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ABSTRACT. We shall introduce the approximate representability and the
Rohlin property for coactions of a finite dimensional C*-Hopf algebra on a
unital C*-algebra and discuss their basic properties. We shall give an example
of a coaction of a finite dimensional C*-Hopf algebra on a simple unital C*-
algebra, which has the above two properties and give the 1-cohomology and
the 2-cohomology vanishing theorems for a finite dimensional C*-Hopf alge-
bra (twisted) coactions on a unital C*-algebra. Furthermore, we shall show
that if p and o, coactions of a finite dimensional C*-Hopf algebra on a sepa-
rable unital C*-algebra A, which have the Rohlin property, are approximately
unitarily equivalent, then there is an approximately inner automorphism « on

Asuchthate = (e ®id)opoal.
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1. INTRODUCTION

Let A be a unital C*-algebra and H a finite dimensional C*-Hopf algebra
with the comultiplication A. In this paper, we shall introduce the approximate
representability and the Rohlin property for coactions of H on A and discuss
some basic properties of approximately representable coactions and coactions
with the Rohlin property of H on A. Also, we shall give an example of an ap-
proximately representable coaction of a finite dimensional C*-Hopf algebra on a
simple unital C*-algebra which has also the Rohlin property and we shall give
the following 1-cohomology vanishing theorem: Let p be a coaction of H on A
with the Rohlin property. Let v be a unitary element in A ® H with

(v®1)(p®id)(v) = (id ® A)(v)
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and let o be the coaction of H on A defined by ¢ = Ad(v) o p. Then there is a
unitary element x € A such that

c=Ad(x®1)opoAd(x").

Furthermore, we shall give the following 2-cohomology vanishing theorem: Let
(p,u) be a twisted coaction of H on A with the Rohlin property. Then there is a
unitary element x € A ® H such that

(x@1)(p@id)(x)u(id®A)(x)* =101®1.

Finally, we shall introduce the notion of the approximately unitary equivalence

of coactions of H and show that if p and ¢, coactions of H on a separable uni-

tal C*-algebra A, which have the Rohlin property, are approximately unitarily

equivalent, then there is an approximately inner automorphism « on A such that
o= (a®id)opoal.

The above results in the case of finite group actions on a unital C*-algebra can be

found in Izumi [4].

For an algebra X, we denote by 1x and idx the unit element in X and the
identity map on X, respectively. If no confusion arises, we denote them by 1 and
id, respectively. For projections p, g in a C*-algebra C, we write p ~ gin Cif p is
Murray—von Neumann equivalent to ¢ in C. For each n € N, we denote by M,,(C)
the n x n-matrix algebra over C and I,, denotes the unit element in M,,(C).

2. PRELIMINARIES

Let H be a finite dimensional C*-Hopf algebra. We denote its comultipli-
cation, counit and antipode by A, € and S. We shall use Sweedler’s notation
A(h) = hg1) ® h(y) for any h € H which suppresses a possible summation when
we write the comultiplications. We denote by N the dimension of H. Let H® be
the dual C*-Hopf algebra of H. We denote its comultiplication, counit and an-
tipode by A%, ¢ and S°. There is the distinguished projection e in H. We note
that e is the Haar trace on H®. Also, there is the distinguished projection T in H°
which is the Haar trace on H.

Throughout this paper, H denotes a finite dimensional C*-Hopf algebra and

L
HY its dual C*-Hopf algebra. Since H is finite dimensional, H & ¢ M £ (C) and
k=1

K
HO =~ k@l My, (C) as C*-algebras. Let {vi‘] ck=1,2,...,Lij=12,...,f} be

a system of matrix units of H. Let {wi‘] ck=1,2,...,K,i,j=1,2,...,d} bea
basis of H satisfying Szymariski and Peligrad’s Theorem 2.2, 2 in [10]. We call it a
system of comatrix units of H. Also, let {4)5‘] :k=1,2,...,K,i,j=1,2,...,d¢} and

{wf.‘j ck=1,2,...,Li,j=1,2,..., f;} be systems of matrix units and comatrix
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units of H, respectively. Furthermore, let p# be the trivial coaction of H on A
defined by p#(a) = a® 1 foranya € A.

Following Masuda and Tomatsu [7], we shall define a twisted coaction of H
on A and its exterior equivalence.

DEFINITION 2.1. Let p be a weak coaction of H on A which is defined in
Definition 2.4 of [6] and u a unitary element in A ® H ® H. The pair (p,u) is a
twisted coaction of H on A if the following conditions hold:

() (o @id) op = Ad(u) o (id @A) o p,
(i) (u®1)(id®A®id) (1) = (p@id ®id) (1) (id ® id ® A)(u),
(iii) (d® ¢ @) (1) = (id ® e ® ¢) (u) = $(1)1 for any ¢ € HO.

DEFINITION 2.2. Fori = 1,2, let (p;, u;) be a twisted coaction of H on A. We
say that (p1,u7) is exterior equivalent to (py, up) if there is a unitary element v in
A ® H satisfying the following conditions:

(i) p2 = Ad(v) o py,
(i) up = (v®@1)(p; ®id)(v)uq (id @ A) (v*).

By routine computations, (id ® €)(v) = 1 and the above equivalence is an
equivalence relation. We write (p1,u1) ~ (02, u2) if (p1, u71) is exterior equivalent

to (po, u2).

REMARK 2.3. Let (p, u) be a twisted coaction of H on A and v be any unitary
element in A ® H with (id ® €)(v) = 1. Let

o1 = Ad(v)op, 1w = (0®1)(p®id)(0)ulid ® A)(v").
Then (p1,u7) is a twisted coaction of H on A by easy computations.

Let Hom(H, A) be the linear space of all linear maps from H° to A. By
Sweedler ([9], pp. 69-70) it becomes a unital *-algebra which is also defined in
Sections 2 and 3 of [6]. In the same way as Sections 2 and 3 of [6], we define a
unital x-algebra Hom(H® @ H?, A). As mentioned in Blattner, Cohen and Mont-
gomery ([2], pp. 163), there are an isomorphism  of A ® H onto Hom(H’, A) and
an isomorphism j of A ® H ® H onto Hom(H® ® HY, A) defined by

a@h) (@) = ¢(h)a, j(a@h1)(g, ) =¢(h)p(l)a

foranya € A, h,l € Hand ¢, ¢ € HO. Foranyx € A®H,y € AQ H® H, we
denote 1(x), j(y), by X, §, respectively.

For any weak coaction p of H on A, we can construct the weak action “ -, ”
of HY on A as follows: Forany a € A and ¢ € H°

¢-pa=1(p(a)) = p(a)(¢) = (id ® ¢)(p(a)).
If no confusion arises, we denote ¢ -, a by ¢ -a forany a € A and ¢ € H.
Furthermore, if (p,u) is a twisted coaction of H on A, i is a unitary cocycle for
the above weak action induced by p. We call the pair of the weak action and the
unitary cocycle i the twisted action of H? on A induced by (p, #). By Section 3 of



332 KAZUNORI KODAKA AND TAMOTSU TERUYA

[6], we can construct the twisted crossed product of A by H? which is denoted
by A x,, H°. Let p be the dual coaction of p, which is defined for any 2 € A,
¢ € H°, by

p(axpu®) = (axpuda)) @Pa),

where a X, ¢ denotes the element in A Xy HY induced by a € A and ¢ € H°.
If no confusion arises, we denote it by a x ¢.

Let (o, u) be a twisted coaction of H on A and A x,,, H the twisted crossed
product induced by (p,u). Let Ef be the canonical conditional expectation from
A %, H? onto A defined by Ef (ax1¢) =¢(e)a for any a € A, ¢ € H’. We note that
E’f is faithful by Lemma 3.14 of [6]. Also, let V be an element in Hom(HO, A Xy
HO) defined by V(¢) = 1 x ¢ for any ¢ € HO. Let V be an element in (A x,,
HY) ® H induced by V. By Lemma 3.12 of [6], we can see that V and V are unitary
elements in (A x,, H®) @ H and Hom(HY, A x,,, H°), respectively and that

u= (Ve ) (eh ! oid)(v)(id o 4) (V).

Thus, for any ¢, € H°

(i) u(p, ) = VA(¢(1))‘7(1P(1A))‘7* (4’(21 @)
(i) @ (¢, ) = V(pa)p 1)) V* (¥2)) V (¢(2))-

LEMMA 2.4. Fori =1,2let (p;, u;) be a twisted coaction of H on A with (pq,u1)
~ (p2, uz). Let E’f" be the canonical conditional expectation from A X, 4, H® onto A for
i = 1,2. Then there is an isomorphism ® of A X, u, H® onto A %, ., H® satisfying
that @(a) = a for any a € A and Ef" = E? o &, where A is identified with A x p, y, 1°
fori=1,2.

Proof. Since (p1,11) ~ (p2,u2), there is a unitary element in v in A @ H
satisfying

p2=Ad(v)op;, uy=(v®1)(p1 ®id)(v)u1(id ® A)(v*).

Let @ be a map from A X, 4, H? to A xp, ., H® defined by ®(a xp, ., ¢) =
at*(¢1y) Nppuy P(2) for any a € A, ¢ € HP. Then by routine computations,
is a homomorphism of A xp, ., H to A x,,,, H. Also, let ¥ be a map from
A Xy, H to A x,, 4, H® defined by ¥ (a xp,u, ¢) = av(P(1y) Xpyuy P(2) for
any a € A, ¢ € H°. By routine computations, ¥ is also a homomorphism of
A Xy, HO%to A X oy HYand ® o ¥ = id and ¥ o & = id. Therefore, we obtain
the conclusion. 1

Let p be a coaction of H on A and Af the fixed point C*-subalgebra of A for
o, that is,

Al ={ac A:p(a)=a®1}.
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Let Ef be the canonical conditional expectation from A onto A° defined by for
anya € A, Ef(a) = T-pa = (id® 7)(p(a)). We note that EF is faithful by Propo-
sition 2.12 of [10].

DEFINITION 2.5. We say that p is saturated if the action of H’ on A induced
by p is saturated in the sense of [10].

In Sections 4, 5 and 6 of [6], we suppose that the action of H on A is satu-
rated. But, without saturation, we can see that all the statements in Sections 4 and
5 and Theorem 6.4 of [6] hold. Hence we obtain the following proposition.

PROPOSITION 2.6. Let p be a coaction of H on A such that p(1 x 7) ~ (1 x
7) @ 1% in (A x, H®) @ H®. Then there are a twisted coaction (v, u) of H® on AP and
an isomorphism 71t of AP X, H onto A suchthat E{ = EPomandpon = (m®id)o0.

COROLLARY 2.7. Let p be a coaction of H on A such that p(1 x7) ~ (1 X T)®
1%in (A x, H%) @ HO. Then p is saturated.

Proof. Since the dual coaction of a twisted coaction is saturated, this is im-
mediate by Proposition[2.6] &

3. DUALITY

In this section we shall show the duality theorem for a twisted coaction of
HY on A. It has already been proved, but we shall present it in a form useful for
this paper.
Let (p,u) be a twisted coaction of H? on A. Let A be the set of all triplets
K
(i,j,k), where i,j = 1,2,...,dy and k = 1,2,...,K and } d% = N. For any

k=1
I =(i,j, k) € A let Wy and V7 be elements in A x,,, H X5 HY defined by

W = \/dk Xo,u wfj, V= (1 NﬁT)(W] >4‘510).
LEMMA 3.1. With the above notations, we have
Vv = 1x5T z;fI =],
0 ifI#7].
Proof. LetI = (i,j, k) and ] = (s, t,7) be any elements in A. Then
VIV = (125 T) (W) x5 1%) (W} x51°) (1 x5 7)
= [T s WIWf] 35T = El(WIW]) X5 T
Here, by Lemma 3.3 (1) of [6] and Theorem 2.2 of [10]

WiWy = Y, Vi |w ]21 ‘o W(S(Why, ), wstz)]*ﬁ(w};]‘llwﬁm) Hp,u ;(1] Wit

tyt2,51,2,m
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Z V dkd ]2]3 wt3t1)> (w]3ls(w¥2t3>/ wgtz)]*

t1.ta,3,51,52,j3.m
ok ¥ k r*
X u(w]»zj1 W) Xp,u wjljw
Tk k %
Z \/dkidu ]31 wtztS wStz) u (wj3j2/ wtstl)
t1,t,t3,71,52,73.m
ik £ k o rx
X w(wy wtlm) Xo,u Wi, Wi
'a
; tz 1% dkdru ]31 wtztg wstz) >4P u w]3]wt3t
2/83,]3
Thus, by Theorem 2.2 of [10]
o * k r
VIV] - ; Z \/dkTT w/3]wt3t (w1]3wt2t3/wt25) ><]/p\T'
243,73

If k # rorj # t, then V; V] = 0. We suppose that k = r and j = £. Then

VIV] Z T/l* lt3 wt3t2) wtzs) NﬁT = g(wis) NﬁT - 615 ><]ﬁTl
ta,t3

where J;; is the Kronecker delta. Therefore, we obtain the conclusion. 1

Let ¥ be a map from My (A) to A xp, H xﬁHO defined by

¥ ([ag]) ZVI ary Xpu1x510)V;

for any [ajj] € Mn(A). Clearly ¥ is a linear map.
PROPOSITION 3.2. The map ¥ is an isomorphism of My (A) onto Ax,,, Hx5HC.
PT’OOf. For any [111]], [b[]] € MN(A),

¥ (lay]¥ (b)) = ”ZL Vi (15 T) (argbye o 1315 1°) Vi = ¥ ([agg][bry])

by Lemma For any [ajj] € Mn(A),

IP([HUD* = ;Vf*(ﬂ}k[ Np,u 1 ><Iﬁ10)V[ = IP([Q?I])

Hence ¥ is a homomorphism of My (A) to A 3, H x5 H 0. Since p is saturated,
foranyz € A %, H Np HY, we can write that

z =

™=

1(xi x5 19) (1 x5 7) (i 205 1°)

by Proposition 4.5 of [10], where x;,y; € A Xy, H fori = 1,2,...,n. Thus, in
order to prove that ¥ is surjective, it suffices to show that for any x,y € A x,, H,
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there is an element [a7]] € M (A) such that ¥ ([ag;]) = (x x51%)(1 %5 7) (y x51°).
Since {(W;}, W;}) is a quasi-basis for E{ by Proposition 3.18 of [€],

X = ;WI*Elp(WIx) = ;WI*(ET(WIX) Xp,u 1)/

y= ;Ef(yWI*)WI = ;(E‘f(ywz*) Xpu 1)Wr.
Hence
(x x51%)(1%57)(y x51%) IX};VI*(Ef(wlx)Ef(yw;‘) pu 1 x51%)V;
= ¥ ([Ef (Wrx)Ef (yW))] 1))

Next, we shall show that ¥ is injective. We suppose that for an element [a[]] €
My(A), ¥([aj]) = 0. Then ¥V} (arj Xpu151%)V; = 0. Thus forany M, L € A,
L]

0=V Y Vi(agy pul %510 V)V = app »pu 1 x51°
]

by Lemma 3.1} Hence ay;;, = 0 for any M, L € A. Therefore, ¥ is injective. &

Since ViV; = 15T for any I € A by Lemma 3.1} the set {V; Vi}jca is a
family of orthogonal pro]ectlons in A Xpu H x5 H°. Let P = V;'V  forany I € A.

By Lemma [3.T|and Proposition 3.

l=¥Y(1ely) =Y Vivi=Y P,
IeA IeA

where Iy is the unit element in My (C).

We recall that V is a unitary element in Hom(H, A pu H) defined for any
h € Hby V(h) = 1xp,,h. Let V be the unitary element in (A x,, H) ® H°
induced by V. We regard A X, H as a C*-subalgebra A x,, H x 5 10 of A % o,

H xp H°. Thus we regard V as a unitary element in (A x,, H X5 H%) ® H. For
any I € A, let

Uy = (Vi @ 1°)Vp(V) € (A xpu H x5 H) @ HC.
Then for any I € A, UjU; = P;® 19 and U3 U; = p(Py) since
p(1x57) =V [(1x;7) ®1°V
by the proof of Proposition 3.19 in [6]. Let U = ) U;. Then U is a unitary

IeA
element in (A x,, H x5 H°) ® HY. Since (p,u) is a twisted coaction of H’ on A,

(p ®@1idpgy(c), u @ In) is also a twisted coaction of H° on My(A). Then by easy
computations,

(Y ®idgo) o (p®@idpry(c)) 0 ¥, (¥ @idpyo @idpo) (u @ Iy))
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is a twisted coaction of H® on A x,, H 7 HO, where we identify A ® My(C) ®
HY @ H° with A ®@ H° @ H° @ My(C).
THEOREM 3.3. Let A be a unital C*-algebra and H a finite dimensional C*-Hopf

algebra with its dual C*-Hopf algebra H°. Let (p,u) be a twisted coaction of H° on A.
Then there are an isomorphism ¥ of My (A) onto A xp H X5 H 0 and a unitary element

U € (A xpu HxzHY) @ H® such that

Ad(U)op = (¥ ®idpy) o (p®idpy,(c)) o ¥,

(¥ @idpo @idpo) (4@ Iy) = (U@ 1°)(p @ idgo) (U) (id @ A%) (U*).
That is, Eis exterior equivalent to the twisted coaction
(¥ ®@idpo) o (p @idpgy(cy) o ¥, (¥ @idpp @ idpp) (4 © I))-

Proof. Let ¥ be the isomorphism of My(C) onto A X, H x5 H° defined in
Proposition(3.2land let U be a unitary element in (A xpy H x5 H°) @ H° defined
above. Let [ajj]1 jca be any element in My (A). Then
(A(W)B) (¥ (la1y))9) =X (V7 @1) V(145005 (a1 %pal 451003 (10T V*(Vy 21%)

L]
—e (VY @ 1%)p(ary 14 10) (V) ©1°)
L]
since ;3(1 X5T) =V (1x57T)® 191V by Proposition 3.19 of [6] and p(a) = V(a x
19)(V*) for any a € A by the proof of Lemma 3.12(1) in [6], where we identify A
with A xp, 1and A Xp, 1 %5 1%. On the other hand,

(¥ ®@idgo) o (p®id))([ay]) = (¥ @idpo) ([o(ary xpu 1 x5 1°))).

Since p(agy xpu1%51%) € A® H?, we can write that

p(CIU Xp,u 1 Nﬁlo) = 2(171]1 X p,u 1 ><Iﬁlo) ®¢1]i'

1

where byj; € A and ¢;j; € H® forany I, ], i. Hence

(F@idpo) ([o(arr2pu1251%)]) =Y (Vi @1°) [(brjixpu1251°) @p15i] (V;21°)
LJ],i

:IZ]:(VI* ®1%)p(a xpu1%x51°)(V; @ 1°).

Thus we obtain that
Ad(U) 0po¥ = (¥ ®idy) o (p @ iduy cy)-
Next, we shall show that
(¥ @idpp ®@idpo) (@ Iy) = (U®1%)(p @idp) (U) (id @ A%) (U*).
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Since u € A ® H° ® H°, we can write that u = Y aij @ ¢; @ YPj, where ajj € A and
i,j
$i, P; € HY for any i,j. Thus for any 1,1 € H

(¥ @idpe ®idp) (u® In) (h,1) = Y Vi (a7 %0, 1 x51°)Vighi (h)gp; (1)
Lijj

_ZV, i1(h, 1) X 13510V,
On the other hand, by Lemma [3.1|and Proposition 3.19 of [6]
(U®1°)(p®@idy)(U)(id ® A%)(U*)
= ZI‘,(VI* 210@1%)((1x57) ©1°01°) (Ve 19)(p@idy) (V)
x (id@A”)(V)(1x571) @12 1°)(Vi®1°®1°)
; (Vi 21°@1%) (Ve 1)@ @idg) (V) (id @ A%)(V*)
x (Vi®1°®1%),
Thus for any h,I € H,
[(U®1°) (@ @idyo) (U)(id © A%) (U] (R, 1)

= ;VI*[(V ©1°)(p®idg) (V) (id © &%) (V) (h, 1)V,

Here forany i, € H
(Ve 10)(P ®idgo) (V) (id @ A) (V)] (1)
V() 5 (1ol Xp 1]V*(hz)l )
= V(h(n) (1(1))‘7* (hoyl)) = u(h,1)
by Lemma 3.12 of [6]. Thus
(V@19 (p@idyo) (V) (id @ &) (V*) = u
Therefore

(¥ @idpe @idgo) (@ Iy) = (U 1°)(p @idgo)(U)(id @ A%)(U*).

4. APPROXIMATELY REPRESENTABLE COACTIONS

For a unital C*-algebra A, we set

co(A) = {(an) €I°(N,A) : lim fla,|| = o}, A® = I°(N, A)/co(A).



338 KAZUNORI KODAKA AND TAMOTSU TERUYA

We denote an element in A% by the same symbol (a,) in [*(N, A). We identify
A with the C*-subalgebra of A% consisting of the equivalence classes of constant
sequences and set

Aw =A®NA".

For a weak coaction of H? on A, let p™ be the weak coaction of H? on A® defined
by p*°((ax)) = (p(an)) for any (a,) € A®. Hence for a twisted coaction (p, u) of
H° on A, we can define the twisted coaction (0=, 1) of H on A®. We have the
following easy lemmas.

LEMMA 4.1. Let (p,u) be a twisted coaction of H? on A and (0>, u) the twisted
coaction of H on A induced by (p,u). Then

A% Xy HZ= (A Xp H)
as C*-algebras.

Proof. Let @ be amap from A% x e, H to (A %, H)*® defined by ®((a,)
h) = (a, x h) for any (a,) € A® and h € H. For any (ay), (b,) € A® with
(an) = (by) in A%,

llan > h = by >xCh|| < [lan = bul[[[R]] =0 (1 — o).

Hence @ is well-defined. Also, clearly @ is linear. For x € A% x oo H, we
suppose that @(x) = 0. Then we can write that x = Z(xm') X h;, where x,,; € A

and {h;} is a basis of H such that T(h;h}) = 4;; and (51] is the Kronecker delta.
Since @(x) =0,

ani Xo,u i
i

H(me Xo,u )(Exn] Xouh > H =0 (n— o).
Also, by the proof of Lemma 3.14 in [6]

Ef((me- X o,u hi) (anj X o,u h]-)*> = me-xf,i.
i j i

Thus

— 0 as n — oo. Hence for any i, x,; — 0 asn — 0. That

is, x = 0. Thus @ is injective. For any x € (A x,, H)®, we write x = (x,),
Xp = me X h;, where x,,; € A. Theny = Z(xm)  hjis an element in A% X, H

and @(y) = x. Hence & is surjective. Furthermore, by routine computations, we
see that @ is a homomorphism of A% Xy, H to (A x,, H)®. Therefore, we
obtain the conclusion. 1

By the isomorphism defined in the above lemma, we identify A% xp~, H

with (A X, H)®. Thus G""\) = (p)*. We denote them by the same symbol p*.
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LEMMA 4.2. Let p be a coaction of H® on A and p®™ the coaction of H on A%
induced by p. Then (A®)P" = (AP)®.

Proof. Ttis clear that (AP)® C (A®)P”. We shall show that (A°)® O (A®)F”,
Let EP and (E)P” be the canonical conditional expectations from A and A* onto
AP and (A®)P”, respectively. Then (A®)P” = (E)P” (A®) and AP = EP(A). Let
(an)n € (A®)P”. We note that

(an)n = (E)"" ((an)n) = e (an)n = (€p an)n = (E°(an))n.
Hence ||Ef(a,) — an|| — 0 (n — c0). Let b, = EP(ay) for any n € N. Since
b, € AP, (by) € (AP)®. Then ||b, —a,| = ||EP(an) — an|| — 0 (n — co). Thus
(by) = (an) in A®. Therefore, (a,) € (AP)®. 1

Since (A®)P” = (AP)* by the above lemma, we can identify (E)?” with
(EP)* the conditional expectation from A* onto (A”)®. We denote them by the
same symbol E°”.

DEFINITION 4.3. Let (p, u) be a twisted coaction of H on A. We say that
(p, 1) is approximately representable if there is a unitary element w € A® ® H satis-
fying the following conditions:
(i) p(a) = (Ad(w) o p#A)(a) forany a € A,
(i) u = (we1)(py @id)(w)(id @ A)(w*),
(i) u = (p®° ®@id)(w)(w ® 1) (id ® A) (w*).

LEMMA 4.4. Fori = 1,2, let (p;, u;) be a twisted coaction of H on A. We suppose
that (p1,u1) is exterior equivalent to (p, up). Then (p1,uy1) is approximately repre-
sentable if and only if (pa, up) is approximately representable.

Proof. Since (p1,u1) and (pp, up) are exterior equivalent, there is a unitary
element v € A ® H satisfying conditions (i), (ii) in Definition We suppose
that (1, 1) is approximately representable. Then there is a unitary element w; €
A® ® H satisfying conditions (i)—(iii) in Definition [4.3|for (py, u1). Let w, = vwy.
Then by routine computations, we can see that w; is a unitary element in A* ® H
satisfying conditions (i)—(iii) in Definition |4.3| for (p2,uz). Therefore, we obtain
the conclusion. 1

LEMMA 4.5. Let (p, u) be a twisted coaction of H on A and let (p ® id, u ® I,)
be the twisted coaction of H on A ® M, (C) induced by (p,u), where we identify A ®
M, (C) ® H with A ® H® My (C). Then (p, u) is approximately representable if and
only if (o ®id, u ® I,) is approximately representable.

Proof. We suppose that (p, 1) is approximately representable. Then there is
a unitary element w € A*® ® H satisfying conditions (i)—(iii) in Definition 4.3|for
(o,u). Let W = w® I,. By routine computations, we can see that W satisfies
conditions (i)—(iii) in Definition for (p ®id, u ® I,). Next, we suppose that
(p ®id, u ® I,) is approximately representable. Then there is a unitary element
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W € A® M,(C) ® H satisfying conditions (i)—(iii) in Definition[4.3/for (p ®id, u ®
I,). Let f be a minimal projection in M, (C) and let py = 14 ® f ® 1y. Let
w = poWpy. Since p ®idMn((C) = Ad(W) opg®M”(C) on A® M, (C), Wpy = poW.
By routine computations and identifying A ® M, (C) ® H with A ® H ® M, (C),
we can see that the element w satisfies conditions (i)—(iii) in Definition for
(p,u). Therefore, we obtain the conclusion. 1

PROPOSITION 4.6. Let (p,u) be a twisted coaction of H on A. Then (p,u) is
approximately representable if and only if so is p.

The proof is immediate by Theorem [3.3]and Lemmas

In the rest of this section, we shall show that the approximate representabil-
ity of coactions of finite dimensional C*-Hopf algebras is an extension of the ap-
proximate representability of actions of finite groups in the sense of Remark 3.7
in [4].

Let G be a finite group of order n and « an action of G on A. We consider
the coaction of C(G) on A induced by the action « of G on A. We denote it by the
same symbol «. That is,

tXA—)A@C(G), a+— tht(ﬂ)®(5t
teG

for any a € A, where for any t € G, ¢; is a projection in C(G) defined by

0 ifs#t¢,
O(s) =
1) {1 ifs = t.

PROPOSITION 4.7. With the above notations, the following conditions are equiv-
alent:
(i) the action o« of G on A is approximately representable,
(ii) the coaction w of C(G) on A is approximately representable.

Proof. We suppose condition (i). Then there is a unitary representation u of
G in A® such that

ar(a) =u(t)au(t)* ac A tegG,
a®(u(s)) = u(tst™!) s,tegG,

where a® is the automorphism of A® induced by a. Let w be a unitary element

in A® ® C(G) defined by w = Y. u(t) ® &. Since u is a unitary representation
teG
of G in A%, we obtain condition (ii) in Deﬁnition for the coaction a. Also, by

the above two conditions, we obtain conditions (i) and (iii) in Definition 4.3| for
the coaction a. Next we suppose condition (ii). Then there is a unitary element
w € A® ® C(G) satisfying conditions (i)—(iii) in Definition for the coaction
«. We can regard A* ® C(G) as the C*-algebra of all A*-valued functions on G.
Hence there is a function from G to A*® corresponding to w. We denote it by u.
Since w is a unitary element in A® ® C(G), u(t) is a unitary element in A% for
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any t € G. By easy computations, condition (ii) in Definition [4.3|for the coaction
« implies that u is a unitary representation of G in A®. Also, conditions (i) and
(iii) in Definition .3/ for the coaction a imply that

ar(a) =u(t)au(t)* ac€ A tegG,
wP(u(s)) = u(tst™1) st €G.

Therefore, we obtain the conclusion. 1

5. COACTIONS WITH THE ROHLIN PROPERTY

In this section, we shall introduce the Rohlin property for coactions of a
finite dimensional C*-Hopf algebra on a unital C*-algebra.

DEFINITION 5.1. Let (p, u) be a twisted coaction of H? on A. We say that
(p, u) has the Rohlin property if the dual coaction p of H on A X, H is approxi-
mately representable.

First, we shall begin with the following easy propositions.

PROPOSITION 5.2. Let p be a coaction of H on A with the Rohlin property. Then
0 is saturated.

The proof is immediate by Corollary [2.7]
PROPOSITION 5.3. Let (p,u) be a twisted coaction of H® on A. Then (p,u) has
the Rohlin property if and only if so does p.

The proof is immediate by Proposition [4.6]
Let (o, u) be a twisted coaction of H? on A with the Rohlin property. Then
there is a unitary element w € (A*® x,~ , H) ® H satisfying that:

A><1PL,H

(5.1) p(x) = (Ad(w) o ppy )(x) foranyx € A xp, H,
(5.2) (@1 (o ™" @ idpr) () = (i 1 © 4) (),
63 T EidR)@) @S 1) = (dama, i © ) (@),

Let @ be the element in Hom(H®, A® x,~ , H) induced by w.

LEMMA 5.4. With the above notations, @ is a homomorphism of H° to (A® X g
H) N A’ satisfying the following conditions:
) D(1%) = 14,
(ii) the element @(T) is a projection in A,
(iti) @(7)x@(T) = Ef (x)@(7) for any x € A X, H.

Proof. By equation (5.2), @ € Alg(H®, A® X, H). Furthermore, by Lem-
ma 1.16 of [2], @* = @ o SY. Thus for any ¢ € HP, @(¢)* = @*(S°(¢*)) =
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@(¢*). Hence @ is a homomorphism of H? to A® x,~ H. Next we shall show
that W(¢)(a x1) = (a x1)@w(¢) for any a € A. By equation (5.1), forany a € A,
(ax1)@1=w[(ax1) 1w
Thus [(a x 1) ® 1Jw = w[(a x 1) ® 1]. Hence for any ¢ € H°
(a0 1)B(¢) = B(g)(a x 1).
Hence @ is a homomorphism of H? to (A® xp~ , H)NA’. Also, by equation (5.2),

. . A® X 0o UH .
(ldA“pr,uH Re®idy)(w®1)(py " ®idy)(w))
= (idA“xpw,uH ®ReR idH)((idAoo X o0, H X A)(w))
Thus [(idAooNpoo,uH ®e)(w) ® 1w = w. Since w is a unitary element in (A% Xy
H) ® H, (idA°°><1poo H®e¢)(w) =1, that is, @(1°) = 1. Furthermore, since T is a
projection in H? and @ is a homomorphism of HY to A% x,~ H, @(T) is a projec-

tion. Also, by equation (5.3), for any ¢ € H°

~x

¢ 5o 0(7) = D(P) 1) (1)) = D(T)D" () = €*(¢) D (7).
Hence by Lemma 3.17 of [6], @w(t) € A®* N A" = A. Finally, we shall show
that @(7)xw(t) = Ef(x)@(t) for any x € A x,, H. Foranya € A, h € H,
p(axh) =w[(axh)®1llw*. Thus
(ax hy)T(hy) = @(T)) (a x h)D" (T12)).
That is, T(h)(a x 1) = @(t(y))(a X h)@*(7(y)). Since Ef(axh) = t(h)(ax1)and
W =woSO,
Ef(axh)@(t) = (1)) (a x )W (1(2))@0(7) = @(7)(a x h)D(T).

Thus we obtain the last condition. 1

PROPOSITION 5.5. Fori = 1,2, let (p;, u;) be a twisted coaction of H® on A with
(p1,u1) ~ (p2,u2). Then (p1, uq) has the Rohlin property if and only if so does (pa, u3).

Proof. Since (p1,u1) ~ (p2,u2), there is a unitary element v € A ® H? satis-
fying that

02 =Ad(v)op;, uy = (v®1%(p; ®id)(v)u(id ® A%)(v*).

Then there is an isomorphism @ of A X, ,; H onto A %, 4, H defined in Lem-
ma By easy computations, we can see that the following conditions hold:
(i) p20 @ = (P @idn) o p1,
(i) pgxpz,qu 0® = (b ®idy) OpgﬂmmH,
(iii) (idez,qu ®RA)o(PRidy) = (P®idy ®idy) o (idAX‘pl,ulH ® A).
Let @ be the isomorphism of A% x,, ,; H onto A® X, ,, H induced by &.

We suppose that (p1, u1) has the Rohlin property and let w; be a unitary element
in (A p, 4, H) ® H satisfying equations (5.1)-(5.3) for the coaction p. Let w, =
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(¢®° ®idy)(wy). By conditions (i)—(iii), we can see that w, satisfies equations
(5.1)—(5.3) for the coaction p,. Therefore we obtain the conclusion.

LEMMA 5.6. For i = 1,2, let (p;, u;) be a twisted coaction of H® on A with
(p1,u1) ~ (p2, ). We suppose that (p;, u;) has the Rohlin property for i = 1,2. Let w;
be as in the above proof for i = 1,2. Then @1 (T) = W (7).

Proof. Letw; = Z(aij X 1,14 hz) ® l], where ajj € A%, Then
i,j

wa = Y} (0" (1)) X oy i) ® 1y
L]
where v is a unitary element in A ® H° defined in the above proof. Thus
Da(7) = Y _(a;" (hi1)) gy hi(2))T(1) = @(@1(7)),
L]

where @ is the isomorphism of A %, 4, H onto A %, 4, H defined in the above
proof. On the other hand, since @;(7) € Aew C A® by Lemma Wy (T) =
(w1 (1)) = @1 (7).

Let (p, u) be a twisted coaction of H on A with the Rohlin property Let w
be a unitary element in (A% Xy~ , H) ® H satisfying equations (5.1)-(5.3) for p.

LEMMA 5.7. With the above notations, e - W(T) = %

Proof. We note that p(1 x h) = w[(1 x h) ® lJw* for any h € H. Since
@* = @ o SY, we see that for any h € H, (1 x h)®(S°(1)) = @(50(7(1 ))(1 x
1(1))7(2) ((3))- Hence for any i € H, V(n@(t) = @(S°(11)V (hay) 1) (2
Thensince h-a = V(h@))(ax1)V*(hy)) foranya € A h € Hand e = Zdﬁk wk,

)-

_ di
e-@(t) = Y, TFD(S(11))) (12 wfy ) (13 wfy) *7(q) (wf )
Ljkij1
d ~ -~ * *
= L N0 ()T (wf ) (10w ) (@(S (wy,), wh,)* 5 wf)
k123

dy

- r

NS (7)) T (@], ) ey, - (S (] ), wfy,) ]

Jox k e
x u(wf4js’w]'35> M Wiy Wsj

since wk]* = S(w;‘l) for any i, j,k by Theorem 2.2 2 of [10]. Since e - w(7) € A%,

Ep (e-@(t)) = e (7). Thus since T(wk, ;f) = dlkékréiséjt by Theorem 2.2, 2
of [10], by Lemma 3.3(1) of [6] and Lemma i),

~ 1. %
e = T (S ()T () i - A wh) wly ) x g i)
L,]/K:]2,]3,]4,5
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= L

i’j/k’j2lj3rj4rsrtrr
x i (wk, , wk O a(wk , wk)

(" (1)) 7 (wfy) " (S (0l ), )

tja? *rjs jas” %jas
1 o ok
= iijj s Nw(so(m)))f@) (w;(j)u (wﬁs(wi‘jz),%i)
7] 54]2,
1 =N 1
= L @) (wh)e(wh) = D(S" (1)) (2 6) = -
ij,

Therefore, we obtain the conclusion. 1

By Lemmas ii) and[5.7, we can see that if p is a coaction of H? on A with
the Rohlin property, then there is a projection p € A such thate-p = % We
shall show the inverse direction with the assumption that p is saturated. Let p be
a saturated coaction of H” on A. We suppose that there is a projection p € Ac
such thate - p = %

LEMMA 5.8. With the above notations and assumptions, for any x € A x H,
(p > 1)x(p=1) = Ef(x)(p x1).

Proof. Letq = N(p x 1)(1 xe)(p x 1). Then g is a projection in A® iy H.
Indeed, g* = gq. Also, > = N2(p x 1)([e- p] x e)(p x 1) = g by the assumption.
Furthermore, E‘fm(q) =p= E’fw(p x 1). Since g < p and E’foo is faithful, we
obtain that p = g. Thatis, p = N(p x 1)(1 xe)(p x1). Foranya, b € A,

(pxD)(ax1)(1xe)(bx1)(px1) = %(ub w1)(p > 1).
Since p is saturated, A(1 x e)A = A x, H. Hence we obtain the conclusion. 1

By Watatani’s results ([11]], Proposition 2.2.7 and Lemma 2.2.9) and Lem-
ma we can see that there is a homomorphism 7 of A X, H X5 HO to A® xp H
such that

(x5 10) (14 3¢ 1y ) (y % 19)) = x(p x 1)y
forany x,y € A %, H. The restriction of 77 to 14,5 HY is a homomorphism of
H® to A® x40 H. Thus there is an element w € (A% Xy~ H) ® H such that @ is
the above restriction of 7t to H. Let {(u;, u})} be a quasi-basis of Ef.

LEMMA 5.9. With the above notations and assumptions, for any ¢ € HO, @(¢) =

205l (p 2 D

Proof. We note that T - x = Ef{ (x) forany x € A x, H. Since Y (u; 19)(1 %
T)(uf x10) =1, Z
Ixg =Y (1x¢)(u; x10)(1x1)(uf x1°) =Y ([¢p- ;] x 1°) (1 % 7)(uf x1°).

i
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Hence we obtain the conclusion by the definition of @. &

LEMMA 5.10. With the above notations, @(1°) = 14.

Proof. By Proposition 3.18 of [6], { ((+/d x wf]) , Vi ¥ w] )} is a quasi-basis
of Ef. Hence by Lemma

= Y di[wl - p] « wlt‘]* wh = Y di[wh - p] % S(w;‘t)wf]

ikt i,j,kt
=Y d[S(wf) - plx1=Nle-p] =1.
ik
LEMMA 5.11. With the above notations, the element w is a unitary element in
(A% %0 H) ® H satisfying equations (5.1)-(5.3).

Proof. Since @ is a homomorphism of H? to A% x p~ H, the element w satis-
fies equation (5.2). Also, for any ¢ € H°

(@) (¢) = D)) D(S (b(2)")" = B(p1)S (9(2))) = ()

by Lemma Similarly (@*@)(¢) = €°(¢). Hence w is a unitary element in
(A% xp H) @ H. Let {(u;, u}) } be a quasi-basis of EY. By Lemmasand for

any ¢, € HY,
[¢) 5 (W)@ (¢(2)) = Z[Gb ([ ul(p 2 V)] ) - uil (p 3 Duy
= ([ - ] EF (ujui) (p > 1))
= Z ([p-w(p = 1))]ui = D(y).
ThusHtg*Le element w satisfies elquatlon ). Finally, for any a € A, i € H and
¢ e
W(Pa))(axh)@* () = ;[4’(1) (L (uf (a x h)[S° () - i) (p < 1)uf

=Y (axhq)pa) (o) Pe) - [S° (@) - uill(p x 1)uj

i

=2 (@ xh))p(h))ui(p x Duj = (a3 h))p(hz)

by Lemmas [5.9| and Hence w satisfies equation (5.1I). Therefore we obtain
the conclusion. 1

THEOREM 5.12. Let p be a coaction of a finite dimensional C*-Hopf algebra H on
a unital C*-algebra A. If p is saturated, then the following conditions are equivalent:
(i) the coaction p has the Rohlin property,
(ii) there is a projection p in Aco such that e -y p = %, where N = dim H.
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The proof is immediate by Lemmas[5.7jand

In the next section, we show that the above assertion holds without the
assumption that p is saturated. In the rest of this section, we shall show that
the Rohlin property of coactions of a finite dimensional C*-Hopf algebra is an
extension of the Rohlin property of a finite group in the sense of Remark 3.7 of
[4]. Let G and a be as in the end of Section [4]

PROPOSITION 5.13. With the above notations, the following conditions are equiv-
alent:
(i) the action o« of G on A has the Rohlin property,
(ii) the coaction a of C(G) on A has the Rohlin property.

Proof. We suppose condition (i). Then there is a partition of unity {e;};cc
consisting of projections in A« satisfying that aj°(es) = ey for any t,s € G. By
easy computations, e. is a projection in A such that 7-¢, = %, where T is the
Haar trace on C(G). Since the coaction & of C(G) on A is saturated, by Theo-
rem [5.12] the coaction & has the Rohlin property. Next, we suppose condition (ii).
Then there is a projection p € A such that 7-p = % by Theorem Hence

(id® 1) (Y aF(p) @ &) = %

teG

Thus, we see that ) a{°(p) = 1 by the definition of 7. Let e; = a{°(p) for any
teG
t € G. Then clearly, {e;}c is a partition of unity consisting of projections in A

satisfying that af°(es) = ers. 1

6. ANOTHER CONDITION WHICH IS EQUIVALENT TO THE ROHLIN PORPERTY

In this section, we shall give another condition which is equivalent to the
Rohlin property.

Let (o, u) be a twisted coaction of H? on A. We suppose that (p, u) has the
Rohlin property. Then there is a unitary element w € (A* x,, H) ® H satisfying
equations (5.1)-(5.3) for (p, u). Let @ be the unitary element in Hom(H?, A%y,
H) induced by w € (A Xy, H) ® H. By Lemma 5.4} @(7) is a projection in Ac.
By Theoremthere are an isomorphism ¥ of My (A) onto A xp, H x5 HO and
a unitary element U in (A x4 H X5 H%) ® HY such that

Ad(U)op = (¥ ®idy)o (p® idpy(c)) 0¥
(¥ @idp ®@idpo) (1@ Iy) = (U®1°)(p @ idyo) (U) (id @ A%) (U*).

Leto = (Y ®id) o (0 @idpy(c)) 0¥ Hand W = (¥ ®id o ®id o) (u ® Iy). Then
(o, W) is a twisted coaction of H Oon A x pu H % 5 HO which is exterior equivalent
to p. Let ¥ be the isomorphism of My (A) X poidueiy Honto A X, H x5 HO Xgw
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H induced by ¥, which is defined by ¥ (x x peiduniy ) = ¥(x) Xy w h for any
x € My(A), h € H. Let ¥* be the isomorphism of My (A®) X oo @id,uwly H onto
A% gy H X500 HY %oy H induced by ¥. By easy computations, (¢, W) has
the Rohlin property and the unitary element (¥® ® id H) (w ® Iy)isin (A% Xpe
H Xge HY %, w H) ® H and satisfies equations (5.1)-(5.3) for the twisted coac-
tion ((7, W). Let z = (P° ®idy) (w ® Iy). Then

2(1) = (([d@ 1) 0o (F* @idy)) (w® Iy) = F2(([d @ 1) (w @ Iy))
= ¥°(@(1) ® Iy) = ¥ (d(1) ® Iy).
LEMMA 6.1. With the above notations and assumptions,
Z(\/a Xo,u wﬁ‘])*@(r)(\/a X o,u wf‘]) =1.
ijk
Proof. By Proposition /ﬁ\ has the Rohlin property. Then by Lemmas

and e 52(1) = §. Since 2(7) = ¥=(@(7) ® Iy) and Vi = (15 7) (Wy x5 17)
forany I € A,

:ZeAVI ) Xpu 1 %510 V]
— Z Wi x5 19) (@ (T) ¥pu 1 x5 r(l)r(’l))(w, X5 10)(77(2)77(’2))(6)
= Z Wi a5 19)(@(T) ¥ 1 35 1%) (W) x5 1) (77') (e)
I
ZWI T) Xpu )W,

where T/ = 7. Therefore we obtain the conclusion. 1

Next, we shall show the inverse direction of Lemma

LEMMA 6.2. Let (p,u) be a twisted coaction of H® on A. We suppose that there is
a projection p € Aeo such that

Z(\/@ Np,u W; ) (p Xpu 1 )(\/a Np,u WZ) =1
ijk
Then (p, u) has the Rohlin property.

Proof. Le ¥ be the isomorphism of My (A) onto A x,, H X5 HO defined in
Theorem Let g = ¥*(p @ Iy). Then q is a projection in (A X, H x5 H%) o
since p ® Iy € MN(A)w. In the same way as in the proof of Lemma

1
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Hence by Theorem 5 has the Rohlin property since (A?is saturated by Jeong
and Park ([5], Theorem 3.3) and Proposition 3.18 of [6]. Therefore (p,u) has the
Rohlin property by Proposition[5.5]

THEOREM 6.3. Let (p,u) be a twisted coaction of a finite dimensional C*-Hopf
algebra H® on a unital C*-algebra A. Let {w -} be a system of comatrix units of H. Then
the following conditions are equivalent:

(i) the twisted coaction (p,u) has the Rohlin property,
(ii) there is a projection p € A such that i?}((@ X o,u wi‘])*p(@ X o,u wf]) =1.

The proof is immediate by Lemmas|6.T]and

COROLLARY 6.4. Let p be a coaction of H® on A. Then the following conditions
are equivalent:
(i) the coaction p has the Rohlin property,
(ii) there is a projection p € Aco such that e -po p = l.

Proof. (i) implies (ii). This is immediate by Lemma 5.7}
(if) implies (i). By Theorem|6.3] E it suffices to show that (ii) implies that

Z(Mmpw]) P(@pr =1

ijk
Since p is a coaction of H? on A,

Z(\/‘Tk Xp wf])*P(\/CTk Xp w

i,jk

)PV (S(w})))

Z\»

NI}
NI

Therefore we obtain the conclusion. 1

p® = p] = Nle ‘p“?’}zl‘

Z\»

7. AN EXAMPLE

In this section, we shall give an example of an approximately representable
coaction of a finite dimensional C*-Hopf algebra on a UHF-algebra which has
also the Rohlin property.

We note that the comultiplication A? of H? can be regarded as a coaction of
HO on a C*-algebra H°. Hence we can consider the crossed product H° x , H,
which is isomorphic to My(C). Let A = H® x4 H. Let A, = @} A, the n-times
tensor product of A, for any n € N. In the usual way, we regard A, as a C*-
subalgebra of A, 1, that is, for any a € Ay, themap 1, : a > a® (19 x4 1) is
regarded as the inclusion of A, into A, 1. Let B be the inductive limit C*-algebra
of {(Ay,1,)}. Then B can be regarded as a UHF-algebra of type N®. Let V be a
unitary element in Hom(H, A) defined by V(1) = 1° x4 h for any h € H and let
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V be the unitary element in A ® H® induced by V. We recall that {vf]} and {wf‘]
are systems of matrix units and comatrix units of H, respectively. Also, let {4)1‘]}

and {w .} be systems of matrix units and comatrix units of H’, respectively. Let

=V =Y (1"xpwh) @k =Y (1% x00f) @ wf.
i,jk i,jk
Forany n € Nwithn > 2, let
on =@ (1% )] @ V.

Let uy = v10p -+ vy € Ay @ HO for any n € N. Then uy, is a unitary element in
A, @ H° forany n € N.

LEMMA 7.1. With the above notations,
g =y V(wk Z] )V, ) e V(w, ;) ®¢>f§»
-~ kn
- ZV Uiljl vizjz) ®--® V( ) ® wll]l T Wi

where the above summations are taken under all indices.

Proof. It is clear that the second equation holds. We show the first equation
by the induction. We assume that

7 (K 7 (k i7 k
Uy = ZV(wl-h) ® V(whjz) ®--- @ V(wj, ,j)® ijs
where the summation is taken under all indices. Then
~ ok ~ ~
Upt1 = ZV(WZJ ®V(w;;,) @ ® V(w;‘(n,lj) ® V(wg) ® 4)5'(]‘4);1%
7k 7 (K 7 (kK 7 (K k
=Y V(wy) @ V(w ;) @ @ V(w ;) @ V(w) @,

where the summations are taken under all indices. Therefore, we obtain the con-
clusion. 1

Forany n € N, let p, = Ad(uy) o pg’g, thatis, foranya € A,
on(a) = un(a@1%)us,
LEMMA 7.2. With the above notations, py is a coaction of H® on Ay.
Proof. We have only to show that
(1tn ©1°) (i3t @ id) (1) = (id ® A%) (1tn).
By Lemma 7.1} we can write that

kz kn
Un = ZV 11]1 12]2) ®--® V( ln]n) ® wllh B M
where the summation is taken under all indices. Hence
-~ kn
un®10 Y V(o 11] @ V(o )®“’zm“'win;‘n®10f

_ N
(ptn @id) () = Y V() ) ® - @ V(o )®1O®w w

i1 injn’
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where the summations are taken under all indices. Since V is a C*-homomor-
phism of H to A,

kn

(un®10)(p r@id)( ZV i) V(O Yowh, W @ W i

intn i1f1 lnjn ik w
= (1d®A0)(un),

where the summations are taken under all indices. Therefore we obtain the con-
clusion. 1

LEMMA 7.3. With the above notations, (1, ® id) o p, = py41 0 1y forany n € N.

Proof. In this proof, the summations are taken under all indices. Let a be
any element in A,. Then by Lemma

((n @id) 0 pu) (@)=Y (V(wh) @ ® V(wj,_,)a(V(w,) @@ V(wf ;)"
® (1% %0 1) @ L.

On the other hand, since V is a C*-homomorphism of H to A and w’t‘;‘j = S(w;‘tn ),

(Pnt10tn)(a) = Pn+l(‘1 ® (10 X0 1))

=Y (V(@l) @ @ V(w, ;)aV(@h) @@ V(wf )
®(1 X 0 )e(wfntn)wf-‘s
= ((1n ®id) © o) (a).

Therefore, we obtain the conclusion. 1
By Lemma 7.3} the inductive limit of {(py, 1)} is a homomorphism of B to
B®H?. Furthermore, by Lemma it is a coaction of H” on B. We denote it by p.
PROPOSITION 7.4. With the above notations, p is approximately representable.

Proof. Let u be a unitary element in B*® @ H" defined by u = (u,), where
Ay is regarded as a C*-subalgebra of B for any n € N. We can easily show that p
and u hold the following conditions:
(i) p(x) = (Ad(u) opgo)(x) for any x € B,
(i) (1 © 1) (pB5 @id)(u) = (id ® A%)(u),
(iii) (p*° ®id)(u)(u ®1°) = (id ® A%) (u).
Therefore, we obtain the conclusion. 1

PROPOSITION 7.5. With the above notations, p has the Rohlin property.

Proof. By Corollary it suffices to show that there is a projection p € Beo
such thate -po p = 4. Forany n € N, let

prn=(1"%01)® - @(1"%01)®@(Txp1l) € A,_1NA,.
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Also, let p = (pn). Then clearly p is a projection in Bs. In order to show that
epep = %, we have only to show that e -5, py = & for any n € N. We note that

i (pn@1°)usy =)V (wfy S(wh)) @ V(wf;,S(why, ) @ - -
V(@ ;. Sk, 1, V(@ ) (Tx01)V(S(

Jn—2Jn—1

w;‘(t ))®¢;€s/

f

where the summation is taken under all indices. Hence since e = Z ~Wag

fa

d
ep, pn = 1 35V (wh S(wf ) @ V(wf, S(wly,) @
@ V(W) ;. S@i, i, ,)) @ V(W) )(Txp0 )V(Sw), )

d
= Zﬁk(ﬂ) Xp01)® V(wMS(wtzh)) ® V(wms(wtm)) ®---

©V(w) ;S 1, ,)) @ V(@) )(Txp )V (S@f, ),

where the summations are taken under all indices. Doing this in the same way as
in the above for n — 1 times, we can obtain that

d _ _
Cpy P =Y I\’]‘(l0 )@@ (10 xp ) @ V(W) (T2 V(S )
= ("% 1) @ @120 1) @ ([e-p0 7] X001)
1
= ﬁ(10 Xp1) @@ (1% 1),

where the summations are taken under all indices. Therefore, we obtain the con-
clusion. 1

8. 1-COHOMOLOGY VANISHING THEOREM

Let p be a coaction of H? on A with the Rohlin property. In this section, we
shall show that for any coaction ¢ of H? on A which is exterior equivalent to p,
there is a unitary element x € A ® H? such that o = Ad(x ® 1°) 0 p o Ad(x*).

Let p and o be as above. Since p and ¢ are exterior equivalent, there is a
unitary element v € A ® H? satisfying the following conditions:

(8.1) o= Ad(v)op,
(82) (v@1°)(p®idgo)(v) = (id ® A) (o).
Since p has the Rohlin property, there is a unitary element w in (A x, H) ® H sat-

isfying equations (5.1)-(5.3) for p. By Proposition[5.5] o has also the Rohlin prop-
erty. Hence there is a unitary element w; € (A x, H) ® H satisfying equations

G-1)-(G-3) for 7. By Lemma[5.6| @1 (1) = @(7). Let x = N(id ® ¢) (0p™ (@(7))) =
No(eq))[e(a) p~ @(T)]-



352 KAZUNORI KODAKA AND TAMOTSU TERUYA

LEMMA 8.1. With the above notations, the element x is a unitary element in A%
such that p™(x) = v*(x @ 19).

Proof. Let f = e. Then by Lemmas(5.4and [5.6]

xx* = N*0(eqr)) [e(a) o D(D)][S(fi2))" o D(T)]O(f(1))*
= N?0(e(r)) (1 xpe z)) w(T)T(es)f(3)) (1 %p f2))0(f(1))"
= N2(e(sy) (1 mp ) B(T) (1 5 Slegay oy Fiay)Teis F i)
= N20(e(1)) (1 p €(2))D(T) (1 % S(e(3)))7" (S(fa)) )T ey f2))
= N?0(e(1)) (1 p e(2)) (1) (1 4 S(e(3)))7* (e(a)) Te(5) f)
:N(1d® e)(vp™ (@(7))v") = Nle o= @1 (7)] = 1.
Lety = (1d® e)(v o (@1(7))) = No*(e(1))[e(2) "o @1(7)]. Then by the above

discussions, yy* = 1. On the othe :h nd, by Lemmasmand-
¥ = NIS(ely) o= DOJB(S(ely))) = NO(S(ely))) S(eqny)* = B(0)]
= N(id @ 5(e)") (vp™ (@ (T )))—x~

Thus x*x = 1. Hence x is a unitary element in A*. Finally, we shall show that
p*®(x) = v*(x ® 19). Noting that (v ® 1°) (p ®id) (v) = (id ® A%)(v),
p%(x) = Np*((id ® ¢) (vp™ (@(7))))
= N(id @idpo ® €) (0™ @idpo) (0) (0™ @idpo) 0 o) (@(7)))
= No*(id ®@ id 0 ® e) ((id ® A%) (0p™ (@(7))))
= No*(id @ e) (0™ (@(7))) ©1° = v (x©1%).
LEMMA 8.2. With the above notations, for any e > 0 there is a unitary element x

in A such that
[v—(x0®1)p(xp)l| <e

Proof. By Lemma there is a unitary element x € A* such that v =
(x ® 19)p®(x*). Since x is a unitary element in A®, for any ¢ > 0, there is a
unitary element xg € A such that ||[v — (xo ® 1)p(x)|| <&

THEOREM 8.3. Let p and o be coactions of H® on A which are exterior equivalent.
We suppose that p has the Rohlin property. Then there is a unitary element x € A such
that
c=Ad(x®1% 0poAd(x*).

Proof. Let v be a unitary element in A ® HY satisfying equations (8.I) and
(8-2). By Lemma(8.2) there is a unitary element xo € A such that

lo = (x0 @ D)p(xp) || < 1.

Let
p1 = Ad(x ®1) 0 po Ad(x5) = Ad((x0 ® 1%)p(x5)) o 0.
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Letv; = (xo ®19)p(x). Then p; is a coaction of H on A. Also, o = Ad(vo?) o py.
Let v; = vv]. Then v; is a unitary element in A ® H° with
lo2 =1 = [lo — o1l = flo — (x0 ® 1°)p(x5) || < 1.
Furthermore, since v1 = (xy ® 10)p(x6‘),
(0®1°)(p®id)(v)(p ®id) (v7) (v} ® 1°)
(id ® A% (0) (p @ id) (v}) (v} © 1°)
(id @ 4%)(02) (id ® A°) (v1) (p @ id) (07) (v} ©1°)
(id®4%) (02) (x0@1°®1%) ((p®id) op) (x5x0) (x5 ©1°®1%)
(id ® A% (vy).

(0201°) (p1 ®id) (v2)

Lety = (idA & 6) (Uz). Then
p1(y) = (ida ®idpo @ €)((v3 ©1°)(ida @ A") (v2))
=03[(ida ®e)(v2) ®1°) = v (y @ 1°).
Since ||1 —y|| = ||(ida ®e)(1 —v2)|| < ||1 —v2|| < 1, yis invertible. Let y = x|y|
be the polar decomposition of y. Then x is a unitary element in A and
p1(y) =v3(y®1°) =3 (x®1%)(ly| © 1°).
Hence

p1(x)p1(fy]) = 03 (x @ 1%) (Jy| ® 1°).
Also,

piy'y) = (v ©1)mus(yel) =y'ye 1L
Thus p1(ly|) = |y| ® 1°. Hence pq (x) = v (x ® 19). It follows that
Ad(x®1% 0p; 0 Ad(x*) = Ad((x ®1%)p1(x*)) 0 p1 = Ad(v) 0p = 0.

Since p; = Ad(xg ® 1°) 0 p o Ad(x}}), we obtain the conclusion. &

9. 2-COHOMOLOGY VANISHING THEOREM

Let (p, u) be a twisted coaction of H? on A with the Rohlin property. Let w
be a unitary element in (A% X, , H) ® H satisfying equation (5.1)-(5.3) and let
@ be the unitary element in Hom(H?, A® X p , H) induced by w. In this section,
we shall show that there is a unitary element x € A ® H such that

(x®1%) (0o ®id)(x)u(id® A% (x*) =121°©1°.
We recall that in Sectionwe construct a system of matrix units of My (C),

{WF %519 (1 % 135 T) (W) %519)} 1 jen
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which is contained in A% Xy~ , H, where W; = /dj x4 wf‘] forany I = (i,j,k) €
A. By Lemmas[5.4land we obtain the following lemma.

LEMMA 9.1. With the above notations and assumptions, the set {W{w(T)Wj}t 1 jen
is a system of matrix units of My (C), which is contained in A% Xy, H.

Proof. By the proof of Lemma[3.1} forany I = (i,/,k),] = (s,t,7) € A,
WIW) = Y Vdd, i ]31 S(Whyty ), Wet,)™ Xpu wmwtst
ta,t3,]3
Hence by Lemma 5.4/and Theorem 2.2 of [10],
w(T)WiWjw(T 2 Vdidy T( w]3]wt3t (w%wtgtywtzs)@('f)-
t2,t3,]3
Ifk # ror j # t, then W(T)W;W;@(t) = 0. We suppose that k = r and j = .
D)WW @ (1) = ), i (why, S(wly,), whe)®(7) = 850(1),
tat3
where J;; is the Kronecker delta. Thus forany K, L, I, | € A,
WEZAU(T)WIW;FZ/(}(T)WL =0
if I # J. We suppose that I = J. Then since @(7)W;W[w(7) = @(1),
Wrw(T)WiWiw(T)WL = W@ (T)WL.

Furthermore,

Y Wiw(t)WiWra(t)Wr = Y Wid(T)Wr =1
IeA IeA

by Lemma Therefore we obtain the conclusion. 1

We suppose that the C*-Hopf algebra H® acts on a unital C*-algebra C triv-
ially. Then by the discussions before Lemma the set {(Wg; x4 1%)(1 x 1 %,
T)(Woy %2 1%)} jea is a system of matrix units of C x H x4 HY which is isomor-
phic to My(C), where Wy; = /dj w € Cx Hforany I = (i,j,k) € A. Thus

we obtain the following homomorph1sm 6 of C x H x5 H® into A® xp~,, H. For
any I, ] € A,

O((Wir 2 1%) (13 1 x4 T) (Woy x4 1%)) = Wi (T)W;.
LEMMA 9.2. With the above notations, for any h € H,

6(1 % h) de (1 Npltw]) w(T)(1 Xpu Wi h)
i,jk



THE ROHLIN PROPERTY FOR COACTIONS OF FINITE DIMENSIONAL C*-HOPF ALGEBRAS 355

Proof. Let h be any element in H. Then by Lemma
Ixh=Y (Wrxa19*(1x1x,7)(Wrxp1°)(1xhx,1°)
IeA
=Y d(1x wf‘] 3 19)* (131 x4 7) (1 x wh h x4 10).
ik
Since {w } is a system of comatrix units of H, for any i, j, k there are elements
(c ij)st € (C such that wfjh = Sztjr(cf])stwst Hence

ILxh= ) dc z/)st(l X w] Mp 1905 (1 %01 344 7)(1 3wl x4 1°).
i,jk,s,tr

Thus by the definition of 0,

0(1xh) = Z di(c 1])st(1 Xo,u wk]) w(T)(1 Xo,u W)
i,j,k,r,s,t

= Y k(1 20,0 W) @(T) (1 Xpu wiih).
ijk

The restriction of 6 to 1 x H, the C*-subalgebra of C x H x4 H° is a homo-
morphism of H to A® x e, H. Hence there is a unitary element v € (A% Xy

H) ® HO such that 6|, .,y = 3. We recall the definitions V and V. Let V be a linear
map from H to A x,, H defined by V(h) = 1x,, h forany h € H and let V
be the element in (A x,,, H) ® H 0 induced by V. Then V and V are unitary ele-
ments in (A X, H) ® H and Hom(H, A x,,, H), respectively. Let x be a unitary
element in (A% xp~ , H) @ H° defined by x = vV*.

LEMMA 9.3. With the above notations, X(h) € A® forany h € H.

Proof. Since w = S(w; ) for any i, j, k, by Lemma [9.2/and Theorem 2.2 of
[10], for any h € H,
%(h) = 8(hay)V(S(h{y))*

k k k PN (o 0k k
= Y @ (Wl ok [l @0, wh i)
Ljkj1d2dai1

Mo, S (W JWE o)) (T (S (), s)) Xpu S(h(3)))

Yo Al (W, wi ) W g D)W, wi )
Lk, j1.2,73:74

X [y pu @ (S(hs)), hig))]ii(h(3), S(ha)))-

Furthermore, using the equations (i) and (ii) in Section we can see that for any
heH,

= Wk [k VSR PV k
x(h) = Z dycit (wh]z/ jli)[wj;j3 ‘o W(T)] 1 (w ]3*]4 wij4h)'
Lk, j1j2.3.]4
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Since w}‘;% pu @(T) € A® for any jo, j3, k, we obtain the conclusion. 1

By the above lemma, we can see that x is a unitary element in A® ® H’. We

recall that pg? #1 i the trivial coaction of HO on A x pu H defined by pg(,” putl (a)=

a®1° forany a € A x,, H. Also, we note that p = Ad(V) o p?{:"'”H by Lem-

ma 3.12 of [6], where we regard A as a C*-subalgebra of A x ol H. Furthermore,
since ¥ is a homomorphism of H to A% X, H,

(1) (0 " ©id)(0) = (id ® A%)(0).

PROPOSITION 9.4. With the above notations,
(x®1%)(p® ®id) (x)u(id ® A% (x*) =121° 2 1°.

Proof. Since x = vV* and p = Ad(V) o pg:p’”H,
(0™ @id) (x") (x* ®1°)(id ® A%) (x)

A®x 0 4
=(Ve1) (o,

2 2id) (Vo) (of @ 19)(id @ A%) (V7).

ﬁx"m’“H ®id)(v) = (id ® A%)(v),
(0° @id) (x*) (x* ® 1°) (id ® A%) (x) = u

by Lemma 3.12 of [6]. &

Since (v® 1%)(p

We recall that {cpf]} is a system of matrix units of H’.

LEMMA 9.5. Let (p,u) be a twisted coaction of H? on A with the Rohlin property.
Then for any e > 0, there is a unitary element x € A ® HO satisfying that

[(x@1°)(p@id)(x)u(id©A")(x") —101°©1°| <,
[x 121 <e+L|lu—-121°®1°,

where L is a constant number with L > 1.

lemma. By Proposition [9.4} there is a unitary element xy € A® @ H° satisfying
that

Proof. Modifying troof of Izumi’s Lemma 3.12 in [4], we shall prove this

(x0 ®1%) (0™ ®id) (xo)u(id ® A%)(xf) =12 1° ®1°.
By the proof of Lemma(9.3} for any 1 € H,
fo(h) = Y iV (wh) @ () V(whh)) V* ().
i,k
Thus
xo= 3, dV@h) o)V (wiwl, )V (w),) @ ¢

i,j,k,s,t,t
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Since Y, de(wf‘])*@(T)V(wf]) =1by Lemma
ijk
101°= Y dV(w) @(0)V(wh)V(wh, ) V" (w],,) @ ¢l
i,j,k,s,t1,t

Also since u = (V ® 1°) (pg:”’“H ®id)(V)(id ® A%)(V*) by Lemma 3.12 of [6],

5 5 - S0k
V(W) V(wl,) = Y (w, wl, )V (W} jwh,,)
jl/tz
foranyi,j,k,s,t1,r. Hence
7 (k \ %5 k ok
x-101"= Y, dV(w) @(T)[e(wy Je(wh,) — a(wy;,, wl,)]
i,j,k,s,t,r,tl,tz,jl
- ~
X V(wjljw{2t1>V* (wWht) @ Pt
Since there is a constant number L; > 0 such that

le(wf, e(wly,) — i(wfy, wh,)| < Li1©1°©1° —u|

forany i, j1,k,s,to, 7,

lx—1®11
<L Y dl V@IVl V(@) 110 ©1° - ul|.
i,j,k,S,t,T,t],tz,j]

Since x is a unitary element in A ® H", we can choose a desired unitary element
xin A®HY

THEOREM 9.6. Let (p,u) be a twisted coaction of a finite dimensional C*-Hopf
algebra HC on a unital C*-algebra A with the Rohlin property. Then there is a unitary
element x € A ® Hsuch that

(x®1%)(p®id)(x)u(id ® A% (x*) =12 1°®1°.

Proof. We shall prove this lemma modifying the proof of Lemma 3.12 in
[4]. Let ug = u and pp = p. By Lemma for ﬁ, there is a unitary element
Yo € A ® HO such that

. . . 11
1121°®21° — (o 1) (0o @1id) (yo)uo(id ® A%) (y5)|| < 57 <7
Let

p1=Ad(yo) o po, 1 = (y0®1°)(po ®id) (yo)uo(id ® A%)(v5).

Then since (p1, u1) is a twisted coaction of H? on A which is exterior equivalent to
(po, uo), by Proposition5.5| (p1,u1) has the Rohlin property. Thus by Lemma



358 KAZUNORI KODAKA AND TAMOTSU TERUYA

for (2L)2’ there is a unitary element y; € A ® H such that
1 1
1®1°®1° = (y; ®1°)(p1 ®id) (y1)u1 (id ® A%) (y7)|| < a0? < 3
1 1 1 3
-1®1° Ly —121°®1° < =

since 11 = (yo ® 1°)(po ® id) (yo)uo(id ® A%)(y)- Let

p2=Ad(y1) opr, w2 = (1 ©1%) (o1 ®id) (y1)u (id © 4%) (y7).-
Then since (p,, u2) is a twisted coaction of H? on A which is exterior equivalent to
(p1,u1), by Proposition . 02, u2) has the Rohlin property. Thus by Lemma

for (2;3 , there is a unitary element y, € A ® H? such that

1 1
L3 <2

1 1 1 3
L) QLp t2 <
It follows by induction that there are sequences { (pn, u,)} of twisted coactions of
H° on A and {y,} of unitary elements in A ® HY satisfying that for any € N,

1 1
(L) < g
Let Xy = YnYn_1 Yo € A® H° for any n € NU{0}. Then x, is a unitary
element in A ® H? satisfying that

tnr1 = (xn ©1°) (0 ®id) (xn)uo (id ® A%)(x3)

for any € NU {0} by routine computations. Furthermore,

M®1°@1° — (12 ©1%)(p2 ®id) (y2)u2(id © A%) (3) || <

ly> —1®1°] —101°01%) <

M©1°®1° —u,| < 11—y <

2n+l

1
un —121°@1° < =0 (n— +o0).

Also, since by easy computations, we see that {x, } is a Cauchy sequence, there is
a unitary element x € A ® H such that x, — x (n — +00). Therefore, we obtain
that

101°91° = (x®1%) (p ®id) (x)u(id ® A%) (x*).

10. APPROXIMATE UNITARY EQUIVALENCE OF COACTIONS

Let p be a coaction of H on A with the Rohlin property Let w be a unitary
element in (A% Xy~ H) ® H satisfying equations (5.1)-(5.3) for p. Let (o1, u) be
a twisted coaction H? on A which is exterior equ1valent to p. Let v be a unitary
element in A ® H° satisfying conditions (i), (ii) in Deﬁnition that is,
(1) 1= Ad(v) op,
([u=(wal)(p®id)(v)(id @ A)(v*).
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By Proposition 5.5, (o1, u) has the Rohlin property. Let w; be a unitary ele-
ment in (A% Xy~ , H) ® H satisfying equations (5.1)-(5.3) for p1. By Lemma
w(t) = w1 (7). Let

x = N(id ® e) (vp™(@(1))) = No(e())[e(z) -p= @(T)]-
We have the following lemma which is similar to Lemma

LEMMA 10.1. With the above notations and assumptions, x is a unitary element
in A%.

Proof. In the same way as in the proof of Lemma we can see that xx* =
1. Next we shall show that x*x = 1. Let f =e.

Let EF” be the conditional expectation from A% onto (Af)®. Then since ¢ =
d

Ly,

ik

EF”(x"x) = f oo X% = NIf = ey 0" (S(ef1)))3(S (ef5)))]@(0)]
= X dblf o a0 ()0 ()
L]J1/
= Dlf o W 12(0)] = NIf e 0(0)] =1
1z

by Lemma Since EF” is faithful, we obtain the conclusion. &

DEFINITION 10.2. Coactions p and ¢ of H on A are approximately unitarily
equivalent if there is a unitary element v € A® ® H" such that, for any a € A,

o(a) =vp(a)v*.

Let p and ¢ be coactions of H? on A which are approximately unitarily
equivalent. Then there is a unitary element v in A*® ® H° such that ¢(a) =
vp(a)v* for any a € A. We write v = (v,), where v, is a unitary element in
A. Then since a(id ® €°)(v) = (id ® €°)(v)a for any a € A, (id ® €°)(v) is a uni-
tary element in Aco. Let z = (id ® €°)(v) and w = v(z* ® 1°). Then w is a unitary
element in A* ® H? and

wp(a)w* = v(z" ®1°)p(a)(z ® 1°)0" = vp(a)o" = o(a)

forany a € A. Furthermore, (id ® €¥)(w) = zz* = 1. Hence if we write w = (wy,),
where w, is a unitary element in A ® H?, then w, = v, ((id ® £°) (v};) ® 1°). Thus
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(id ® €%)(w,) = 1. Therefore, we may assume that (id ® &)(v,) = 1 for any
n € N. We shall show the following lemma.

LEMMA 10.3. Let o and p be coactions of H? on A. We suppose that p has the
Rohlin property and that o is approximately unitary equivalent to p. Then for each finite
subset F of A and any positive number ¢ > 0, there is a unitary element x € A such that

lo(a) — (Ad(x ®1%) 0 po Ad(x*))(a)|| <&,
[[xa —ax|| < e+ L max lo(1S(wfy) -p a]) — p([S(w;) -p a)) |
foranya € F, where L = Y di|id ® wk II
ik

We shall prove this lemma by showing a series of several lemmas. Since
o and ¢ are approximately unitarily equivalent, there is a unitary element vy €
A% ® H such that o (a) = vop(a)v} for any a € A. Let F be any finite subset of

A and ¢ any positive number. Then there is a unitary element v € A ® H® with
(id ® €%)(v) = 1 such that

lo(a) —vo(a)o™|| <e,

lo([S(@}) - a]) = vp([S(w) o a])o*| <,

lo([S(w]y) -p a]) = vp([S(wfy) -pa])o*|| < e
foranya € Fandi,j=1,2,...,d,k=1,2,...,K. Letx = N(id ®¢) (vp*®(@(71))).
Let p; = Ad(v)opand u = (v® 1% (p ®id)(v)(id ® A%)(v*). Then (py,u)

is a twisted coaction of H? on A which is exterior equivalent to p. Hence by
Lemma x is a unitary element in A*.

_'Up
_vp

LEMMA 10.4. With the above notations and assumptions, for any a € F,

lo(x) (x* ©1°)vp(a) ~ N(id®@e) ((p®id) (v) (id©A%) (0™ (@(1))0*) ) (a)o|| < Ne.
Proof. We note that
=N(id@e)(vp™ (@(7))) Zk:d r(id@wf) (v dekv )i g (7).
i, ij,
Also, x* = Nle() -p~ @(7)]0"(e(2)) since x = N(id ® S(e*))(vp™(@(7))). Then
by Lemma 5.4 for any h € H,
(p(x)(x* ©1%)vp(a)) (h)
= [h() o= x]x*0(h(p)) [h(3) -p al

=N Zk; dilh) p D(w)]V (haywh) T(S(hz) wi)eq) ) @(T)V* (e(z))
ikt

x 0% (e(3))0(h(a))[hs) -p al
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=N Yo dilhy p O(wh)]V (hywh)@(T)V* (hgywhy, S(haywh,, Je(a) )

=N Y dlha)p (wﬁ)]V(h(z)wﬁ)@(T)V*(h(s)wftl)
i,j,ktt1,t2,t3

X 77*(h(4)w’flt25(h(5)w’f t3)€(2)) (S(hgywh,i)eq)) () ) -p 4]

=N Y difhg) - 0(wh)|V(hgywh)d(T)V* (hywhy, )0 (haywh,y,)
T

x T(S(h (5)wt21)€)/\( ©)) 7y pal

0
Zk;t di[h W) [y wh, o D(0)]T (hzywf, )0 (ha)) [s) -p a]-
i,jkt

Thus
p(x)(x* ©1°%)0p(a) de (id @ w§) ((p @ id) (0) (id @ A%) (0™ (@(T))0*) )vp(a)

= N(ld ®e)((p @id)(v)(id ® A%) (0 (@(7))v*))vp(a).
Hence
lo(x) (x* ®1%)vp(a) — N(id @ e)((p ® id) (v) (id @ 4°) (0™ (@(7))v*) ) (a)o]|
= N||(id @ e)((p ®id)(v) (id ® A%) (0™ (@(7))0*)) (vp(a) — o (a)o)
< Nllop(a) — o(a)ol| = Nljop(a)o” — o(a)]| < Ne. ¥

LEMMA 10.5. With the above notations and assumptions, for any a € F,
|NGid@e)((p@id) (o) (id ® 4% (o™ @(7))o") (a)o

~1 dilid @ w)((p 1d) (0)(1d © 4°) (0™ (@()p((S(w]y) - oo ol < Le,
Ll

where L = Z dk||1d®w IE

Proof. Since e = Z ay wk,

N(id ® ¢)((p ®id) (v) (id ® &%) (0 (@(7))v*)) e (a)o
= ;dk(id ®wh)((p @ id)(v)(id ® 4%) (0 (@(7))0*) o (a)0.

Thus forany h € H

[N(id @ e)((p ®1d)(0) (id © 4%) (p™ (@(7))0*) o (a)0] (k)

= Y= dilhy 0 0]y, o= (D)5 (hia)wf ) [h(a) o a]0(h5))
ikt
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Y. di[hqy p 0wy why, o> @(0)]0" (haywiy,)
i,j,kt1,tn

X [haye(wf,;) o alo(hs))

= Y, dilhq) o 0@ [hywhy, e ©()]0 (hiaywhy,)
i,j,k,tl,tz,t3

X [h(gywhy, - [S(w)) -0 a]o(hs))-
Thus
N(id @ e)((p @id)(v) (id @ 4%) (0™ (@(1))0*))o (a)o
= Y di(id @ wiy, ) ((p @ id)(0) (id @ A%) (0™ (@(7) o o ([S(w}y;) - a])) o

ibs k

Hence
|NGd®e)((p®id) (0) (id © 2) (o™ (@(1))o*))o(a)o

- ¥ diid @ wly, ) ((p @ id) (o) (id @ A%) (o™ (@(7) o ([S(wh,) -0 a)o")o |

it3,k
= | S avtid @ ut (o @ ia)@)id 0 A7) (o~ @) e IS (why) )

— p([S(wk) -0 a))o")o|
< ¥ dulid @l 0" ([S(w) e a) = p((S(w}) o Do
its,

<Y dk|\id®wft3||e <Le 1
itk

LEMMA 10.6. With the above notations and assumptions, for any a € A,
Y di(id @ wjy) ((p ®id) (0) (id @ A%) (0 (@ () )p([S (w];) - a]J0*) )0
i,k

= p(a)p™ (x)(x" ®1°)o.

Proof. We shall show the above equation by routine computations. For any
he H

[ X delid @ why,) (0 @id) (o) id © 4°) (o (@(2))p (S (why) -+ a])o*) o] (h)

itk

= Y dilhy - 0wl (W, o [S(why) o al@(T)]]0* (hgywhy, )0(h(3))

i,j,k,t2,t3
= Y dilhayp 0(wh)[w - [S(wy) o all[wh, g @(7)]]
i,j.k,t2.t3,1

X 0% (h() Wiy, )0(h3))
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k k ~ k k ~
= 2 ’ dk[h(l) o [wij N4 [S(thi) N4 ”]]U(wjjl)[wjltz 0 W(T)]]
i,j.k,t2.43,]1
k -~
x 0" (h (2)wt2t3)v(h(3))

ktzt: dilh) p allh) p O(whj )3 @ 4, oo @(T)]0" (higywhyy, )0 (hs))-
243,71

On the other hand by Lemmal5.4for any h € H,
[o(a)p ( ) (2" ©1°)0](h)

(1) 'p H @) p x]x*ﬁ(h(s))
= Z [h2) -0 O(@WE)]V () ) T(S gy )er))@(T)
i
x V(e ))U*( (3))3(}1(5))
= kZ a)ha) p O(w})|V (hgywh )@ (T)T(S (h(s)wy)e))
x V* (h() 1112) (e(2))0(hs))
=N Z t a] [z -p O(wfy) 1V (higywh; )@ (T)V* (hgywr ;)
i,j,kiq,ip,
T(S(h wtz)e) “(h 5)w5‘(2t)6(h(7))
ki tdk a[ha) -p O(wf)| [z @, oo D(T)]0* (higywh )0 (hs))
J/4511,12

Therefore, we obtain the conclusion. 1

LEMMA 10.7. With the above notations and assumptions, for any a € F,
lxa —ax|| < Le + L max lo([S (a0 <o a)) — p(1S(wly) p a))
where L = Z dk||1d®w IE

Proof. For anya € F

xax* = N Y_ dio(wh)[wh; -y @(7)]aleqr) -p= @(7)]7* (e(2))

ik
=N kZ: dro(w z])‘?( wji, )W (T)([S(wﬁl) 0 4] ><‘;oS(wziz)e(l))ZAU(T)
i,7k,i1,i

X V*(e(p))0%(e(3))

=N Y. &)V (wy,)[S(Wwhy,) pal@(t)V* (wh, S (wfy, Je(2)
Likinia bt

< T(S(w};,)e(1)) 7 (e(3))
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=N L ) V(w)[S(h) p @0V (wh) TS, g )em)
1,], J1,12,t,8,51

x 0" (wlt{ss(wgsl )3(2)>

= Y dd(wh)V(wi)[S(wy) - al@ (1) V* (k)0 (wy,)

bt
= ]kz dx(id © wf, ) (0p™ (@(1))p([S () 5 a])0"),
Hence
[ax - L delid @ ) (™ (@(0)0" 0 (1S(wy) )
- | L dufid @ ) (op™ @) p([S(wy) o )" "o ([S(wi) al))
< L dlid &y p(15(wly) o —o"e((S(ly) pal)
l; di||id ® w”zlle = Le.
Furthermor:e

¥ dufid ) (o0 (@) (0l )
= Y d(op™(@(0))0" ) (wh) ], S (wly) ]
= L de(ap™(@(0)0" (wh)a = NG @ ) (o™ (@(1))0 )

We recall that p; = Ad(v)op, u = (v®1%)(p ®id)(v)(id ® A%)(v*) and that
(p1,u) is a twisted coaction of H? on A which is exterior equivalent to p. Then by
Lemmas|5.6land 5.7} N(id ® e)(0p™(@(7))0*) = Nle -p, u @(7)] = 1. Hence

Y- di(id @ wh,) (0™ (@(1))0*p([S(w) - a])) = a.

ik,ip

It follows that
Jvax* —al| = |xax* — ¥ delid @ wh, ) (0p™ (@(7))0" o ([S(why) o a]))

ik,in

+ Y di(id @ wf) (op™ (@ (1)) 0" o ([S(why) -pal))

ik,in

- ¥ dilid @ wh,) (0p™ (@(1)0"p([S (why) -p )|

lklz

< Le+ ) diflid @ wf, || |o([S(wf,) o al) — p([S(wh) p a))|

ik,in
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< Le+ ;deIid  wh| max o ([S (@) -pal) — p([S(w}) -pal) |
ij, 7

< Let Lmax [o([S(wf) p a]) = p([S(w]y) p ),

where L = ) di[jid ® wf] ||. Then we obtain the conclusion. 1
ik

By Lemmas [10.4] [10.5] [10.6| and [T10.7] we obtain Lemma We note that
the constant positive number L in the above proofs does not depend on coactions

p and ¢ but depends on only H°. Also, we note that if a coaction p of H on A
has the Rohlin property, then a coaction (a ® id) o p o a1 of H’ on A has also the
Rohlin property for any automorphism « of A.

THEOREM 10.8. Let A be a separable unital C*-algebra and let p and o be coac-
tions of a finite dimensional C*-Hopf algebra H® on A with the Rohlin property . We
suppose that p and o are approximately unitarily equivalent. Then there is an approxi-
mately inner automorphism 0 such that

c=(0®id)opoh L.

Proof. We shall show this theorem by the same strategy as in the proof of
Theorem 3.5 of [4]. We choose an increasing family {F,}$  of finite subsets of
A whose union is dense in A. By induction using Lemma we can construct
an increasing family {G,}$"_, of finite subsets of A whose union is dense in A,
a sequence {x,} of unitary elements in A and a family of coactions pz, 02,41,
n=0,1,2,...,0f Hon A satisfying the following conditions:

Po=p, 01=0,
Pans2 = Ad(x2, ®1%) 0 pp, 0 Ad(x3,), n=0,1,2,...,
Oopr1 = Ad(x2,1 ® 10) 00y,_10 Ad(xﬁnfl), n=12,...,

By = UIS(@)) -0y Fanl, n=0,1,...,

ijk
1 k
F2n+1 = U [S(wl]) "P2n+2 FZH-H]/ n=0,1,...,
ijk
Go=FUF,

Goni1 =G UFy1UR, 4, n=0,1,...,

Gonsz = Gons1 UFopia UFy, n, n=0,1,...,
1
lo2nr1(a) — pan2(a)|| < s 0€ G, n=0,1,...,

1
loan+3(a) = pans2(a)|| < 5577, 4 € Gonpr, n=0,1,...,
22n+
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1
[x2n41a — ax2p41]] < 22n+1 + Lnl.n]akx ||P2n+2([5(w§j) 041 @))

2+L
—02n+1([(wf-‘j)-02n+1a])||<27, a€ Gy, n=0,1,...,

+Lmax 02141 ([S(wfy) 0o, a])

1
||x2na - axZn” < 22n

2+L
_ pzn([s(wfj) 00 )] < ot 0€Gumo, m=12....
In the same way as in the proof of Theorem 3.5 in [4], we can obtain the conclu-
sion. 1

In the rest of this section, we shall study coactions having the Rohlin prop-
erty of a finite dimensional C*-Hopf algebra on a UHF-algebra of type N®. Let A
be a UHF-algebra of type N®. Let M,,(C) be the n x n-matrix algebra over C and
{fij} a system of matrix units of M, (C).

LEMMA 10.9. Let p be a unital homomorphism of A to A ® M,(C) and p* the
homomorphism of Ko(A) to Ko(A @ My (C)) induced by p. Then p*([Ni]) [Nl | for
any 1 € NU{0}.

Proof. Since p(1) = 1@ 1, p«([1]) = 1 ® In] = n[l® f11] = n[1]. Hence
No.([&]) = p«([1]) = n[1]. Since Ko(A) = Z[4] is torsion-free, p.([§]) =

nlgl.

LEMMA 10.10. Let p be a unital homomorphism of A to A @ My (C). Then there
is a sequence {uy } of unitary elements in A ® M, (C) such that for any x € A

p(x) = lim w(x ® L, )uy.
k— 00

Proof. Modifying the proof of Blackadar ([1], 7.7 Exercises and Problems) we
can prove this lemma. Let { A } be an increasing sequence of full matrix algebras
over C with [J Ay = A. Let {e;;} be a system of matrix units of Ay. Since A has

k

the cancellation property, by Lemma ple11) ~ e ® I, in A® M, (C). Hence
there is a partial isometry w € A ® M,,(C) such that

w'w = Ey;, ww* = p(en),
where E;; = ¢;; ® I for any i,j. Let uy = Y p(ej1)wEy;. Then uy is a unitary
i

element in A ® M, (C) by easy computations. Let x € A;. Then we can write

that x = X Aijeij, where A;; € C. Hence by easy computations, we can see that
L]
p(x) = up(x ® I)uf. Since YA, = A, we obtain that for any x € A, p(x) =
k

klim ur(x ® Iy )uf by routine computations. i
—00
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LEMMA 10.11. Let p be a unital homomorphism of A to A ® H°, where H° is
a finite dimensional C*-algebra. Then there is a sequence {uy} of unitary elements in
A ® HO such that for any x € A

o(x) = lim up(x ®1%)u;}
k—oc0

Proof. Let {p;} be a family of minimal central projections in H’. For any [

and x € A, let
o1(x) = p(x) (1@ py).
Then by Lemma(10.10} there is a sequence {u kl } of unitary elements in A®pH°
(1) (x® (1)
pi) i

such that p;(x) = klim Uy for any x € A. Let uy = EB uk Then we
—00

can see that {u;} is a desired sequence by easy computations. I

COROLLARY 10.12. Let H be a finite dimensional C*-Hopf algebra with dimen-
sion N and let A be a UHF-algebra of type N*. Let p be a coaction of H® on A with the
Rohlin property constructed in Section |7} Then for any coaction o of H® on A with the
Rohlin property, there is an approximately inner automorphism 6 of A such that

c=(0®id)opoh .

Proof. By Lemma(10.11} o is approximately unitarily equivalent to p. Hence
by Theorem we obtain the conclusion. 1

11. APPENDIX

In the previous paper [8], we introduced the Rohlin property for weak coac-
tions of a finite dimensional C*-Hopf algebra on a unital C*-algebra. In this sec-
tion, we shall show that if there is a weak coaction with the Rohlin property in
the sense of [8] of a finite dimensional C*-Hopf algebra H on a unital C*-algebra
A, then H is commutative. Recall that a weak coaction p of H on A has the Rohlin
property in the sense of [8] if there is a monomorphism 7r of H into A such that
forany h € H, p(7t(h)) = 7t(h(1)) @ h(y). Let {wﬁ‘]} be a system of comatrix units
of H.

LEMMA 11.1. With the above notations, (H ® 1)A(H) = H ® H.

1 ifs=t,

Proof. For any i,7],k, A(wk. wk ®w Since wk* k =
f Y ] ( 1]) Z it Z O lfs#t,

for any k by Theorem 2.2, 2 of [10] we can obtain that
Y (wh ® Zwk*wk ®w = 1®w’t‘j.

i

Thus we obtain the conclusion. 1
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LEMMA 11.2. With the above notations, let p be a weak coaction of H on A with
the Rohlin property in the sense of [8]. Then (A ®1)p(A) = A® H.
Proof. Since p has the Rohlin property in the sense of [8], there is a monomor-

phism 77 of H into Aw. First, we show that (A® ® 1)p®(A%®) = A® ® H. Since
o= (nr®id) oA,

(7(H) ® 1)p™(n(H)) = (n(H) @ 1)(7 @id)(A(H))
= (n®id)((H®1)A(H)) = n(H) @ H

by Lemma [11.1] Since 1 ® wf] e n(H)®H,1® wf] € (A®®1)p®(A%®). Thus
we can see that (A® ® 1)p®(A®) = A® ® H. For any x € A ® H, there are

n

ai, ..., an,by, ..., by € A% suchthatx = Y (a; ® 1)p®(b;). That is,

i=1
S (k oo (1 (k
|x= L@ e 0p=@)| =0 k),
i=1
where a; = (algk)),bi = (bi(k)) and al(k),bfk) € A for any k,i. Therefore, x €
(A®1)p(A). 1
PROPOSITION 11.3. Let p be a weak coaction of H on A with the Rohlin property

in the sense of [8] and 7t a monomorphism of H to Aco. Then p®(rt(H)) C (A® H)' N
(A* ® H).

Proof. Leta,b € Aand h € H. Then
e (re(h)) (@@ 1)p(b) = ((ha)) @ hz))(a @ 1)p(b) = (art(h)) @ hz))o(D)
= (a@1)p%(7(h))p(b) = (a@1)p% (7t(h)b)
— (@ Dp(b)p™ (n(h)).
Therefore we obtain the conclusion by Lemma 1
PROPOSITION 11.4. Let p be a weak coaction of H on A with the Rohlin property.
Let x be any element in A ® H. Then foranyh € H, (1@ h)x = x(1® h).
Proof. Let m be a monomorphism of H into A such that for any 1 € H,
p%(7t(h)) = m(h(1)) @ hy). By the proof of Lemma we can see that
1®HCn(H)® H= (n(H)®1)p*(n(H)).
Hence it suffices to show that for any i € H,
(@) (7r(h) @ 1)x = x(7e(h) @ 1),
(i) o™ (7r(h))x = xp® (7 (h)).

Indeed, since x € A ® H and 71(h) commute with any element in A for any
h € H, we obtain (i). Also, we can obtain (ii) by Proposition[T1.3] &
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COROLLARY 11.5. Let A be a unital C*-algebra and H a finite dimensional C*-
Hopf algebra. If there is a weak coaction of H on A with the Rohlin property in the sense
of [8], then H is commutative.

The proof is immediate by Proposition
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