p o 1)y
for any x, y ∈ A oρ H. The restriction of π to 1Aoρ H o H0 is a homomorphism of
H0 to A∞ oρ∞ H. Thus there is an element w ∈ (A∞ oρ∞ H)⊗ H such that ŵ is
the above restriction of π to H0. Let {(ui, u∗i )} be a quasi-basis of Eρ

1 .

LEMMA 5.9. With the above notations and assumptions, for any φ ∈ H0, ŵ(φ) =

∑
j
[φ ·ρ̂ uj](p o 1)u∗j .

Proof. We note that τ · x = Eρ
1(x) for any x ∈ A oρ H. Since ∑

i
(ui o 10)(1 o

τ)(u∗i o 10) = 1,

1 o φ = ∑
i
(1 o φ)(ui o 10)(1 o τ)(u∗i o 10) = ∑

i
([φ · ui]o 10)(1 o τ)(u∗i o 10).
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Hence we obtain the conclusion by the definition of ŵ.

LEMMA 5.10. With the above notations, ŵ(10) = 1A.

Proof. By Proposition 3.18 of [6], {((
√

dk owk
ij)
∗,
√

dk owk
ij)} is a quasi-basis

of Eρ
1 . Hence by Lemma 5.9,

ŵ(10) = ∑
i,j,k,t

dk[wk∗
it · p]o wk∗

tj wk
ij = ∑

i,j,k,t
dk[wk∗

it · p]o S(wk
jt)w

k
ij

= ∑
i,k

dk[S(wk
ii) · p]o 1 = N[e · p] = 1.

LEMMA 5.11. With the above notations, the element w is a unitary element in
(A∞ oρ∞ H)⊗ H satisfying equations (5.1)–(5.3).

Proof. Since ŵ is a homomorphism of H0 to A∞ oρ∞ H, the element w satis-
fies equation (5.2). Also, for any φ ∈ H0

(ŵŵ∗)(φ) = ŵ(φ(1))ŵ(S0(φ(2))
∗)∗ = ŵ(φ(1)S

0(φ(2))) = ε0(φ)

by Lemma 5.10. Similarly (ŵ∗ŵ)(φ) = ε0(φ). Hence w is a unitary element in
(A∞ oρ∞ H)⊗ H. Let {(ui, u∗i )} be a quasi-basis of Eρ

1 . By Lemmas 5.8 and 5.9 for
any φ, ψ ∈ H0,

[φ(1) ·ρ̂ ŵ(ψ)]ŵ(φ(2)) = ∑
i,j
[φ(1) · ([ψ · uj](p o 1)u∗j )][φ(2) · ui](p o 1)u∗i

= ∑
i,j
[φ · ([ψ · uj]E

ρ
1(u
∗
j ui)(p o 1))]u∗i

= ∑
i
[φ · ([ψ · ui](p o 1))]u∗i = ŵ(φψ).

Thus the element w satisfies equation (5.3). Finally, for any a ∈ A, h ∈ H and
φ ∈ H0,

ŵ(φ(1))(a o h)ŵ∗(φ(2)) = ∑
i,j
[φ(1) · (ujE

ρ
1(u
∗
j (a o h)[S0(φ(2)) · ui]))](p o 1)u∗i

= ∑
i
(a o h(1))φ(1)(h(2))[φ(2) · [S0(φ(3)) · ui]](p o 1)u∗i

= ∑
i
(a o h(1))φ(h(2))ui(p o 1)u∗i = (a o h(1))φ(h(2))

by Lemmas 5.9 and 5.10. Hence w satisfies equation (5.1). Therefore we obtain
the conclusion.

THEOREM 5.12. Let ρ be a coaction of a finite dimensional C∗-Hopf algebra H on
a unital C∗-algebra A. If ρ is saturated, then the following conditions are equivalent:

(i) the coaction ρ has the Rohlin property,
(ii) there is a projection p in A∞ such that e ·ρ∞ p = 1

N , where N = dim H.
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The proof is immediate by Lemmas 5.7 and 5.11.
In the next section, we show that the above assertion holds without the

assumption that ρ is saturated. In the rest of this section, we shall show that
the Rohlin property of coactions of a finite dimensional C∗-Hopf algebra is an
extension of the Rohlin property of a finite group in the sense of Remark 3.7 of
[4]. Let G and α be as in the end of Section 4.

PROPOSITION 5.13. With the above notations, the following conditions are equiv-
alent:

(i) the action α of G on A has the Rohlin property,
(ii) the coaction α of C(G) on A has the Rohlin property.

Proof. We suppose condition (i). Then there is a partition of unity {et}t∈G
consisting of projections in A∞ satisfying that α∞

t (es) = ets for any t, s ∈ G. By
easy computations, ee is a projection in A∞ such that τ · ee = 1

n , where τ is the
Haar trace on C(G). Since the coaction α of C(G) on A is saturated, by Theo-
rem 5.12 the coaction α has the Rohlin property. Next, we suppose condition (ii).
Then there is a projection p ∈ A∞ such that τ · p = 1

n by Theorem 5.12. Hence

(id⊗ τ)(∑
t∈G

α∞
t (p)⊗ δt) =

1
n

.

Thus, we see that ∑
t∈G

α∞
t (p) = 1 by the definition of τ. Let et = α∞

t (p) for any

t ∈ G. Then clearly, {et}t∈G is a partition of unity consisting of projections in A∞
satisfying that α∞

t (es) = ets.

6. ANOTHER CONDITION WHICH IS EQUIVALENT TO THE ROHLIN PORPERTY

In this section, we shall give another condition which is equivalent to the
Rohlin property.

Let (ρ, u) be a twisted coaction of H0 on A. We suppose that (ρ, u) has the
Rohlin property. Then there is a unitary element w ∈ (A∞ oρ∞ ,u H)⊗H satisfying
equations (5.1)–(5.3) for (ρ, u). Let ŵ be the unitary element in Hom(H0, A∞oρ∞ ,u
H) induced by w ∈ (A oρ∞ ,u H)⊗ H. By Lemma 5.4, ŵ(τ) is a projection in A∞.
By Theorem 3.3 there are an isomorphism Ψ of MN(A) onto A oρ,u H oρ̂ H0 and
a unitary element U in (A oρ,u H oρ̂ H0)⊗ H0 such that

Ad(U) ◦ ̂̂ρ = (Ψ⊗ idH0) ◦ (ρ⊗ idMN(C)) ◦Ψ−1,

(Ψ⊗ idH0 ⊗ idH0)(u⊗ IN) = (U ⊗ 10)(̂̂ρ⊗ idH0)(U)(id⊗∆0)(U∗).

Let σ = (Ψ⊗ id) ◦ (ρ⊗ idMN(C)) ◦Ψ−1 and W = (Ψ⊗ idH0 ⊗ idH0)(u⊗ IN). Then
(σ, W) is a twisted coaction of H0 on A oρ,u H oρ̂ H0 which is exterior equivalent
to ̂̂ρ. Let Ψ̂ be the isomorphism of MN(A)oρ⊗id,u⊗IN H onto Aoρ,u H oρ̂ H0 oσ,W
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H induced by Ψ, which is defined by Ψ̂(x oρ⊗id,u⊗IN h) = Ψ(x)oσ,W h for any
x ∈ MN(A), h ∈ H. Let Ψ̂∞ be the isomorphism of MN(A∞)oρ∞⊗id,u⊗IN H onto
A∞ oρ∞ ,u H oρ̂∞ H0 oσ∞ ,W H induced by Ψ̂. By easy computations, (σ, W) has
the Rohlin property and the unitary element (Ψ̂∞ ⊗ idH)(w⊗ IN) is in (A∞ oρ∞ ,u

H oρ̂∞ H0 oσ∞ ,W H)⊗ H and satisfies equations (5.1)–(5.3) for the twisted coac-
tion (σ, W). Let z = (Ψ̂∞ ⊗ idH)(w⊗ IN). Then

ẑ(τ) = ((id⊗ τ) ◦ (Ψ̂∞ ⊗ idH))(w⊗ IN) = Ψ̂∞((id⊗ τ)(w⊗ IN))

= Ψ̂∞(ŵ(τ)⊗ IN) = Ψ∞(ŵ(τ)⊗ IN).

LEMMA 6.1. With the above notations and assumptions,

∑
i,j,k

(
√

dk oρ,u wk
ij)
∗ŵ(τ)(

√
dk oρ,u wk

ij) = 1.

Proof. By Proposition 5.3, ̂̂ρ has the Rohlin property. Then by Lemmas 5.6
and 5.7, e ·̂̂ρ ẑ(τ) = 1

N . Since ẑ(τ) = Ψ∞(ŵ(τ)⊗ IN) and VI = (1oρ̂ τ)(WI oρ̂ 10)

for any I ∈ Λ,

1
N

= ∑
I
[e ·̂̂ρ V∗I (ŵ(τ)oρ,u 1 oρ̂ 10)VI ]

= ∑
I
(W∗I oρ̂ 10)(ŵ(τ)oρ,u 1 oρ̂ τ(1)τ

′
(1))(WI oρ̂ 10)(τ(2)τ

′
(2))(e)

= ∑
I
(W∗I oρ̂ 10)(ŵ(τ)oρ,u 1 oρ̂ 10)(WI oρ̂ 10)(ττ′)(e)

=
1
N ∑

I
W∗I (ŵ(τ)oρ,u 1)WI ,

where τ′ = τ. Therefore we obtain the conclusion.

Next, we shall show the inverse direction of Lemma 6.1.

LEMMA 6.2. Let (ρ, u) be a twisted coaction of H0 on A. We suppose that there is
a projection p ∈ A∞ such that

∑
i,j,k

(
√

dk oρ,u wk
ij)
∗(p oρ,u 1)(

√
dk oρ,u wk

ij) = 1.

Then (ρ, u) has the Rohlin property.

Proof. Le Ψ be the isomorphism of MN(A) onto A oρ,u H oρ̂ H0 defined in
Theorem 3.3. Let q = Ψ∞(p⊗ IN). Then q is a projection in (A oρ,u H oρ̂ H0)∞
since p⊗ IN ∈ MN(A)∞. In the same way as in the proof of Lemma 6.1,

e ·̂̂ρ q = e ·̂̂ρ Ψ∞(p⊗ IN) =
1
N ∑

I
W∗I (p oρ,u 1)WI =

1
N

.
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Hence by Theorem 5.12, ̂̂ρ has the Rohlin property since ̂̂ρ is saturated by Jeong
and Park ([5], Theorem 3.3) and Proposition 3.18 of [6]. Therefore (ρ, u) has the
Rohlin property by Proposition 5.5.

THEOREM 6.3. Let (ρ, u) be a twisted coaction of a finite dimensional C∗-Hopf
algebra H0 on a unital C∗-algebra A. Let {wk

ij} be a system of comatrix units of H. Then
the following conditions are equivalent:

(i) the twisted coaction (ρ, u) has the Rohlin property,
(ii) there is a projection p ∈ A∞ such that ∑

i,j,k
(
√

dk oρ,u wk
ij)
∗p(
√

dk oρ,u wk
ij) = 1.

The proof is immediate by Lemmas 6.1 and 6.2.

COROLLARY 6.4. Let ρ be a coaction of H0 on A. Then the following conditions
are equivalent:

(i) the coaction ρ has the Rohlin property,
(ii) there is a projection p ∈ A∞ such that e ·ρ∞ p = 1

N .

Proof. (i) implies (ii). This is immediate by Lemma 5.7.
(ii) implies (i). By Theorem 6.3, it suffices to show that (ii) implies that

∑
i,j,k

(
√

dk oρ wk
ij)
∗p(
√

dk oρ wk
ij) = 1.

Since ρ is a coaction of H0 on A,

∑
i,j,k

(
√

dk oρ wk
ij)
∗p(
√

dk oρ wk
ij) = N ∑

i,j,k

dk
N

V̂(S(wk
ji))pV̂∗(S(wk

ij))

= N ∑
i,k

dk
N
[S(wk

ii) ·ρ∞ p] = N[e ·ρ∞ p] = 1.

Therefore we obtain the conclusion.

7. AN EXAMPLE

In this section, we shall give an example of an approximately representable
coaction of a finite dimensional C∗-Hopf algebra on a UHF-algebra which has
also the Rohlin property.

We note that the comultiplication ∆0 of H0 can be regarded as a coaction of
H0 on a C∗-algebra H0. Hence we can consider the crossed product H0 o∆0 H,
which is isomorphic to MN(C). Let A = H0 o∆0 H. Let An = ⊗n

1 A, the n-times
tensor product of A, for any n ∈ N. In the usual way, we regard An as a C∗-
subalgebra of An+1, that is, for any a ∈ An, the map ın : a 7→ a ⊗ (10 o∆0 1) is
regarded as the inclusion of An into An+1. Let B be the inductive limit C∗-algebra
of {(An, ın)}. Then B can be regarded as a UHF-algebra of type N∞. Let V̂ be a
unitary element in Hom(H, A) defined by V̂(h) = 10 o∆0 h for any h ∈ H and let
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V be the unitary element in A⊗ H0 induced by V̂. We recall that {vk
ij} and {wk

ij}
are systems of matrix units and comatrix units of H, respectively. Also, let {φk

ij}
and {ωk

ij} be systems of matrix units and comatrix units of H0, respectively. Let

v1 = V = ∑
i,j,k

(10 o∆0 wk
ij)⊗ φk

ij = ∑
i,j,k

(10 o∆0 vk
ij)⊗ωk

ij.

For any n ∈ N with n > 2, let

vn = [⊗n−1
1 (10 o∆0 1)]⊗V.

Let un = v1v2 · · · vn ∈ An ⊗ H0 for any n ∈ N. Then un is a unitary element in
An ⊗ H0 for any n ∈ N.

LEMMA 7.1. With the above notations,

un = ∑ V̂(wk
ij1)⊗ V̂(wk

j1 j2)⊗ · · · ⊗ V̂(wjn−1 j)⊗ φk
ij

= ∑ V̂(vk1
i1 j1

)⊗ V̂(vk2
i2 j2

)⊗ · · · ⊗ V̂(vkn
in jn)⊗ωk1

i1 j1
· · ·ωkn

in jn ,

where the above summations are taken under all indices.

Proof. It is clear that the second equation holds. We show the first equation
by the induction. We assume that

un = ∑ V̂(wk
ij1)⊗ V̂(wk

j1 j2)⊗ · · · ⊗ V̂(wjn−1 j)⊗ φk
ij,

where the summation is taken under all indices. Then

un+1 = ∑ V̂(wk
ij1)⊗ V̂(wk

j1 j2)⊗ · · · ⊗ V̂(wk
jn−1 j)⊗ V̂(wr

st)⊗ φk
ijφ

r
st

= ∑ V̂(wk
ij1)⊗ V̂(wk

j1 j2)⊗ · · · ⊗ V̂(wk
jn−1 j)⊗ V̂(wk

jt)⊗ φk
it,

where the summations are taken under all indices. Therefore, we obtain the con-
clusion.

For any n ∈ N, let ρn = Ad(un) ◦ ρAn
H0 , that is, for any a ∈ An,

ρn(a) = un(a⊗ 10)u∗n.

LEMMA 7.2. With the above notations, ρn is a coaction of H0 on An.

Proof. We have only to show that

(un ⊗ 10)(ρAn
H0 ⊗ id)(un) = (id⊗∆0)(un).

By Lemma 7.1, we can write that

un = ∑ V̂(vk1
i1 j1

)⊗ V̂(vk2
i2 j2

)⊗ · · · ⊗ V̂(vkn
in jn)⊗ωk1

i1 j1
· · ·ωkn

in jn ,

where the summation is taken under all indices. Hence

un ⊗ 10 = ∑ V̂(vk1
i1 j1

)⊗ · · · ⊗ V̂(vkn
in jn)⊗ωk1

i1 j1
· · ·ωkn

in jn ⊗ 10,

(ρAn
H0 ⊗ id)(un) = ∑ V̂(vk1

i1 j1
)⊗ · · · ⊗ V̂(vkn

in jn)⊗ 10 ⊗ωk1
i1 j1
· · ·ωkn

in jn ,
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where the summations are taken under all indices. Since V̂ is a C∗-homomor-
phism of H to A,

(un⊗10)(ρAn
H0⊗id)(un)=∑ V̂(vk1

i1t1
)⊗ · · · ⊗V̂(vkn

intn
)⊗ωk1

i1 j1
· · ·ωkn

in jn⊗ωk1
j1t1
· · ·ωkn

jntn

= (id⊗∆0)(un),

where the summations are taken under all indices. Therefore we obtain the con-
clusion.

LEMMA 7.3. With the above notations, (ın ⊗ id) ◦ ρn = ρn+1 ◦ ın for any n ∈ N.

Proof. In this proof, the summations are taken under all indices. Let a be
any element in An. Then by Lemma 7.1

((ın ⊗ id) ◦ ρn)(a)=∑(V̂(wk
ij1)⊗ · · · ⊗ V̂(wjn−1 j))a(V̂(wk

st1
)∗ ⊗ · · · ⊗ V̂(wk

tn−1 j)
∗)

⊗ (10 o∆0 1)⊗ φk
is.

On the other hand, since V̂ is a C∗-homomorphism of H to A and wk∗
tn j = S(wk

jtn
),

(ρn+1 ◦ ın)(a) = ρn+1(a⊗ (10 o∆0 1))

= ∑(V̂(wk
ij1)⊗ · · · ⊗ V̂(wjn−1 jn))a(V̂(wk

st1
)∗ ⊗ · · · ⊗ V̂(wk

tn−1tn)
∗)

⊗ (1 o∆0 1)ε(wk
jntn

)⊗ φk
is

= ((ın ⊗ id) ◦ ρn)(a).

Therefore, we obtain the conclusion.

By Lemma 7.3, the inductive limit of {(ρn, ın)} is a homomorphism of B to
B⊗H0. Furthermore, by Lemma 7.2, it is a coaction of H0 on B. We denote it by ρ.

PROPOSITION 7.4. With the above notations, ρ is approximately representable.

Proof. Let u be a unitary element in B∞ ⊗ H0 defined by u = (un), where
An is regarded as a C∗-subalgebra of B for any n ∈ N. We can easily show that ρ
and u hold the following conditions:

(i) ρ(x) = (Ad(u) ◦ ρB
H0)(x) for any x ∈ B,

(ii) (u⊗ 10)(ρB∞

H0 ⊗ id)(u) = (id⊗∆0)(u),
(iii) (ρ∞ ⊗ id)(u)(u⊗ 10) = (id⊗∆0)(u).

Therefore, we obtain the conclusion.

PROPOSITION 7.5. With the above notations, ρ has the Rohlin property.

Proof. By Corollary 6.4, it suffices to show that there is a projection p ∈ B∞
such that e ·ρ∞ p = 1

N . For any n ∈ N, let

pn = (10 o∆0 1)⊗ · · · ⊗ (10 o∆0 1)⊗ (τ o∆0 1) ∈ A′n−1 ∩ An.
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Also, let p = (pn). Then clearly p is a projection in B∞. In order to show that
e ·ρ∞ p = 1

N , we have only to show that e ·ρn pn = 1
N for any n ∈ N. We note that

un(pn⊗10)u∗n =∑ V̂(wk
ij1 S(wk

t1s))⊗ V̂(wk
j1 j2 S(wk

t2t1
))⊗ · · ·

⊗V̂(wk
jn−2 jn−1

S(wk
tn−1tn−2

))⊗V̂(wk
jn−1 j)(τo∆0 1)V̂(S(wk

jtn−1
))⊗φk

is,

where the summation is taken under all indices. Hence since e = ∑
f ,q

d f
N w f

qq,

e ·ρn pn = ∑
dk
N

V̂(wk
ij1 S(wk

t1i))⊗ V̂(wk
j1 j2 S(wk

t2t1
))⊗ · · ·

⊗ V̂(wk
jn−2 jn−1

S(wk
tn−1tn−2

))⊗ V̂(wk
jn−1 j)(τ o∆0 1)V̂(S(wk

jtn−1
))

= ∑
dk
N
(10 o∆0 1)⊗ V̂(wk

j1 j2 S(wk
t2 j1))⊗ V̂(wk

j1 j2 S(wk
t2t1

))⊗ · · ·

⊗ V̂(wk
jn−2 jn−1

S(wk
tn−1tn−2

))⊗ V̂(wk
jn−1 j)(τ o∆0 1)V̂(S(wk

jtn−1
)),

where the summations are taken under all indices. Doing this in the same way as
in the above for n− 1 times, we can obtain that

e ·ρn pn = ∑
dk
N
(10 o∆0 1)⊗ · · · ⊗ (10 o∆0 1)⊗ V̂(wk

jn−1 j)(τ o∆0 1)V̂(S(wk
jjn−1

))

= (10 o∆0 1)⊗ · · · ⊗ (10 o∆0 1)⊗ ([e ·∆0 τ]o∆0 1)

=
1
N
(10 o∆0 1)⊗ · · · ⊗ (10 o∆0 1),

where the summations are taken under all indices. Therefore, we obtain the con-
clusion.

8. 1-COHOMOLOGY VANISHING THEOREM

Let ρ be a coaction of H0 on A with the Rohlin property. In this section, we
shall show that for any coaction σ of H0 on A which is exterior equivalent to ρ,
there is a unitary element x ∈ A⊗ H0 such that σ = Ad(x⊗ 10) ◦ ρ ◦Ad(x∗).

Let ρ and σ be as above. Since ρ and σ are exterior equivalent, there is a
unitary element v ∈ A⊗ H0 satisfying the following conditions:

σ = Ad(v) ◦ ρ,(8.1)

(v⊗ 10)(ρ⊗ idH0)(v) = (id⊗∆0)(v).(8.2)

Since ρ has the Rohlin property, there is a unitary element w in (Aoσ H)⊗ H sat-
isfying equations (5.1)–(5.3) for ρ̂. By Proposition 5.5, σ has also the Rohlin prop-
erty. Hence there is a unitary element w1 ∈ (A oσ H)⊗ H satisfying equations
(5.1)–(5.3) for σ̂. By Lemma 5.6, ŵ1(τ) = ŵ(τ). Let x = N(id⊗ e)(vρ∞(ŵ(τ))) =
Nv̂(e(1))[e(2) ·ρ∞ ŵ(τ)].
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LEMMA 8.1. With the above notations, the element x is a unitary element in A∞

such that ρ∞(x) = v∗(x⊗ 10).

Proof. Let f = e. Then by Lemmas 5.4 and 5.6

xx∗ = N2v̂(e(1))[e(2) ·ρ∞ ŵ(τ)][S( f(2))
∗ ·ρ∞ ŵ(τ)]v̂( f(1))

∗

= N2v̂(e(1))(1 oρ e(2))ŵ(τ)τ(e(3) f ∗(3))(1 oρ f ∗(2))v̂( f(1))
∗

= N2v̂(e(1))(1 oρ e(2))ŵ(τ)(1 oρ S(e(3))e(4) f ∗(2))τ(e(5) f ∗(3))v̂( f(1))
∗

= N2v̂(e(1))(1 oρ e(2))ŵ(τ)(1 oρ S(e(3)))v̂
∗(S( f(1))

∗)τ(e(4) f ∗(2))

= N2v̂(e(1))(1 oρ e(2))ŵ(τ)(1 oρ S(e(3)))v̂
∗(e(4))τ(e(5) f )

= N(id⊗ e)(vρ∞(ŵ(τ))v∗) = N[e ·σ∞ ŵ1(τ)] = 1.

Let y = N(id⊗ e)(v∗σ∞(ŵ1(τ))) = Nv̂∗(e(1))[e(2) ·σ∞ ŵ1(τ)]. Then by the above
discussions, yy∗ = 1. On the other hand, by Lemmas 5.6 and 5.7

y∗ = N[S(e∗(2)) ·σ∞ ŵ(τ)]v̂(S(e∗(1))) = Nv̂(S(e∗(2)))[S(e(1))
∗ ·ρ∞ ŵ(τ)]

= N(id⊗ S(e)∗)(vρ∞(ŵ(τ))) = x.

Thus x∗x = 1. Hence x is a unitary element in A∞. Finally, we shall show that
ρ∞(x) = v∗(x⊗ 10). Noting that (v⊗ 10)(ρ⊗ id)(v) = (id⊗∆0)(v),

ρ∞(x) = Nρ∞((id⊗ e)(vρ∞(ŵ(τ))))

= N(id⊗ idH0 ⊗ e)((ρ∞ ⊗ idH0)(v)((ρ∞ ⊗ idH0) ◦ ρ∞)(ŵ(τ)))

= Nv∗(id⊗ idH0 ⊗ e)((id⊗∆0)(vρ∞(ŵ(τ))))

= Nv∗(id⊗ e)(vρ∞(ŵ(τ)))⊗ 10 = v∗(x⊗ 10).

LEMMA 8.2. With the above notations, for any ε > 0 there is a unitary element x0
in A such that

‖v− (x0 ⊗ 1)ρ(x∗0)‖ < ε.

Proof. By Lemma 8.1, there is a unitary element x ∈ A∞ such that v =
(x ⊗ 10)ρ∞(x∗). Since x is a unitary element in A∞, for any ε > 0, there is a
unitary element x0 ∈ A such that ‖v− (x0 ⊗ 1)ρ(x∗0)‖ < ε.

THEOREM 8.3. Let ρ and σ be coactions of H0 on A which are exterior equivalent.
We suppose that ρ has the Rohlin property. Then there is a unitary element x ∈ A such
that

σ = Ad(x⊗ 10) ◦ ρ ◦Ad(x∗).

Proof. Let v be a unitary element in A ⊗ H0 satisfying equations (8.1) and
(8.2). By Lemma 8.2, there is a unitary element x0 ∈ A such that

‖v− (x0 ⊗ 1)ρ(x∗0)‖ < 1.

Let
ρ1 = Ad(x0 ⊗ 1) ◦ ρ ◦Ad(x∗0) = Ad((x0 ⊗ 10)ρ(x∗0)) ◦ ρ.
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Let v1 = (x0⊗ 10)ρ(x∗0). Then ρ1 is a coaction of H0 on A. Also, σ = Ad(vv∗1) ◦ ρ1.
Let v2 = vv∗1 . Then v2 is a unitary element in A⊗ H0 with

‖v2 − 1‖ = ‖v− v1‖ = ‖v− (x0 ⊗ 10)ρ(x∗0)‖ < 1.

Furthermore, since v1 = (x0 ⊗ 10)ρ(x∗0),

(v2⊗10)(ρ1⊗id)(v2)=(v⊗ 10)(ρ⊗ id)(v)(ρ⊗ id)(v∗1)(v
∗
1 ⊗ 10)

=(id⊗∆0)(v)(ρ⊗ id)(v∗1)(v
∗
1 ⊗ 10)

=(id⊗∆0)(v2)(id⊗∆0)(v1)(ρ⊗ id)(v∗1)(v
∗
1 ⊗ 10)

=(id⊗∆0)(v2)(x0⊗10⊗10)((ρ⊗id)◦ρ)(x∗0 x0)(x∗0⊗10⊗10)

=(id⊗∆0)(v2).

Let y = (idA ⊗ e)(v2). Then

ρ1(y) = (idA ⊗ idH0 ⊗ e)((v∗2 ⊗ 10)(idA ⊗∆0)(v2))

= v∗2 [(idA ⊗ e)(v2)⊗ 10] = v∗2(y⊗ 10).

Since ‖1− y‖ = ‖(idA ⊗ e)(1− v2)‖ 6 ‖1− v2‖ < 1, y is invertible. Let y = x|y|
be the polar decomposition of y. Then x is a unitary element in A and

ρ1(y) = v∗2(y⊗ 10) = v∗2(x⊗ 10)(|y| ⊗ 10).

Hence
ρ1(x)ρ1(|y|) = v∗2(x⊗ 10)(|y| ⊗ 10).

Also,
ρ1(y∗y) = (y∗ ⊗ 10)v2v∗2(y⊗ 1) = y∗y⊗ 1.

Thus ρ1(|y|) = |y| ⊗ 10. Hence ρ1(x) = v∗2(x⊗ 10). It follows that

Ad(x⊗ 10) ◦ ρ1 ◦Ad(x∗) = Ad((x⊗ 10)ρ1(x∗)) ◦ ρ1 = Ad(v) ◦ ρ = σ.

Since ρ1 = Ad(x0 ⊗ 10) ◦ ρ ◦Ad(x∗0), we obtain the conclusion.

9. 2-COHOMOLOGY VANISHING THEOREM

Let (ρ, u) be a twisted coaction of H0 on A with the Rohlin property. Let w
be a unitary element in (A∞ oρ∞ ,u H)⊗ H satisfying equation (5.1)–(5.3) and let
ŵ be the unitary element in Hom(H0, A∞ oρ∞ ,u H) induced by w. In this section,
we shall show that there is a unitary element x ∈ A⊗ H0 such that

(x⊗ 10)(ρ⊗ id)(x)u(id⊗∆0)(x∗) = 1⊗ 10 ⊗ 10.

We recall that in Section 3 we construct a system of matrix units of MN(C),

{(W∗I oρ̂ 10)(1 oρ,u 1 oρ̂ τ)(WJ oρ̂ 10)}I,J∈Λ
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which is contained in A∞ oρ∞ ,u H, where WI =
√

dk oρ,u wk
ij for any I = (i, j, k) ∈

Λ. By Lemmas 5.4 and 6.1, we obtain the following lemma.

LEMMA 9.1. With the above notations and assumptions, the set {W∗I ŵ(τ)WJ}I,J∈Λ

is a system of matrix units of MN(C), which is contained in A∞ oρ∞ ,u H.

Proof. By the proof of Lemma 3.1, for any I = (i, j, k), J = (s, t, r) ∈ Λ,

WIW∗J = ∑
t2,t3,j3

√
dkdrû(wk

j3iS(w
r
t2t3

), wr
st2
)∗ oρ,u wk

j3 jw
r∗
t3t.

Hence by Lemma 5.4 and Theorem 2.2 of [10],

ŵ(τ)WIW∗J ŵ(τ) = ∑
t2,t3,j3

√
dkdrτ(wk

j3 jw
r∗
t3t)û

∗(wk
ij3 wr∗

t2t3
, wr

t2s)ŵ(τ).

If k 6= r or j 6= t, then ŵ(τ)WIW∗J ŵ(τ) = 0. We suppose that k = r and j = t.

ŵ(τ)WIW∗J ŵ(τ) = ∑
t2,t3

û∗(wk
it3

S(wk
t3t2

), wk
t2s)ŵ(τ) = δisŵ(τ),

where δis is the Kronecker delta. Thus for any K, L, I, J ∈ Λ,

W∗Kŵ(τ)WIW∗J ŵ(τ)WL = 0

if I 6= J. We suppose that I = J. Then since ŵ(τ)WIW∗I ŵ(τ) = ŵ(τ),

W∗Kŵ(τ)WIW∗I ŵ(τ)WL = W∗Kŵ(τ)WL.

Furthermore,

∑
I∈Λ

W∗I ŵ(τ)WIW∗I ŵ(τ)WI = ∑
I∈Λ

W∗I ŵ(τ)WI = 1

by Lemma 6.1. Therefore we obtain the conclusion.

We suppose that the C∗-Hopf algebra H0 acts on a unital C∗-algebra C triv-
ially. Then by the discussions before Lemma 9.1, the set {(W∗0I o∆ 10)(1 o 1 o∆

τ)(W0J o∆ 10)}I,J∈Λ is a system of matrix units of Co H o∆ H0 which is isomor-
phic to MN(C), where W0I =

√
dk o wk

ij ∈ Co H for any I = (i, j, k) ∈ Λ. Thus

we obtain the following homomorphism θ of Co H o∆ H0 into A∞ oρ∞ ,u H. For
any I, J ∈ Λ,

θ((W∗0I o∆ 10)(1 o 1 o∆ τ)(W0J o∆ 10)) = W∗I ŵ(τ)WJ .

LEMMA 9.2. With the above notations, for any h ∈ H,

θ(1 o h) = ∑
i,j,k

dk(1 oρ,u wk
ij)
∗ŵ(τ)(1 oρ,u wk

ijh).
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Proof. Let h be any element in H. Then by Lemma 6.1,

1 o h = ∑
I∈Λ

(WI o∆ 10)∗(1 o 1 o∆ τ)(WI o∆ 10)(1 o h o∆ 10)

= ∑
i,j,k

dk(1 o wk
ij o∆ 10)∗(1 o 1 o∆ τ)(1 o wk

ijh o∆ 10).

Since {wk
ij} is a system of comatrix units of H, for any i, j, k there are elements

(ck
ij)

r
st ∈ C such that wk

ijh = ∑
s,t,r

(ck
ij)

r
stw

r
st. Hence

1 o h = ∑
i,j,k,s,t,r

dk(ck
ij)

r
st(1 o wk

ij o∆ 10)∗(1 o 1 o∆ τ)(1 o wr
st o∆ 10).

Thus by the definition of θ,

θ(1 o h) = ∑
i,j,k,r,s,t

dk(ck
ij)

r
st(1 oρ,u wk

ij)
∗ŵ(τ)(1 oρ,u wr

st)

= ∑
i,j,k

dk(1 oρ,u wk
ij)
∗ŵ(τ)(1 oρ,u wk

ijh).

The restriction of θ to 1 o H, the C∗-subalgebra of Co H o∆ H0 is a homo-
morphism of H to A∞ oρ∞ ,u H. Hence there is a unitary element v ∈ (A∞ oρ∞ ,u

H)⊗ H0 such that θ|1oH = v̂. We recall the definitions V and V̂. Let V̂ be a linear
map from H to A oρ,u H defined by V̂(h) = 1 oρ,u h for any h ∈ H and let V
be the element in (A oρ,u H)⊗ H0 induced by V̂. Then V and V̂ are unitary ele-
ments in (Aoρ,u H)⊗H0 and Hom(H, Aoρ,u H), respectively. Let x be a unitary
element in (A∞ oρ∞ ,u H)⊗ H0 defined by x = vV∗.

LEMMA 9.3. With the above notations, x̂(h) ∈ A∞ for any h ∈ H.

Proof. Since wk∗
ij = S(wk

ij) for any i, j, k, by Lemma 9.2 and Theorem 2.2 of
[10], for any h ∈ H,

x̂(h) = v̂(h(1))V̂(S(h∗(2)))
∗

= ∑
i,j,k,j1,j2,j4,i1

dk(û∗(wk∗
j1 j2 , wk

j1i)[w
k∗
j2 j3 ·ρ,u ŵ(τ)]û(wk∗

j3 j4 , wk
ii1 h(1))

oρ,u S(wk
jj4)w

k
i1 jh(2))(û

∗(S(h(4)), h(5))oρ,u S(h(3)))

= ∑
i,k,j1,j2,j3,j4

dkû∗(wk∗
j1 j2 , wk

j1i)[w
k∗
j2 j3 ·ρ,u ŵ(τ)]û(wk∗

j3 j4 , wk
ij4 h(1))

× [h(2) ·ρ,u û∗(S(h(5)), h(6))]û(h(3), S(h(4))).

Furthermore, using the equations (i) and (ii) in Section 2, we can see that for any
h ∈ H,

x̂(h) = ∑
i,k,j1,j2,j3,j4

dkû∗(wk∗
j1 j2 , wk

j1i)[w
k∗
j2 j3 ·ρ,u ŵ(τ)]û(wk∗

j3 j4 , wk
ij4 h).
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Since wk∗
j2 j3
·ρ,u ŵ(τ) ∈ A∞ for any j2, j3, k, we obtain the conclusion.

By the above lemma, we can see that x is a unitary element in A∞ ⊗ H0. We

recall that ρ
Aoρ,u H
H0 is the trivial coaction of H0 on Aoρ,u H defined by ρ

Aoρ,u H
H0 (a)=

a ⊗ 10 for any a ∈ A oρ,u H. Also, we note that ρ = Ad(V) ◦ ρ
Aoρ,u H
H0 by Lem-

ma 3.12 of [6], where we regard A as a C∗-subalgebra of A oρ,u H. Furthermore,
since v̂ is a homomorphism of H to A∞ oρ∞ ,u H,

(v⊗ 10)(ρ
A∞oρ∞ ,u H
H0 ⊗ id)(v) = (id⊗∆0)(v).

PROPOSITION 9.4. With the above notations,

(x⊗ 10)(ρ∞ ⊗ id)(x)u(id⊗∆0)(x∗) = 1⊗ 10 ⊗ 10.

Proof. Since x = vV∗ and ρ = Ad(V) ◦ ρ
Aoρ,u H
H0 ,

(ρ∞ ⊗ id)(x∗)(x∗ ⊗ 10)(id⊗∆0)(x)

= (V ⊗ 10)(ρ
A∞oρ∞ ,u H
H0 ⊗ id)(Vv∗)(v∗ ⊗ 10)(id⊗∆0)(vV∗).

Since (v⊗ 10)(ρ
A∞oρ∞ ,u H
H0 ⊗ id)(v) = (id⊗∆0)(v),

(ρ∞ ⊗ id)(x∗)(x∗ ⊗ 10)(id⊗∆0)(x) = u

by Lemma 3.12 of [6].

We recall that {φk
ij} is a system of matrix units of H0.

LEMMA 9.5. Let (ρ, u) be a twisted coaction of H0 on A with the Rohlin property.
Then for any ε > 0, there is a unitary element x ∈ A⊗ H0 satisfying that

‖(x⊗ 10)(ρ⊗ id)(x)u(id⊗∆0)(x∗)− 1⊗ 10 ⊗ 10‖ < ε,

‖x− 1⊗ 10‖ < ε + L‖u− 1⊗ 10 ⊗ 10‖,

where L is a constant number with L > 1.

Proof. Modifying the proof of Izumi’s Lemma 3.12 in [4], we shall prove this
lemma. By Proposition 9.4, there is a unitary element x0 ∈ A∞ ⊗ H0 satisfying
that

(x0 ⊗ 10)(ρ∞ ⊗ id)(x0)u(id⊗∆0)(x∗0) = 1⊗ 10 ⊗ 10.

By the proof of Lemma 9.3, for any h ∈ H,

x̂0(h) = ∑
i,j,k

dkV̂(wk
ij)
∗ŵ(τ)V̂(wk

ijh(1))V̂
∗(h(2)).

Thus
x0 = ∑

i,j,k,s,t,r,t1

dkV̂(wk
ij)
∗ŵ(τ)V̂(wk

ijw
r
st1
)V̂∗(wr

t1t)⊗ φr
st.
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Since ∑
i,j,k

dkV̂(wk
ij)
∗ŵ(τ)V̂(wk

ij) = 1 by Lemma 6.1,

1⊗ 10 = ∑
i,j,k,s,t,r,t1

dkV̂(wk
ij)
∗ŵ(τ)V̂(wk

ij)V̂(wr
st1
)V̂∗(wr

t1t)⊗ φr
st.

Also since u = (V ⊗ 10)(ρ
Aoρ,u H
H0 ⊗ id)(V)(id⊗∆0)(V∗) by Lemma 3.12 of [6],

V̂(wk
ij)V̂(wr

st1
) = ∑

j1,t2

û(wk
ij1 , wr

st2
)V̂(wk

j1 jw
r
t2t1

)

for any i, j, k, s, t1, r. Hence

x0 − 1⊗ 10 = ∑
i,j,k,s,t,r,t1,t2,j1

dkV̂(wk
ij)
∗ŵ(τ)[ε(wk

ij1)ε(w
r
st2
)− û(wk

ij1 , wr
st2
)]

× V̂(wk
j1 jw

r
t2t1

)V̂∗(wr
t1t)⊗ φr

st.

Since there is a constant number L1 > 0 such that

‖ε(wk
ij1)ε(w

r
st2
)− û(wk

ij1 , wr
st2
)‖ 6 L1‖1⊗ 10 ⊗ 10 − u‖

for any i, j1, k, s, t2, r,

‖x0 − 1⊗ 1⊗ 10‖

6 L1 ∑
i,j,k,s,t,r,t1,t2,j1

dk‖V̂(wk
ij)‖ ‖V̂(wk

j1 jw
r
t2t1

)V̂∗(wr
t1t)‖‖1⊗ 10 ⊗ 10 − u‖.

Since x0 is a unitary element in A∞⊗H0, we can choose a desired unitary element
x in A⊗ H0.

THEOREM 9.6. Let (ρ, u) be a twisted coaction of a finite dimensional C∗-Hopf
algebra H0 on a unital C∗-algebra A with the Rohlin property. Then there is a unitary
element x ∈ A⊗ H0such that

(x⊗ 10)(ρ⊗ id)(x)u(id⊗∆0)(x∗) = 1⊗ 10 ⊗ 10.

Proof. We shall prove this lemma modifying the proof of Lemma 3.12 in
[4]. Let u0 = u and ρ0 = ρ. By Lemma 9.5, for 1

2L , there is a unitary element
y0 ∈ A⊗ H0 such that

‖1⊗ 10 ⊗ 10 − (y0 ⊗ 10)(ρ0 ⊗ id)(y0)u0(id⊗∆0)(y∗0)‖ <
1

2L
<

1
2

.

Let

ρ1 = Ad(y0) ◦ ρ0, u1 = (y0 ⊗ 10)(ρ0 ⊗ id)(y0)u0(id⊗∆0)(y∗0).

Then since (ρ1, u1) is a twisted coaction of H0 on A which is exterior equivalent to
(ρ0, u0), by Proposition 5.5, (ρ1, u1) has the Rohlin property. Thus by Lemma 9.5,
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for 1
(2L)2 , there is a unitary element y1 ∈ A⊗ H0 such that

‖1⊗ 10 ⊗ 10 − (y1 ⊗ 10)(ρ1 ⊗ id)(y1)u1(id⊗∆0)(y∗1)‖ <
1

(2L)2 <
1
22 ,

‖y1 − 1⊗ 10‖ < 1
(2L)2 + L‖u1 − 1⊗ 10 ⊗ 10‖ < 1

(2L)2 +
1
2
<

3
22

since u1 = (y0 ⊗ 10)(ρ0 ⊗ id)(y0)u0(id⊗∆0)(y∗0). Let

ρ2 = Ad(y1) ◦ ρ1, u2 = (y1 ⊗ 10)(ρ1 ⊗ id)(y1)u1(id⊗∆0)(y∗1).

Then since (ρ2, u2) is a twisted coaction of H0 on A which is exterior equivalent to
(ρ1, u1), by Proposition 5.5, (ρ2, u2) has the Rohlin property. Thus by Lemma 9.5,
for 1

(2L)3 , there is a unitary element y2 ∈ A⊗ H0 such that

‖1⊗ 10 ⊗ 10 − (y2 ⊗ 10)(ρ2 ⊗ id)(y2)u2(id⊗∆0)(y∗2)‖ <
1

(2L)3 <
1
23 ,

‖y2 − 1⊗ 10‖ < 1
(2L)3 + L‖u2 − 1⊗ 10 ⊗ 10‖ < 1

(2L)3 +
1
22 <

3
23 .

It follows by induction that there are sequences {(ρn, un)} of twisted coactions of
H0 on A and {yn} of unitary elements in A⊗ H0 satisfying that for any n ∈ N,

‖1⊗ 10 ⊗ 10 − un‖ <
1

(2L)n <
1
2n , ‖1⊗ 10 − yn‖ <

3
2n+1 .

Let xn = ynyn−1 · · · y0 ∈ A ⊗ H0 for any n ∈ N ∪ {0}. Then xn is a unitary
element in A⊗ H0 satisfying that

un+1 = (xn ⊗ 10)(ρ⊗ id)(xn)u0(id⊗∆0)(x∗n)

for any ∈ N∪ {0} by routine computations. Furthermore,

‖un − 1⊗ 10 ⊗ 10‖ < 1
2n → 0 (n→ +∞).

Also, since by easy computations, we see that {xn} is a Cauchy sequence, there is
a unitary element x ∈ A⊗ H0 such that xn → x (n→ +∞). Therefore, we obtain
that

1⊗ 10 ⊗ 10 = (x⊗ 10)(ρ⊗ id)(x)u(id⊗∆0)(x∗).

10. APPROXIMATE UNITARY EQUIVALENCE OF COACTIONS

Let ρ be a coaction of H0 on A with the Rohlin property. Let w be a unitary
element in (A∞ oρ∞ H)⊗ H satisfying equations (5.1)–(5.3) for ρ̂. Let (ρ1, u) be
a twisted coaction H0 on A which is exterior equivalent to ρ. Let v be a unitary
element in A⊗ H0 satisfying conditions (i), (ii) in Definition 2.2, that is,

(i) ρ1 = Ad(v) ◦ ρ,
(ii) u = (v⊗ 1)(ρ⊗ id)(v)(id⊗∆)(v∗).



THE ROHLIN PROPERTY FOR COACTIONS OF FINITE DIMENSIONAL C∗ -HOPF ALGEBRAS 359

By Proposition 5.5, (ρ1, u) has the Rohlin property. Let w1 be a unitary ele-
ment in (A∞ oρ∞

1 ,u H)⊗ H satisfying equations (5.1)–(5.3) for ρ̂1. By Lemma 5.6,
ŵ(τ) = ŵ1(τ). Let

x = N(id⊗ e)(vρ∞(ŵ(τ))) = Nv̂(e(1))[e(2) ·ρ∞ ŵ(τ)].

We have the following lemma which is similar to Lemma 8.1.

LEMMA 10.1. With the above notations and assumptions, x is a unitary element
in A∞.

Proof. In the same way as in the proof of Lemma 8.1, we can see that xx∗ =
1. Next we shall show that x∗x = 1. Let f = e.

x∗x = N2[S(e∗(2)) ·ρ∞ ŵ(τ)]v̂∗(S(e(1))
∗)v̂( f(1))[ f(2) ·ρ∞ ŵ(τ)]

= N2V̂(S(e∗(4)))ŵ(τ)([e∗(2) ·ρ v̂∗(S(e∗(1)))v̂( f(1))]oρ e∗(3) f(2))ŵ(τ)V̂∗( f(3))

= N2V̂(S(e∗(4)))[e
∗
(2) ·ρ v̂∗(S(e∗(1)))v̂( f(1))]τ(e

∗
(3) f(2))ŵ(τ)V̂∗( f(3))

= N2V̂(S(e∗(5)))[e
∗
(2) ·ρ v̂∗(S(e∗(1)))v̂(S(e

∗
(3)))]τ(e

∗
(4) f(1))ŵ(τ)V̂∗( f(2))

= N[S(e∗(4)) ·ρ∞ [e∗(2) ·ρ v̂∗(S(e∗(1)))v̂(S(e
∗
(3)))]ŵ(τ)].

Let Eρ∞
be the conditional expectation from A∞ onto (Aρ)∞. Then since e =

∑
i,k

dk
N wk

ii,

Eρ∞
(x∗x) = f ·ρ∞ x∗x = N[ f ·ρ∞ [e∗(2) ·ρ v̂∗(S(e∗(1)))v̂(S(e

∗
(3)))]ŵ(τ)]

= ∑
i,j,j1,k

dk[ f ·ρ∞ [wk∗
jj1 ·ρ v̂∗(wk

ji)v̂(w
k
ij1)]ŵ(τ)]

= ∑
j,k

dk[ f ·ρ∞ [wk∗
jj ·ρ 1]ŵ(τ)] = N[ f ·ρ∞ ŵ(τ)] = 1

by Lemma 5.7. Since Eρ∞
is faithful, we obtain the conclusion.

DEFINITION 10.2. Coactions ρ and σ of H0 on A are approximately unitarily
equivalent if there is a unitary element v ∈ A∞ ⊗ H0 such that, for any a ∈ A,

σ(a) = vρ(a)v∗.

Let ρ and σ be coactions of H0 on A which are approximately unitarily
equivalent. Then there is a unitary element v in A∞ ⊗ H0 such that σ(a) =
vρ(a)v∗ for any a ∈ A. We write v = (vn), where vn is a unitary element in
A. Then since a(id⊗ ε0)(v) = (id⊗ ε0)(v)a for any a ∈ A, (id⊗ ε0)(v) is a uni-
tary element in A∞. Let z = (id⊗ ε0)(v) and w = v(z∗ ⊗ 10). Then w is a unitary
element in A∞ ⊗ H0 and

wρ(a)w∗ = v(z∗ ⊗ 10)ρ(a)(z⊗ 10)v∗ = vρ(a)v∗ = σ(a)

for any a ∈ A. Furthermore, (id⊗ ε0)(w) = zz∗ = 1. Hence if we write w = (wn),
where wn is a unitary element in A⊗ H0, then wn = vn((id⊗ ε0)(v∗n)⊗ 10). Thus
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(id ⊗ ε0)(wn) = 1. Therefore, we may assume that (id ⊗ ε0)(vn) = 1 for any
n ∈ N. We shall show the following lemma.

LEMMA 10.3. Let σ and ρ be coactions of H0 on A. We suppose that ρ has the
Rohlin property and that σ is approximately unitary equivalent to ρ. Then for each finite
subset F of A and any positive number ε > 0, there is a unitary element x ∈ A such that

‖σ(a)− (Ad(x⊗ 10) ◦ ρ ◦Ad(x∗))(a)‖ < ε,

‖xa− ax‖ < ε + L max
i,j,k
‖σ([S(wk

ij) ·ρ a])− ρ([S(wk
ij) ·ρ a])‖

for any a ∈ F, where L = ∑
i,j,k

dk‖id⊗ wk
ij‖.

We shall prove this lemma by showing a series of several lemmas. Since
ρ and σ are approximately unitarily equivalent, there is a unitary element v0 ∈
A∞ ⊗ H0 such that σ(a) = v0ρ(a)v∗0 for any a ∈ A. Let F be any finite subset of
A and ε any positive number. Then there is a unitary element v ∈ A⊗ H0 with
(id⊗ ε0)(v) = 1 such that

‖σ(a)− vρ(a)v∗‖ < ε,

‖σ([S(wk
ij) ·σ a])− vρ([S(wk

ij) ·σ a])v∗‖ < ε,

‖σ([S(wk
ij) ·ρ a])− vρ([S(wk

ij) ·ρ a])v∗‖ < ε

for any a ∈ F and i, j = 1, 2, . . . , dk, k = 1, 2, . . . , K. Let x = N(id⊗ e)(vρ∞(ŵ(τ))).
Let ρ1 = Ad(v) ◦ ρ and u = (v ⊗ 10)(ρ ⊗ id)(v)(id ⊗ ∆0)(v∗). Then (ρ1, u)
is a twisted coaction of H0 on A which is exterior equivalent to ρ. Hence by
Lemma 10.1, x is a unitary element in A∞.

LEMMA 10.4. With the above notations and assumptions, for any a ∈ F,

‖ρ(x)(x∗⊗10)vρ(a)−N(id⊗e)((ρ⊗id)(v)(id⊗∆0)(ρ∞(ŵ(τ))v∗))σ(a)v‖<Nε.

Proof. We note that

x=N(id⊗e)(vρ∞(ŵ(τ)))=∑
i,k

dk(id⊗wk
ii)(vρ∞(ŵ(τ)))=∑

i,j,k
dk v̂(wk

ij)[w
k
ji ·ρ∞ ŵ(τ)].

Also, x∗ = N[e(1) ·ρ∞ ŵ(τ)]v̂∗(e(2)) since x = N(id⊗ S(e∗))(vρ∞(ŵ(τ))). Then
by Lemma 5.4 for any h ∈ H,

(ρ(x)(x∗ ⊗ 10)vρ(a))̂(h)

= [h(1) ·ρ∞ x]x∗v̂(h(2))[h(3) ·ρ a]

= N ∑
i,j,k,t

dk[h(1) ·ρ v̂(wk
ij)]V̂(h(2)w

k
jt)τ(S(h(3)w

k
ti)e(1))ŵ(τ)V̂∗(e(2))

× v̂∗(e(3))v̂(h(4))[h(5) ·ρ a]
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= N ∑
i,j,k,t,t1,t2

dk[h(1) ·ρ v̂(wk
ij)]V̂(h(2)w

k
jt)ŵ(τ)V̂∗(h(3)w

k
tt1

S(h(4)w
k
t1t2

)e(2))

× τ(S(h(5)w
k
t2i)e(1))v̂

∗(e(3))v̂(h(6))[h(7) ·ρ a]

= N ∑
i,j,k,t,t1,t2,t3

dk[h(1) ·ρ v̂(wk
ij)]V̂(h(2)w

k
jt)ŵ(τ)V̂∗(h(3)w

k
tt1
)

× v̂∗(h(4)w
k
t1t2

S(h(5)w
k
t2t3

)e(2))τ(S(h(6)w
k
t3i)e(1))v̂(h(7))[h(8) ·ρ a]

= N ∑
i,j,k,t,t1,t2

dk[h(1) ·ρ v̂(wk
ij)]V̂(h(2)w

k
jt)ŵ(τ)V̂∗(h(3)w

k
tt1
)v̂∗(h(4)w

k
t1t2

)

× τ(S(h(5)w
k
t2i)e)v̂(h(6))[h(7) ·ρ a]

= ∑
i,j,k,t1

dk[h(1) ·ρ v̂(wk
ij)][h(2)w

k
jt1
·ρ∞ ŵ(τ)]v̂∗(h(3)w

k
t1i)v̂(h(4))[h(5) ·ρ a].

Thus

ρ(x)(x∗ ⊗ 10)vρ(a) = ∑
i,k

dk(id⊗ wk
ii)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))v∗))vρ(a)

= N(id⊗ e)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))v∗))vρ(a).

Hence

‖ρ(x)(x∗ ⊗ 10)vρ(a)− N(id⊗ e)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))v∗))σ(a)v‖
= N‖(id⊗ e)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))v∗))(vρ(a)− σ(a)v)‖
6 N‖vρ(a)− σ(a)v‖ = N‖vρ(a)v∗ − σ(a)‖ < Nε.

LEMMA 10.5. With the above notations and assumptions, for any a ∈ F,∥∥∥N(id⊗ e)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))v∗))σ(a)v

−∑
i,j,k

dk(id⊗ wk
ij)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))ρ([S(wk

ji) ·σ a])v∗))v
∥∥∥ < Lε,

where L = ∑
i,j,k

dk‖id⊗ wk
ij‖.

Proof. Since e = ∑
i,k

dk
N wk

ii,

N(id⊗ e)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))v∗))σ(a)v

= ∑
i,k

dk(id⊗ wk
ii)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))v∗))σ(a)v.

Thus for any h ∈ H

[N(id⊗ e)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))v∗))σ(a)v]̂(h)

= ∑
i,j,k,t1

dk[h(1) ·ρ v̂(wk
ij)][h(2)w

k
jt1
·ρ∞ ŵ(τ)]v̂∗(h(3)w

k
t1i)[h(4) ·σ a]v̂(h(5))
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= ∑
i,j,k,t1,t2

dk[h(1) ·ρ v̂(wk
ij)][h(2)w

k
jt1
·ρ∞ ŵ(τ)]v̂∗(h(3)w

k
t1t2

)

× [h(4)ε(w
k
t2i) ·σ a]v̂(h(5))

= ∑
i,j,k,t1,t2,t3

dk[h(1) ·ρ v̂(wk
ij)][h(2)w

k
jt1
·ρ∞ ŵ(τ)]v̂∗(h(3)w

k
t1t2

)

× [h(4)w
k
t2t3
·σ [S(wk

t3i) ·σ a]]v̂(h(5)).

Thus

N(id⊗ e)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))v∗))σ(a)v

= ∑
i,t3,k

dk(id⊗ wk
it3
)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))v∗σ([S(wk

t3i) ·σ a])))v.

Hence∥∥∥N(id⊗ e)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))v∗))σ(a)v

−∑
i,t3,k

dk(id⊗ wk
it3
)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))ρ([S(wk

t3i) ·σ a])v∗))v
∥∥∥

=
∥∥∥ ∑

i,t3,k
dk(id⊗ wk

it3
)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))[v∗σ([S(wk

t3i) ·σ a])

− ρ([S(wk
t3i) ·σ a])v∗))v

∥∥∥
6 ∑

i,t3,k
dk‖id⊗ wk

it3
‖ ‖v∗σ([S(wk

t3i) ·σ a])− ρ([S(wk
t3i) ·σ a])v∗‖

< ∑
i,t3,k

dk‖id⊗ wk
it3
‖ε < Lε.

LEMMA 10.6. With the above notations and assumptions, for any a ∈ A,

∑
i,j,k

dk(id⊗ wk
ij)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))ρ([S(wk

ji) ·σ a])v∗))v

= ρ(a)ρ∞(x)(x∗ ⊗ 10)v.

Proof. We shall show the above equation by routine computations. For any
h ∈ H[

∑
i,t3,k

dk(id⊗ wk
it3
)((ρ⊗ id)(v)(id⊗∆0)(ρ∞(ŵ(τ))ρ([S(wk

t3i) ·σ a])v∗))v
]̂
(h)

= ∑
i,j,k,t2,t3

dk[h(1) ·ρ v̂(wk
ij)[w

k
jt2
·ρ∞ [S(wk

t3i) ·σ a]ŵ(τ)]]v̂∗(h(2)w
k
t2t3

)v̂(h(3))

= ∑
i,j,k,t2,t3,j1

dk[h(1) ·ρ v̂(wk
ij)[w

k
jj1 ·ρ [S(w

k
t3i) ·σ a]][wk

j1t2
·ρ∞ ŵ(τ)]]

× v̂∗(h(2)w
k
t2t3

)v̂(h(3))
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= ∑
i,j,k,t2,t3,j1

dk[h(1) ·ρ [wk
ij ·σ [S(wk

t3i) ·σ a]]v̂(wk
jj1)[w

k
j1t2
·ρ∞ ŵ(τ)]]

× v̂∗(h(2)w
k
t2t3

)v̂(h(3))

= ∑
k,t2,t3,j1

dk[h(1) ·ρ a][h(2) ·ρ v̂(wk
t3 j1)][h(3)w

k
j1t2
·ρ∞ ŵ(τ)]v̂∗(h(4)w

k
t2t3

)v̂(h(5)).

On the other hand by Lemma 5.4 for any h ∈ H,

[ρ(a)ρ∞(x)(x∗ ⊗ 10)v]̂(h)

= [h(1) ·ρ a][h(2) ·ρ∞ x]x∗v̂(h(3))

= N ∑
i,j,k,i1

dk[h(1) ·ρ a][h(2) ·ρ v̂(wk
ij)]V̂(h(3)w

k
ji1)τ(S(h(4)w

k
i1i)e(1))ŵ(τ)

× V̂∗(e(2))v̂
∗(e(3))v̂(h(5))

= N ∑
i,j,k,i1,i2

dk[h(1) ·ρ a][h(2) ·ρ v̂(wk
ij)]V̂(h(3)w

k
ji1)ŵ(τ)τ(S(h(5)w

k
i2i)e(1))

× V̂∗(h(4)w
k
i1i2)v̂

∗(e(2))v̂(h(6))

= N ∑
i,j,k,i1,i2,t

dk[h(1) ·ρ a][h(2) ·ρ v̂(wk
ij)]V̂(h(3)w

k
ji1)ŵ(τ)V̂∗(h(4)w

k
i1i2)

× τ(S(h(6)w
k
ti)e)v̂

∗(h(5)w
k
i2t)v̂(h(7))

= ∑
j,k,i1,i2,t

dk[h(1) ·ρ a][h(2) ·ρ v̂(wk
tj)][h(3)w

k
ji2 ·ρ∞ ŵ(τ)]v̂∗(h(4)w

k
i2t)v̂(h(5)).

Therefore, we obtain the conclusion.

LEMMA 10.7. With the above notations and assumptions, for any a ∈ F,

‖xa− ax‖ < Lε + L max
i,j,k
‖σ([S(wk

ij) ·ρ a])− ρ([S(wk
ij) ·ρ a])‖,

where L = ∑
i,j,k

dk‖id⊗ wk
ij‖.

Proof. For any a ∈ F

xax∗ = N ∑
i,j,k

dk v̂(wk
ij)[w

k
ji ·ρ∞ ŵ(τ)]a[e(1) ·ρ∞ ŵ(τ)]v̂∗(e(2))

= N ∑
i,j,k,i1,i2

dk v̂(wk
ij)V̂(wji1)ŵ(τ)([S(wk

i2i) ·ρ a]oρ S(wk
i1i2)e(1))ŵ(τ)

× V̂∗(e(2))v̂
∗(e(3))

= N ∑
i,j,k,i1,i2,t,t1

dk v̂(wk
ij)V̂(wji1)[S(w

k
i2i) ·ρ a]ŵ(τ)V̂∗(wk

i1tS(w
k
tt1
)e(2))

× τ(S(wk
t1i2)e(1))v̂

∗(e(3))
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= N ∑
i,j,k,i1,i2,t,s,s1

dk v̂(wk
ij)V̂(wji1)[S(w

k
i2i) ·ρ a]ŵ(τ)V̂∗(wk

i1t)τ(S(w
k
s1i2)e(1))

× v̂∗(wk
tsS(wk

ss1
)e(2))

= ∑
i,j,k,i1,i2,t

dk v̂(wk
ij)V̂(wji1)[S(w

k
i2i) ·ρ a]ŵ(τ)V̂∗(wk

i1t)v̂
∗(wk

ti2)

= ∑
i,k,i2

dk(id⊗ wk
ii2)(vρ∞(ŵ(τ))ρ([S(wk

i2i) ·ρ a])v∗).

Hence∥∥∥xax∗ − ∑
i,k,i2

dk(id⊗ wk
ii2)(vρ∞(ŵ(τ))v∗σ([S(wk

i2i) ·ρ a]))
∥∥∥

=
∥∥∥ ∑

i,k,i2

dk(id⊗ wk
ii2)(vρ∞(ŵ(τ))[ρ([S(wk

i2i) ·ρ a])v∗ − v∗σ([S(wk
i2i) ·ρ a])])

∥∥∥
6 ∑

i,k,i2

dk‖id⊗ wk
ii2‖ ‖ρ([S(w

k
i2i) ·ρ a])v∗ − v∗σ([S(wk

i2i) ·ρ a])‖

6 ∑
i,k,i2

dk‖id⊗ wk
ii2‖ε = Lε.

Furthermore,

∑
i,k,i2

dk(id⊗ wk
ii2)(vρ∞(ŵ(τ))v∗ρ([S(wk

i2i) ·ρ a]))

= ∑
i,k,i2,t

dk(vρ∞(ŵ(τ))v∗ )̂(wk
it)[w

k
ti2 S(wk

i2i) ·ρ a]

= ∑
i,k

dk(vρ∞(ŵ(τ))v∗ )̂(wk
ii)a = N(id⊗ e)(vρ∞(ŵ(τ))v∗)a.

We recall that ρ1 = Ad(v) ◦ ρ, u = (v ⊗ 10)(ρ ⊗ id)(v)(id ⊗ ∆0)(v∗) and that
(ρ1, u) is a twisted coaction of H0 on A which is exterior equivalent to ρ. Then by
Lemmas 5.6 and 5.7, N(id⊗ e)(vρ∞(ŵ(τ))v∗) = N[e ·ρ1,u ŵ(τ)] = 1. Hence

∑
i,k,i2

dk(id⊗ wk
ii2)(vρ∞(ŵ(τ))v∗ρ([S(wk

i2i) ·ρ a])) = a.

It follows that

‖xax∗ − a‖ =
∥∥∥xax∗ − ∑

i,k,i2

dk(id⊗ wk
ii2)(vρ∞(ŵ(τ))v∗σ([S(wk

i2i) ·ρ a]))

+ ∑
i,k,i2

dk(id⊗ wk
ii2)(vρ∞(ŵ(τ))v∗σ([S(wk

i2i) ·ρ a]))

− ∑
i,k,i2

dk(id⊗ wk
ii2)(vρ∞(ŵ(τ))v∗ρ([S(wk

i2i) ·ρ a]))
∥∥∥

< Lε + ∑
i,k,i2

dk‖id⊗ wk
ii2‖ ‖σ([S(w

k
i2i) ·ρ a])− ρ([S(wk

i2i) ·ρ a])‖
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< Lε + ∑
i,j,k

dk‖id⊗ wk
ij‖max

i,j,k
‖σ([S(wk

ij) ·ρ a])− ρ([S(wk
ij) ·ρ a])‖

< Lε + L max
i,j,k
‖σ([S(wk

ij) ·ρ a])− ρ([S(wk
ij) ·ρ a])‖,

where L = ∑
i,j,k

dk‖id⊗ wk
ij‖. Then we obtain the conclusion.

By Lemmas 10.4, 10.5, 10.6 and 10.7, we obtain Lemma 10.3. We note that
the constant positive number L in the above proofs does not depend on coactions
ρ and σ but depends on only H0. Also, we note that if a coaction ρ of H0 on A
has the Rohlin property, then a coaction (α⊗ id) ◦ ρ ◦ α−1 of H0 on A has also the
Rohlin property for any automorphism α of A.

THEOREM 10.8. Let A be a separable unital C∗-algebra and let ρ and σ be coac-
tions of a finite dimensional C∗-Hopf algebra H0 on A with the Rohlin property . We
suppose that ρ and σ are approximately unitarily equivalent. Then there is an approxi-
mately inner automorphism θ such that

σ = (θ ⊗ id) ◦ ρ ◦ θ−1.

Proof. We shall show this theorem by the same strategy as in the proof of
Theorem 3.5 of [4]. We choose an increasing family {Fn}∞

n=0 of finite subsets of
A whose union is dense in A. By induction using Lemma 10.3, we can construct
an increasing family {Gn}∞

n=0 of finite subsets of A whose union is dense in A,
a sequence {xn} of unitary elements in A and a family of coactions ρ2n, σ2n+1,
n = 0, 1, 2, . . . , of H0 on A satisfying the following conditions:

ρ0 = ρ, σ1 = σ,

ρ2n+2 = Ad(x2n ⊗ 10) ◦ ρ2n ◦Ad(x∗2n), n = 0, 1, 2, . . . ,

σ2n+1 = Ad(x2n−1 ⊗ 10) ◦ σ2n−1 ◦Ad(x∗2n−1), n = 1, 2, . . . ,

F1
2n =

⋃
i,j,k

[S(wk
ij) ·σ2n+1 F2n], n = 0, 1, . . . ,

F1
2n+1 =

⋃
i,j,k

[S(wk
ij) ·ρ2n+2 F2n+1], n = 0, 1, . . . ,

G0 = F0 ∪ F1
0 ,

G2n+1 = G2n ∪ F2n+1 ∪ F1
2n+1, n = 0, 1, . . . ,

G2n+2 = G2n+1 ∪ F2n+2 ∪ F1
2n+2, n = 0, 1, . . . ,

‖σ2n+1(a)− ρ2n+2(a)‖ < 1
22n , a ∈ G2n, n = 0, 1, . . . ,

‖σ2n+3(a)− ρ2n+2(a)‖ < 1
22n+1 , a ∈ G2n+1, n = 0, 1, . . . ,
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‖x2n+1a− ax2n+1‖ <
1

22n+1 + L max
i,j,k
‖ρ2n+2([S(wk

ij) ·σ2n+1 a])

− σ2n+1([(wk
ij) ·σ2n+1 a])‖ < 2 + L

22n , a ∈ G2n, n = 0, 1, . . . ,

‖x2na− ax2n‖ <
1

22n + L max
i,j,k
‖σ2n+1([S(wk

ij) ·ρ2n a])

− ρ2n([S(wk
ij) ·ρ2n a])‖ < 2 + L

22n−1 , a ∈ G2n−1, n = 1, 2 . . . .

In the same way as in the proof of Theorem 3.5 in [4], we can obtain the conclu-
sion.

In the rest of this section, we shall study coactions having the Rohlin prop-
erty of a finite dimensional C∗-Hopf algebra on a UHF-algebra of type N∞. Let A
be a UHF-algebra of type N∞. Let Mn(C) be the n× n-matrix algebra over C and
{ fij} a system of matrix units of Mn(C).

LEMMA 10.9. Let ρ be a unital homomorphism of A to A ⊗ Mn(C) and ρ∗ the
homomorphism of K0(A) to K0(A⊗Mn(C)) induced by ρ. Then ρ∗([

1
Nl ]) = n[ 1

Nl ] for
any l ∈ N∪ {0}.

Proof. Since ρ(1) = 1⊗ In, ρ∗([1]) = [1⊗ In] = n[1⊗ f11] = n[1]. Hence
Nρ∗([

1
N ]) = ρ∗([1]) = n[1]. Since K0(A) = Z[ 1

N ] is torsion-free, ρ∗([
1
N ]) =

n[ 1
N ].

LEMMA 10.10. Let ρ be a unital homomorphism of A to A⊗Mn(C). Then there
is a sequence {uk} of unitary elements in A⊗Mn(C) such that for any x ∈ A

ρ(x) = lim
k→∞

uk(x⊗ In)u∗k .

Proof. Modifying the proof of Blackadar ([1], 7.7 Exercises and Problems) we
can prove this lemma. Let {Ak} be an increasing sequence of full matrix algebras
over C with

⋃
k

Ak = A. Let {eij} be a system of matrix units of Ak. Since A has

the cancellation property, by Lemma 10.9, ρ(e11) ∼ e11⊗ In in A⊗Mn(C). Hence
there is a partial isometry w ∈ A⊗Mn(C) such that

w∗w = E11, ww∗ = ρ(e11),

where Eij = eij ⊗ In for any i, j. Let uk = ∑
i

ρ(ei1)wE1i. Then uk is a unitary

element in A ⊗ Mn(C) by easy computations. Let x ∈ Ak. Then we can write
that x = ∑

i,j
λijeij, where λij ∈ C. Hence by easy computations, we can see that

ρ(x) = uk(x ⊗ In)u∗k . Since
⋃
k

Ak = A, we obtain that for any x ∈ A, ρ(x) =

lim
k→∞

uk(x⊗ In)u∗k by routine computations.
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LEMMA 10.11. Let ρ be a unital homomorphism of A to A ⊗ H0, where H0 is
a finite dimensional C∗-algebra. Then there is a sequence {uk} of unitary elements in
A⊗ H0 such that for any x ∈ A

ρ(x) = lim
k→∞

uk(x⊗ 10)u∗k .

Proof. Let {pl} be a family of minimal central projections in H0. For any l
and x ∈ A, let

ρl(x) = ρ(x)(1⊗ pl).

Then by Lemma 10.10, there is a sequence {u(l)
k } of unitary elements in A⊗ pl H0

such that ρl(x) = lim
k→∞

u(l)
k (x ⊗ pl)u

(l)
k for any x ∈ A. Let uk =

⊕
l

u(l)
k . Then we

can see that {uk} is a desired sequence by easy computations.

COROLLARY 10.12. Let H be a finite dimensional C∗-Hopf algebra with dimen-
sion N and let A be a UHF-algebra of type N∞. Let ρ be a coaction of H0 on A with the
Rohlin property constructed in Section 7. Then for any coaction σ of H0 on A with the
Rohlin property, there is an approximately inner automorphism θ of A such that

σ = (θ ⊗ id) ◦ ρ ◦ θ−1.

Proof. By Lemma 10.11, σ is approximately unitarily equivalent to ρ. Hence
by Theorem 10.8, we obtain the conclusion.

11. APPENDIX

In the previous paper [8], we introduced the Rohlin property for weak coac-
tions of a finite dimensional C∗-Hopf algebra on a unital C∗-algebra. In this sec-
tion, we shall show that if there is a weak coaction with the Rohlin property in
the sense of [8] of a finite dimensional C∗-Hopf algebra H on a unital C∗-algebra
A, then H is commutative. Recall that a weak coaction ρ of H on A has the Rohlin
property in the sense of [8] if there is a monomorphism π of H into A∞ such that
for any h ∈ H, ρ∞(π(h)) = π(h(1))⊗ h(2). Let {wk

ij} be a system of comatrix units
of H.

LEMMA 11.1. With the above notations, (H ⊗ 1)∆(H) = H ⊗ H.

Proof. For any i, j, k, ∆(wk
ij) = ∑

t
wk

it ⊗ wk
tj. Since ∑

i
wk∗

it wk
is =

{
1 if s = t,
0 if s 6= t,

for any k by Theorem 2.2, 2 of [10], we can obtain that

∑
i
(wk∗

it ⊗ 1)∆(wk
ij) = ∑

i,s
wk∗

it wk
is ⊗ wk

sj = 1⊗ wk
tj.

Thus we obtain the conclusion.
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LEMMA 11.2. With the above notations, let ρ be a weak coaction of H on A with
the Rohlin property in the sense of [8]. Then (A⊗ 1)ρ(A) = A⊗ H.

Proof. Since ρ has the Rohlin property in the sense of [8], there is a monomor-
phism π of H into A∞. First, we show that (A∞ ⊗ 1)ρ∞(A∞) = A∞ ⊗ H. Since
ρ∞ ◦ π = (π ⊗ id) ◦∆,

(π(H)⊗ 1)ρ∞(π(H)) = (π(H)⊗ 1)(π ⊗ id)(∆(H))

= (π ⊗ id)((H ⊗ 1)∆(H)) = π(H)⊗ H

by Lemma 11.1. Since 1⊗ wk
ij ∈ π(H) ⊗ H, 1⊗ wk

ij ∈ (A∞ ⊗ 1)ρ∞(A∞). Thus
we can see that (A∞ ⊗ 1)ρ∞(A∞) = A∞ ⊗ H. For any x ∈ A ⊗ H, there are

a1, . . . , an, b1, . . . , bn ∈ A∞ such that x =
n
∑

i=1
(ai ⊗ 1)ρ∞(bi). That is,

∥∥∥x−
n

∑
i=1

(a(k)i ⊗ 1)ρ∞(b(k)i )
∥∥∥→ 0 (k→ ∞),

where ai = (a(k)i ), bi = (b(k)i ) and a(k)i , b(k)i ∈ A for any k, i. Therefore, x ∈
(A⊗ 1)ρ(A).

PROPOSITION 11.3. Let ρ be a weak coaction of H on A with the Rohlin property
in the sense of [8] and π a monomorphism of H to A∞. Then ρ∞(π(H)) ⊂ (A⊗ H)′ ∩
(A∞ ⊗ H).

Proof. Let a, b ∈ A and h ∈ H. Then

ρ∞(π(h))(a⊗ 1)ρ(b) = (π(h(1))⊗ h(2))(a⊗ 1)ρ(b) = (aπ(h(1))⊗ h(2))ρ(b)

= (a⊗ 1)ρ∞(π(h))ρ(b) = (a⊗ 1)ρ∞(π(h)b)

= (a⊗ 1)ρ(b)ρ∞(π(h)).

Therefore we obtain the conclusion by Lemma 11.2.

PROPOSITION 11.4. Let ρ be a weak coaction of H on A with the Rohlin property.
Let x be any element in A⊗ H. Then for any h ∈ H, (1⊗ h)x = x(1⊗ h).

Proof. Let π be a monomorphism of H into A∞ such that for any h ∈ H,
ρ∞(π(h)) = π(h(1))⊗ h(2). By the proof of Lemma 11.2, we can see that

1⊗ H ⊂ π(H)⊗ H = (π(H)⊗ 1)ρ∞(π(H)).

Hence it suffices to show that for any h ∈ H,

(i) (π(h)⊗ 1)x = x(π(h)⊗ 1),
(ii) ρ∞(π(h))x = xρ∞(π(h)).

Indeed, since x ∈ A⊗ H and π(h) commute with any element in A for any
h ∈ H, we obtain (i). Also, we can obtain (ii) by Proposition 11.3
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COROLLARY 11.5. Let A be a unital C∗-algebra and H a finite dimensional C∗-
Hopf algebra. If there is a weak coaction of H on A with the Rohlin property in the sense
of [8], then H is commutative.

The proof is immediate by Proposition 11.4.
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