THE ROHLIN PROPERTY FOR COACTIONS OF FINITE DIMENSIONAL C*-HOPF ALGEBRAS ON UNITAL C*-ALGEBRAS

KAZUNORI KODAKA and TAMOTSU TERUYA

Communicated by Kenneth R. Davidson

ABSTRACT. We shall introduce the approximate representability and the Rohlin property for coactions of a finite dimensional C^* -Hopf algebra on a unital C^* -algebra and discuss their basic properties. We shall give an example of a coaction of a finite dimensional C^* -Hopf algebra on a simple unital C^* -algebra, which has the above two properties and give the 1-cohomology and the 2-cohomology vanishing theorems for a finite dimensional C^* -Hopf algebra (twisted) coactions on a unital C^* -algebra. Furthermore, we shall show that if ρ and σ , coactions of a finite dimensional C^* -Hopf algebra on a separable unital C^* -algebra A, which have the Rohlin property, are approximately unitarily equivalent, then there is an approximately inner automorphism α on A such that $\sigma = (\alpha \otimes \mathrm{id}) \circ \rho \circ \alpha^{-1}$.

Keywords: C^* -algebras, finite dimensional C^* -Hopf algebras, approximately representable, the Rohlin property.

MSC (2010): Primary 46L05; Secondary 16S40.

1. INTRODUCTION

Let A be a unital C^* -algebra and H a finite dimensional C^* -Hopf algebra with the comultiplication Δ . In this paper, we shall introduce the approximate representability and the Rohlin property for coactions of H on A and discuss some basic properties of approximately representable coactions and coactions with the Rohlin property of H on A. Also, we shall give an example of an approximately representable coaction of a finite dimensional C^* -Hopf algebra on a simple unital C^* -algebra which has also the Rohlin property and we shall give the following 1-cohomology vanishing theorem: Let ρ be a coaction of H on A with the Rohlin property. Let v be a unitary element in $A \otimes H$ with

$$(v \otimes 1)(\rho \otimes \mathrm{id})(v) = (\mathrm{id} \otimes \Delta)(v)$$

and let σ be the coaction of H on A defined by $\sigma = \operatorname{Ad}(v) \circ \rho$. Then there is a unitary element $x \in A$ such that

$$\sigma = \mathrm{Ad}(x \otimes 1) \circ \rho \circ \mathrm{Ad}(x^*).$$

Furthermore, we shall give the following 2-cohomology vanishing theorem: Let (ρ, u) be a twisted coaction of H on A with the Rohlin property. Then there is a unitary element $x \in A \otimes H$ such that

$$(x \otimes 1)(\rho \otimes id)(x)u(id \otimes \Delta)(x)^* = 1 \otimes 1 \otimes 1.$$

Finally, we shall introduce the notion of the approximately unitary equivalence of coactions of H and show that if ρ and σ , coactions of H on a separable unital C^* -algebra A, which have the Rohlin property, are approximately unitarily equivalent, then there is an approximately inner automorphism α on A such that

$$\sigma = (\alpha \otimes id) \circ \rho \circ \alpha^{-1}.$$

The above results in the case of finite group actions on a unital C^* -algebra can be found in Izumi [4].

For an algebra X, we denote by 1_X and id_X the unit element in X and the identity map on X, respectively. If no confusion arises, we denote them by 1 and id, respectively. For projections p, q in a C^* -algebra C, we write $p \sim q$ in C if p is Murray–von Neumann equivalent to q in C. For each $n \in \mathbb{N}$, we denote by $M_n(\mathbb{C})$ the $n \times n$ -matrix algebra over \mathbb{C} and I_n denotes the unit element in $M_n(\mathbb{C})$.

2. PRELIMINARIES

Let H be a finite dimensional C^* -Hopf algebra. We denote its comultiplication, counit and antipode by Δ , ε and S. We shall use Sweedler's notation $\Delta(h)=h_{(1)}\otimes h_{(2)}$ for any $h\in H$ which suppresses a possible summation when we write the comultiplications. We denote by N the dimension of H. Let H^0 be the dual C^* -Hopf algebra of H. We denote its comultiplication, counit and antipode by Δ^0 , ε^0 and S^0 . There is the distinguished projection e in e0 which is the Haar trace on e1.

Throughout this paper, H denotes a finite dimensional C^* -Hopf algebra and H^0 its dual C^* -Hopf algebra. Since H is finite dimensional, $H \cong \bigoplus_{k=1}^L M_{f_k}(\mathbb{C})$ and $H^0 \cong \bigoplus_{k=1}^K M_{d_k}(\mathbb{C})$ as C^* -algebras. Let $\{v_{ij}^k: k=1,2,\ldots,L, i,j=1,2,\ldots,f_k\}$ be a system of matrix units of H. Let $\{w_{ij}^k: k=1,2,\ldots,K, i,j=1,2,\ldots,d_k\}$ be a basis of H satisfying Szymański and Peligrad's Theorem 2.2, 2 in [10]. We call it a system of *comatrix units* of H. Also, let $\{\phi_{ij}^k: k=1,2,\ldots,K, i,j=1,2,\ldots,d_k\}$ and

 $\{\omega_{ij}^k: k=1,2,\ldots,L, i,j=1,2,\ldots,f_k\}$ be systems of matrix units and comatrix

units of H^0 , respectively. Furthermore, let ρ_H^A be the trivial coaction of H on A defined by $\rho_H^A(a) = a \otimes 1$ for any $a \in A$.

Following Masuda and Tomatsu [7], we shall define a twisted coaction of *H* on *A* and its exterior equivalence.

DEFINITION 2.1. Let ρ be a weak coaction of H on A which is defined in Definition 2.4 of [6] and u a unitary element in $A \otimes H \otimes H$. The pair (ρ, u) is a *twisted* coaction of H on A if the following conditions hold:

- (i) $(\rho \otimes id) \circ \rho = Ad(u) \circ (id \otimes \Delta) \circ \rho$,
- (ii) $(u \otimes 1)(id \otimes \Delta \otimes id)(u) = (\rho \otimes id \otimes id)(u)(id \otimes id \otimes \Delta)(u)$,
- (iii) $(id \otimes \phi \otimes \varepsilon)(u) = (id \otimes \varepsilon \otimes \phi)(u) = \phi(1)1$ for any $\phi \in H^0$.

DEFINITION 2.2. For i = 1, 2, let (ρ_i, u_i) be a twisted coaction of H on A. We say that (ρ_1, u_1) is *exterior* equivalent to (ρ_2, u_2) if there is a unitary element v in $A \otimes H$ satisfying the following conditions:

- (i) $\rho_2 = \operatorname{Ad}(v) \circ \rho_1$,
- (ii) $u_2 = (v \otimes 1)(\rho_1 \otimes id)(v)u_1(id \otimes \Delta)(v^*).$

By routine computations, $(id \otimes \varepsilon)(v) = 1$ and the above equivalence is an equivalence relation. We write $(\rho_1, u_1) \sim (\rho_2, u_2)$ if (ρ_1, u_1) is exterior equivalent to (ρ_2, u_2) .

REMARK 2.3. Let (ρ, u) be a twisted coaction of H on A and v be any unitary element in $A \otimes H$ with $(\mathrm{id} \otimes \varepsilon)(v) = 1$. Let

$$\rho_1 = \mathrm{Ad}(v) \circ \rho, \quad u_1 = (v \otimes 1)(\rho \otimes \mathrm{id})(v)u(\mathrm{id} \otimes \Delta)(v^*).$$

Then (ρ_1, u_1) is a twisted coaction of H on A by easy computations.

Let $\operatorname{Hom}(H^0,A)$ be the linear space of all linear maps from H^0 to A. By Sweedler ([9], pp. 69–70) it becomes a unital *-algebra which is also defined in Sections 2 and 3 of [6]. In the same way as Sections 2 and 3 of [6], we define a unital *-algebra $\operatorname{Hom}(H^0 \otimes H^0,A)$. As mentioned in Blattner, Cohen and Montgomery ([2], pp. 163), there are an isomorphism ι of $A \otimes H$ onto $\operatorname{Hom}(H^0,A)$ and an isomorphism ι of $A \otimes H \otimes H$ onto $\operatorname{Hom}(H^0,A)$ defined by

$$\iota(a \otimes h)(\phi) = \phi(h)a$$
, $\iota(a \otimes h \otimes l)(\phi, \psi) = \phi(h)\psi(l)a$

for any $a \in A$, $h, l \in H$ and $\phi, \psi \in H^0$. For any $x \in A \otimes H$, $y \in A \otimes H \otimes H$, we denote $\iota(x)$, $\iota(y)$, by \widehat{x} , \widehat{y} , respectively.

For any weak coaction ρ of H on A, we can construct the weak action " \cdot_{ρ} " of H^0 on A as follows: For any $a \in A$ and $\phi \in H^0$

$$\phi \cdot_{\rho} a = \iota(\rho(a)) = \rho(a)(\phi) = (\mathrm{id} \otimes \phi)(\rho(a)).$$

If no confusion arises, we denote $\phi \cdot_{\rho} a$ by $\phi \cdot a$ for any $a \in A$ and $\phi \in H^0$. Furthermore, if (ρ, u) is a twisted coaction of H on A, \widehat{u} is a unitary cocycle for the above weak action induced by ρ . We call the pair of the weak action and the unitary cocycle \widehat{u} the *twisted* action of H^0 on A induced by (ρ, u) . By Section 3 of

[6], we can construct the twisted crossed product of A by H^0 which is denoted by $A \rtimes_{\rho,u} H^0$. Let $\widehat{\rho}$ be the dual coaction of ρ , which is defined for any $a \in A$, $\phi \in H^0$, by

$$\widehat{\rho}(a \rtimes_{\rho,u} \phi) = (a \rtimes_{\rho,u} \phi_{(1)}) \otimes \phi_{(2)},$$

where $a \rtimes_{\rho,u} \phi$ denotes the element in $A \rtimes_{\rho,u} H^0$ induced by $a \in A$ and $\phi \in H^0$. If no confusion arises, we denote it by $a \rtimes \phi$.

Let (ρ,u) be a twisted coaction of H on A and $A \rtimes_{\rho,u} H^0$ the twisted crossed product induced by (ρ,u) . Let E_1^ρ be the canonical conditional expectation from $A \rtimes_{\rho,u} H^0$ onto A defined by $E_1^\rho(a \rtimes \phi) = \phi(e)a$ for any $a \in A$, $\phi \in H^0$. We note that E_1^ρ is faithful by Lemma 3.14 of [6]. Also, let \widehat{V} be an element in $\operatorname{Hom}(H^0, A \rtimes_{\rho,u} H^0)$ defined by $\widehat{V}(\phi) = 1 \rtimes \phi$ for any $\phi \in H^0$. Let V be an element in $(A \rtimes_{\rho,u} H^0) \otimes H$ induced by \widehat{V} . By Lemma 3.12 of [6], we can see that V and \widehat{V} are unitary elements in $(A \rtimes_{\rho,u} H^0) \otimes H$ and $\operatorname{Hom}(H^0, A \rtimes_{\rho,u} H^0)$, respectively and that

$$u = (V \otimes 1)(\rho_H^{A \rtimes_{\rho, u} H^0} \otimes \mathrm{id})(V)(\mathrm{id} \otimes \Delta)(V^*).$$

Thus, for any ϕ , $\psi \in H^0$

(i)
$$\widehat{u}(\phi, \psi) = \widehat{V}(\phi_{(1)})\widehat{V}(\psi_{(1)})\widehat{V}^*(\phi_{(2)}\psi_{(2)}),$$

(ii)
$$\widehat{u}^*(\phi, \psi) = \widehat{V}(\phi_{(1)}\psi_{(1)})\widehat{V}^*(\psi_{(2)})\widehat{V}^*(\phi_{(2)}).$$

LEMMA 2.4. For i=1,2 let (ρ_i,u_i) be a twisted coaction of H on A with $(\rho_1,u_1) \sim (\rho_2,u_2)$. Let $E_1^{\rho_i}$ be the canonical conditional expectation from $A \rtimes_{\rho_i,u_i} H^0$ onto A for i=1,2. Then there is an isomorphism Φ of $A \rtimes_{\rho_1,u_1} H^0$ onto $A \rtimes_{\rho_2,u_2} H^0$ satisfying that $\Phi(a)=a$ for any $a\in A$ and $E_1^{\rho_1}=E_1^{\rho_2}\circ\Phi$, where A is identified with $A \rtimes_{\rho_i,u_i} 1^0$ for i=1,2.

Proof. Since $(\rho_1, u_1) \sim (\rho_2, u_2)$, there is a unitary element in v in $A \otimes H$ satisfying

$$\rho_2 = \operatorname{Ad}(v) \circ \rho_1, \quad u_2 = (v \otimes 1)(\rho_1 \otimes \operatorname{id})(v)u_1(\operatorname{id} \otimes \Delta)(v^*).$$

Let Φ be a map from $A \rtimes_{\rho_1,u_1} H^0$ to $A \rtimes_{\rho_2,u_2} H^0$ defined by $\Phi(a \rtimes_{\rho_1,u_1} \phi) = a\widehat{v}^*(\phi_{(1)}) \rtimes_{\rho_2,u_2} \phi_{(2)}$ for any $a \in A$, $\phi \in H^0$. Then by routine computations, Φ is a homomorphism of $A \rtimes_{\rho_1,u_1} H^0$ to $A \rtimes_{\rho_2,u_2} H^0$. Also, let Ψ be a map from $A \rtimes_{\rho_2,u_2} H^0$ to $A \rtimes_{\rho_1,u_1} H^0$ defined by $\Psi(a \rtimes_{\rho_2,u_2} \phi) = a\widehat{v}(\phi_{(1)}) \rtimes_{\rho_1,u_1} \phi_{(2)}$ for any $a \in A$, $\phi \in H^0$. By routine computations, Ψ is also a homomorphism of $A \rtimes_{\rho_2,u_2} H^0$ to $A \rtimes_{\rho_1,u_1} H^0$ and $\Phi \circ \Psi = \operatorname{id}$ and $\Psi \circ \Phi = \operatorname{id}$. Therefore, we obtain the conclusion.

Let ρ be a coaction of H on A and A^{ρ} the fixed point C^* -subalgebra of A for ρ , that is,

$$A^{\rho} = \{a \in A : \rho(a) = a \otimes 1\}.$$

Let E^{ρ} be the canonical conditional expectation from A onto A^{ρ} defined by for any $a \in A$, $E^{\rho}(a) = \tau \cdot_{\rho} a = (\mathrm{id} \otimes \tau)(\rho(a))$. We note that E^{ρ} is faithful by Proposition 2.12 of [10].

DEFINITION 2.5. We say that ρ is *saturated* if the action of H^0 on A induced by ρ is saturated in the sense of [10].

In Sections 4, 5 and 6 of [6], we suppose that the action of *H* on *A* is saturated. But, without saturation, we can see that all the statements in Sections 4 and 5 and Theorem 6.4 of [6] hold. Hence we obtain the following proposition.

PROPOSITION 2.6. Let ρ be a coaction of H on A such that $\widehat{\rho}(1 \times \tau) \sim (1 \times \tau) \otimes 1^0$ in $(A \times_{\rho} H^0) \otimes H^0$. Then there are a twisted coaction (σ, u) of H^0 on A^{ρ} and an isomorphism π of $A^{\rho} \times_{\sigma, u} H$ onto A such that $E_1^{\sigma} = E^{\rho} \circ \pi$ and $\rho \circ \pi = (\pi \otimes \mathrm{id}) \circ \widehat{\sigma}$.

COROLLARY 2.7. Let ρ be a coaction of H on A such that $\widehat{\rho}(1 \rtimes \tau) \sim (1 \rtimes \tau) \otimes 1^0$ in $(A \rtimes_{\rho} H^0) \otimes H^0$. Then ρ is saturated.

Proof. Since the dual coaction of a twisted coaction is saturated, this is immediate by Proposition 2.6. ■

3. DUALITY

In this section we shall show the duality theorem for a twisted coaction of H^0 on A. It has already been proved, but we shall present it in a form useful for this paper.

Let (ρ, u) be a twisted coaction of H^0 on A. Let Λ be the set of all triplets (i, j, k), where $i, j = 1, 2, \ldots, d_k$ and $k = 1, 2, \ldots, K$ and $\sum_{k=1}^K d_k^2 = N$. For any $I = (i, j, k) \in \Lambda$, let W_I and V_I be elements in $A \rtimes_{\rho, u} H \rtimes_{\widehat{\rho}} H^0$ defined by

$$W_I = \sqrt{d_k} \rtimes_{\rho,u} w_{ij}^k, \quad V_I = (1 \rtimes_{\widehat{\rho}} \tau)(W_I \rtimes_{\widehat{\rho}} 1^0).$$

LEMMA 3.1. With the above notations, we have

$$V_I V_J^* = \begin{cases} 1 \rtimes_{\widehat{\rho}} \tau & \text{if } I = J, \\ 0 & \text{if } I \neq J. \end{cases}$$

Proof. Let I = (i, j, k) and J = (s, t, r) be any elements in Λ . Then

$$\begin{split} V_I V_J^* &= (1 \rtimes_{\widehat{\rho}} \tau) (W_I \rtimes_{\widehat{\rho}} 1^0) (W_J^* \rtimes_{\widehat{\rho}} 1^0) (1 \rtimes_{\widehat{\rho}} \tau) \\ &= [\tau \cdot_{\widehat{\rho}} W_I W_I^*] \rtimes_{\widehat{\rho}} \tau = E_1^{\rho} (W_I W_I^*) \rtimes_{\widehat{\rho}} \tau. \end{split}$$

Here, by Lemma 3.3 (1) of [6] and Theorem 2.2 of [10]

$$W_I W_J^* = \sum_{t_1, t_2, j_1, j_2, m} \sqrt{d_k d_r} [w_{j_2 i}^k \cdot_{\rho, u} \widehat{u}(S(w_{t_2 t_1}^r), w_{st_2}^r)]^* \widehat{u}(w_{j_2 j_1}^k, w_{t_1 m}^{r*}) \times_{\rho, u} w_{j_1 j}^k w_{mt}^{r*}$$

$$\begin{split} &= \sum_{t_1,t_2,t_3,j_1,j_2,j_3,m} \sqrt{d_k d_r} [\widehat{u}(w_{j_2j_3}^k,S(w_{t_3t_1}^r)) \widehat{u}(w_{j_3i}^k S(w_{t_2t_3}^r),w_{st_2}^r)]^* \\ &\quad \times \widehat{u}(w_{j_2j_1}^k,w_{t_1m}^{r*}) \rtimes_{\rho,u} w_{j_1j}^k w_{mt}^{r*} \\ &= \sum_{t_1,t_2,t_3,j_1,j_2,j_3,m} \sqrt{d_k d_r} \widehat{u}(w_{j_3i}^k S(w_{t_2t_3}^r),w_{st_2}^r)^* \widehat{u}^*(w_{j_3j_2}^k,w_{t_3t_1}^{r*}) \\ &\quad \times \widehat{u}(w_{j_2j_1}^k,w_{t_1m}^{r*}) \rtimes_{\rho,u} w_{j_1j}^k w_{mt}^{r*} \\ &= \sum_{t_2,t_3,j_3} \sqrt{d_k d_r} \widehat{u}(w_{j_3i}^k S(w_{t_2t_3}^r),w_{st_2}^r)^* \rtimes_{\rho,u} w_{j_3j}^k w_{t_3t}^{r*}. \end{split}$$

Thus, by Theorem 2.2 of [10]

$$V_I V_J^* = \sum_{t_2, t_3, j_3} \sqrt{d_k d_r} \tau(w_{j_3 j}^k w_{t_3 t}^{r*}) \widehat{u}^*(w_{i j_3}^k w_{t_2 t_3}^{r*}, w_{t_2 s}^r) \rtimes_{\widehat{\rho}} \tau.$$

If $k \neq r$ or $j \neq t$, then $V_I V_I^* = 0$. We suppose that k = r and j = t. Then

$$V_I V_J^* = \sum_{t_2,t_3} \widehat{u}^*(w_{it_3}^k S(w_{t_3t_2}^k), w_{t_2s}^k) \rtimes_{\widehat{\rho}} \tau = \varepsilon(w_{is}^k) \rtimes_{\widehat{\rho}} \tau = \delta_{is} \rtimes_{\widehat{\rho}} \tau,$$

where δ_{is} is the Kronecker delta. Therefore, we obtain the conclusion.

Let Ψ be a map from $M_N(A)$ to $A \rtimes_{\rho,u} H \rtimes_{\widehat{\rho}} H^0$ defined by

$$\Psi([a_{IJ}]) = \sum_{I,I} V_I^*(a_{IJ} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0) V_J$$

for any $[a_{IJ}] \in M_N(A)$. Clearly Ψ is a linear map.

PROPOSITION 3.2. The map Ψ is an isomorphism of $M_N(A)$ onto $A \rtimes_{\rho,u} H \rtimes_{\widehat{\rho}} H^0$. Proof. For any $[a_{II}], [b_{II}] \in M_N(A)$,

$$\Psi([a_{IJ}]\Psi([b_{IJ}]) = \sum_{I,J,L} V_I^*(1 \rtimes_{\widehat{\rho}} \tau)(a_{IJ}b_{JL} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0)V_L = \Psi([a_{IJ}][b_{IJ}])$$

by Lemma 3.1. For any $[a_{II}] \in M_N(A)$,

$$\Psi([a_{IJ}])^* = \sum_{I,J} V_J^*(a_{IJ}^* \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0) V_I = \Psi([a_{JI}^*]).$$

Hence Ψ is a homomorphism of $M_N(A)$ to $A \rtimes_{\rho,u} H \rtimes_{\widehat{\rho}} H^0$. Since $\widehat{\rho}$ is saturated, for any $z \in A \rtimes_{\rho,u} H \rtimes_{\widehat{\rho}} H^0$, we can write that

$$z = \sum_{i=1}^{n} (x_i \rtimes_{\widehat{\rho}} 1^0) (1 \rtimes_{\widehat{\rho}} \tau) (y_i \rtimes_{\widehat{\rho}} 1^0)$$

by Proposition 4.5 of [10], where $x_i, y_i \in A \rtimes_{\rho, u} H$ for i = 1, 2, ..., n. Thus, in order to prove that Ψ is surjective, it suffices to show that for any $x, y \in A \rtimes_{\rho, u} H$,

there is an element $[a_{IJ}] \in M_N(A)$ such that $\Psi([a_{IJ}]) = (x \rtimes_{\widehat{\rho}} 1^0)(1 \rtimes_{\widehat{\rho}} \tau)(y \rtimes_{\widehat{\rho}} 1^0)$. Since $\{(W_I^*, W_I\})$ is a quasi-basis for E_1^ρ by Proposition 3.18 of [6],

$$x = \sum_{I} W_{I}^{*} E_{1}^{\rho}(W_{I}x) = \sum_{I} W_{I}^{*}(E_{1}^{\rho}(W_{I}x) \rtimes_{\rho,u} 1),$$

$$y = \sum_{I} E_{1}^{\rho}(yW_{I}^{*})W_{I} = \sum_{I} (E_{1}^{\rho}(yW_{I}^{*}) \rtimes_{\rho,u} 1)W_{I}.$$

Hence

$$\begin{split} (x \rtimes_{\widehat{\rho}} 1^{0})(1 \rtimes_{\widehat{\rho}} \tau)(y \rtimes_{\widehat{\rho}} 1^{0}) &= \sum_{I,J} V_{I}^{*}(E_{1}^{\rho}(W_{I}x)E_{1}^{\rho}(yW_{J}^{*}) \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^{0})V_{J} \\ &= \Psi([E_{1}^{\rho}(W_{I}x)E_{1}^{\rho}(yW_{J}^{*})]_{I,J}). \end{split}$$

Next, we shall show that Ψ is injective. We suppose that for an element $[a_{IJ}] \in M_N(A)$, $\Psi([a_{IJ}]) = 0$. Then $\sum\limits_{L,I} V_I^*(a_{IJ} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0) V_J = 0$. Thus for any $M, L \in \Lambda$,

$$0 = V_{M} \sum_{I,I} V_{I}^{*}(a_{IJ} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^{0}) V_{J} V_{L}^{*} = a_{ML} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^{0}$$

by Lemma 3.1. Hence $a_{ML}=0$ for any $M,L\in\Lambda$. Therefore, Ψ is injective.

Since $V_IV_I^*=1\rtimes_{\widehat{\rho}}\tau$ for any $I\in\Lambda$ by Lemma 3.1, the set $\{V_I^*V_I\}_{I\in\Lambda}$ is a family of orthogonal projections in $A\rtimes_{\rho,\mu}H\rtimes_{\widehat{\rho}}H^0$. Let $P_I=V_I^*V_I$ for any $I\in\Lambda$. By Lemma 3.1 and Proposition 3.2,

$$1 = \Psi(1 \otimes I_N) = \sum_{I \in \Lambda} V_I^* V_I = \sum_{I \in \Lambda} P_I,$$

where I_N is the unit element in $M_N(\mathbb{C})$.

We recall that \widehat{V} is a unitary element in $\operatorname{Hom}(H, A \rtimes_{\rho, u} H)$ defined for any $h \in H$ by $\widehat{V}(h) = 1 \rtimes_{\rho, u} h$. Let V be the unitary element in $(A \rtimes_{\rho, u} H) \otimes H^0$ induced by \widehat{V} . We regard $A \rtimes_{\rho, u} H$ as a C^* -subalgebra $A \rtimes_{\rho, u} H \rtimes_{\widehat{\rho}} 1^0$ of $A \rtimes_{\rho, u} H \rtimes_{\widehat{\rho}} H^0$. Thus we regard V as a unitary element in $(A \rtimes_{\rho, u} H \rtimes_{\widehat{\rho}} H^0) \otimes H^0$. For any $I \in \Lambda$, let

$$U_I = (V_I^* \otimes 1^0) V_{\widehat{\rho}}(V_I) \in (A \rtimes_{\rho, u} H \rtimes_{\widehat{\rho}} H^0) \otimes H^0.$$

Then for any $I \in \Lambda$, $U_I U_I^* = P_I \otimes 1^0$ and $U_I^* U_I = \widehat{\widehat{\rho}}(P_I)$ since

$$\widehat{\widehat{\rho}}(1 \rtimes_{\widehat{\rho}} \tau) = V^*[(1 \rtimes_{\widehat{\rho}} \tau) \otimes 1^0]V$$

by the proof of Proposition 3.19 in [6]. Let $U = \sum_{I \in A} U_I$. Then U is a unitary element in $(A \rtimes_{\rho,u} H \rtimes_{\widehat{\rho}} H^0) \otimes H^0$. Since (ρ,u) is a twisted coaction of H^0 on A, $(\rho \otimes \operatorname{id}_{M_N(\mathbb{C})}, u \otimes I_N)$ is also a twisted coaction of H^0 on $M_N(A)$. Then by easy computations,

$$((\Psi \otimes id_{H^0}) \circ (\rho \otimes id_{M_N(\mathbb{C})}) \circ \Psi^{-1}, (\Psi \otimes id_{H^0} \otimes id_{H^0})(u \otimes I_N))$$

is a twisted coaction of H^0 on $A \rtimes_{\rho, u} H \rtimes_{\widehat{\rho}} H^0$, where we identify $A \otimes M_N(\mathbb{C}) \otimes H^0 \otimes H^0$ with $A \otimes H^0 \otimes H^0 \otimes M_N(\mathbb{C})$.

THEOREM 3.3. Let A be a unital C^* -algebra and H a finite dimensional C^* -Hopf algebra with its dual C^* -Hopf algebra H^0 . Let (ρ, u) be a twisted coaction of H^0 on A. Then there are an isomorphism Ψ of $M_N(A)$ onto $A \rtimes_{\rho, u} H \rtimes_{\widehat{\rho}} H^0$ and a unitary element $U \in (A \rtimes_{\rho, u} H \rtimes_{\widehat{\rho}} H^0) \otimes H^0$ such that

$$\begin{split} \operatorname{Ad}(U) \circ \widehat{\widehat{\rho}} &= (\Psi \otimes \operatorname{id}_{H^0}) \circ (\rho \otimes \operatorname{id}_{M_N(\mathbb{C})}) \circ \Psi^{-1}, \\ (\Psi \otimes \operatorname{id}_{H^0} \otimes \operatorname{id}_{H^0}) (u \otimes I_N) &= (U \otimes 1^0) (\widehat{\widehat{\rho}} \otimes \operatorname{id}_{H^0}) (U) (\operatorname{id} \otimes \Delta^0) (U^*). \end{split}$$

That is, $\widehat{\hat{\rho}}$ *is exterior equivalent to the twisted coaction*

$$((\Psi \otimes \mathrm{id}_{H^0}) \circ (\rho \otimes \mathrm{id}_{M_N(\mathbb{C})}) \circ \Psi^{-1}, \, (\Psi \otimes \mathrm{id}_{H^0} \otimes \mathrm{id}_{H^0})(u \otimes I_N)).$$

Proof. Let Ψ be the isomorphism of $M_N(\mathbb{C})$ onto $A \rtimes_{\rho,u} H \rtimes_{\widehat{\rho}} H^0$ defined in Proposition 3.2 and let U be a unitary element in $(A \rtimes_{\rho,u} H \rtimes_{\widehat{\rho}} H^0) \otimes H^0$ defined above. Let $[a_{II}]_{I,I \in \Lambda}$ be any element in $M_N(A)$. Then

$$(\operatorname{Ad}(U) \circ \widehat{\widehat{\rho}})(\Psi([a_{IJ}])c) = \sum_{I,J} (V_I^* \otimes 1^0) V \widehat{\widehat{\rho}}(1 \rtimes_{\widehat{\rho}} \tau) \widehat{\widehat{\rho}}(a_{IJ} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0) \widehat{\widehat{\rho}}(1 \rtimes_{\widehat{\rho}} \tau) V^*(V_J \otimes 1^0)$$
$$= c \sum_{I,J} (V_I^* \otimes 1^0) \rho(a_{IJ} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0) (V_J \otimes 1^0)$$

since $\widehat{\widehat{\rho}}(1\rtimes_{\widehat{\rho}}\tau)=V^*[(1\rtimes_{\widehat{\rho}}\tau)\otimes 1^0]V$ by Proposition 3.19 of [6] and $\rho(a)=V(a\times 1^0)(V^*)$ for any $a\in A$ by the proof of Lemma 3.12(1) in [6], where we identify A with $A\rtimes_{\rho,u}1$ and $A\rtimes_{\rho,u}1\rtimes_{\widehat{\rho}}1^0$. On the other hand,

$$((\Psi \otimes \mathrm{id}_{H^0}) \circ (\rho \otimes \mathrm{id}))([a_{II}]) = (\Psi \otimes \mathrm{id}_{H^0})([\rho(a_{II} \rtimes_{\rho, u} 1 \rtimes_{\widehat{\rho}} 1^0)]).$$

Since $\rho(a_{II} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\varrho}} 1^0) \in A \otimes H^0$, we can write that

$$\rho(a_{IJ} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0) = \sum_{i} (b_{IJi} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0) \otimes \phi_{IJi},$$

where $b_{IIi} \in A$ and $\phi_{IIi} \in H^0$ for any I, J, i. Hence

$$\begin{split} (\Psi \otimes \mathrm{id}_{H^0})([\rho(a_{IJ} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0)]) = & \sum_{I,J,i} (V_I^* \otimes 1^0)[(b_{IJi} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0) \otimes \phi_{IJ\,i}](V_J \otimes 1^0) \\ = & \sum_{I,I} (V_I^* \otimes 1^0) \rho(a_{IJ} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0)(V_J \otimes 1^0). \end{split}$$

Thus we obtain that

$$\mathrm{Ad}(U)\circ\widehat{\widehat{\rho}}\circ\Psi=(\Psi\otimes\mathrm{id}_{H^0})\circ(\rho\otimes\mathrm{id}_{M_N(\mathbb{C})}).$$

Next, we shall show that

$$(\Psi \otimes \mathrm{id}_{H^0} \otimes \mathrm{id}_{H^0})(u \otimes I_N) = (U \otimes 1^0)(\widehat{\widehat{\rho}} \otimes \mathrm{id}_{H^0})(U)(\mathrm{id} \otimes \Delta^0)(U^*).$$

Since $u \in A \otimes H^0 \otimes H^0$, we can write that $u = \sum_{i,j} a_{ij} \otimes \phi_i \otimes \psi_j$, where $a_{ij} \in A$ and $\phi_i, \psi_i \in H^0$ for any i, j. Thus for any $h, l \in H$

$$\begin{split} (\Psi \otimes \mathrm{id}_{H^0} \otimes \mathrm{id}_{H^0})(u \otimes I_N) \widehat{(}h,l) &= \sum_{I,i,j} V_I^*(a_{ij} \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0) V_I \phi_i(h) \psi_j(l) \\ &= \sum_I V_I^*(\widehat{u}(h,l) \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^0) V_I. \end{split}$$

On the other hand, by Lemma 3.1 and Proposition 3.19 of [6]

$$\begin{split} (U\otimes 1^0)(\widehat{\widehat{\rho}}\otimes \mathrm{id}_{H^0})(U)(\mathrm{id}\otimes \Delta^0)(U^*) \\ &= \sum_I (V_I^*\otimes 1^0\otimes 1^0)((1\rtimes_{\widehat{\rho}}\tau)\otimes 1^0\otimes 1^0)(V\otimes 1^0)(\widehat{\widehat{\rho}}\otimes \mathrm{id}_{H^0})(V) \\ &\qquad \times (\mathrm{id}\otimes \Delta^0)(V^*)((1\rtimes_{\widehat{\rho}}\tau)\otimes 1^0\otimes 1^0)(V_I\otimes 1^0\otimes 1^0) \\ &= \sum_I (V_I^*\otimes 1^0\otimes 1^0)(V\otimes 1^0)(\widehat{\widehat{\rho}}\otimes \mathrm{id}_{H^0})(V)(\mathrm{id}\otimes \Delta^0)(V^*) \\ &\qquad \times (V_I\otimes 1^0\otimes 1^0). \end{split}$$

Thus for any $h, l \in H$,

$$\begin{split} [(U \otimes 1^{0})(\widehat{\rho} \otimes \mathrm{id}_{H^{0}})(U)(\mathrm{id} \otimes \Delta^{0})(U^{*})\widehat{]}(h,l) \\ &= \sum_{I} V_{I}^{*}[(V \otimes 1^{0})(\widehat{\widehat{\rho}} \otimes \mathrm{id}_{H^{0}})(V)(\mathrm{id} \otimes \Delta^{0})(V^{*})\widehat{]}(h,l)V_{I}. \end{split}$$

Here for any $h, l \in H$

$$\begin{split} &[(V \otimes 1^0)(\widehat{\widehat{\rho}} \otimes \mathrm{id}_{H^0})(V)(\mathrm{id} \otimes \Delta^0)(V^*)\widehat{]}(h,l) \\ &= \widehat{V}(h_{(1)})[h_{(2)} \cdot_{\widehat{\widehat{\rho}}} (1 \rtimes_{\rho,u} l_{(1)} \rtimes_{\widehat{\rho}} 1^0)]\widehat{V}^*(h_{(3)}l_{(2)}) \\ &= \widehat{V}(h_{(1)})\widehat{V}(l_{(1)})\widehat{V}^*(h_{(2)}l_{(2)}) = \widehat{u}(h,l) \end{split}$$

by Lemma 3.12 of [6]. Thus

$$(V \otimes 1^0)(\widehat{\widehat{\rho}} \otimes \mathrm{id}_{H^0})(V)(\mathrm{id} \otimes \Delta^0)(V^*) = u.$$

Therefore

$$(\Psi \otimes \mathrm{id}_{H^0} \otimes \mathrm{id}_{H^0})(u \otimes I_N) = (U \otimes 1^0)(\widehat{\widehat{\rho}} \otimes \mathrm{id}_{H^0})(U)(\mathrm{id} \otimes \Delta^0)(U^*).$$

4. APPROXIMATELY REPRESENTABLE COACTIONS

For a unital C^* -algebra A, we set

$$c_0(A) = \left\{ (a_n) \in l^{\infty}(\mathbb{N}, A) : \lim_{n \to \infty} ||a_n|| = 0 \right\}, \quad A^{\infty} = l^{\infty}(\mathbb{N}, A) / c_0(A).$$

We denote an element in A^{∞} by the same symbol (a_n) in $l^{\infty}(\mathbb{N}, A)$. We identify A with the C^* -subalgebra of A^{∞} consisting of the equivalence classes of constant sequences and set

$$A_{\infty} = A^{\infty} \cap A'.$$

For a weak coaction of H^0 on A, let ρ^{∞} be the weak coaction of H^0 on A^{∞} defined by $\rho^{\infty}((a_n)) = (\rho(a_n))$ for any $(a_n) \in A^{\infty}$. Hence for a twisted coaction (ρ, u) of H^0 on A, we can define the twisted coaction (ρ^{∞}, u) of H^0 on A^{∞} . We have the following easy lemmas.

LEMMA 4.1. Let (ρ, u) be a twisted coaction of H^0 on A and (ρ^{∞}, u) the twisted coaction of H^0 on A^{∞} induced by (ρ, u) . Then

$$A^{\infty} \rtimes_{\rho^{\infty}, u} H \cong (A \rtimes_{\rho, u} H)^{\infty}$$

as C*-algebras.

Proof. Let Φ be a map from $A^{\infty} \rtimes_{\rho^{\infty}, u} H$ to $(A \rtimes_{\rho, u} H)^{\infty}$ defined by $\Phi((a_n) \rtimes h) = (a_n \rtimes h)$ for any $(a_n) \in A^{\infty}$ and $h \in H$. For any $(a_n), (b_n) \in A^{\infty}$ with $(a_n) = (b_n)$ in A^{∞} ,

$$||a_n \rtimes h - b_n \rtimes h|| \leq ||a_n - b_n|| ||h|| \to 0 \quad (n \to \infty).$$

Hence Φ is well-defined. Also, clearly Φ is linear. For $x \in A^{\infty} \rtimes_{\rho^{\infty},u} H$, we suppose that $\Phi(x) = 0$. Then we can write that $x = \sum\limits_{i} (x_{ni}) \rtimes h_i$, where $x_{ni} \in A$ and $\{h_i\}$ is a basis of H such that $\tau(h_i h_j^*) = \delta_{ij}$ and δ_{ij} is the Kronecker delta. Since $\Phi(x) = 0$, $\left\|\sum\limits_{i} x_{ni} \rtimes_{\rho,u} h_i\right\| \to 0$ as $n \to \infty$. Hence

$$\left\| \left(\sum_{i} x_{ni} \rtimes_{\rho, u} h_{i} \right) \left(\sum_{j} x_{nj} \rtimes_{\rho, u} h_{j} \right)^{*} \right\| \to 0 \quad (n \to \infty).$$

Also, by the proof of Lemma 3.14 in [6]

$$E_1^{\rho}\left(\left(\sum_i x_{ni} \rtimes_{\rho, u} h_i\right)\left(\sum_j x_{nj} \rtimes_{\rho, u} h_j\right)^*\right) = \sum_i x_{ni} x_{ni}^*.$$

Thus $\left\|\sum_{i} x_{ni} x_{ni}^*\right\| \to 0$ as $n \to \infty$. Hence for any $i, x_{ni} \to 0$ as $n \to 0$. That is, x = 0. Thus Φ is injective. For any $x \in (A \rtimes_{\rho, u} H)^{\infty}$, we write $x = (x_n)$, $x_n = \sum_{i} x_{ni} \rtimes h_i$, where $x_{ni} \in A$. Then $y = \sum_{i} (x_{ni}) \rtimes h_i$ is an element in $A^{\infty} \rtimes_{\rho^{\infty}, u} H$ and $\Phi(y) = x$. Hence Φ is surjective. Furthermore, by routine computations, we see that Φ is a homomorphism of $A^{\infty} \rtimes_{\rho^{\infty}, u} H$ to $(A \rtimes_{\rho, u} H)^{\infty}$. Therefore, we obtain the conclusion.

By the isomorphism defined in the above lemma, we identify $A^{\infty} \rtimes_{\rho^{\infty}, u} H$ with $(A \rtimes_{\rho, u} H)^{\infty}$. Thus $\widehat{(\rho^{\infty})} = (\widehat{\rho})^{\infty}$. We denote them by the same symbol $\widehat{\rho}^{\infty}$.

LEMMA 4.2. Let ρ be a coaction of H^0 on A and ρ^{∞} the coaction of H^0 on A^{∞} induced by ρ . Then $(A^{\infty})^{\rho^{\infty}} = (A^{\rho})^{\infty}$.

Proof. It is clear that $(A^{\rho})^{\infty} \subset (A^{\infty})^{\rho^{\infty}}$. We shall show that $(A^{\rho})^{\infty} \supset (A^{\infty})^{\rho^{\infty}}$. Let E^{ρ} and $(E)^{\rho^{\infty}}$ be the canonical conditional expectations from A and A^{∞} onto A^{ρ} and $(A^{\infty})^{\rho^{\infty}}$, respectively. Then $(A^{\infty})^{\rho^{\infty}} = (E)^{\rho^{\infty}}(A^{\infty})$ and $A^{\rho} = E^{\rho}(A)$. Let $(a_n)_n \in (A^{\infty})^{\rho^{\infty}}$. We note that

$$(a_n)_n = (E)^{\rho^{\infty}}((a_n)_n) = e \cdot_{\rho^{\infty}} (a_n)_n = (e \cdot_{\rho} a_n)_n = (E^{\rho}(a_n))_n.$$

Hence $||E^{\rho}(a_n) - a_n|| \to 0 \ (n \to \infty)$. Let $b_n = E^{\rho}(a_n)$ for any $n \in \mathbb{N}$. Since $b_n \in A^{\rho}$, $(b_n) \in (A^{\rho})^{\infty}$. Then $||b_n - a_n|| = ||E^{\rho}(a_n) - a_n|| \to 0 \ (n \to \infty)$. Thus $(b_n) = (a_n)$ in A^{∞} . Therefore, $(a_n) \in (A^{\rho})^{\infty}$.

Since $(A^{\infty})^{\rho^{\infty}}=(A^{\rho})^{\infty}$ by the above lemma, we can identify $(E)^{\rho^{\infty}}$ with $(E^{\rho})^{\infty}$ the conditional expectation from A^{∞} onto $(A^{\rho})^{\infty}$. We denote them by the same symbol $E^{\rho^{\infty}}$.

DEFINITION 4.3. Let (ρ, u) be a twisted coaction of H on A. We say that (ρ, u) is approximately representable if there is a unitary element $w \in A^{\infty} \otimes H$ satisfying the following conditions:

- (i) $\rho(a) = (\mathrm{Ad}(w) \circ \rho_H^A)(a)$ for any $a \in A$,
- (ii) $u = (w \otimes 1)(\rho_H^{A^{\infty}} \otimes id)(w)(id \otimes \Delta)(w^*),$
- (iii) $u = (\rho^{\infty} \otimes id)(w)(w \otimes 1)(id \otimes \Delta)(w^*).$

LEMMA 4.4. For i=1,2, let (ρ_i,u_i) be a twisted coaction of H on A. We suppose that (ρ_1,u_1) is exterior equivalent to (ρ_2,u_2) . Then (ρ_1,u_1) is approximately representable if and only if (ρ_2,u_2) is approximately representable.

Proof. Since (ρ_1,u_1) and (ρ_2,u_2) are exterior equivalent, there is a unitary element $v\in A\otimes H$ satisfying conditions (i), (ii) in Definition 2.2. We suppose that (ρ_1,u_1) is approximately representable. Then there is a unitary element $w_1\in A^\infty\otimes H$ satisfying conditions (i)–(iii) in Definition 4.3 for (ρ_1,u_1) . Let $w_2=vw_1$. Then by routine computations, we can see that w_2 is a unitary element in $A^\infty\otimes H$ satisfying conditions (i)–(iii) in Definition 4.3 for (ρ_2,u_2) . Therefore, we obtain the conclusion.

LEMMA 4.5. Let (ρ, u) be a twisted coaction of H on A and let $(\rho \otimes \operatorname{id}, u \otimes I_n)$ be the twisted coaction of H on $A \otimes M_n(\mathbb{C})$ induced by (ρ, u) , where we identify $A \otimes M_n(\mathbb{C}) \otimes H$ with $A \otimes H \otimes M_n(\mathbb{C})$. Then (ρ, u) is approximately representable if and only if $(\rho \otimes \operatorname{id}, u \otimes I_n)$ is approximately representable.

Proof. We suppose that (ρ, u) is approximately representable. Then there is a unitary element $w \in A^{\infty} \otimes H$ satisfying conditions (i)–(iii) in Definition 4.3 for (ρ, u) . Let $W = w \otimes I_n$. By routine computations, we can see that W satisfies conditions (i)–(iii) in Definition 4.3 for $(\rho \otimes \operatorname{id}, u \otimes I_n)$. Next, we suppose that $(\rho \otimes \operatorname{id}, u \otimes I_n)$ is approximately representable. Then there is a unitary element

 $W \in A \otimes M_n(\mathbb{C}) \otimes H$ satisfying conditions (i)–(iii) in Definition 4.3 for $(\rho \otimes \mathrm{id}, u \otimes I_n)$. Let f be a minimal projection in $M_n(\mathbb{C})$ and let $p_0 = 1_A \otimes f \otimes 1_H$. Let $w = p_0 W p_0$. Since $\rho \otimes \mathrm{id}_{M_n(\mathbb{C})} = \mathrm{Ad}(W) \circ \rho_H^{A \otimes M_n(\mathbb{C})}$ on $A \otimes M_n(\mathbb{C})$, $W p_0 = p_0 W$. By routine computations and identifying $A \otimes M_n(\mathbb{C}) \otimes H$ with $A \otimes H \otimes M_n(\mathbb{C})$, we can see that the element w satisfies conditions (i)–(iii) in Definition 4.3 for (ρ, u) . Therefore, we obtain the conclusion.

PROPOSITION 4.6. Let (ρ, u) be a twisted coaction of H on A. Then (ρ, u) is approximately representable if and only if so is $\widehat{\rho}$.

The proof is immediate by Theorem 3.3 and Lemmas 4.4, 4.5.

In the rest of this section, we shall show that the approximate representability of coactions of finite dimensional C^* -Hopf algebras is an extension of the approximate representability of actions of finite groups in the sense of Remark 3.7 in [4].

Let *G* be a finite group of order *n* and α an action of *G* on *A*. We consider the coaction of C(G) on *A* induced by the action α of *G* on *A*. We denote it by the same symbol α . That is,

$$\alpha: A \to A \otimes C(G), \quad a \longmapsto \sum_{t \in G} \alpha_t(a) \otimes \delta_t$$

for any $a \in A$, where for any $t \in G$, δ_t is a projection in C(G) defined by

$$\delta_t(s) = \begin{cases} 0 & \text{if } s \neq t, \\ 1 & \text{if } s = t. \end{cases}$$

PROPOSITION 4.7. With the above notations, the following conditions are equivalent:

- (i) the action α of G on A is approximately representable,
- (ii) the coaction α of C(G) on A is approximately representable.

Proof. We suppose condition (i). Then there is a unitary representation u of G in A^{∞} such that

$$\alpha_t(a) = u(t)au(t)^* \quad a \in A, t \in G,$$

 $\alpha_t^{\infty}(u(s)) = u(tst^{-1}) \quad s, t \in G,$

where α^{∞} is the automorphism of A^{∞} induced by α . Let w be a unitary element in $A^{\infty} \otimes C(G)$ defined by $w = \sum\limits_{t \in G} u(t) \otimes \delta_t$. Since u is a unitary representation of G in A^{∞} , we obtain condition (ii) in Definition 4.3 for the coaction α . Also, by the above two conditions, we obtain conditions (i) and (iii) in Definition 4.3 for the coaction α . Next we suppose condition (ii). Then there is a unitary element $w \in A^{\infty} \otimes C(G)$ satisfying conditions (i)–(iii) in Definition 4.3 for the coaction α . We can regard $A^{\infty} \otimes C(G)$ as the C^* -algebra of all A^{∞} -valued functions on G. Hence there is a function from G to G0 corresponding to G0. We denote it by G1. Since G2 is a unitary element in G3 for

any $t \in G$. By easy computations, condition (ii) in Definition 4.3 for the coaction α implies that u is a unitary representation of G in A^{∞} . Also, conditions (i) and (iii) in Definition 4.3 for the coaction α imply that

$$\alpha_t(a) = u(t)au(t)^* \quad a \in A, t \in G,$$

 $\alpha_t^{\infty}(u(s)) = u(tst^{-1}) \quad s, t \in G.$

Therefore, we obtain the conclusion.

5. COACTIONS WITH THE ROHLIN PROPERTY

In this section, we shall introduce the Rohlin property for coactions of a finite dimensional C^* -Hopf algebra on a unital C^* -algebra.

DEFINITION 5.1. Let (ρ, u) be a twisted coaction of H^0 on A. We say that (ρ, u) has the *Rohlin* property if the dual coaction $\widehat{\rho}$ of H on $A \rtimes_{\rho, u} H$ is approximately representable.

First, we shall begin with the following easy propositions.

PROPOSITION 5.2. Let ρ be a coaction of H^0 on A with the Rohlin property. Then ρ is saturated.

The proof is immediate by Corollary 2.7.

PROPOSITION 5.3. Let (ρ, u) be a twisted coaction of H^0 on A. Then (ρ, u) has the Rohlin property if and only if so does $\widehat{\rho}$.

The proof is immediate by Proposition 4.6.

Let (ρ, u) be a twisted coaction of H^0 on A with the Rohlin property. Then there is a unitary element $w \in (A^{\infty} \rtimes_{\rho^{\infty}, u} H) \otimes H$ satisfying that:

(5.1)
$$\widehat{\rho}(x) = (\mathrm{Ad}(w) \circ \rho_H^{A \rtimes_{\rho, u} H})(x) \quad \text{for any } x \in A \rtimes_{\rho, u} H,$$

$$(5.2) (w \otimes 1)(\rho_H^{A^{\infty} \rtimes_{\rho^{\infty}, u} H} \otimes \mathrm{id}_H)(w) = (\mathrm{id}_{A^{\infty} \rtimes_{\rho^{\infty}, u} H} \otimes \Delta)(w),$$

$$(5.3) (\widehat{\rho}^{\infty} \otimes \mathrm{id}_{H})(w)(w \otimes 1) = (\mathrm{id}_{A^{\infty} \rtimes_{\rho^{\infty}, u} H} \otimes \Delta)(w).$$

Let \widehat{w} be the element in $\operatorname{Hom}(H^0, A^{\infty} \rtimes_{\rho^{\infty}, u} H)$ induced by w.

LEMMA 5.4. With the above notations, \widehat{w} is a homomorphism of H^0 to $(A^{\infty} \rtimes_{\rho^{\infty}, u} H) \cap A'$ satisfying the following conditions:

- (i) $\widehat{w}(1^0) = 1_{A^{\infty}}$,
- (ii) the element $\widehat{w}(\tau)$ is a projection in A_{∞} ,
- (iii) $\widehat{w}(\tau)x\widehat{w}(\tau) = E_1^{\rho}(x)\widehat{w}(\tau)$ for any $x \in A \rtimes_{\rho,u} H$.

Proof. By equation (5.2), $\widehat{w} \in Alg(H^0, A^{\infty} \rtimes_{\rho^{\infty}} H)$. Furthermore, by Lemma 1.16 of [2], $\widehat{w}^* = \widehat{w} \circ S^0$. Thus for any $\phi \in H^0$, $\widehat{w}(\phi)^* = \widehat{w}^*(S^0(\phi^*)) =$

 $\widehat{w}(\phi^*)$. Hence \widehat{w} is a homomorphism of H^0 to $A^{\infty} \rtimes_{\rho^{\infty}} H$. Next we shall show that $\widehat{w}(\phi)(a \rtimes 1) = (a \rtimes 1)\widehat{w}(\phi)$ for any $a \in A$. By equation (5.1), for any $a \in A$,

$$(a \times 1) \otimes 1 = w[(a \times 1) \otimes 1]w^*.$$

Thus $[(a \times 1) \otimes 1]w = w[(a \times 1) \otimes 1]$. Hence for any $\phi \in H^0$

$$(a \times 1)\widehat{w}(\phi) = \widehat{w}(\phi)(a \times 1).$$

Hence \widehat{w} is a homomorphism of H^0 to $(A^{\infty} \rtimes_{\rho^{\infty}, u} H) \cap A'$. Also, by equation (5.2),

$$\begin{split} (\mathrm{id}_{A^{\infty}\rtimes_{\rho^{\infty},u}H}\otimes\varepsilon\otimes\mathrm{id}_{H})((w\otimes1)(\rho_{H}^{A^{\infty}\rtimes_{\rho^{\infty},u}H}\otimes\mathrm{id}_{H})(w)) \\ &= (\mathrm{id}_{A^{\infty}\rtimes_{\rho^{\infty},u}H}\otimes\varepsilon\otimes\mathrm{id}_{H})((\mathrm{id}_{A^{\infty}\rtimes_{\rho^{\infty},u}H}\otimes\Delta)(w)). \end{split}$$

Thus $[(\mathrm{id}_{A^{\infty}\rtimes_{\rho^{\infty},u}H}\otimes\varepsilon)(w)\otimes 1]w=w$. Since w is a unitary element in $(A^{\infty}\rtimes_{\rho^{\infty},u}H)\otimes H$, $(\mathrm{id}_{A^{\infty}\rtimes_{\rho^{\infty},u}H}\otimes\varepsilon)(w)=1$, that is, $\widehat{w}(1^{0})=1$. Furthermore, since τ is a projection in H^{0} and \widehat{w} is a homomorphism of H^{0} to $A^{\infty}\rtimes_{\rho^{\infty}}H$, $\widehat{w}(\tau)$ is a projection. Also, by equation (5.3), for any $\phi\in H^{0}$

$$\phi \cdot_{\widehat{\rho}^{\infty}} \widehat{w}(\tau) = \widehat{w}(\phi_{(1)}\tau) \widehat{w}^*(\phi_{(2)}) = \widehat{w}(\tau) \widehat{w}^*(\phi) = \varepsilon^0(\phi) \widehat{w}(\tau).$$

Hence by Lemma 3.17 of [6], $\widehat{w}(\tau) \in A^{\infty} \cap A' = A_{\infty}$. Finally, we shall show that $\widehat{w}(\tau)x\widehat{w}(\tau) = E_1^{\rho}(x)\widehat{w}(\tau)$ for any $x \in A \rtimes_{\rho,u} H$. For any $a \in A$, $h \in H$, $\widehat{\rho}(a \rtimes h) = w[(a \rtimes h) \otimes 1]w^*$. Thus

$$(a \rtimes h_{(1)})\tau(h_{(2)}) = \widehat{w}(\tau_{(1)})(a \rtimes h)\widehat{w}^*(\tau_{(2)}).$$

That is, $\tau(h)(a \times 1) = \widehat{w}(\tau_{(1)})(a \times h)\widehat{w}^*(\tau_{(2)})$. Since $E_1^{\rho}(a \times h) = \tau(h)(a \times 1)$ and $\widehat{w}^* = \widehat{w} \circ S^0$.

$$E_1^{\rho}(a \times h)\widehat{w}(\tau) = \widehat{w}(\tau_{(1)})(a \times h)\widehat{w}^*(\tau_{(2)})\widehat{w}(\tau) = \widehat{w}(\tau)(a \times h)\widehat{w}(\tau).$$

Thus we obtain the last condition.

PROPOSITION 5.5. For i = 1, 2, let (ρ_i, u_i) be a twisted coaction of H^0 on A with $(\rho_1, u_1) \sim (\rho_2, u_2)$. Then (ρ_1, u_1) has the Rohlin property if and only if so does (ρ_2, u_2) .

Proof. Since $(\rho_1,u_1)\sim (\rho_2,u_2)$, there is a unitary element $v\in A\otimes H^0$ satisfying that

$$\rho_2 = \operatorname{Ad}(v) \circ \rho_1, \quad u_2 = (v \otimes 1^0)(\rho_1 \otimes \operatorname{id})(v)u_1(\operatorname{id} \otimes \Delta^0)(v^*).$$

Then there is an isomorphism Φ of $A \rtimes_{\rho_1,u_1} H$ onto $A \rtimes_{\rho_2,u_2} H$ defined in Lemma 2.4. By easy computations, we can see that the following conditions hold:

$$\text{(i) }\widehat{\rho}_2\circ\Phi=\big(\Phi\otimes\mathrm{id}_H\big)\circ\widehat{\rho}_1,$$

(ii)
$$\rho_H^{A \rtimes \rho_2, u_2} \stackrel{H}{\circ} \Phi = (\Phi \otimes \mathrm{id}_H) \circ \rho_H^{A \rtimes \rho_1, u_1} \stackrel{H}{\circ}$$
,

$$\text{(iii) } (\mathrm{id}_{A\rtimes_{\varrho_2,u_2}H}\otimes\Delta)\circ (\Phi\otimes\mathrm{id}_H)=(\Phi\otimes\mathrm{id}_H\otimes\mathrm{id}_H)\circ (\mathrm{id}_{A\rtimes_{\varrho_1,u_1}H}\otimes\Delta).$$

Let Φ^{∞} be the isomorphism of $A^{\infty} \rtimes_{\rho_1,u_1} H$ onto $A^{\infty} \rtimes_{\rho_2,u_2} H$ induced by Φ . We suppose that (ρ_1,u_1) has the Rohlin property and let w_1 be a unitary element in $(A \rtimes_{\rho_1,u_1} H) \otimes H$ satisfying equations (5.1)–(5.3) for the coaction $\widehat{\rho}_1$. Let $w_2 =$

 $(\Phi^{\infty} \otimes \mathrm{id}_H)(w_1)$. By conditions (i)–(iii), we can see that w_2 satisfies equations (5.1)–(5.3) for the coaction $\widehat{\rho}_2$. Therefore we obtain the conclusion.

LEMMA 5.6. For i=1,2, let (ρ_i,u_i) be a twisted coaction of H^0 on A with $(\rho_1,u_1)\sim (\rho_2,u_2)$. We suppose that (ρ_i,u_i) has the Rohlin property for i=1,2. Let w_i be as in the above proof for i=1,2. Then $\widehat{w}_1(\tau)=\widehat{w}_2(\tau)$.

Proof. Let
$$w_1 = \sum_{i,j} (a_{ij} \rtimes_{\rho_1,u_1} h_i) \otimes l_j$$
, where $a_{ij} \in A^{\infty}$. Then

$$w_2 = \sum_{i,j} (a_{ij} \hat{v}^*(h_{i(1)}) \rtimes_{\rho_2, u_2} h_{i(2)}) \otimes l_j,$$

where v is a unitary element in $A \otimes H^0$ defined in the above proof. Thus

$$\widehat{w}_{2}(\tau) = \sum_{i,j} (a_{ij}\widehat{v}^{*}(h_{i(1)}) \rtimes_{\rho_{2}, u_{2}} h_{i(2)}) \tau(l_{j}) = \Phi(\widehat{w}_{1}(\tau)),$$

where Φ is the isomorphism of $A \rtimes_{\rho_1,u_1} H$ onto $A \rtimes_{\rho_2,u_2} H$ defined in the above proof. On the other hand, since $\widehat{w}_1(\tau) \in A_\infty \subset A^\infty$ by Lemma 5.4, $\widehat{w}_2(\tau) = \Phi(\widehat{w}_1(\tau)) = \widehat{w}_1(\tau)$.

Let (ρ, u) be a twisted coaction of H on A with the Rohlin property. Let w be a unitary element in $(A^{\infty} \rtimes_{\rho^{\infty}, u} H) \otimes H$ satisfying equations (5.1)–(5.3) for $\widehat{\rho}$.

LEMMA 5.7. With the above notations, $e \cdot \hat{w}(\tau) = \frac{1}{N}$.

Proof. We note that $\widehat{\rho}(1 \rtimes h) = w[(1 \rtimes h) \otimes 1]w^*$ for any $h \in H$. Since $\widehat{w}^* = \widehat{w} \circ S^0$, we see that for any $h \in H$, $(1 \rtimes h)\widehat{w}(S^0(\tau)) = \widehat{w}(S^0(\tau_{(1)}))(1 \rtimes h_{(1)})\tau_{(2)}(h_{(2)})$. Hence for any $h \in H$, $\widehat{V}(h)\widehat{w}(\tau) = \widehat{w}(S^0(\tau_{(1)}))\widehat{V}(h_{(1)})\tau_{(2)}(h_{(2)})$. Then since $h \cdot a = \widehat{V}(h_{(1)})(a \rtimes 1)\widehat{V}^*(h_{(2)})$ for any $a \in A$, $h \in H$ and $e = \sum\limits_{i,k} \frac{d_k}{N} w_{ii}^k$,

$$\begin{split} e \cdot \widehat{w}(\tau) &= \sum_{i,j,k,j_1} \frac{d_k}{N} \widehat{w}(S^0(\tau_{(1)})) (1 \rtimes w^k_{ij_1}) (1 \rtimes w^k_{ij})^* \tau_{(2)}(w^k_{j_1j}) \\ &= \sum_{i,j,k,j_1,j_2,j_3} \frac{d_k}{N} \widehat{w}(S^0(\tau_{(1)})) \tau_{(2)}(w^k_{j_1j}) (1 \rtimes w^k_{ij_1}) (\widehat{u}(S(w^k_{j_2j_3}), w^k_{ij_2})^* \rtimes w^{k*}_{j_3j}) \\ &= \sum_{i,j,k,j_1,j_2,j_3,j_4,j_5,s} \frac{d_k}{N} \widehat{w}(S^0(\tau_{(1)})) \tau_{(2)}(w^k_{j_1j}) [w^k_{ij_4} \cdot \widehat{u}(S(w^k_{j_2j_3}), w^k_{ij_2})^*] \\ &\qquad \qquad \times \widehat{u}(w^k_{j_4j_5}, w^{k*}_{j_3s}) \rtimes w^k_{j_5j_1} w^{k*}_{sj} \end{split}$$

since $w_{ij}^{k*}=S(w_{ji}^k)$ for any i,j,k by Theorem 2.2 2 of [10]. Since $e\cdot \widehat{w}(\tau)\in A^{\infty}$, $E_1^{\rho^{\infty}}(e\cdot \widehat{w}(\tau))=e\cdot \widehat{w}(\tau)$. Thus since $\tau(w_{ij}^kw_{st}^{r*})=\frac{1}{d_k}\delta_{kr}\delta_{is}\delta_{jt}$ by Theorem 2.2, 2 of [10], by Lemma 3.3(1) of [6] and Lemma 5.4(i),

$$e \cdot \widehat{w}(\tau) = \sum_{i,j,k,j_2,j_3,j_4,s} \frac{1}{N} \widehat{w}(S^0(\tau_{(1)})) \tau_{(2)}(w_{jj}^k) [w_{j_4i} \cdot \widehat{u}(S(w_{j_2j_3}^k), w_{ij_2}^k)]^* \times \widehat{u}(w_{j_4s}^k, w_{j_3s}^{k*})$$

$$\begin{split} &= \sum_{i,j,k,j_2,j_3,j_4,s,t,r} \frac{1}{N} \widehat{w}(S^0(\tau_{(1)})) \tau_{(2)}(w_{jj}^k) \widehat{u}^*(w_{it}^k S(w_{rj_2}^k), w_{j_2i}^k) \\ &\quad \times \widehat{u}^*(w_{tj_4}^k, w_{rj_3}^{k*}) \widehat{u}(w_{j_4s}^k, w_{j_3s}^{k*}) \\ &= \sum_{i,j,k,j_2,s} \frac{1}{N} \widehat{w}(S^0(\tau_{(1)})) \tau_{(2)}(w_{jj}^k) \widehat{u}^*(w_{is}^k S(w_{sj_2}^k), w_{j_2i}^k) \\ &= \sum_{i,j,k} \frac{1}{N} \widehat{w}(S^0(\tau_{(1)})) \tau_{(2)}(w_{jj}^k) \varepsilon(w_{ii}^k) = \widehat{w}(S^0(\tau_{(1)})) \tau_{(2)}(e) = \frac{1}{N}. \end{split}$$

Therefore, we obtain the conclusion.

By Lemmas 5.4(ii) and 5.7, we can see that if ρ is a coaction of H^0 on A with the Rohlin property, then there is a projection $p \in A_\infty$ such that $e \cdot p = \frac{1}{N}$. We shall show the inverse direction with the assumption that ρ is saturated. Let ρ be a saturated coaction of H^0 on A. We suppose that there is a projection $p \in A_\infty$ such that $e \cdot p = \frac{1}{N}$.

LEMMA 5.8. With the above notations and assumptions, for any $x \in A \times H$, $(p \times 1)x(p \times 1) = E_1^{\rho}(x)(p \times 1)$.

Proof. Let $q=N(p\rtimes 1)(1\rtimes e)(p\rtimes 1)$. Then q is a projection in $A^{\infty}\rtimes_{\rho^{\infty}}H$. Indeed, $q^*=q$. Also, $q^2=N^2(p\rtimes 1)([e\cdot p]\rtimes e)(p\rtimes 1)=q$ by the assumption. Furthermore, $E_1^{\rho^{\infty}}(q)=p=E_1^{\rho^{\infty}}(p\rtimes 1)$. Since $q\leqslant p$ and $E_1^{\rho^{\infty}}$ is faithful, we obtain that p=q. That is, $p=N(p\rtimes 1)(1\rtimes e)(p\rtimes 1)$. For any $a,b\in A$,

$$(p \times 1)(a \times 1)(1 \times e)(b \times 1)(p \times 1) = \frac{1}{N}(ab \times 1)(p \times 1).$$

Since ρ is saturated, $A(1 \times e)A = A \times_{\rho} H$. Hence we obtain the conclusion.

By Watatani's results ([11], Proposition 2.2.7 and Lemma 2.2.9) and Lemma 5.8, we can see that there is a homomorphism π of $A \rtimes_{\rho} H \rtimes_{\widehat{\rho}} H^0$ to $A^{\infty} \rtimes_{\rho^{\infty}} H$ such that

$$\pi((x \times 1^0)(1_A \times 1_H \times \tau)(y \times 1^0)) = x(p \times 1)y$$

for any $x,y\in A\rtimes_{\rho}H$. The restriction of π to $1_{A\rtimes_{\rho}H}\rtimes H^0$ is a homomorphism of H^0 to $A^{\infty}\rtimes_{\rho^{\infty}}H$. Thus there is an element $w\in (A^{\infty}\rtimes_{\rho^{\infty}}H)\otimes H$ such that \widehat{w} is the above restriction of π to H^0 . Let $\{(u_i,u_i^*)\}$ be a quasi-basis of E_1^{ρ} .

LEMMA 5.9. With the above notations and assumptions, for any $\phi \in H^0$, $\widehat{w}(\phi) = \sum_j [\phi \cdot_{\widehat{\rho}} u_j](p \rtimes 1)u_j^*$.

Proof. We note that $\tau \cdot x = E_1^{\rho}(x)$ for any $x \in A \rtimes_{\rho} H$. Since $\sum_i (u_i \rtimes 1^0)(1 \rtimes \tau)(u_i^* \rtimes 1^0) = 1$,

$$1 \times \phi = \sum_i (1 \times \phi)(u_i \times 1^0)(1 \times \tau)(u_i^* \times 1^0) = \sum_i ([\phi \cdot u_i] \times 1^0)(1 \times \tau)(u_i^* \times 1^0).$$

Hence we obtain the conclusion by the definition of \widehat{w} .

LEMMA 5.10. With the above notations, $\widehat{w}(1^0) = 1_A$.

Proof. By Proposition 3.18 of [6], $\{((\sqrt{d_k} \rtimes w_{ij}^k)^*, \sqrt{d_k} \rtimes w_{ij}^k)\}$ is a quasi-basis of E_1^ρ . Hence by Lemma 5.9,

$$\begin{split} \widehat{w}(1^0) &= \sum_{i,j,k,t} d_k[w_{it}^{k*} \cdot p] \rtimes w_{tj}^{k*} w_{ij}^k = \sum_{i,j,k,t} d_k[w_{it}^{k*} \cdot p] \rtimes S(w_{jt}^k) w_{ij}^k \\ &= \sum_{i,k} d_k[S(w_{ii}^k) \cdot p] \rtimes 1 = N[e \cdot p] = 1. \quad \blacksquare \end{split}$$

LEMMA 5.11. With the above notations, the element w is a unitary element in $(A^{\infty} \rtimes_{\rho^{\infty}} H) \otimes H$ satisfying equations (5.1)–(5.3).

Proof. Since \widehat{w} is a homomorphism of H^0 to $A^{\infty} \rtimes_{\rho^{\infty}} H$, the element w satisfies equation (5.2). Also, for any $\phi \in H^0$

$$(\widehat{w}\widehat{w}^*)(\phi) = \widehat{w}(\phi_{(1)})\widehat{w}(S^0(\phi_{(2)})^*)^* = \widehat{w}(\phi_{(1)}S^0(\phi_{(2)})) = \varepsilon^0(\phi)$$

by Lemma 5.10. Similarly $(\widehat{w}^*\widehat{w})(\phi) = \varepsilon^0(\phi)$. Hence w is a unitary element in $(A^{\infty} \rtimes_{\rho^{\infty}} H) \otimes H$. Let $\{(u_i, u_i^*)\}$ be a quasi-basis of E_1^{ρ} . By Lemmas 5.8 and 5.9 for any $\phi, \psi \in H^0$,

$$\begin{split} [\phi_{(1)} \cdot_{\widehat{\rho}} \widehat{w}(\psi)] \widehat{w}(\phi_{(2)}) &= \sum_{i,j} [\phi_{(1)} \cdot ([\psi \cdot u_j](p \rtimes 1) u_j^*)] [\phi_{(2)} \cdot u_i](p \rtimes 1) u_i^* \\ &= \sum_{i,j} [\phi \cdot ([\psi \cdot u_j] E_1^{\rho}(u_j^* u_i)(p \rtimes 1))] u_i^* \\ &= \sum_i [\phi \cdot ([\psi \cdot u_i](p \rtimes 1))] u_i^* = \widehat{w}(\phi \psi). \end{split}$$

Thus the element w satisfies equation (5.3). Finally, for any $a \in A$, $h \in H$ and $\phi \in H^0$,

$$\begin{split} \widehat{w}(\phi_{(1)})(a \rtimes h)\widehat{w}^*(\phi_{(2)}) &= \sum_{i,j} [\phi_{(1)} \cdot (u_j E_1^{\rho}(u_j^*(a \rtimes h)[S^0(\phi_{(2)}) \cdot u_i]))](p \rtimes 1)u_i^* \\ &= \sum_i (a \rtimes h_{(1)})\phi_{(1)}(h_{(2)})[\phi_{(2)} \cdot [S^0(\phi_{(3)}) \cdot u_i]](p \rtimes 1)u_i^* \\ &= \sum_i (a \rtimes h_{(1)})\phi(h_{(2)})u_i(p \rtimes 1)u_i^* = (a \rtimes h_{(1)})\phi(h_{(2)}) \end{split}$$

by Lemmas 5.9 and 5.10. Hence w satisfies equation (5.1). Therefore we obtain the conclusion. \blacksquare

THEOREM 5.12. Let ρ be a coaction of a finite dimensional C^* -Hopf algebra H on a unital C^* -algebra A. If ρ is saturated, then the following conditions are equivalent:

- (i) the coaction ρ has the Rohlin property,
- (ii) there is a projection p in A_{∞} such that $e \cdot_{\rho^{\infty}} p = \frac{1}{N}$, where $N = \dim H$.

The proof is immediate by Lemmas 5.7 and 5.11.

In the next section, we show that the above assertion holds without the assumption that ρ is saturated. In the rest of this section, we shall show that the Rohlin property of coactions of a finite dimensional C^* -Hopf algebra is an extension of the Rohlin property of a finite group in the sense of Remark 3.7 of [4]. Let G and α be as in the end of Section 4.

PROPOSITION 5.13. With the above notations, the following conditions are equivalent:

- (i) the action α of G on A has the Rohlin property,
- (ii) the coaction α of C(G) on A has the Rohlin property.

Proof. We suppose condition (i). Then there is a partition of unity $\{e_t\}_{t\in G}$ consisting of projections in A_∞ satisfying that $\alpha_t^\infty(e_s) = e_{ts}$ for any $t,s \in G$. By easy computations, e_e is a projection in A_∞ such that $\tau \cdot e_e = \frac{1}{n}$, where τ is the Haar trace on C(G). Since the coaction α of C(G) on A is saturated, by Theorem 5.12 the coaction α has the Rohlin property. Next, we suppose condition (ii). Then there is a projection $p \in A_\infty$ such that $\tau \cdot p = \frac{1}{n}$ by Theorem 5.12. Hence

$$(\mathrm{id} \otimes \tau)(\sum_{t \in G} \alpha_t^{\infty}(p) \otimes \delta_t) = \frac{1}{n}.$$

Thus, we see that $\sum\limits_{t\in G}\alpha_t^\infty(p)=1$ by the definition of τ . Let $e_t=\alpha_t^\infty(p)$ for any $t\in G$. Then clearly, $\{e_t\}_{t\in G}$ is a partition of unity consisting of projections in A_∞ satisfying that $\alpha_t^\infty(e_s)=e_{ts}$.

6. ANOTHER CONDITION WHICH IS EQUIVALENT TO THE ROHLIN PORPERTY

In this section, we shall give another condition which is equivalent to the Rohlin property.

Let (ρ,u) be a twisted coaction of H^0 on A. We suppose that (ρ,u) has the Rohlin property. Then there is a unitary element $w \in (A^{\infty} \rtimes_{\rho^{\infty},u} H) \otimes H$ satisfying equations (5.1)–(5.3) for (ρ,u) . Let \widehat{w} be the unitary element in $\operatorname{Hom}(H^0,A^{\infty}\rtimes_{\rho^{\infty},u} H)$ induced by $w \in (A \rtimes_{\rho^{\infty},u} H) \otimes H$. By Lemma 5.4, $\widehat{w}(\tau)$ is a projection in A_{∞} . By Theorem 3.3 there are an isomorphism Ψ of $M_N(A)$ onto $A \rtimes_{\rho,u} H \rtimes_{\widehat{\rho}} H^0$ and a unitary element U in $(A \rtimes_{\rho,u} H \rtimes_{\widehat{\rho}} H^0) \otimes H^0$ such that

$$\begin{split} \operatorname{Ad}(U) \circ \widehat{\widehat{\rho}} &= (\Psi \otimes \operatorname{id}_{H^0}) \circ (\rho \otimes \operatorname{id}_{M_N(\mathbb{C})}) \circ \Psi^{-1}, \\ (\Psi \otimes \operatorname{id}_{H^0} \otimes \operatorname{id}_{H^0}) (u \otimes I_N) &= (U \otimes 1^0) (\widehat{\widehat{\rho}} \otimes \operatorname{id}_{H^0}) (U) (\operatorname{id} \otimes \Delta^0) (U^*). \end{split}$$

Let $\sigma = (\Psi \otimes \mathrm{id}) \circ (\rho \otimes \mathrm{id}_{M_N(\mathbb{C})}) \circ \Psi^{-1}$ and $W = (\Psi \otimes \mathrm{id}_{H^0} \otimes \mathrm{id}_{H^0})(u \otimes I_N)$. Then (σ, W) is a twisted coaction of H^0 on $A \rtimes_{\rho, u} H \rtimes_{\widehat{\rho}} H^0$ which is exterior equivalent to $\widehat{\widehat{\rho}}$. Let $\widehat{\Psi}$ be the isomorphism of $M_N(A) \rtimes_{\rho \otimes \mathrm{id}, u \otimes I_N} H$ onto $A \rtimes_{\rho, u} H \rtimes_{\widehat{\rho}} H^0 \rtimes_{\sigma, W} H$

H induced by Ψ , which is defined by $\widehat{\Psi}(x \rtimes_{\rho \otimes \operatorname{id}, u \otimes I_N} h) = \Psi(x) \rtimes_{\sigma, W} h$ for any $x \in M_N(A)$, $h \in H$. Let $\widehat{\Psi}^{\infty}$ be the isomorphism of $M_N(A^{\infty}) \rtimes_{\rho^{\infty} \otimes \operatorname{id}, u \otimes I_N} H$ onto $A^{\infty} \rtimes_{\rho^{\infty}, u} H \rtimes_{\widehat{\rho}^{\infty}} H^0 \rtimes_{\sigma^{\infty}, W} H$ induced by $\widehat{\Psi}$. By easy computations, (σ, W) has the Rohlin property and the unitary element $(\widehat{\Psi}^{\infty} \otimes \operatorname{id}_H)(w \otimes I_N)$ is in $(A^{\infty} \rtimes_{\rho^{\infty}, u} H \rtimes_{\widehat{\rho}^{\infty}} H^0 \rtimes_{\sigma^{\infty}, W} H) \otimes H$ and satisfies equations (5.1)–(5.3) for the twisted coaction (σ, W) . Let $z = (\widehat{\Psi}^{\infty} \otimes \operatorname{id}_H)(w \otimes I_N)$. Then

$$\widehat{z}(\tau) = ((\mathrm{id} \otimes \tau) \circ (\widehat{\Psi}^{\infty} \otimes \mathrm{id}_{H}))(w \otimes I_{N}) = \widehat{\Psi}^{\infty}((\mathrm{id} \otimes \tau)(w \otimes I_{N}))$$
$$= \widehat{\Psi}^{\infty}(\widehat{w}(\tau) \otimes I_{N}) = \Psi^{\infty}(\widehat{w}(\tau) \otimes I_{N}).$$

LEMMA 6.1. With the above notations and assumptions,

$$\sum_{i,i,k} (\sqrt{d_k} \rtimes_{\rho,u} w_{ij}^k)^* \widehat{w}(\tau) (\sqrt{d_k} \rtimes_{\rho,u} w_{ij}^k) = 1.$$

Proof. By Proposition 5.3, $\widehat{\widehat{\rho}}$ has the Rohlin property. Then by Lemmas 5.6 and 5.7, $e \cdot_{\widehat{\widehat{\rho}}} \widehat{z}(\tau) = \frac{1}{N}$. Since $\widehat{z}(\tau) = \Psi^{\infty}(\widehat{w}(\tau) \otimes I_N)$ and $V_I = (1 \rtimes_{\widehat{\rho}} \tau)(W_I \rtimes_{\widehat{\rho}} 1^0)$ for any $I \in \Lambda$,

$$\begin{split} \frac{1}{N} &= \sum_{I} [e \cdot_{\widehat{\rho}} V_{I}^{*}(\widehat{w}(\tau) \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^{0}) V_{I}] \\ &= \sum_{I} (W_{I}^{*} \rtimes_{\widehat{\rho}} 1^{0}) (\widehat{w}(\tau) \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} \tau_{(1)} \tau_{(1)}') (W_{I} \rtimes_{\widehat{\rho}} 1^{0}) (\tau_{(2)} \tau_{(2)}') (e) \\ &= \sum_{I} (W_{I}^{*} \rtimes_{\widehat{\rho}} 1^{0}) (\widehat{w}(\tau) \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} 1^{0}) (W_{I} \rtimes_{\widehat{\rho}} 1^{0}) (\tau \tau') (e) \\ &= \frac{1}{N} \sum_{I} W_{I}^{*} (\widehat{w}(\tau) \rtimes_{\rho,u} 1) W_{I}, \end{split}$$

where $\tau' = \tau$. Therefore we obtain the conclusion.

Next, we shall show the inverse direction of Lemma 6.1.

LEMMA 6.2. Let (ρ, u) be a twisted coaction of H^0 on A. We suppose that there is a projection $p \in A_\infty$ such that

$$\sum_{i,j,k} (\sqrt{d_k} \rtimes_{\rho,u} w_{ij}^k)^* (p \rtimes_{\rho,u} 1) (\sqrt{d_k} \rtimes_{\rho,u} w_{ij}^k) = 1.$$

Then (ρ, u) *has the Rohlin property.*

Proof. Le Ψ be the isomorphism of $M_N(A)$ onto $A \rtimes_{\rho,u} H \rtimes_{\widehat{\rho}} H^0$ defined in Theorem 3.3. Let $q = \Psi^{\infty}(p \otimes I_N)$. Then q is a projection in $(A \rtimes_{\rho,u} H \rtimes_{\widehat{\rho}} H^0)_{\infty}$ since $p \otimes I_N \in M_N(A)_{\infty}$. In the same way as in the proof of Lemma 6.1,

$$e \cdot_{\widehat{\rho}} q = e \cdot_{\widehat{\rho}} \Psi^{\infty}(p \otimes I_N) = \frac{1}{N} \sum_{I} W_I^*(p \rtimes_{\rho, u} 1) W_I = \frac{1}{N}.$$

Hence by Theorem 5.12, $\widehat{\widehat{\rho}}$ has the Rohlin property since $\widehat{\widehat{\rho}}$ is saturated by Jeong and Park ([5], Theorem 3.3) and Proposition 3.18 of [6]. Therefore (ρ, u) has the Rohlin property by Proposition 5.5.

THEOREM 6.3. Let (ρ, u) be a twisted coaction of a finite dimensional C^* -Hopf algebra H^0 on a unital C^* -algebra A. Let $\{w_{ij}^k\}$ be a system of comatrix units of H. Then the following conditions are equivalent:

- (i) the twisted coaction (ρ, u) has the Rohlin property,
- (ii) there is a projection $p \in A_{\infty}$ such that $\sum_{i,j,k} (\sqrt{d_k} \rtimes_{\rho,u} w_{ij}^k)^* p(\sqrt{d_k} \rtimes_{\rho,u} w_{ij}^k) = 1$.

The proof is immediate by Lemmas 6.1 and 6.2.

COROLLARY 6.4. Let ρ be a coaction of H^0 on A. Then the following conditions are equivalent:

- (i) the coaction ρ has the Rohlin property,
- (ii) there is a projection $p \in A_{\infty}$ such that $e \cdot_{\rho^{\infty}} p = \frac{1}{N}$.

Proof. (i) implies (ii). This is immediate by Lemma 5.7.

(ii) implies (i). By Theorem 6.3, it suffices to show that (ii) implies that

$$\sum_{i,j,k} (\sqrt{d_k} \rtimes_{\rho} w_{ij}^k)^* p(\sqrt{d_k} \rtimes_{\rho} w_{ij}^k) = 1.$$

Since ρ is a coaction of H^0 on A,

$$\begin{split} \sum_{i,j,k} (\sqrt{d_k} \rtimes_{\rho} w_{ij}^k)^* p(\sqrt{d_k} \rtimes_{\rho} w_{ij}^k) &= N \sum_{i,j,k} \frac{d_k}{N} \widehat{V}(S(w_{ji}^k)) p \widehat{V}^*(S(w_{ij}^k)) \\ &= N \sum_{i,k} \frac{d_k}{N} [S(w_{ii}^k) \cdot_{\rho^{\infty}} p] = N [e \cdot_{\rho^{\infty}} p] = 1. \end{split}$$

Therefore we obtain the conclusion.

7. AN EXAMPLE

In this section, we shall give an example of an approximately representable coaction of a finite dimensional C^* -Hopf algebra on a UHF-algebra which has also the Rohlin property.

We note that the comultiplication Δ^0 of H^0 can be regarded as a coaction of H^0 on a C^* -algebra H^0 . Hence we can consider the crossed product $H^0 \rtimes_{\Delta^0} H$, which is isomorphic to $M_N(\mathbb{C})$. Let $A = H^0 \rtimes_{\Delta^0} H$. Let $A_n = \otimes_1^n A$, the n-times tensor product of A, for any $n \in \mathbb{N}$. In the usual way, we regard A_n as a C^* -subalgebra of A_{n+1} , that is, for any $a \in A_n$, the map $i_n : a \mapsto a \otimes (1^0 \rtimes_{\Delta^0} 1)$ is regarded as the inclusion of A_n into A_{n+1} . Let B be the inductive limit C^* -algebra of $\{(A_n, i_n)\}$. Then B can be regarded as a UHF-algebra of type N^∞ . Let \widehat{V} be a unitary element in Hom(H, A) defined by $\widehat{V}(h) = 1^0 \rtimes_{A^0} h$ for any $h \in H$ and let

V be the unitary element in $A\otimes H^0$ induced by \widehat{V} . We recall that $\{v_{ij}^k\}$ and $\{w_{ij}^k\}$ are systems of matrix units and comatrix units of H, respectively. Also, let $\{\phi_{ij}^k\}$ and $\{\omega_{ij}^k\}$ be systems of matrix units and comatrix units of H^0 , respectively. Let

$$v_1 = V = \sum_{i,j,k} (1^0 \rtimes_{\Delta^0} w_{ij}^k) \otimes \phi_{ij}^k = \sum_{i,j,k} (1^0 \rtimes_{\Delta^0} v_{ij}^k) \otimes \omega_{ij}^k.$$

For any $n \in \mathbb{N}$ with $n \geqslant 2$, let

$$v_n = [\otimes_1^{n-1}(1^0 \rtimes_{\Lambda^0} 1)] \otimes V.$$

Let $u_n = v_1 v_2 \cdots v_n \in A_n \otimes H^0$ for any $n \in \mathbb{N}$. Then u_n is a unitary element in $A_n \otimes H^0$ for any $n \in \mathbb{N}$.

LEMMA 7.1. With the above notations,

$$u_n = \sum \widehat{V}(w_{ij_1}^k) \otimes \widehat{V}(w_{j_1j_2}^k) \otimes \cdots \otimes \widehat{V}(w_{j_{n-1}j}) \otimes \phi_{ij}^k$$

= $\sum \widehat{V}(v_{i_1j_1}^{k_1}) \otimes \widehat{V}(v_{i_2j_2}^{k_2}) \otimes \cdots \otimes \widehat{V}(v_{i_nj_n}^{k_n}) \otimes \omega_{i_1j_1}^{k_1} \cdots \omega_{i_nj_n}^{k_n},$

where the above summations are taken under all indices.

Proof. It is clear that the second equation holds. We show the first equation by the induction. We assume that

$$u_n = \sum \widehat{V}(w_{ij_1}^k) \otimes \widehat{V}(w_{j_1j_2}^k) \otimes \cdots \otimes \widehat{V}(w_{j_{n-1}j}) \otimes \phi_{ij}^k,$$

where the summation is taken under all indices. Then

$$u_{n+1} = \sum \widehat{V}(w_{ij_1}^k) \otimes \widehat{V}(w_{j_1j_2}^k) \otimes \cdots \otimes \widehat{V}(w_{j_{n-1}j}^k) \otimes \widehat{V}(w_{st}^r) \otimes \phi_{ij}^k \phi_{st}^r$$

= $\sum \widehat{V}(w_{ij_1}^k) \otimes \widehat{V}(w_{j_1j_2}^k) \otimes \cdots \otimes \widehat{V}(w_{j_{n-1}j}^k) \otimes \widehat{V}(w_{jt}^k) \otimes \phi_{it}^k$,

where the summations are taken under all indices. Therefore, we obtain the conclusion. ■

For any
$$n \in \mathbb{N}$$
, let $\rho_n = \operatorname{Ad}(u_n) \circ \rho_{H^0}^{A_n}$, that is, for any $a \in A_n$, $\rho_n(a) = u_n(a \otimes 1^0)u_n^*$.

LEMMA 7.2. With the above notations, ρ_n is a coaction of H^0 on A_n .

Proof. We have only to show that

$$(u_n \otimes 1^0)(\rho_{H^0}^{A_n} \otimes \mathrm{id})(u_n) = (\mathrm{id} \otimes \Delta^0)(u_n).$$

By Lemma 7.1, we can write that

$$u_n = \sum \widehat{V}(v_{i_1j_1}^{k_1}) \otimes \widehat{V}(v_{i_2j_2}^{k_2}) \otimes \cdots \otimes \widehat{V}(v_{i_nj_n}^{k_n}) \otimes \omega_{i_1j_1}^{k_1} \cdots \omega_{i_nj_n}^{k_n},$$

where the summation is taken under all indices. Hence

$$u_n \otimes 1^0 = \sum \widehat{V}(v_{i_1j_1}^{k_1}) \otimes \cdots \otimes \widehat{V}(v_{i_nj_n}^{k_n}) \otimes \omega_{i_1j_1}^{k_1} \cdots \omega_{i_nj_n}^{k_n} \otimes 1^0,$$

$$(\rho_{H^0}^{A_n} \otimes \mathrm{id})(u_n) = \sum \widehat{V}(v_{i_1j_1}^{k_1}) \otimes \cdots \otimes \widehat{V}(v_{i_nj_n}^{k_n}) \otimes 1^0 \otimes \omega_{i_1j_1}^{k_1} \cdots \omega_{i_nj_n}^{k_n},$$

where the summations are taken under all indices. Since \widehat{V} is a C^* -homomorphism of H to A,

$$(u_n \otimes 1^0)(\rho_{H^0}^{A_n} \otimes \mathrm{id})(u_n) = \sum \widehat{V}(v_{i_1t_1}^{k_1}) \otimes \cdots \otimes \widehat{V}(v_{i_nt_n}^{k_n}) \otimes \omega_{i_1j_1}^{k_1} \cdots \omega_{i_nj_n}^{k_n} \otimes \omega_{j_1t_1}^{k_1} \cdots \omega_{j_nt_n}^{k_n}$$

$$= (\mathrm{id} \otimes \Delta^0)(u_n),$$

where the summations are taken under all indices. Therefore we obtain the conclusion. \blacksquare

LEMMA 7.3. With the above notations, $(\iota_n \otimes id) \circ \rho_n = \rho_{n+1} \circ \iota_n$ for any $n \in \mathbb{N}$.

Proof. In this proof, the summations are taken under all indices. Let a be any element in A_n . Then by Lemma 7.1

$$((\iota_n \otimes \mathrm{id}) \circ \rho_n)(a) = \sum (\widehat{V}(w_{ij_1}^k) \otimes \cdots \otimes \widehat{V}(w_{j_{n-1}j})) a(\widehat{V}(w_{st_1}^k)^* \otimes \cdots \otimes \widehat{V}(w_{t_{n-1}j}^k)^*) \otimes (1^0 \rtimes_{\Delta^0} 1) \otimes \phi_{is}^k.$$

On the other hand, since \hat{V} is a C^* -homomorphism of H to A and $w_{t_n i}^{k*} = S(w_{it_n}^k)$,

$$(\rho_{n+1} \circ \iota_n)(a) = \rho_{n+1}(a \otimes (1^0 \rtimes_{\Delta^0} 1))$$

$$= \sum_{k} (\widehat{V}(w_{ij_1}^k) \otimes \cdots \otimes \widehat{V}(w_{j_{n-1}j_n})) a(\widehat{V}(w_{st_1}^k)^* \otimes \cdots \otimes \widehat{V}(w_{t_{n-1}t_n}^k)^*)$$

$$\otimes (1 \rtimes_{\Delta^0} 1) \varepsilon(w_{j_nt_n}^k) \otimes \phi_{is}^k$$

$$= ((\iota_n \otimes \mathrm{id}) \circ \rho_n)(a).$$

Therefore, we obtain the conclusion.

By Lemma 7.3, the inductive limit of $\{(\rho_n, \iota_n)\}$ is a homomorphism of B to $B \otimes H^0$. Furthermore, by Lemma 7.2, it is a coaction of H^0 on B. We denote it by ρ .

PROPOSITION 7.4. With the above notations, ρ is approximately representable.

Proof. Let u be a unitary element in $B^{\infty} \otimes H^0$ defined by $u = (u_n)$, where A_n is regarded as a C^* -subalgebra of B for any $n \in \mathbb{N}$. We can easily show that ρ and u hold the following conditions:

- (i) $\rho(x) = (\operatorname{Ad}(u) \circ \rho_{H^0}^B)(x)$ for any $x \in B$,
- (ii) $(u \otimes 1^0)(\rho_{H^0}^{B^\infty} \otimes \mathrm{id})(u) = (\mathrm{id} \otimes \Delta^0)(u),$
- (iii) $(\rho^{\infty} \otimes id)(u)(u \otimes 1^{0}) = (id \otimes \Delta^{0})(u)$.

Therefore, we obtain the conclusion.

PROPOSITION 7.5. With the above notations, ρ has the Rohlin property.

Proof. By Corollary 6.4, it suffices to show that there is a projection $p \in B_{\infty}$ such that $e \cdot_{\rho^{\infty}} p = \frac{1}{N}$. For any $n \in \mathbb{N}$, let

$$p_n = (1^0 \rtimes_{\Delta^0} 1) \otimes \cdots \otimes (1^0 \rtimes_{\Delta^0} 1) \otimes (\tau \rtimes_{\Delta^0} 1) \in A'_{n-1} \cap A_n.$$

Also, let $p=(p_n)$. Then clearly p is a projection in B_{∞} . In order to show that $e \cdot_{\rho^{\infty}} p = \frac{1}{N}$, we have only to show that $e \cdot_{\rho_n} p_n = \frac{1}{N}$ for any $n \in \mathbb{N}$. We note that

$$u_{n}(p_{n}\otimes 1^{0})u_{n}^{*} = \sum \widehat{V}(w_{ij_{1}}^{k}S(w_{t_{1}s}^{k})) \otimes \widehat{V}(w_{j_{1}j_{2}}^{k}S(w_{t_{2}t_{1}}^{k})) \otimes \cdots \\ \otimes \widehat{V}(w_{j_{n-2}j_{n-1}}^{k}S(w_{t_{n-1}t_{n-2}}^{k})) \otimes \widehat{V}(w_{j_{n-1}j}^{k})(\tau \rtimes_{\Delta^{0}} 1)\widehat{V}(S(w_{j_{t_{n-1}}}^{k})) \otimes \phi_{is}^{k},$$

where the summation is taken under all indices. Hence since $e = \sum_{f,q} \frac{d_f}{N} w_{qq}^f$,

$$\begin{split} e \cdot_{\rho_{n}} p_{n} &= \sum \frac{d_{k}}{N} \widehat{V}(w_{ij_{1}}^{k} S(w_{t_{1}i}^{k})) \otimes \widehat{V}(w_{j_{1}j_{2}}^{k} S(w_{t_{2}t_{1}}^{k})) \otimes \cdots \\ & \otimes \widehat{V}(w_{j_{n-2}j_{n-1}}^{k} S(w_{t_{n-1}t_{n-2}}^{k})) \otimes \widehat{V}(w_{j_{n-1}j}^{k}) (\tau \rtimes_{\Delta^{0}} 1) \widehat{V}(S(w_{jt_{n-1}}^{k})) \\ &= \sum \frac{d_{k}}{N} (1^{0} \rtimes_{\Delta^{0}} 1) \otimes \widehat{V}(w_{j_{1}j_{2}}^{k} S(w_{t_{2}j_{1}}^{k})) \otimes \widehat{V}(w_{j_{1}j_{2}}^{k} S(w_{t_{2}t_{1}}^{k})) \otimes \cdots \\ & \otimes \widehat{V}(w_{j_{n-2}j_{n-1}}^{k} S(w_{t_{n-1}t_{n-2}}^{k})) \otimes \widehat{V}(w_{j_{n-1}j}^{k}) (\tau \rtimes_{\Delta^{0}} 1) \widehat{V}(S(w_{jt_{n-1}}^{k})), \end{split}$$

where the summations are taken under all indices. Doing this in the same way as in the above for n-1 times, we can obtain that

$$e \cdot_{\rho_n} p_n = \sum_{k=0}^{\infty} \frac{d_k}{N} (1^0 \rtimes_{\Delta^0} 1) \otimes \cdots \otimes (1^0 \rtimes_{\Delta^0} 1) \otimes \widehat{V}(w_{j_{n-1}j}^k) (\tau \rtimes_{\Delta^0} 1) \widehat{V}(S(w_{jj_{n-1}j}^k))$$

$$= (1^0 \rtimes_{\Delta^0} 1) \otimes \cdots \otimes (1^0 \rtimes_{\Delta^0} 1) \otimes ([e \cdot_{\Delta^0} \tau] \rtimes_{\Delta^0} 1)$$

$$= \frac{1}{N} (1^0 \rtimes_{\Delta^0} 1) \otimes \cdots \otimes (1^0 \rtimes_{\Delta^0} 1),$$

where the summations are taken under all indices. Therefore, we obtain the conclusion. ■

8. 1-COHOMOLOGY VANISHING THEOREM

Let ρ be a coaction of H^0 on A with the Rohlin property. In this section, we shall show that for any coaction σ of H^0 on A which is exterior equivalent to ρ , there is a unitary element $x \in A \otimes H^0$ such that $\sigma = \operatorname{Ad}(x \otimes 1^0) \circ \rho \circ \operatorname{Ad}(x^*)$.

Let ρ and σ be as above. Since ρ and σ are exterior equivalent, there is a unitary element $v \in A \otimes H^0$ satisfying the following conditions:

(8.1)
$$\sigma = \mathrm{Ad}(v) \circ \rho,$$

$$(8.2) \qquad (v\otimes 1^0)(\rho\otimes \mathrm{id}_{H^0})(v)=(\mathrm{id}\otimes \Delta^0)(v).$$

Since ρ has the Rohlin property, there is a unitary element w in $(A \rtimes_{\sigma} H) \otimes H$ satisfying equations (5.1)–(5.3) for $\widehat{\rho}$. By Proposition 5.5, σ has also the Rohlin property. Hence there is a unitary element $w_1 \in (A \rtimes_{\sigma} H) \otimes H$ satisfying equations (5.1)–(5.3) for $\widehat{\sigma}$. By Lemma 5.6, $\widehat{w}_1(\tau) = \widehat{w}(\tau)$. Let $x = N(\operatorname{id} \otimes e)(v\rho^{\infty}(\widehat{w}(\tau))) = N\widehat{v}(e_{(1)})[e_{(2)} \cdot \rho^{\infty} \widehat{w}(\tau)]$.

LEMMA 8.1. With the above notations, the element x is a unitary element in A^{∞} such that $\rho^{\infty}(x) = v^*(x \otimes 1^0)$.

Proof. Let f = e. Then by Lemmas 5.4 and 5.6

$$\begin{split} xx^* &= N^2 \widehat{v}(e_{(1)})[e_{(2)} \cdot_{\rho^{\infty}} \widehat{w}(\tau)][S(f_{(2)})^* \cdot_{\rho^{\infty}} \widehat{w}(\tau)]\widehat{v}(f_{(1)})^* \\ &= N^2 \widehat{v}(e_{(1)})(1 \rtimes_{\rho} e_{(2)})\widehat{w}(\tau)\tau(e_{(3)}f_{(3)}^*)(1 \rtimes_{\rho} f_{(2)}^*)\widehat{v}(f_{(1)})^* \\ &= N^2 \widehat{v}(e_{(1)})(1 \rtimes_{\rho} e_{(2)})\widehat{w}(\tau)(1 \rtimes_{\rho} S(e_{(3)})e_{(4)}f_{(2)}^*)\tau(e_{(5)}f_{(3)}^*)\widehat{v}(f_{(1)})^* \\ &= N^2 \widehat{v}(e_{(1)})(1 \rtimes_{\rho} e_{(2)})\widehat{w}(\tau)(1 \rtimes_{\rho} S(e_{(3)}))\widehat{v}^*(S(f_{(1)})^*)\tau(e_{(4)}f_{(2)}^*) \\ &= N^2 \widehat{v}(e_{(1)})(1 \rtimes_{\rho} e_{(2)})\widehat{w}(\tau)(1 \rtimes_{\rho} S(e_{(3)}))\widehat{v}^*(e_{(4)})\tau(e_{(5)}f) \\ &= N(\mathrm{id} \otimes e)(v\rho^{\infty}(\widehat{w}(\tau))v^*) = N[e \cdot_{\sigma^{\infty}} \widehat{w}_{1}(\tau)] = 1. \end{split}$$

Let $y = N(\mathrm{id} \otimes e)(v^*\sigma^\infty(\widehat{w}_1(\tau))) = N\widehat{v}^*(e_{(1)})[e_{(2)} \cdot_{\sigma^\infty} \widehat{w}_1(\tau)]$. Then by the above discussions, $yy^* = 1$. On the other hand, by Lemmas 5.6 and 5.7

$$\begin{split} y^* &= N[S(e_{(2)}^*) \cdot_{\sigma^{\infty}} \widehat{w}(\tau)] \widehat{v}(S(e_{(1)}^*)) = N \widehat{v}(S(e_{(2)}^*)) [S(e_{(1)})^* \cdot_{\rho^{\infty}} \widehat{w}(\tau)] \\ &= N(\mathrm{id} \otimes S(e)^*) (v \rho^{\infty}(\widehat{w}(\tau))) = x. \end{split}$$

Thus $x^*x = 1$. Hence x is a unitary element in A^{∞} . Finally, we shall show that $\rho^{\infty}(x) = v^*(x \otimes 1^0)$. Noting that $(v \otimes 1^0)(\rho \otimes \mathrm{id})(v) = (\mathrm{id} \otimes \Delta^0)(v)$,

$$\begin{split} \rho^{\infty}(x) &= N \rho^{\infty}((\mathrm{id} \otimes e)(v \rho^{\infty}(\widehat{w}(\tau)))) \\ &= N(\mathrm{id} \otimes \mathrm{id}_{H^0} \otimes e)((\rho^{\infty} \otimes \mathrm{id}_{H^0})(v)((\rho^{\infty} \otimes \mathrm{id}_{H^0}) \circ \rho^{\infty})(\widehat{w}(\tau))) \\ &= N v^*(\mathrm{id} \otimes \mathrm{id}_{H^0} \otimes e)((\mathrm{id} \otimes \Delta^0)(v \rho^{\infty}(\widehat{w}(\tau)))) \\ &= N v^*(\mathrm{id} \otimes e)(v \rho^{\infty}(\widehat{w}(\tau))) \otimes 1^0 = v^*(x \otimes 1^0). \quad \blacksquare \end{split}$$

LEMMA 8.2. With the above notations, for any $\varepsilon > 0$ there is a unitary element x_0 in A such that

$$||v - (x_0 \otimes 1)\rho(x_0^*)|| < \varepsilon.$$

Proof. By Lemma 8.1, there is a unitary element $x \in A^{\infty}$ such that $v = (x \otimes 1^{0}) \rho^{\infty}(x^{*})$. Since x is a unitary element in A^{∞} , for any $\varepsilon > 0$, there is a unitary element $x_{0} \in A$ such that $\|v - (x_{0} \otimes 1) \rho(x_{0}^{*})\| < \varepsilon$.

THEOREM 8.3. Let ρ and σ be coactions of H^0 on A which are exterior equivalent. We suppose that ρ has the Rohlin property. Then there is a unitary element $x \in A$ such that

$$\sigma = \mathrm{Ad}(x \otimes 1^0) \circ \rho \circ \mathrm{Ad}(x^*).$$

Proof. Let v be a unitary element in $A \otimes H^0$ satisfying equations (8.1) and (8.2). By Lemma 8.2, there is a unitary element $x_0 \in A$ such that

$$||v - (x_0 \otimes 1)\rho(x_0^*)|| < 1.$$

Let

$$\rho_1 = \operatorname{Ad}(x_0 \otimes 1) \circ \rho \circ \operatorname{Ad}(x_0^*) = \operatorname{Ad}((x_0 \otimes 1^0) \rho(x_0^*)) \circ \rho.$$

Let $v_1=(x_0\otimes 1^0)\rho(x_0^*)$. Then ρ_1 is a coaction of H^0 on A. Also, $\sigma=\mathrm{Ad}(vv_1^*)\circ\rho_1$. Let $v_2=vv_1^*$. Then v_2 is a unitary element in $A\otimes H^0$ with

$$||v_2 - 1|| = ||v - v_1|| = ||v - (x_0 \otimes 1^0)\rho(x_0^*)|| < 1.$$

Furthermore, since $v_1 = (x_0 \otimes 1^0) \rho(x_0^*)$,

$$\begin{split} (v_2 \otimes 1^0)(\rho_1 \otimes \mathrm{id})(v_2) &= (v \otimes 1^0)(\rho \otimes \mathrm{id})(v)(\rho \otimes \mathrm{id})(v_1^*)(v_1^* \otimes 1^0) \\ &= (\mathrm{id} \otimes \Delta^0)(v)(\rho \otimes \mathrm{id})(v_1^*)(v_1^* \otimes 1^0) \\ &= (\mathrm{id} \otimes \Delta^0)(v_2)(\mathrm{id} \otimes \Delta^0)(v_1)(\rho \otimes \mathrm{id})(v_1^*)(v_1^* \otimes 1^0) \\ &= (\mathrm{id} \otimes \Delta^0)(v_2)(x_0 \otimes 1^0 \otimes 1^0)((\rho \otimes \mathrm{id}) \circ \rho)(x_0^* x_0)(x_0^* \otimes 1^0 \otimes 1^0) \\ &= (\mathrm{id} \otimes \Delta^0)(v_2). \end{split}$$

Let $y = (id_A \otimes e)(v_2)$. Then

$$\rho_1(y) = (\mathrm{id}_A \otimes \mathrm{id}_{H^0} \otimes e)((v_2^* \otimes 1^0)(\mathrm{id}_A \otimes \Delta^0)(v_2))$$
$$= v_2^*[(\mathrm{id}_A \otimes e)(v_2) \otimes 1^0] = v_2^*(y \otimes 1^0).$$

Since $||1-y|| = ||(\mathrm{id}_A \otimes e)(1-v_2)|| \le ||1-v_2|| < 1$, y is invertible. Let y = x|y| be the polar decomposition of y. Then x is a unitary element in A and

$$\rho_1(y) = v_2^*(y \otimes 1^0) = v_2^*(x \otimes 1^0)(|y| \otimes 1^0).$$

Hence

$$\rho_1(x)\rho_1(|y|) = v_2^*(x \otimes 1^0)(|y| \otimes 1^0).$$

Also,

$$\rho_1(y^*y) = (y^* \otimes 1^0)v_2v_2^*(y \otimes 1) = y^*y \otimes 1.$$

Thus $\rho_1(|y|) = |y| \otimes 1^0$. Hence $\rho_1(x) = v_2^*(x \otimes 1^0)$. It follows that

$$\mathrm{Ad}(x\otimes 1^0)\circ \rho_1\circ \mathrm{Ad}(x^*)=\mathrm{Ad}((x\otimes 1^0)\rho_1(x^*))\circ \rho_1=\mathrm{Ad}(v)\circ \rho=\sigma.$$

Since $\rho_1 = \operatorname{Ad}(x_0 \otimes 1^0) \circ \rho \circ \operatorname{Ad}(x_0^*)$, we obtain the conclusion.

9. 2-COHOMOLOGY VANISHING THEOREM

Let (ρ,u) be a twisted coaction of H^0 on A with the Rohlin property. Let w be a unitary element in $(A^{\infty} \rtimes_{\rho^{\infty},u} H) \otimes H$ satisfying equation (5.1)–(5.3) and let \widehat{w} be the unitary element in $\operatorname{Hom}(H^0,A^{\infty} \rtimes_{\rho^{\infty},u} H)$ induced by w. In this section, we shall show that there is a unitary element $x \in A \otimes H^0$ such that

$$(x \otimes 1^0)(\rho \otimes \mathrm{id})(x)u(\mathrm{id} \otimes \Delta^0)(x^*) = 1 \otimes 1^0 \otimes 1^0.$$

We recall that in Section 3 we construct a system of matrix units of $M_N(\mathbb{C})$,

$$\{(W_I^* \rtimes_{\widehat{\rho}} 1^0)(1 \rtimes_{\rho,u} 1 \rtimes_{\widehat{\rho}} \tau)(W_J \rtimes_{\widehat{\rho}} 1^0)\}_{I,J \in \Lambda}$$

which is contained in $A^{\infty} \rtimes_{\rho^{\infty}, u} H$, where $W_I = \sqrt{d_k} \rtimes_{\rho, u} w_{ij}^k$ for any $I = (i, j, k) \in \Lambda$. By Lemmas 5.4 and 6.1, we obtain the following lemma.

LEMMA 9.1. With the above notations and assumptions, the set $\{W_I^*\widehat{w}(\tau)W_J\}_{I,J\in\Lambda}$ is a system of matrix units of $M_N(\mathbb{C})$, which is contained in $A^{\infty}\rtimes_{\rho^{\infty},u}H$.

Proof. By the proof of Lemma 3.1, for any I = (i, j, k), $J = (s, t, r) \in \Lambda$,

$$W_I W_J^* = \sum_{t_2, t_3, j_3} \sqrt{d_k d_r} \widehat{u}(w_{j_3 i}^k S(w_{t_2 t_3}^r), w_{s t_2}^r)^* \rtimes_{\rho, u} w_{j_3 j}^k w_{t_3 t}^{r*}.$$

Hence by Lemma 5.4 and Theorem 2.2 of [10],

$$\widehat{w}(\tau)W_{I}W_{J}^{*}\widehat{w}(\tau) = \sum_{t_{2},t_{3},j_{3}} \sqrt{d_{k}d_{r}}\tau(w_{j_{3}j}^{k}w_{t_{3}t}^{r*})\widehat{u}^{*}(w_{ij_{3}}^{k}w_{t_{2}t_{3}}^{r*},w_{t_{2}s}^{r})\widehat{w}(\tau).$$

If $k \neq r$ or $j \neq t$, then $\widehat{w}(\tau)W_IW_I^*\widehat{w}(\tau) = 0$. We suppose that k = r and j = t.

$$\widehat{w}(\tau)W_{I}W_{J}^{*}\widehat{w}(\tau) = \sum_{t_{2},t_{3}}\widehat{u}^{*}(w_{it_{3}}^{k}S(w_{t_{3}t_{2}}^{k}), w_{t_{2}s}^{k})\widehat{w}(\tau) = \delta_{is}\widehat{w}(\tau),$$

where δ_{is} is the Kronecker delta. Thus for any $K, L, I, J \in \Lambda$,

$$W_K^* \widehat{w}(\tau) W_I W_I^* \widehat{w}(\tau) W_L = 0$$

if $I \neq J$. We suppose that I = J. Then since $\widehat{w}(\tau)W_IW_I^*\widehat{w}(\tau) = \widehat{w}(\tau)$,

$$W_K^*\widehat{w}(\tau)W_IW_I^*\widehat{w}(\tau)W_L = W_K^*\widehat{w}(\tau)W_L.$$

Furthermore,

$$\sum_{I \in \Lambda} W_I^* \widehat{w}(\tau) W_I W_I^* \widehat{w}(\tau) W_I = \sum_{I \in \Lambda} W_I^* \widehat{w}(\tau) W_I = 1$$

by Lemma 6.1. Therefore we obtain the conclusion.

We suppose that the C^* -Hopf algebra H^0 acts on a unital C^* -algebra $\mathbb C$ trivially. Then by the discussions before Lemma 9.1, the set $\{(W_{0I}^*\rtimes_{\Delta}1^0)(1\rtimes 1\rtimes_{\Delta}\tau)(W_{0J}\rtimes_{\Delta}1^0)\}_{I,J\in\Lambda}$ is a system of matrix units of $\mathbb C\rtimes H\rtimes_{\Delta}H^0$ which is isomorphic to $M_N(\mathbb C)$, where $W_{0I}=\sqrt{d_k}\rtimes w_{ij}^k\in\mathbb C\rtimes H$ for any $I=(i,j,k)\in\Lambda$. Thus we obtain the following homomorphism θ of $\mathbb C\rtimes H\rtimes_{\Delta}H^0$ into $A^{\infty}\rtimes_{\rho^{\infty},u}H$. For any $I,J\in\Lambda$,

$$\theta((W_{0I}^* \rtimes_{\Delta} 1^0)(1 \rtimes 1 \rtimes_{\Delta} \tau)(W_{0I} \rtimes_{\Delta} 1^0)) = W_I^* \widehat{w}(\tau) W_I.$$

LEMMA 9.2. With the above notations, for any $h \in H$,

$$\theta(1 \rtimes h) = \sum_{i,i,k} d_k (1 \rtimes_{\rho,u} w_{ij}^k)^* \widehat{w}(\tau) (1 \rtimes_{\rho,u} w_{ij}^k h).$$

Proof. Let *h* be any element in *H*. Then by Lemma 6.1,

$$1 \times h = \sum_{I \in \Lambda} (W_I \rtimes_{\Delta} 1^0)^* (1 \rtimes 1 \rtimes_{\Delta} \tau) (W_I \rtimes_{\Delta} 1^0) (1 \rtimes h \rtimes_{\Delta} 1^0)$$
$$= \sum_{i,j,k} d_k (1 \rtimes w_{ij}^k \rtimes_{\Delta} 1^0)^* (1 \rtimes 1 \rtimes_{\Delta} \tau) (1 \rtimes w_{ij}^k h \rtimes_{\Delta} 1^0).$$

Since $\{w_{ij}^k\}$ is a system of comatrix units of H, for any i, j, k there are elements $(c_{ij}^k)_{st}^r \in \mathbb{C}$ such that $w_{ij}^k h = \sum\limits_{s,t,r} (c_{ij}^k)_{st}^r w_{st}^r$. Hence

$$1 \rtimes h = \sum_{i,j,k,s,t,r} d_k(c_{ij}^k)_{st}^r (1 \rtimes w_{ij}^k \rtimes_{\Delta} 1^0)^* (1 \rtimes 1 \rtimes_{\Delta} \tau) (1 \rtimes w_{st}^r \rtimes_{\Delta} 1^0).$$

Thus by the definition of θ ,

$$\begin{split} \theta(1 \rtimes h) &= \sum_{i,j,k,r,s,t} d_k (c_{ij}^k)_{st}^r (1 \rtimes_{\rho,u} w_{ij}^k)^* \widehat{w}(\tau) (1 \rtimes_{\rho,u} w_{st}^r) \\ &= \sum_{i,j,k} d_k (1 \rtimes_{\rho,u} w_{ij}^k)^* \widehat{w}(\tau) (1 \rtimes_{\rho,u} w_{ij}^k h). \quad \blacksquare \end{split}$$

The restriction of θ to $1 \rtimes H$, the C^* -subalgebra of $\mathbb{C} \rtimes H \rtimes_{\Delta} H^0$ is a homomorphism of H to $A^{\infty} \rtimes_{\rho^{\infty},u} H$. Hence there is a unitary element $v \in (A^{\infty} \rtimes_{\rho^{\infty},u} H) \otimes H^0$ such that $\theta|_{1\rtimes H} = \widehat{v}$. We recall the definitions V and \widehat{V} . Let \widehat{V} be a linear map from H to $A \rtimes_{\rho,u} H$ defined by $\widehat{V}(h) = 1 \rtimes_{\rho,u} h$ for any $h \in H$ and let V be the element in $(A \rtimes_{\rho,u} H) \otimes H^0$ induced by \widehat{V} . Then V and \widehat{V} are unitary elements in $(A \rtimes_{\rho,u} H) \otimes H^0$ and $\operatorname{Hom}(H, A \rtimes_{\rho,u} H)$, respectively. Let X be a unitary element in $(A^{\infty} \rtimes_{\rho^{\infty},u} H) \otimes H^0$ defined by $X = vV^*$.

LEMMA 9.3. With the above notations, $\widehat{x}(h) \in A^{\infty}$ for any $h \in H$.

Proof. Since $w_{ij}^{k*}=S(w_{ij}^k)$ for any i,j,k, by Lemma 9.2 and Theorem 2.2 of [10], for any $h\in H$,

$$\begin{split} \widehat{x}(h) &= \widehat{v}(h_{(1)}) \widehat{V}(S(h_{(2)}^*))^* \\ &= \sum_{i,j,k,j_1,j_2,j_4,i_1} d_k(\widehat{u}^*(w_{j_1j_2}^{k*},w_{j_1i}^k)[w_{j_2j_3}^{k*} \cdot_{\rho,u} \widehat{w}(\tau)] \widehat{u}(w_{j_3j_4}^{k*},w_{ii_1}^k h_{(1)}) \\ & \times_{\rho,u} S(w_{jj_4}^k) w_{i_1j}^k h_{(2)}) (\widehat{u}^*(S(h_{(4)}),h_{(5)}) \rtimes_{\rho,u} S(h_{(3)})) \\ &= \sum_{i,k,j_1,j_2,j_3,j_4} d_k \widehat{u}^*(w_{j_1j_2}^{k*},w_{j_1i}^k)[w_{j_2j_3}^{k*} \cdot_{\rho,u} \widehat{w}(\tau)] \widehat{u}(w_{j_3j_4}^{k*},w_{ij_4}^k h_{(1)}) \\ & \times [h_{(2)} \cdot_{\rho,u} \widehat{u}^*(S(h_{(5)}),h_{(6)})] \widehat{u}(h_{(3)},S(h_{(4)})). \end{split}$$

Furthermore, using the equations (i) and (ii) in Section 2, we can see that for any $h \in H$,

$$\widehat{x}(h) = \sum_{i,k,j_1,j_2,j_3,j_4} d_k \widehat{u}^*(w_{j_1j_2}^{k*}, w_{j_1i}^k) [w_{j_2j_3}^{k*} \cdot_{\rho,u} \widehat{w}(\tau)] \widehat{u}(w_{j_3j_4}^{k*}, w_{ij_4}^k h).$$

Since $w_{j_2j_3}^{k*}\cdot_{\rho,u}\widehat{w}(\tau)\in A^{\infty}$ for any j_2,j_3,k , we obtain the conclusion.

By the above lemma, we can see that x is a unitary element in $A^{\infty} \otimes H^0$. We recall that $\rho_{H^0}^{A \rtimes_{\rho,u} H}$ is the trivial coaction of H^0 on $A \rtimes_{\rho,u} H$ defined by $\rho_{H^0}^{A \rtimes_{\rho,u} H}(a) = a \otimes 1^0$ for any $a \in A \rtimes_{\rho,u} H$. Also, we note that $\rho = \operatorname{Ad}(V) \circ \rho_{H^0}^{A \rtimes_{\rho,u} H}$ by Lemma 3.12 of [6], where we regard A as a C^* -subalgebra of $A \rtimes_{\rho,u} H$. Furthermore, since \widehat{v} is a homomorphism of H to $A^{\infty} \rtimes_{\rho^{\infty},u} H$,

$$(v\otimes 1^0)(\rho_{H^0}^{A^\infty\rtimes_{\rho^\infty,u}H}\otimes \mathrm{id})(v)=(\mathrm{id}\otimes\Delta^0)(v).$$

PROPOSITION 9.4. With the above notations,

$$(x \otimes 1^0)(\rho^{\infty} \otimes \mathrm{id})(x)u(\mathrm{id} \otimes \Delta^0)(x^*) = 1 \otimes 1^0 \otimes 1^0.$$

Proof. Since
$$x = vV^*$$
 and $\rho = \operatorname{Ad}(V) \circ \rho_{H^0}^{A \rtimes \rho, uH}$,

$$\begin{split} (\rho^{\infty} \otimes \mathrm{id})(x^*)(x^* \otimes 1^0)(\mathrm{id} \otimes \Delta^0)(x) \\ &= (V \otimes 1^0)(\rho_{H^0}^{A^{\infty} \rtimes_{\rho^{\infty}, u} H} \otimes \mathrm{id})(Vv^*)(v^* \otimes 1^0)(\mathrm{id} \otimes \Delta^0)(vV^*). \end{split}$$

Since
$$(v\otimes 1^0)(\rho_{H^0}^{A^\infty\rtimes_{\rho^\infty,u}H}\otimes\mathrm{id})(v)=(\mathrm{id}\otimes\Delta^0)(v)$$
,

$$(\rho^{\infty} \otimes \mathrm{id})(x^*)(x^* \otimes 1^0)(\mathrm{id} \otimes \Delta^0)(x) = u$$

by Lemma 3.12 of [6]. ■

We recall that $\{\phi_{ii}^k\}$ is a system of matrix units of H^0 .

LEMMA 9.5. Let (ρ, u) be a twisted coaction of H^0 on A with the Rohlin property. Then for any $\varepsilon > 0$, there is a unitary element $x \in A \otimes H^0$ satisfying that

$$\|(x \otimes 1^0)(\rho \otimes \mathrm{id})(x)u(\mathrm{id} \otimes \Delta^0)(x^*) - 1 \otimes 1^0 \otimes 1^0\| < \varepsilon,$$

$$\|x - 1 \otimes 1^0\| < \varepsilon + L\|u - 1 \otimes 1^0 \otimes 1^0\|,$$

where L is a constant number with $L \ge 1$.

Proof. Modifying the proof of Izumi's Lemma 3.12 in [4], we shall prove this lemma. By Proposition 9.4, there is a unitary element $x_0 \in A^{\infty} \otimes H^0$ satisfying that

$$(x_0 \otimes 1^0)(\rho^{\infty} \otimes id)(x_0)u(id \otimes \Delta^0)(x_0^*) = 1 \otimes 1^0 \otimes 1^0.$$

By the proof of Lemma 9.3, for any $h \in H$,

$$\widehat{x_0}(h) = \sum_{i,i,k} d_k \widehat{V}(w_{ij}^k)^* \widehat{w}(\tau) \widehat{V}(w_{ij}^k h_{(1)}) \widehat{V}^*(h_{(2)}).$$

Thus

$$x_0 = \sum_{i,j,k,s,t,r,t_1} d_k \widehat{V}(w_{ij}^k)^* \widehat{w}(\tau) \widehat{V}(w_{ij}^k w_{st_1}^r) \widehat{V}^*(w_{t_1t}^r) \otimes \phi_{st}^r.$$

Since $\sum\limits_{i,j,k} d_k \widehat{V}(w_{ij}^k)^* \widehat{w}(\tau) \widehat{V}(w_{ij}^k) = 1$ by Lemma 6.1,

$$1\otimes 1^0 = \sum_{i,j,k,s,t,r,t_1} d_k \widehat{V}(w_{ij}^k)^* \widehat{w}(\tau) \widehat{V}(w_{ij}^k) \widehat{V}(w_{st_1}^r) \widehat{V}^*(w_{t_1t}^r) \otimes \phi_{st}^r.$$

Also since $u = (V \otimes 1^0)(\rho_{H^0}^{A \rtimes_{\rho,u} H} \otimes id)(V)(id \otimes \Delta^0)(V^*)$ by Lemma 3.12 of [6],

$$\widehat{V}(w_{ij}^k)\widehat{V}(w_{st_1}^r) = \sum_{j_1,t_2} \widehat{u}(w_{ij_1}^k,w_{st_2}^r)\widehat{V}(w_{j_1j}^kw_{t_2t_1}^r)$$

for any i, j, k, s, t_1, r . Hence

$$\begin{split} x_0 - 1 \otimes 1^0 &= \sum_{i,j,k,s,t,r,t_1,t_2,j_1} d_k \widehat{V}(w_{ij}^k)^* \widehat{w}(\tau) [\varepsilon(w_{ij_1}^k) \varepsilon(w_{st_2}^r) - \widehat{u}(w_{ij_1}^k, w_{st_2}^r)] \\ &\times \widehat{V}(w_{i_1j}^k w_{t_2t_1}^r) \widehat{V}^*(w_{t_1t}^r) \otimes \phi_{st}^r. \end{split}$$

Since there is a constant number $L_1 > 0$ such that

$$\|\varepsilon(w_{ij_1}^k)\varepsilon(w_{st_2}^r) - \widehat{u}(w_{ij_1}^k, w_{st_2}^r)\| \leqslant L_1\|1 \otimes 1^0 \otimes 1^0 - u\|$$

for any i, j_1 , k, s, t_2 , r,

$$\begin{split} \|x_0 - 1 \otimes 1 \otimes 1^0\| \\ & \leq L_1 \sum_{i,j,k,s,t,r,t_1,t_2,j_1} d_k \|\widehat{V}(w_{ij}^k)\| \, \|\widehat{V}(w_{j_1j}^k w_{t_2t_1}^r) \widehat{V}^*(w_{t_1t}^r)\| \|1 \otimes 1^0 \otimes 1^0 - u\|. \end{split}$$

Since x_0 is a unitary element in $A^{\infty} \otimes H^0$, we can choose a desired unitary element x in $A \otimes H^0$.

THEOREM 9.6. Let (ρ, u) be a twisted coaction of a finite dimensional C^* -Hopf algebra H^0 on a unital C^* -algebra A with the Rohlin property. Then there is a unitary element $x \in A \otimes H^0$ such that

$$(x \otimes 1^0)(\rho \otimes \mathrm{id})(x)u(\mathrm{id} \otimes \Delta^0)(x^*) = 1 \otimes 1^0 \otimes 1^0.$$

Proof. We shall prove this lemma modifying the proof of Lemma 3.12 in [4]. Let $u_0 = u$ and $\rho_0 = \rho$. By Lemma 9.5, for $\frac{1}{2L}$, there is a unitary element $y_0 \in A \otimes H^0$ such that

$$\|1 \otimes 1^0 \otimes 1^0 - (y_0 \otimes 1^0)(\rho_0 \otimes \mathrm{id})(y_0)u_0(\mathrm{id} \otimes \Delta^0)(y_0^*)\| < \frac{1}{2L} < \frac{1}{2}.$$

Let

$$\rho_1 = \mathrm{Ad}(y_0) \circ \rho_0, \quad u_1 = (y_0 \otimes 1^0)(\rho_0 \otimes \mathrm{id})(y_0)u_0(\mathrm{id} \otimes \Delta^0)(y_0^*).$$

Then since (ρ_1, u_1) is a twisted coaction of H^0 on A which is exterior equivalent to (ρ_0, u_0) , by Proposition 5.5, (ρ_1, u_1) has the Rohlin property. Thus by Lemma 9.5,

for $\frac{1}{(2L)^2}$, there is a unitary element $y_1 \in A \otimes H^0$ such that

$$||1 \otimes 1^{0} \otimes 1^{0} - (y_{1} \otimes 1^{0})(\rho_{1} \otimes id)(y_{1})u_{1}(id \otimes \Delta^{0})(y_{1}^{*})|| < \frac{1}{(2L)^{2}} < \frac{1}{2^{2}},$$

$$||y_{1} - 1 \otimes 1^{0}|| < \frac{1}{(2L)^{2}} + L||u_{1} - 1 \otimes 1^{0} \otimes 1^{0}|| < \frac{1}{(2L)^{2}} + \frac{1}{2} < \frac{3}{2^{2}}$$

since $u_1 = (y_0 \otimes 1^0)(\rho_0 \otimes id)(y_0)u_0(id \otimes \Delta^0)(y_0^*)$. Let

$$\rho_2 = \mathrm{Ad}(y_1) \circ \rho_1, \quad u_2 = (y_1 \otimes 1^0)(\rho_1 \otimes \mathrm{id})(y_1)u_1(\mathrm{id} \otimes \Delta^0)(y_1^*).$$

Then since (ρ_2, u_2) is a twisted coaction of H^0 on A which is exterior equivalent to (ρ_1, u_1) , by Proposition 5.5, (ρ_2, u_2) has the Rohlin property. Thus by Lemma 9.5, for $\frac{1}{(2L)^3}$, there is a unitary element $y_2 \in A \otimes H^0$ such that

$$||1 \otimes 1^{0} \otimes 1^{0} - (y_{2} \otimes 1^{0})(\rho_{2} \otimes id)(y_{2})u_{2}(id \otimes \Delta^{0})(y_{2}^{*})|| < \frac{1}{(2L)^{3}} < \frac{1}{2^{3}},$$

$$||y_{2} - 1 \otimes 1^{0}|| < \frac{1}{(2L)^{3}} + L||u_{2} - 1 \otimes 1^{0} \otimes 1^{0}|| < \frac{1}{(2L)^{3}} + \frac{1}{2^{2}} < \frac{3}{2^{3}}.$$

It follows by induction that there are sequences $\{(\rho_n, u_n)\}$ of twisted coactions of H^0 on A and $\{y_n\}$ of unitary elements in $A \otimes H^0$ satisfying that for any $n \in \mathbb{N}$,

$$\|1\otimes 1^0\otimes 1^0-u_n\|<\frac{1}{(2L)^n}<\frac{1}{2^n},\quad \|1\otimes 1^0-y_n\|<\frac{3}{2^{n+1}}.$$

Let $x_n = y_n y_{n-1} \cdots y_0 \in A \otimes H^0$ for any $n \in \mathbb{N} \cup \{0\}$. Then x_n is a unitary element in $A \otimes H^0$ satisfying that

$$u_{n+1} = (x_n \otimes 1^0)(\rho \otimes \mathrm{id})(x_n)u_0(\mathrm{id} \otimes \Delta^0)(x_n^*)$$

for any $\in \mathbb{N} \cup \{0\}$ by routine computations. Furthermore,

$$||u_n - 1 \otimes 1^0 \otimes 1^0|| < \frac{1}{2^n} \to 0 \quad (n \to +\infty).$$

Also, since by easy computations, we see that $\{x_n\}$ is a Cauchy sequence, there is a unitary element $x \in A \otimes H^0$ such that $x_n \to x$ $(n \to +\infty)$. Therefore, we obtain that

$$1\otimes 1^0\otimes 1^0=(x\otimes 1^0)(\rho\otimes \mathrm{id})(x)u(\mathrm{id}\otimes \Delta^0)(x^*). \quad \blacksquare$$

10. APPROXIMATE UNITARY EQUIVALENCE OF COACTIONS

Let ρ be a coaction of H^0 on A with the Rohlin property. Let w be a unitary element in $(A^{\infty} \rtimes_{\rho^{\infty}} H) \otimes H$ satisfying equations (5.1)–(5.3) for $\widehat{\rho}$. Let (ρ_1, u) be a twisted coaction H^0 on A which is exterior equivalent to ρ . Let v be a unitary element in $A \otimes H^0$ satisfying conditions (i), (ii) in Definition 2.2, that is,

(i)
$$\rho_1 = \operatorname{Ad}(v) \circ \rho$$
,

(ii)
$$u = (v \otimes 1)(\rho \otimes id)(v)(id \otimes \Delta)(v^*).$$

By Proposition 5.5, (ρ_1, u) has the Rohlin property. Let w_1 be a unitary element in $(A^{\infty} \rtimes_{\rho_1^{\infty}, u} H) \otimes H$ satisfying equations (5.1)–(5.3) for $\widehat{\rho}_1$. By Lemma 5.6, $\widehat{w}(\tau) = \widehat{w}_1(\tau)$. Let

$$x = N(\mathrm{id} \otimes e)(v\rho^{\infty}(\widehat{w}(\tau))) = N\widehat{v}(e_{(1)})[e_{(2)} \cdot_{\rho^{\infty}} \widehat{w}(\tau)].$$

We have the following lemma which is similar to Lemma 8.1.

LEMMA 10.1. With the above notations and assumptions, x is a unitary element in A^{∞} .

Proof. In the same way as in the proof of Lemma 8.1, we can see that $xx^* = 1$. Next we shall show that $x^*x = 1$. Let f = e.

$$\begin{split} x^*x &= N^2[S(e^*_{(2)}) \cdot_{\rho^\infty} \widehat{w}(\tau)] \widehat{v}^*(S(e_{(1)})^*) \widehat{v}(f_{(1)}) [f_{(2)} \cdot_{\rho^\infty} \widehat{w}(\tau)] \\ &= N^2 \widehat{V}(S(e^*_{(4)})) \widehat{w}(\tau) ([e^*_{(2)} \cdot_{\rho} \widehat{v}^*(S(e^*_{(1)})) \widehat{v}(f_{(1)})] \rtimes_{\rho} e^*_{(3)} f_{(2)}) \widehat{w}(\tau) \widehat{V}^*(f_{(3)}) \\ &= N^2 \widehat{V}(S(e^*_{(4)})) [e^*_{(2)} \cdot_{\rho} \widehat{v}^*(S(e^*_{(1)})) \widehat{v}(f_{(1)})] \tau(e^*_{(3)} f_{(2)}) \widehat{w}(\tau) \widehat{V}^*(f_{(3)}) \\ &= N^2 \widehat{V}(S(e^*_{(4)})) [e^*_{(2)} \cdot_{\rho} \widehat{v}^*(S(e^*_{(1)})) \widehat{v}(S(e^*_{(3)}))] \tau(e^*_{(4)} f_{(1)}) \widehat{w}(\tau) \widehat{V}^*(f_{(2)}) \\ &= N[S(e^*_{(4)}) \cdot_{\rho^\infty} [e^*_{(2)} \cdot_{\rho} \widehat{v}^*(S(e^*_{(1)})) \widehat{v}(S(e^*_{(3)}))] \widehat{w}(\tau)]. \end{split}$$

Let $E^{\rho^{\infty}}$ be the conditional expectation from A^{∞} onto $(A^{\rho})^{\infty}$. Then since $e = \sum_{i,k} \frac{d_k}{N} w_{ii}^k$,

$$\begin{split} E^{\rho^{\infty}}(x^*x) &= f \cdot_{\rho^{\infty}} x^*x = N[f \cdot_{\rho^{\infty}} [e^*_{(2)} \cdot_{\rho} \widehat{v}^*(S(e^*_{(1)}))\widehat{v}(S(e^*_{(3)}))]\widehat{w}(\tau)] \\ &= \sum_{i,j,j_1,k} d_k [f \cdot_{\rho^{\infty}} [w^{k*}_{jj_1} \cdot_{\rho} \widehat{v}^*(w^k_{ji})\widehat{v}(w^k_{ij_1})]\widehat{w}(\tau)] \\ &= \sum_{i,k} d_k [f \cdot_{\rho^{\infty}} [w^{k*}_{jj} \cdot_{\rho} 1]\widehat{w}(\tau)] = N[f \cdot_{\rho^{\infty}} \widehat{w}(\tau)] = 1 \end{split}$$

by Lemma 5.7. Since $E^{\rho^{\infty}}$ is faithful, we obtain the conclusion.

DEFINITION 10.2. Coactions ρ and σ of H^0 on A are approximately unitarily equivalent if there is a unitary element $v \in A^{\infty} \otimes H^0$ such that, for any $a \in A$,

$$\sigma(a) = v\rho(a)v^*.$$

Let ρ and σ be coactions of H^0 on A which are approximately unitarily equivalent. Then there is a unitary element v in $A^{\infty} \otimes H^0$ such that $\sigma(a) = v\rho(a)v^*$ for any $a \in A$. We write $v = (v_n)$, where v_n is a unitary element in A. Then since $a(\mathrm{id} \otimes \varepsilon^0)(v) = (\mathrm{id} \otimes \varepsilon^0)(v)a$ for any $a \in A$, $(\mathrm{id} \otimes \varepsilon^0)(v)$ is a unitary element in A_{∞} . Let $z = (\mathrm{id} \otimes \varepsilon^0)(v)$ and $w = v(z^* \otimes 1^0)$. Then w is a unitary element in $A^{\infty} \otimes H^0$ and

$$w\rho(a)w^* = v(z^* \otimes 1^0)\rho(a)(z \otimes 1^0)v^* = v\rho(a)v^* = \sigma(a)$$

for any $a \in A$. Furthermore, $(id \otimes \varepsilon^0)(w) = zz^* = 1$. Hence if we write $w = (w_n)$, where w_n is a unitary element in $A \otimes H^0$, then $w_n = v_n((id \otimes \varepsilon^0)(v_n^*) \otimes 1^0)$. Thus

 $(id \otimes \varepsilon^0)(w_n) = 1$. Therefore, we may assume that $(id \otimes \varepsilon^0)(v_n) = 1$ for any $n \in \mathbb{N}$. We shall show the following lemma.

LEMMA 10.3. Let σ and ρ be coactions of H^0 on A. We suppose that ρ has the Rohlin property and that σ is approximately unitary equivalent to ρ . Then for each finite subset F of A and any positive number $\varepsilon > 0$, there is a unitary element $x \in A$ such that

$$\begin{split} &\|\sigma(a) - (\mathrm{Ad}(x \otimes 1^0) \circ \rho \circ \mathrm{Ad}(x^*))(a)\| < \varepsilon, \\ &\|xa - ax\| < \varepsilon + L \max_{i,j,k} \|\sigma([S(w_{ij}^k) \cdot_{\rho} a]) - \rho([S(w_{ij}^k) \cdot_{\rho} a])\| \end{split}$$

for any $a \in F$, where $L = \sum_{i,j,k} d_k || \mathrm{id} \otimes w_{ij}^k ||$.

We shall prove this lemma by showing a series of several lemmas. Since ρ and σ are approximately unitarily equivalent, there is a unitary element $v_0 \in A^\infty \otimes H^0$ such that $\sigma(a) = v_0 \rho(a) v_0^*$ for any $a \in A$. Let F be any finite subset of A and ε any positive number. Then there is a unitary element $v \in A \otimes H^0$ with $(\mathrm{id} \otimes \varepsilon^0)(v) = 1$ such that

$$\begin{split} &\|\sigma(a) - v\rho(a)v^*\| < \varepsilon, \\ &\|\sigma([S(w_{ij}^k) \cdot_{\sigma} a]) - v\rho([S(w_{ij}^k) \cdot_{\sigma} a])v^*\| < \varepsilon, \\ &\|\sigma([S(w_{ij}^k) \cdot_{\rho} a]) - v\rho([S(w_{ij}^k) \cdot_{\rho} a])v^*\| < \varepsilon. \end{split}$$

for any $a \in F$ and $i, j = 1, 2, \ldots, d_k, k = 1, 2, \ldots, K$. Let $x = N(\operatorname{id} \otimes e)(v\rho^{\infty}(\widehat{w}(\tau)))$. Let $\rho_1 = \operatorname{Ad}(v) \circ \rho$ and $u = (v \otimes 1^0)(\rho \otimes \operatorname{id})(v)(\operatorname{id} \otimes \Delta^0)(v^*)$. Then (ρ_1, u) is a twisted coaction of H^0 on A which is exterior equivalent to ρ . Hence by Lemma 10.1, x is a unitary element in A^{∞} .

LEMMA 10.4. With the above notations and assumptions, for any $a \in F$,

$$\|\rho(x)(x^*\otimes 1^0)v\rho(a) - N(\mathrm{id}\otimes e)((\rho\otimes \mathrm{id})(v)(\mathrm{id}\otimes \Delta^0)(\rho^\infty(\widehat{w}(\tau))v^*))\sigma(a)v\| < N\varepsilon.$$

Proof. We note that

$$x = N(\operatorname{id} \otimes e)(v\rho^{\infty}(\widehat{w}(\tau))) = \sum_{i,k} d_k(\operatorname{id} \otimes w_{ii}^k)(v\rho^{\infty}(\widehat{w}(\tau))) = \sum_{i,j,k} d_k \widehat{v}(w_{ij}^k)[w_{ji}^k \cdot_{\rho^{\infty}} \widehat{w}(\tau)].$$

Also, $x^*=N[e_{(1)}\cdot_{\rho^\infty}\widehat{w}(\tau)]\widehat{v}^*(e_{(2)})$ since $x=N(\mathrm{id}\otimes S(e^*))(v\rho^\infty(\widehat{w}(\tau)))$. Then by Lemma 5.4 for any $h\in H$,

$$\begin{split} &(\rho(x)(x^* \otimes 1^0)v\rho(a))\widehat{(}h) \\ &= [h_{(1)} \cdot_{\rho^{\infty}} x]x^*\widehat{v}(h_{(2)})[h_{(3)} \cdot_{\rho} a] \\ &= N \sum_{i,j,k,t} d_k [h_{(1)} \cdot_{\rho} \widehat{v}(w_{ij}^k)]\widehat{V}(h_{(2)}w_{jt}^k)\tau(S(h_{(3)}w_{ti}^k)e_{(1)})\widehat{w}(\tau)\widehat{V}^*(e_{(2)}) \\ &\times \widehat{v}^*(e_{(3)})\widehat{v}(h_{(4)})[h_{(5)} \cdot_{\rho} a] \end{split}$$

$$\begin{split} &= N \sum_{i,j,k,t,t_1,t_2} d_k [h_{(1)} \cdot \rho \ \widehat{v}(w_{ij}^k)] \widehat{V}(h_{(2)} w_{jt}^k) \widehat{w}(\tau) \widehat{V}^*(h_{(3)} w_{tt_1}^k S(h_{(4)} w_{t_1t_2}^k) e_{(2)}) \\ &\quad \times \tau(S(h_{(5)} w_{t_2i}^k) e_{(1)}) \widehat{v}^*(e_{(3)}) \widehat{v}(h_{(6)}) [h_{(7)} \cdot \rho \ a] \\ &= N \sum_{i,j,k,t,t_1,t_2,t_3} d_k [h_{(1)} \cdot \rho \ \widehat{v}(w_{ij}^k)] \widehat{V}(h_{(2)} w_{jt}^k) \widehat{w}(\tau) \widehat{V}^*(h_{(3)} w_{tt_1}^k) \\ &\quad \times \widehat{v}^*(h_{(4)} w_{t_1t_2}^k S(h_{(5)} w_{t_2t_3}^k) e_{(2)}) \tau(S(h_{(6)} w_{t_3i}^k) e_{(1)}) \widehat{v}(h_{(7)}) [h_{(8)} \cdot \rho \ a] \\ &= N \sum_{i,j,k,t,t_1,t_2} d_k [h_{(1)} \cdot \rho \ \widehat{v}(w_{ij}^k)] \widehat{V}(h_{(2)} w_{jt}^k) \widehat{w}(\tau) \widehat{V}^*(h_{(3)} w_{tt_1}^k) \widehat{v}^*(h_{(4)} w_{t_1t_2}^k) \\ &\quad \times \tau(S(h_{(5)} w_{t_2i}^k) e) \widehat{v}(h_{(6)}) [h_{(7)} \cdot \rho \ a] \\ &= \sum_{i,i,k,t_1} d_k [h_{(1)} \cdot \rho \ \widehat{v}(w_{ij}^k)] [h_{(2)} w_{jt_1}^k \cdot \rho^\infty \ \widehat{w}(\tau)] \widehat{v}^*(h_{(3)} w_{t_1i}^k) \widehat{v}(h_{(4)}) [h_{(5)} \cdot \rho \ a]. \end{split}$$

Thus

$$\begin{split} \rho(x)(x^*\otimes 1^0)v\rho(a) &= \sum_{i,k} d_k(\mathrm{id}\otimes w^k_{ii})((\rho\otimes\mathrm{id})(v)(\mathrm{id}\otimes\Delta^0)(\rho^\infty(\widehat{w}(\tau))v^*))v\rho(a) \\ &= N(\mathrm{id}\otimes e)((\rho\otimes\mathrm{id})(v)(\mathrm{id}\otimes\Delta^0)(\rho^\infty(\widehat{w}(\tau))v^*))v\rho(a). \end{split}$$

Hence

$$\begin{split} &\|\rho(x)(x^*\otimes 1^0)v\rho(a) - N(\mathrm{id}\otimes e)((\rho\otimes\mathrm{id})(v)(\mathrm{id}\otimes\Delta^0)(\rho^\infty(\widehat{w}(\tau))v^*))\sigma(a)v\| \\ &= N\|(\mathrm{id}\otimes e)((\rho\otimes\mathrm{id})(v)(\mathrm{id}\otimes\Delta^0)(\rho^\infty(\widehat{w}(\tau))v^*))(v\rho(a) - \sigma(a)v)\| \\ &\leqslant N\|v\rho(a) - \sigma(a)v\| = N\|v\rho(a)v^* - \sigma(a)\| < N\varepsilon. \quad \blacksquare \end{split}$$

LEMMA 10.5. With the above notations and assumptions, for any $a \in F$,

$$\begin{split} & \left\| N(\mathrm{id} \otimes e)((\rho \otimes \mathrm{id})(v)(\mathrm{id} \otimes \Delta^0)(\rho^\infty(\widehat{w}(\tau))v^*))\sigma(a)v \\ & - \sum_{i,j,k} d_k(\mathrm{id} \otimes w_{ij}^k)((\rho \otimes \mathrm{id})(v)(\mathrm{id} \otimes \Delta^0)(\rho^\infty(\widehat{w}(\tau))\rho([S(w_{ji}^k) \cdot_\sigma a])v^*))v \right\| < L\varepsilon, \\ & \text{where } L = \sum_{i,j,k} d_k \|\mathrm{id} \otimes w_{ij}^k\|. \end{split}$$

Proof. Since
$$e = \sum_{i,k} \frac{d_k}{N} w_{ii}^k$$
,

$$N(\mathrm{id} \otimes e)((\rho \otimes \mathrm{id})(v)(\mathrm{id} \otimes \Delta^{0})(\rho^{\infty}(\widehat{w}(\tau))v^{*}))\sigma(a)v$$

$$= \sum_{i,k} d_{k}(\mathrm{id} \otimes w_{ii}^{k})((\rho \otimes \mathrm{id})(v)(\mathrm{id} \otimes \Delta^{0})(\rho^{\infty}(\widehat{w}(\tau))v^{*}))\sigma(a)v.$$

Thus for any $h \in H$

$$[N(\mathrm{id} \otimes e)((\rho \otimes \mathrm{id})(v)(\mathrm{id} \otimes \Delta^{0})(\rho^{\infty}(\widehat{w}(\tau))v^{*}))\sigma(a)v](h)$$

$$= \sum_{i,j,k,t_{1}} d_{k}[h_{(1)} \cdot_{\rho} \widehat{v}(w_{ij}^{k})][h_{(2)}w_{jt_{1}}^{k} \cdot_{\rho^{\infty}} \widehat{w}(\tau)]\widehat{v}^{*}(h_{(3)}w_{t_{1}i}^{k})[h_{(4)} \cdot_{\sigma} a]\widehat{v}(h_{(5)})$$

$$\begin{split} &= \sum_{i,j,k,t_1,t_2} d_k [h_{(1)} \cdot_{\rho} \widehat{v}(w_{ij}^k)] [h_{(2)} w_{jt_1}^k \cdot_{\rho^{\infty}} \widehat{w}(\tau)] \widehat{v}^*(h_{(3)} w_{t_1t_2}^k) \\ & \times [h_{(4)} \varepsilon(w_{t_2i}^k) \cdot_{\sigma} a] \widehat{v}(h_{(5)}) \\ &= \sum_{i,j,k,t_1,t_2,t_3} d_k [h_{(1)} \cdot_{\rho} \widehat{v}(w_{ij}^k)] [h_{(2)} w_{jt_1}^k \cdot_{\rho^{\infty}} \widehat{w}(\tau)] \widehat{v}^*(h_{(3)} w_{t_1t_2}^k) \\ & \times [h_{(4)} w_{t_2t_3}^k \cdot_{\sigma} [S(w_{t_3i}^k) \cdot_{\sigma} a]] \widehat{v}(h_{(5)}). \end{split}$$

Thus

$$N(\mathrm{id} \otimes e)((\rho \otimes \mathrm{id})(v)(\mathrm{id} \otimes \Delta^{0})(\rho^{\infty}(\widehat{w}(\tau))v^{*}))\sigma(a)v$$

$$= \sum_{i:t_{3},k} d_{k}(\mathrm{id} \otimes w_{it_{3}}^{k})((\rho \otimes \mathrm{id})(v)(\mathrm{id} \otimes \Delta^{0})(\rho^{\infty}(\widehat{w}(\tau))v^{*}\sigma([S(w_{t_{3}i}^{k}) \cdot_{\sigma} a])))v.$$

Hence

$$\begin{split} & \left\| N(\operatorname{id} \otimes e)((\rho \otimes \operatorname{id})(v)(\operatorname{id} \otimes \Delta^0)(\rho^\infty(\widehat{w}(\tau))v^*))\sigma(a)v \\ & - \sum_{i,t_3,k} d_k(\operatorname{id} \otimes w^k_{it_3})((\rho \otimes \operatorname{id})(v)(\operatorname{id} \otimes \Delta^0)(\rho^\infty(\widehat{w}(\tau))\rho([S(w^k_{t_3i}) \cdot_\sigma a])v^*))v \right\| \\ & = \left\| \sum_{i,t_3,k} d_k(\operatorname{id} \otimes w^k_{it_3})((\rho \otimes \operatorname{id})(v)(\operatorname{id} \otimes \Delta^0)(\rho^\infty(\widehat{w}(\tau))[v^*\sigma([S(w^k_{t_3i}) \cdot_\sigma a])v^*))v \right\| \\ & - \rho([S(w^k_{t_3i}) \cdot_\sigma a])v^*))v \right\| \\ & \leqslant \sum_{i,t_3,k} d_k \|\operatorname{id} \otimes w^k_{it_3}\| \|v^*\sigma([S(w^k_{t_3i}) \cdot_\sigma a]) - \rho([S(w^k_{t_3i}) \cdot_\sigma a])v^*\| \\ & < \sum_{i,t_3,k} d_k \|\operatorname{id} \otimes w^k_{it_3}\| \varepsilon < L\varepsilon. \quad \blacksquare \end{split}$$

LEMMA 10.6. With the above notations and assumptions, for any $a \in A$,

$$\begin{split} \sum_{i,j,k} d_k (\mathrm{id} \otimes w_{ij}^k) ((\rho \otimes \mathrm{id})(v) (\mathrm{id} \otimes \Delta^0) (\rho^{\infty}(\widehat{w}(\tau)) \rho([S(w_{ji}^k) \cdot_{\sigma} a]) v^*)) v \\ &= \rho(a) \rho^{\infty}(x) (x^* \otimes 1^0) v. \end{split}$$

Proof. We shall show the above equation by routine computations. For any $h \in H$

$$\begin{split} \Big[\sum_{i,t_3,k} d_k (\operatorname{id} \otimes w_{it_3}^k) ((\rho \otimes \operatorname{id})(v) (\operatorname{id} \otimes \Delta^0) (\rho^\infty (\widehat{w}(\tau)) \rho ([S(w_{t_3i}^k) \cdot_\sigma a]) v^*)) v \Big] (h) \\ &= \sum_{i,j,k,t_2,t_3} d_k [h_{(1)} \cdot_\rho \widehat{v}(w_{ij}^k) [w_{jt_2}^k \cdot_{\rho^\infty} [S(w_{t_3i}^k) \cdot_\sigma a] \widehat{w}(\tau)]] \widehat{v}^* (h_{(2)} w_{t_2t_3}^k) \widehat{v}(h_{(3)}) \\ &= \sum_{i,j,k,t_2,t_3,j_1} d_k [h_{(1)} \cdot_\rho \widehat{v}(w_{ij}^k) [w_{jj_1}^k \cdot_\rho [S(w_{t_3i}^k) \cdot_\sigma a]] [w_{j_1t_2}^k \cdot_{\rho^\infty} \widehat{w}(\tau)]] \\ &\qquad \times \widehat{v}^* (h_{(2)} w_{t_2t_3}^k) \widehat{v}(h_{(3)}) \end{split}$$

$$\begin{split} &= \sum_{i,j,k,t_{2},t_{3},j_{1}} d_{k}[h_{(1)} \cdot_{\rho} [w_{ij}^{k} \cdot_{\sigma} [S(w_{t_{3}i}^{k}) \cdot_{\sigma} a]] \widehat{v}(w_{jj_{1}}^{k}) [w_{j_{1}t_{2}}^{k} \cdot_{\rho^{\infty}} \widehat{w}(\tau)]] \\ &\quad \times \widehat{v}^{*}(h_{(2)}w_{t_{2}t_{3}}^{k}) \widehat{v}(h_{(3)}) \\ &= \sum_{k,t_{2},t_{2},j_{1}} d_{k}[h_{(1)} \cdot_{\rho} a] [h_{(2)} \cdot_{\rho} \widehat{v}(w_{t_{3}j_{1}}^{k})] [h_{(3)}w_{j_{1}t_{2}}^{k} \cdot_{\rho^{\infty}} \widehat{w}(\tau)] \widehat{v}^{*}(h_{(4)}w_{t_{2}t_{3}}^{k}) \widehat{v}(h_{(5)}). \end{split}$$

On the other hand by Lemma 5.4 for any $h \in H$,

$$\begin{split} &[\rho(a)\rho^{\infty}(x)(x^*\otimes 1^0)v](h) \\ &= [h_{(1)}\cdot_{\rho}a][h_{(2)}\cdot_{\rho^{\infty}}x]x^*\widehat{v}(h_{(3)}) \\ &= N\sum_{i,j,k,i_1}d_k[h_{(1)}\cdot_{\rho}a][h_{(2)}\cdot_{\rho}\widehat{v}(w_{ij}^k)]\widehat{V}(h_{(3)}w_{ji_1}^k)\tau(S(h_{(4)}w_{i_1i}^k)e_{(1)})\widehat{w}(\tau) \\ &\qquad \times \widehat{V}^*(e_{(2)})\widehat{v}^*(e_{(3)})\widehat{v}(h_{(5)}) \\ &= N\sum_{i,j,k,i_1,i_2}d_k[h_{(1)}\cdot_{\rho}a][h_{(2)}\cdot_{\rho}\widehat{v}(w_{ij}^k)]\widehat{V}(h_{(3)}w_{ji_1}^k)\widehat{w}(\tau)\tau(S(h_{(5)}w_{i_2i}^k)e_{(1)}) \\ &\qquad \times \widehat{V}^*(h_{(4)}w_{i_1i_2}^k)\widehat{v}^*(e_{(2)})\widehat{v}(h_{(6)}) \\ &= N\sum_{i,j,k,i_1,i_2,t}d_k[h_{(1)}\cdot_{\rho}a][h_{(2)}\cdot_{\rho}\widehat{v}(w_{ij}^k)]\widehat{V}(h_{(3)}w_{ji_1}^k)\widehat{w}(\tau)\widehat{V}^*(h_{(4)}w_{i_1i_2}^k) \\ &\qquad \times \tau(S(h_{(6)}w_{ti}^k)e)\widehat{v}^*(h_{(5)}w_{i_2t}^k)\widehat{v}(h_{(7)}) \\ &= \sum_{j,k,i_1,i_2,t}d_k[h_{(1)}\cdot_{\rho}a][h_{(2)}\cdot_{\rho}\widehat{v}(w_{tj}^k)][h_{(3)}w_{ji_2}^k\cdot_{\rho^{\infty}}\widehat{w}(\tau)]\widehat{v}^*(h_{(4)}w_{i_2t}^k)\widehat{v}(h_{(5)}). \end{split}$$

Therefore, we obtain the conclusion.

LEMMA 10.7. With the above notations and assumptions, for any $a \in F$,

$$||xa - ax|| < L\varepsilon + L \max_{i,j,k} ||\sigma([S(w_{ij}^k) \cdot_{\rho} a]) - \rho([S(w_{ij}^k) \cdot_{\rho} a])||,$$

where $L = \sum_{i,j,k} d_k \| \mathrm{id} \otimes w_{ij}^k \|$.

Proof. For any $a \in F$

$$\begin{split} xax^* &= N \sum_{i,j,k} d_k \widehat{v}(w_{ij}^k) [w_{ji}^k \cdot \rho^{\infty} \, \widehat{w}(\tau)] a[e_{(1)} \cdot \rho^{\infty} \, \widehat{w}(\tau)] \widehat{v}^*(e_{(2)}) \\ &= N \sum_{i,j,k,i_1,i_2} d_k \widehat{v}(w_{ij}^k) \widehat{V}(w_{ji_1}) \widehat{w}(\tau) ([S(w_{i_2i}^k) \cdot \rho \, a] \rtimes_{\rho} S(w_{i_1i_2}^k) e_{(1)}) \widehat{w}(\tau) \\ &\qquad \times \widehat{V}^*(e_{(2)}) \widehat{v}^*(e_{(3)}) \\ &= N \sum_{i,j,k,i_1,i_2,t,t_1} d_k \widehat{v}(w_{ij}^k) \widehat{V}(w_{ji_1}) [S(w_{i_2i}^k) \cdot \rho \, a] \widehat{w}(\tau) \widehat{V}^*(w_{i_1t}^k S(w_{tt_1}^k) e_{(2)}) \\ &\qquad \times \tau (S(w_{i_1i_2}^k) e_{(1)}) \widehat{v}^*(e_{(3)}) \end{split}$$

$$\begin{split} &= N \sum_{i,j,k,i_{1},i_{2},t,s,s_{1}} d_{k}\widehat{v}(w_{ij}^{k})\widehat{V}(w_{ji_{1}})[S(w_{i_{2}i}^{k}) \cdot_{\rho} a]\widehat{w}(\tau)\widehat{V}^{*}(w_{i_{1}t}^{k})\tau(S(w_{s_{1}i_{2}}^{k})e_{(1)}) \\ &\quad \times \widehat{v}^{*}(w_{ts}^{k}S(w_{ss_{1}}^{k})e_{(2)}) \\ &= \sum_{i,j,k,i_{1},i_{2},t} d_{k}\widehat{v}(w_{ij}^{k})\widehat{V}(w_{ji_{1}})[S(w_{i_{2}i}^{k}) \cdot_{\rho} a]\widehat{w}(\tau)\widehat{V}^{*}(w_{i_{1}t}^{k})\widehat{v}^{*}(w_{ti_{2}}^{k}) \\ &= \sum_{i,k,i_{2}} d_{k}(\mathrm{id} \otimes w_{ii_{2}}^{k})(v\rho^{\infty}(\widehat{w}(\tau))\rho([S(w_{i_{2}i}^{k}) \cdot_{\rho} a])v^{*}). \end{split}$$

Hence

$$\begin{split} \left\|xax^* - \sum_{i,k,i_2} d_k(\operatorname{id} \otimes w_{ii_2}^k)(v\rho^{\infty}(\widehat{w}(\tau))v^*\sigma([S(w_{i_2i}^k) \cdot_{\rho} a]))\right\| \\ &= \left\|\sum_{i,k,i_2} d_k(\operatorname{id} \otimes w_{ii_2}^k)(v\rho^{\infty}(\widehat{w}(\tau))[\rho([S(w_{i_2i}^k) \cdot_{\rho} a])v^* - v^*\sigma([S(w_{i_2i}^k) \cdot_{\rho} a])])\right\| \\ &\leqslant \sum_{i,k,i_2} d_k \|\operatorname{id} \otimes w_{ii_2}^k\| \|\rho([S(w_{i_2i}^k) \cdot_{\rho} a])v^* - v^*\sigma([S(w_{i_2i}^k) \cdot_{\rho} a])\| \\ &\leqslant \sum_{i,k,i_2} d_k \|\operatorname{id} \otimes w_{ii_2}^k\| \varepsilon = L\varepsilon. \end{split}$$

Furthermore,

$$\begin{split} \sum_{i,k,i_2} d_k (\mathrm{id} \otimes w^k_{ii_2}) (v \rho^\infty (\widehat{w}(\tau)) v^* \rho ([S(w^k_{i_2i}) \cdot_\rho a])) \\ &= \sum_{i,k,i_2,t} d_k (v \rho^\infty (\widehat{w}(\tau)) v^*) \widehat{(}(w^k_{it}) [w^k_{ti_2} S(w^k_{i_2i}) \cdot_\rho a] \\ &= \sum_{i,k} d_k (v \rho^\infty (\widehat{w}(\tau)) v^*) \widehat{(}(w^k_{ii}) a = N (\mathrm{id} \otimes e) (v \rho^\infty (\widehat{w}(\tau)) v^*) a. \end{split}$$

We recall that $\rho_1 = \operatorname{Ad}(v) \circ \rho$, $u = (v \otimes 1^0)(\rho \otimes \operatorname{id})(v)(\operatorname{id} \otimes \Delta^0)(v^*)$ and that (ρ_1, u) is a twisted coaction of H^0 on A which is exterior equivalent to ρ . Then by Lemmas 5.6 and 5.7, $N(\operatorname{id} \otimes e)(v\rho^\infty(\widehat{w}(\tau))v^*) = N[e \cdot_{\rho_1,u} \widehat{w}(\tau)] = 1$. Hence

$$\sum_{i,k,i_2} d_k(\mathrm{id} \otimes w_{ii_2}^k)(v\rho^{\infty}(\widehat{w}(\tau))v^*\rho([S(w_{i_2i}^k)\cdot_{\rho}a])) = a.$$

It follows that

$$\begin{aligned} \|xax^* - a\| &= \left\| xax^* - \sum_{i,k,i_2} d_k(\mathrm{id} \otimes w_{ii_2}^k) (v\rho^{\infty}(\widehat{w}(\tau)) v^* \sigma([S(w_{i_2i}^k) \cdot_{\rho} a])) \right. \\ &+ \sum_{i,k,i_2} d_k(\mathrm{id} \otimes w_{ii_2}^k) (v\rho^{\infty}(\widehat{w}(\tau)) v^* \sigma([S(w_{i_2i}^k) \cdot_{\rho} a])) \\ &- \sum_{i,k,i_2} d_k(\mathrm{id} \otimes w_{ii_2}^k) (v\rho^{\infty}(\widehat{w}(\tau)) v^* \rho([S(w_{i_2i}^k) \cdot_{\rho} a])) \right\| \\ &< L\varepsilon + \sum_{i,k,i_2} d_k \|\mathrm{id} \otimes w_{ii_2}^k\| \|\sigma([S(w_{i_2i}^k) \cdot_{\rho} a]) - \rho([S(w_{i_2i}^k) \cdot_{\rho} a])\| \end{aligned}$$

$$\begin{split} &< L\varepsilon + \sum_{i,j,k} d_k \|\mathrm{id} \otimes w_{ij}^k \| \max_{i,j,k} \|\sigma([S(w_{ij}^k) \cdot_\rho a]) - \rho([S(w_{ij}^k) \cdot_\rho a]) \| \\ &< L\varepsilon + L \max_{i,j,k} \|\sigma([S(w_{ij}^k) \cdot_\rho a]) - \rho([S(w_{ij}^k) \cdot_\rho a]) \|, \end{split}$$

where $L = \sum_{i,j,k} d_k \| \mathrm{id} \otimes w_{ij}^k \|$. Then we obtain the conclusion. \blacksquare

By Lemmas 10.4, 10.5, 10.6 and 10.7, we obtain Lemma 10.3. We note that the constant positive number L in the above proofs does not depend on coactions ρ and σ but depends on only H^0 . Also, we note that if a coaction ρ of H^0 on A has the Rohlin property, then a coaction $(\alpha \otimes \mathrm{id}) \circ \rho \circ \alpha^{-1}$ of H^0 on A has also the Rohlin property for any automorphism α of A.

THEOREM 10.8. Let A be a separable unital C^* -algebra and let ρ and σ be coactions of a finite dimensional C^* -Hopf algebra H^0 on A with the Rohlin property . We suppose that ρ and σ are approximately unitarily equivalent. Then there is an approximately inner automorphism θ such that

$$\sigma = (\theta \otimes id) \circ \rho \circ \theta^{-1}.$$

Proof. We shall show this theorem by the same strategy as in the proof of Theorem 3.5 of [4]. We choose an increasing family $\{F_n\}_{n=0}^{\infty}$ of finite subsets of A whose union is dense in A. By induction using Lemma 10.3, we can construct an increasing family $\{G_n\}_{n=0}^{\infty}$ of finite subsets of A whose union is dense in A, a sequence $\{x_n\}$ of unitary elements in A and a family of coactions ρ_{2n} , σ_{2n+1} , $n=0,1,2,\ldots$, of H^0 on A satisfying the following conditions:

$$\begin{split} &\rho_0 = \rho, \quad \sigma_1 = \sigma, \\ &\rho_{2n+2} = \operatorname{Ad}(x_{2n} \otimes 1^0) \circ \rho_{2n} \circ \operatorname{Ad}(x_{2n}^*), \quad n = 0, 1, 2, \dots, \\ &\sigma_{2n+1} = \operatorname{Ad}(x_{2n-1} \otimes 1^0) \circ \sigma_{2n-1} \circ \operatorname{Ad}(x_{2n-1}^*), \quad n = 1, 2, \dots, \\ &F_{2n}^1 = \bigcup_{i,j,k} [S(w_{ij}^k) \cdot_{\sigma_{2n+1}} F_{2n}], \quad n = 0, 1, \dots, \\ &F_{2n+1}^1 = \bigcup_{i,j,k} [S(w_{ij}^k) \cdot_{\rho_{2n+2}} F_{2n+1}], \quad n = 0, 1, \dots, \\ &G_0 = F_0 \cup F_0^1, \\ &G_{2n+1} = G_{2n} \cup F_{2n+1} \cup F_{2n+1}^1, \quad n = 0, 1, \dots, \\ &G_{2n+2} = G_{2n+1} \cup F_{2n+2} \cup F_{2n+2}^1, \quad n = 0, 1, \dots, \\ &\|\sigma_{2n+1}(a) - \rho_{2n+2}(a)\| < \frac{1}{2^{2n}}, \quad a \in G_{2n}, \quad n = 0, 1, \dots, \\ &\|\sigma_{2n+3}(a) - \rho_{2n+2}(a)\| < \frac{1}{2^{2n+1}}, \quad a \in G_{2n+1}, \quad n = 0, 1, \dots, \end{split}$$

$$\begin{aligned} \|x_{2n+1}a - ax_{2n+1}\| &< \frac{1}{2^{2n+1}} + L \max_{i,j,k} \|\rho_{2n+2}([S(w_{ij}^k) \cdot_{\sigma_{2n+1}} a]) \\ &- \sigma_{2n+1}([(w_{ij}^k) \cdot_{\sigma_{2n+1}} a])\| &< \frac{2+L}{2^{2n}}, \quad a \in G_{2n}, \quad n = 0, 1, \dots, \\ \|x_{2n}a - ax_{2n}\| &< \frac{1}{2^{2n}} + L \max_{i,j,k} \|\sigma_{2n+1}([S(w_{ij}^k) \cdot_{\rho_{2n}} a]) \\ &- \rho_{2n}([S(w_{ij}^k) \cdot_{\rho_{2n}} a])\| &< \frac{2+L}{2^{2n-1}}, \quad a \in G_{2n-1}, \quad n = 1, 2 \dots \end{aligned}$$

In the same way as in the proof of Theorem 3.5 in [4], we can obtain the conclusion. ■

In the rest of this section, we shall study coactions having the Rohlin property of a finite dimensional C^* -Hopf algebra on a UHF-algebra of type N^{∞} . Let A be a UHF-algebra of type N^{∞} . Let $M_n(\mathbb{C})$ be the $n \times n$ -matrix algebra over \mathbb{C} and $\{f_{ij}\}$ a system of matrix units of $M_n(\mathbb{C})$.

LEMMA 10.9. Let ρ be a unital homomorphism of A to $A \otimes M_n(\mathbb{C})$ and ρ_* the homomorphism of $K_0(A)$ to $K_0(A \otimes M_n(\mathbb{C}))$ induced by ρ . Then $\rho_*([\frac{1}{N^l}]) = n[\frac{1}{N^l}]$ for any $l \in \mathbb{N} \cup \{0\}$.

Proof. Since $ρ(1) = 1 ⊗ I_n$, $ρ_*([1]) = [1 ⊗ I_n] = n[1 ⊗ f_{11}] = n[1]$. Hence $Nρ_*([\frac{1}{N}]) = ρ_*([1]) = n[1]$. Since $K_0(A) = \mathbb{Z}[\frac{1}{N}]$ is torsion-free, $ρ_*([\frac{1}{N}]) = n[\frac{1}{N}]$. ■

LEMMA 10.10. Let ρ be a unital homomorphism of A to $A \otimes M_n(\mathbb{C})$. Then there is a sequence $\{u_k\}$ of unitary elements in $A \otimes M_n(\mathbb{C})$ such that for any $x \in A$

$$\rho(x) = \lim_{k \to \infty} u_k(x \otimes I_n) u_k^*.$$

Proof. Modifying the proof of Blackadar ([1], 7.7 Exercises and Problems) we can prove this lemma. Let $\{A_k\}$ be an increasing sequence of full matrix algebras over $\mathbb C$ with $\overline{\bigcup_k A_k} = A$. Let $\{e_{ij}\}$ be a system of matrix units of A_k . Since A has the cancellation property, by Lemma 10.9, $\rho(e_{11}) \sim e_{11} \otimes I_n$ in $A \otimes M_n(\mathbb C)$. Hence there is a partial isometry $w \in A \otimes M_n(\mathbb C)$ such that

$$w^*w = E_{11}$$
, $ww^* = \rho(e_{11})$,

where $E_{ij}=e_{ij}\otimes I_n$ for any i,j. Let $u_k=\sum\limits_i \rho(e_{i1})wE_{1i}$. Then u_k is a unitary element in $A\otimes M_n(\mathbb{C})$ by easy computations. Let $x\in A_k$. Then we can write that $x=\sum\limits_{i,j}\lambda_{ij}e_{ij}$, where $\lambda_{ij}\in\mathbb{C}$. Hence by easy computations, we can see that $\rho(x)=u_k(x\otimes I_n)u_k^*$. Since $\overline{\bigcup_k A_k}=A$, we obtain that for any $x\in A$, $\rho(x)=\lim\limits_{k\to\infty}u_k(x\otimes I_n)u_k^*$ by routine computations.

LEMMA 10.11. Let ρ be a unital homomorphism of A to $A \otimes H^0$, where H^0 is a finite dimensional C^* -algebra. Then there is a sequence $\{u_k\}$ of unitary elements in $A \otimes H^0$ such that for any $x \in A$

$$\rho(x) = \lim_{k \to \infty} u_k(x \otimes 1^0) u_k^*.$$

Proof. Let $\{p_l\}$ be a family of minimal central projections in H^0 . For any l and $x \in A$, let

$$\rho_l(x) = \rho(x)(1 \otimes p_l).$$

Then by Lemma 10.10, there is a sequence $\{u_k^{(l)}\}$ of unitary elements in $A\otimes p_lH^0$ such that $\rho_l(x)=\lim_{k\to\infty}u_k^{(l)}(x\otimes p_l)u_k^{(l)}$ for any $x\in A$. Let $u_k=\bigoplus_lu_k^{(l)}$. Then we can see that $\{u_k\}$ is a desired sequence by easy computations.

COROLLARY 10.12. Let H be a finite dimensional C^* -Hopf algebra with dimension N and let A be a UHF-algebra of type N^{∞} . Let ρ be a coaction of H^0 on A with the Rohlin property constructed in Section 7. Then for any coaction σ of H^0 on A with the Rohlin property, there is an approximately inner automorphism θ of A such that

$$\sigma = (\theta \otimes id) \circ \rho \circ \theta^{-1}$$
.

Proof. By Lemma 10.11, σ is approximately unitarily equivalent to ρ . Hence by Theorem 10.8, we obtain the conclusion.

11. APPENDIX

In the previous paper [8], we introduced the Rohlin property for weak coactions of a finite dimensional C^* -Hopf algebra on a unital C^* -algebra. In this section, we shall show that if there is a weak coaction with the Rohlin property in the sense of [8] of a finite dimensional C^* -Hopf algebra H on a unital C^* -algebra A, then H is commutative. Recall that a weak coaction ρ of H on A has the Rohlin property in the sense of [8] if there is a monomorphism π of H into A_∞ such that for any $h \in H$, $\rho^\infty(\pi(h)) = \pi(h_{(1)}) \otimes h_{(2)}$. Let $\{w_{ij}^k\}$ be a system of comatrix units of H.

LEMMA 11.1. With the above notations, $(H \otimes 1)\Delta(H) = H \otimes H$.

Proof. For any i, j, k, $\Delta(w_{ij}^k) = \sum_t w_{it}^k \otimes w_{tj}^k$. Since $\sum_i w_{it}^{k*} w_{is}^k = \begin{cases} 1 & \text{if } s = t, \\ 0 & \text{if } s \neq t, \end{cases}$ for any k by Theorem 2.2, 2 of [10], we can obtain that

$$\sum_{i} (w_{it}^{k*} \otimes 1) \Delta(w_{ij}^{k}) = \sum_{i,s} w_{it}^{k*} w_{is}^{k} \otimes w_{sj}^{k} = 1 \otimes w_{tj}^{k}.$$

Thus we obtain the conclusion.

LEMMA 11.2. With the above notations, let ρ be a weak coaction of H on A with the Rohlin property in the sense of [8]. Then $\overline{(A \otimes 1)\rho(A)} = A \otimes H$.

Proof. Since ρ has the Rohlin property in the sense of [8], there is a monomorphism π of H into A_{∞} . First, we show that $(A^{\infty} \otimes 1)\rho^{\infty}(A^{\infty}) = A^{\infty} \otimes H$. Since $\rho^{\infty} \circ \pi = (\pi \otimes \mathrm{id}) \circ \Delta$,

$$(\pi(H) \otimes 1)\rho^{\infty}(\pi(H)) = (\pi(H) \otimes 1)(\pi \otimes id)(\Delta(H))$$
$$= (\pi \otimes id)((H \otimes 1)\Delta(H)) = \pi(H) \otimes H$$

by Lemma 11.1. Since $1 \otimes w_{ij}^k \in \pi(H) \otimes H$, $1 \otimes w_{ij}^k \in (A^{\infty} \otimes 1)\rho^{\infty}(A^{\infty})$. Thus we can see that $(A^{\infty} \otimes 1)\rho^{\infty}(A^{\infty}) = A^{\infty} \otimes H$. For any $x \in A \otimes H$, there are $a_1, \ldots, a_n, b_1, \ldots, b_n \in A^{\infty}$ such that $x = \sum_{i=1}^n (a_i \otimes 1)\rho^{\infty}(b_i)$. That is,

$$\left\|x - \sum_{i=1}^{n} (a_i^{(k)} \otimes 1) \rho^{\infty}(b_i^{(k)})\right\| \to 0 \quad (k \to \infty),$$

where $a_i = (a_i^{(k)}), b_i = (b_i^{(k)})$ and $a_i^{(k)}, b_i^{(k)} \in A$ for any k, i. Therefore, $x \in \overline{(A \otimes 1)\rho(A)}$.

PROPOSITION 11.3. Let ρ be a weak coaction of H on A with the Rohlin property in the sense of [8] and π a monomorphism of H to A_{∞} . Then $\rho^{\infty}(\pi(H)) \subset (A \otimes H)' \cap (A^{\infty} \otimes H)$.

Proof. Let $a, b \in A$ and $h \in H$. Then

$$\rho^{\infty}(\pi(h))(a \otimes 1)\rho(b) = (\pi(h_{(1)}) \otimes h_{(2)})(a \otimes 1)\rho(b) = (a\pi(h_{(1)}) \otimes h_{(2)})\rho(b)
= (a \otimes 1)\rho^{\infty}(\pi(h))\rho(b) = (a \otimes 1)\rho^{\infty}(\pi(h)b)
= (a \otimes 1)\rho(b)\rho^{\infty}(\pi(h)).$$

Therefore we obtain the conclusion by Lemma 11.2. ■

PROPOSITION 11.4. Let ρ be a weak coaction of H on A with the Rohlin property. Let x be any element in $A \otimes H$. Then for any $h \in H$, $(1 \otimes h)x = x(1 \otimes h)$.

Proof. Let π be a monomorphism of H into A_{∞} such that for any $h \in H$, $\rho^{\infty}(\pi(h)) = \pi(h_{(1)}) \otimes h_{(2)}$. By the proof of Lemma 11.2, we can see that

$$1 \otimes H \subset \pi(H) \otimes H = (\pi(H) \otimes 1)\rho^{\infty}(\pi(H)).$$

Hence it suffices to show that for any $h \in H$,

(i)
$$(\pi(h) \otimes 1)x = x(\pi(h) \otimes 1)$$
,

(ii)
$$\rho^{\infty}(\pi(h))x = x\rho^{\infty}(\pi(h)).$$

Indeed, since $x \in A \otimes H$ and $\pi(h)$ commute with any element in A for any $h \in H$, we obtain (i). Also, we can obtain (ii) by Proposition 11.3

COROLLARY 11.5. Let A be a unital C^* -algebra and H a finite dimensional C^* -Hopf algebra. If there is a weak coaction of H on A with the Rohlin property in the sense of [8], then H is commutative.

The proof is immediate by Proposition 11.4.

REFERENCES

- [1] B. BLACKADAR, *K-Theory for Operator Algebras*, 2nd edition, Math. Sci. Res. Inst. Publ., vol. 5, Cambridge Univ. Press, Cambridge 1998.
- [2] R.J. BLATTNER, M. COHEN, S. MONTGOMERY, Crossed products and inner actions of Hopf algebras, *Trans. Amer. Math. Soc.* **298**(1986), 671–711.
- [3] R.H. HERMAN, V.F.R. JONES, Models of finite group actions, *Math. Scand.* **52**(1983), 312–320.
- [4] M. IZUMI, Finite group actions on *C**-algebras with the Rohlin property-I, *Duke Math. J.* **122**(2004), 233–280.
- [5] J.A. JEONG, G. PARK, Saturated actions by finite dimensional Hopf *-algebras on C*-algebras, *Internat. J. Math.* **19**(2008), 125–144.
- [6] K. KODAKA, T. TERUYA, Inclusions of unital *C**-algebras of index-finite type with depth 2 induced by saturated actions of finite dimensional *C**-Hopf algebras, *Math. Scand.* **104**(2009), 221–248.
- [7] T. MASUDA, R. TOMATSU, Classification of minimal actions of a compact Kac algebra with the amenable dual, *J. Funct. Anal.* **258**(2010), 1965–2025.
- [8] H. OSAKA, K. KODAKA, T. TERUYA, The Rohlin property for inclusions of *C**-algebras with a finite Watatani index, in *Operator Structures and Dynamical Systems*, Contemp. Math., vol. 503, Amer. Math. Soc., Providence, RI 2009, pp. 177–195.
- [9] M.E. SWEEDLER, Hopf Algebras, Benjamin, New York 1969.
- [10] W. SZYMAŃSKI, C. PELIGRAD, Saturated actions of finite dimensional Hopf *algebras on C*-algebras, Math. Scand. 75(1994), 217–239.
- [11] Y. WATATANI, Index for C*-subalgebras, Mem. Amer. Math. Soc. 83(1990), no. 424.
- [12] S.L. WORONOWICZ, Compact matrix pseudogroups, Comm. Math. Phys. 111(1987), 613–665.

KAZUNORI KODAKA, DEPARTMENT OF MATHEMATICAL SCIENCES, FACULTY OF SCIENCE, RYUKYU UNIVERSITY, NISHIHARA-CHO, OKINAWA, 903-0213, JAPAN *E-mail address*: kodaka@math.u-ryukyu.ac.jp

TAMOTSU TERUYA, FACULTY OF EDUCATION, GUNMA UNIV., 4-2 ARAMAKI-MACHI, MAEBASHI CITY GUNMA, 371-8510, JAPAN

E-mail address: teruya@gunma-u.ac.jp