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ABSTRACT. Let H be a complex Hilbert space, let D ⊂ B(H) be a discrete
masa (maximal abelian selfadjoint algebra) and let A be a linear subspace (or
a singleton subset) of B(H) not necessarily having any nontrivial intersection
with D. Assume that the commutator AD − DA is quasinilpotent for every
A ∈ A and every D ∈ D. We prove that A and D are simultaneously triangu-
larizable. If D is a continuous masa, there exist compact operators satisfying
this condition that fail to have a multiplicity-free triangularization together
with D. However, we prove an analogous result in the case where A is a
finite-dimensional space of operators of finite rank.
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1. INTRODUCTION

Starting with finite dimensions, consider an upper triangular matrix A and
the set D of all diagonal matrices. Clearly, the commutator AD − DA is strictly
upper triangular and thus nilpotent for every D in D. This assertion has obvi-
ous infinite-dimensional analogues, where “nilpotent” can also be replaced with
“quasinilpotent”. What about the converse, that is, if for a given A, the commuta-
tors mentioned above are nilpotent, or more generally, quasinilpotent, then does
it follow that A is upper triangular — after a permutation of the basis, of course?
(A permutation of basis has no effect on the diagonal character of the set D.) This
is the question we are concerned with in this paper. We present an affirmative
answer to this question in the discrete case and certain continuos cases. We fur-
ther extend the result to simultaneous triangularizability of a space of operators
whose members have quasinilpotent commutators with the members of D.

Several authors have studied the effect of polynomial conditions on reduc-
ibility and (simultaneous) triangularizability of collections of operators in the fol-
lowing sense. Let S be a set of linear operators (usually with some structure, e.g.,
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that of a group, semigroup or linear space). Let f be a noncommutative polyno-
mial in two variables. One is interested in the effect of conditions such as

f (S, T) = 0 for all S and T in S
or

tr f (S, T) = 0 for all S and T in S
on simultaneous reducibility or triangularizability of S .

Starting with the finite-dimensional case (in which one can replace the field
of complex numbers with any algebraically closed field) a well-known exercise
in linear algebra is that if the polynomial xy − yx vanishes on a set S of linear
operators, then S is simultaneously triangularizable. Guralnick [1] proved that
this hypothesis can be replaced with a much weaker one for a (multiplicative)
semigroup S , namely that ST−TS is nilpotent for all S and T in S . In particular, if
S is a bounded group of operators on a complex vector space, then this condition
implies that S is actually commutative (and therefore diagonalizable). For an
extension of this result to infinite dimensions see [9]. For results on more general
polynomials see [3] and [4].

In [5] polynomial conditions involving operators from outside the semi-
group S were introduced. For example, if T is a fixed operator (not necessar-
ily from the semigroup) and f (S, T) = 0 for all S in S , what can we conclude
about the structure of invariant subspaces of S? Even for simple polynomials,
this question seems much harder than the previously mentioned kind of ques-
tions, perhaps not surprisingly.

In [5] the authors consider primarily reducibility of a semigroup satisfying
a nilpotency condition with respect to an idempotent of rank one. The condi-
tion requires the order of nilpotency to be equal to 2. In general, higher orders
of nilpotency do not yield reducibility, while higher ranks lead to much harder
problems. Actually, in [6] the authors extend some of the results of the previous
paper to the case when the rank of the idempotent P equals 2. In [7] the authors
consider similar problems in a Hilbert space setting, mostly finite dimensional.
They assume the “star conditions” on the semigroup, i.e. that S contains S∗ for
every S ∈ S (such semigroups are called self-adjoint), and also on the idempotent,
i.e. P∗ = P. In the particular case of a unitary group U they show that the con-
dition (UP− PU)2 = 0 for all U ∈ U implies that UP− PU = 0 for all U ∈ U .
The main result of that paper is a structure theorem for closed self-adjoint semi-
groups.

In this paper we propose the study of a problem which has an opposite fla-
vor in some sense. We start by a single operator and assume its commutativity
(modulo nilpotent or at least quasinilpotent operators) with a large set of diago-
nal operators. We expect triangularizability of the operator under consideration
in a basis in which the starting set remains diagonal. More precisely, we fix some
maximal abelian self-adjoint subalgebra (masa)D of the algebra of bounded oper-
ators B(H) on a given Hilbert spaceH. Moreover, we assume that A is a bounded
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operator on H such that AD− DA is quasinilpotent for every D from the masa.
We study the problem, whether it follows that A andD have a joint (multiplicity-
free) triangularization. We are able to give a positive answer to this question in
two special cases, the case of a discrete masa and the case of a continuous masa.
Although the question itself is quite natural in view of the history of investigation
explained above and in spite of the fact that the results do not come as a surprise,
the methods we use to get them are quite involved and differ substantially from
one case to the other. What does come as a surprise to us is the relation be-
tween our problem and the problem studied in [2] which concerns monotonicity
of spectra of operator compressions. Although there is seemingly not much prior
relations between the conditions of that paper and ours, the posterior relation in
both the results and some methods used in the proofs are substantial.

In the first part of the paper (Sections 2 and 3) we focus on the case where
D is discrete. We prove a somewhat stronger result than expected (Theorem 9): If
L is a linear space of operators onH such that for every D in some fixed discrete
masa we have that DL− LD is quasinilpotent, then L andD have a joint triangu-
larization. Our methods do not rely on the topology ofH at all. A careful reading
of the proofs establishes the following algebraic formulation of the theorem just
mentioned:

Let L be a linear space of matrices of a fixed size (either finite or countably infinite)
over some field k of large enough cardinality. If for every matrix L ∈ L and every
diagonal matrix D with finitely many nonzero entries we have that the matrix LD−DL
is nilpotent, then there is a permutation of the standard basis with respect to which every
matrix in L is upper triangular.

One of the key features of the proof is the study of (the absence of) cycles in
L. This idea comes naturally in the course of the proof. However, a similar idea
also occurs in [2] and this is the first occasion where we notice similarities in the
problems studied in the two papers.

In the second part of the paper we focus on the case whereD is a continuous
masa. The dependence of the problem considered and the one studied in [2]
becomes here even somewhat more apparent although still far from trivial. There,
the authors consider finite- and infinite-dimensional versions of the following
assertion. If A is a matrix with the property that whenever P and Q are diagonal
idempotents with P 6 Q, the spectrum of PAP (considered as an operator on
the range of P) is contained in that of QAQ (considered as an operator on the
range of Q), then there is a permutation matrix U such that U−1 AU is triangular.
In other words, if the spectrum of compressions to standard idempotents (i.e.
idempotents in D) increases with increasing idempotents, then the operator has
a standard triangularization (i.e. triangularization with standard idempotents).

We show that some compact operators satisfying our condition fail to have
multiplicity-free triangularization jointly with the continuous masaD. The coun-
terexample is borrowed from [2]. So, in Section 4 we focus on an operator of
finite rank that can be written as A = f1 ⊗ g1 + f2 ⊗ g2 + · · ·+ fn ⊗ gn. For every
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idempotent P ∈ D we then introduce the P-matrix of A as

M(P) = MA(P) =
{ ∫

P
figj dµ

}n

i,j=1
.

We will usually omit A in this notation since it will be a fixed operator through-
out. Here we abuse the notation by conflating the notions of the idempotent P
and its support. The key observation of our proof is (Lemma 4.1): Under certain
technical conditions and if N is large enough, it holds for disjoint idempotents
P1, P2, . . . , PN that ∑

π∈SN

M(Pπ1)M(Pπ2) · · ·M(PπN) = 0. A careful estimate in-

volving some matrix norms shows that the idempotents in this equality are al-
lowed to repeat.

In Section 5 we first show using some non-trivial combinatorics that any lin-
ear combination of matrices M(P1), M(P2), . . . , M(Pk), under the technical condi-
tions mentioned above, is a nilpotent matrix; and then we show using some more
combinatorics that the mentioned conditions may always be assumed with no
loss. This brings us to Theorem 5.4 saying that the spanM of all matrices of the
form M(P) for P ∈ D is made up of nilpotent matrices. As a simple corollary
of this result we get that the set of all operators PAP|ran P for P ∈ D is made up
of nilpotents only, so that the spectrum of compressions to standard idempotents
increases with increasing idempotents. The desired result then follows by Theo-
rem 3.17 of [2]. Although the two conditions “spectrum of the compressions in-
creases with increasing standard idempotents” and “the commutators with stan-
dard idempotents are nilpotent” are seemingly unrelated, they are consequently
equivalent at least in the case of a finite rank operator both in the discrete and
in the continuous case. A simple extension of our result for finite-dimensional
linear space of such operators is given as Theorem 5.9.

2. STANDARD TRIANGULARIZATION AND NON-TRIVIAL CYCLES

In Sections 2 and 3 we assume that H is a separable Hilbert space, either
complex or real, and that D ⊂ B(H) is a discrete masa, i.e. a maximal abelian
selfadjoint subalgebra of B(H). We write any A ∈ B(H) as a (possibly infinite)
matrix with respect to the discrete basis in which D is diagonal. This basis will
be called the default basis. Unless specified otherwise, the default basis will be
assumed to have a default indexation by positive integers N. The idempotent of
rank one inDwhose range equals the span of the i-th basis vector will be denoted
by Pi. Also, aij will mean the (i, j) entry of A, Ai· will mean the i-th row of A and
A·j will mean the j-th column of A. So, loosely speaking, Ai· equals Pi A and A·j
equals APj. Observe that a column may be viewed as a vector in H and a row
as a functional on H, where the interchange between rows and columns is seen
as an isomorphism H∗ ≡ H as above. So, Ai· B·j equals the scalar product of the
functional Pi A with the vector BPj which in turn equals the (i, j) entry of AB.
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Let C be a collection of operators in B(H). We say that C admits a non-
degenerate cycle (relative to an orthonormal basis (en)n) if there exists an integer
m > 2, operators A(1), . . . , A(m) ∈ C, and indices i1, i2, . . . , im, not all equal, not
necessarily pairwise distinct, such that

a(1)i1,i2
a(2)i2,i3
· · · a(m)

im ,i1
6= 0.

Note that if C admits a non-degenerate cycle, then it admits one where the in-
dices i1, . . . , im are pairwise distinct. If indices i1, . . . , im are pairwise distinct,
then we say that the cycle is of length m. We say that an operator A admits a
non-degenerate cycle if the collection {A} admits a non-degenerate cycle.

The following is a straightforward generalization of Theorem 2.3 from [2].
We include the proof for the sake of completeness.

LEMMA 2.1. Let C be a collection of operators in B(H). If C does not admit any
non-degenerate cycles, then there is a permutation of the basis (en)n for which every
matrix corresponding to operators from C is upper triangular.

Proof. The problem is equivalent to the existence of total order � on N such
that for every A ∈ C we have ai,j = 0 whenever i ≺ j. We shall establish such an
order below. To this end, define i ≺ j, whenever i 6= j and there exist an integer
p > 2, operators A(1), . . . , A(p−1) ∈ C, and indices i1 = j, i2, . . . , ip−1, ip = i, such
that

a(1)i1,i2
a(2)i2,i3
· · · a(p−1)

ip−1,ip
6= 0.

The relation � is transitive: Assume i � j and j � k. With no loss of
generality we assume that i, j, k are pairwise distinct. Then there exist opera-
tors A(1), . . . , A(p−1), B(1), . . . , B(q−1) ∈ C and indices k = i1, i2, . . . , ip = j, j =
j1, j2, . . . , jq = i such that

a(1)i1,i2
a(2)i2,i3
· · · a(p−1)

ip−1,ip
6= 0, b(1)j1,j2

b(2)j2,j3
· · · b(q−1)

jq−1,jq 6= 0.

Now set m = p + q, A(p) = B(1), . . . , A(p+q−2) = B(q−1), and ip = j, ip+1 =

j2, . . . , ip+q = jq and note that we get a(1)i1,i2
· · · a(m−1)

im−1,im 6= 0 proving that i � k.
The relation � is anti-symmetric: Assume i � j and j � i. Suppose, if

possible, that i 6= j. Let p, q, A(1), . . . , A(p−1), B(1), . . . , B(q−1), i1 = i, i2, . . . , ip =
j, j = j1, j2, . . . , jq = i be such that

a(1)i1,i2
a(2)i2,i3
· · · a(p−1)

ip−1,ip
6= 0, b(1)j1,j2

b(2)j2,j3
· · · b(q−1)

jq−1,jq 6= 0.

Then setting m = p + q, A(p) = B(1), . . . , A(p+q−1) = B(q−1), and ip+1 = j =

j1, ip+1 = j2, . . . , ip+q = jq we get a non-degenerate cycle a(1)i,i2
· · · a(m−1)

im−1,i 6= 0 con-
tradicting the assumption of the lemma.

Hence� defines a partial order on N. Next apply Zorn’s lemma to complete
it to a total order.
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Now note that if for i 6= j we have ai,j 6= 0, then j ≺ i (set m = 2, A(1) = A,
i1 = i, i2 = j).

LEMMA 2.2. Let L be a linear space of operators. Then L admits a non-degenerate
cycle if and only if there is an operator A ∈ L that admits a non-degenerate cycle.

Proof. The implication (⇐) is obvious. We now prove (⇒). Let m > 2,
A(1), . . . , A(m) ∈ L and let i1, . . . , im be indices such that

a(1)i1,i2
a(2)i2,i3
· · · a(m)

im ,i1
6= 0.

For various t = (t1, . . . , tm) consider linear combinations A(t) = t1 A(1) + · · · +
tm A(m). Note that for a suitably chosen t we must have that

a(t)i1,i2
· · · a(t)im ,i1

6= 0.

One of the many ways to see this is described below.
We define ti’s as follows. Let t1 = 1. After t1, . . . , tn have been chosen so that

a(t1,...,tn ,0,...,0)
ij ,ij+1

6= 0 for j = 1, . . . , n, (if n = m, then we abbreviate im+1 = i1) then

define tn+1 to be any value such that for j = 1, . . . , n + 1 we have tn+1a(n+1)
ij ,ij+1

6=

−a(t1,...,tn ,0,...,0)
ij ,ij+1

. This will always be possible as our ground field has infinitely
many (and hence it has at least m + 1) elements.

3. NULLITY OF THE CYCLES FOR OPERATORS COMMUTING WITH A MASA MODULO
QUASI-NILPOTENT OPERATORS

We recall the notation introduced in the first paragraph of Section 2. Fur-
thermore, we fix an operator A ∈ B(H) satisfying

(3.1) ρ(AD− DA) = 0

for every D ∈ D of finite rank, where D ⊂ B(H) is the discrete masa under
consideration. Here, ρ denotes the spectral radius of an operator.

Let us start by a couple of side results to be needed in the sequel, possibly of
some independent interest. Let H = H1 ⊕H2 be a decomposition of the Hilbert
spaceH into subspacesH1 andH2 for which we assume that at least the first one
is finite-dimensional and denote its dimension by m. Consider operators onH in
the block partition with respect to this decomposition:

(3.2)
(

A B
C ∗

)
.

This means, in particular, that A may be viewed as an m×m matrix in a default
basis, B as a column of m members of H∗2 ≡ H2, C as a row of m members of H2,
and ∗ as an operator onH2.
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LEMMA 3.1. Let S be a (multiplicative) semigroup of m×m matrices, let B be a
column of m members ofH∗2 ≡ H2, and C a row of m members ofH2 such that BC = 0.
Then, written with respect to the decomposition (3.2), operators(

S TB
CR CUB

)
,

where R, S, T, U ∈ S , form a (multiplicative) semigroup of operators onH.

The proof is a simple computation.

LEMMA 3.2. For every idempotent P ∈ D of finite rank we have that

PA(I − P)AP

is nilpotent.

Proof. Denote B = PA(I − P) and C = (I − P)AP. By (3.1) we have that
PA− AP = B− C is nilpotent. However, B2 = C2 = 0 so that (PA− AP)2 equals
−BC− CB and we get that

(PA− AP)2n = (−BC− CB)n = (−BC)n + (−CB)n

as (BC)(CB) = 0 = (CB)(BC). So, tr(−BC)n = −tr(−CB)n and by cyclic per-
mutability of the trace also tr(−BC)n = tr(−CB)n. Consequently, tr(−BC)n = 0
for all positive integers n, hence BC is nilpotent and the lemma follows.

For any operator A of finite rank denote by ∆m(A) the sum of principal mi-
nors of A of a given order m. Note that this sum is always finite and independent
of the choice of basis in which it is computed. So, we may and will compute it in
our default basis with no loss. Observe that ∆m(A) = 0 for all m strictly greater
than the rank of A. Note that ∆1(A) = tr(A), the trace of A. The nilpotency of a
finite-rank operator N may be characterized by the condition that

(3.3) ∆m(N) = 0 for all m ∈ N.

This is because ∆m(N) are equal to the non-leading coefficients of the character-
istic polynomial of N up to a sign.

Observe that condition (3.1), to be studied from now on in this section, does
not change if we set all the diagonal entries of A equal to zero. This will be our
standing hypothesis from now on with no loss of generality until we withdraw
this assumption. It is the main goal of the section to prove that for any distinct in-
dices i1, i2, . . . , ik, where k is no smaller than 2 and no greater than the dimension
ofH, it holds that

(3.4) ai1, i2 ai2, i3 · · · aik−1, ik aik , i1 = 0.

We will show this by induction on k.
Actually, we will assume inductively at this point for a given m no smaller

than 2 and no greater than the dimension of H that relation (3.4) is true for all
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indices k strictly smaller than m. Observe that in the case m = 2 the inductive
assumption is fulfilled by the standing hypothesis.

LEMMA 3.3. Under the inductive hypothesis for m let k be such that 2 6 k < m
and let a12 a23 · · · ak−1,k 6= 0. Then the northwest k × k corner of A is strictly upper
triangular.

Proof. The diagonal entries are zero by the standing hypothesis. We get
zeros on the first subdiagonal from the overall inductive hypothesis for 2-cycles:
e.g. a12 a21 = 0 and a12 6= 0 imply that a21 = 0; similar arguments yield a32 =
· · · = ak,k−1 = 0. Zeros on the second subdiagonal are obtained from the standing
inductive hypothesis for 3-cycles: a12 a23 a31 = 0 and a12 a23 6= 0 imply that a31 =
0. Proceed inductively.

In the following key proposition we need a technical lemma. Denote x(k) :=
(x1, x2, . . . , xk) for k > 2 and variables x1, x2, . . . , xk.

LEMMA 3.4. Define the polynomial

Πk(x
(k)) := (x1 − x2) (x2 − x3) · · · (xk−1 − xk) x1xk

in variables x(k) := (x1, x2, . . . , xk) for k > 2. Then the sum of its monomials divisible
by the product x1x2 · · · xk equals Λk(x(k))x1x2 · · · xk, where

Λk(x
(k)) :=

( k

∑
j=1

(−1)j−1xj

)
.

Proof. Actually, the claim amounts to saying that the mixed partial deriv-
ative of Πk(x(k)) with respect to all the variables x1, x2, . . . , xk equals 2Λk(x(k)).
The lemma is clear for k = 2. For k > 2 introduce

Π̂k(x
(k)) := (x1 − x2) (x2 − x3) · · · (xk−1 − xk) and

Λ̂k(x
(k)) := x1 + 2

( k−1

∑
j=2

(−1)j−1xj

)
+ (−1)k−1xk.

It suffices to show that

(3.5)
( k−1

∏
j=2

∂

∂xj

)
Π̂k(x

(k)) = Λ̂k(x
(k)).

The proof will go by induction on k. In order to start the induction we have to
show that

(3.6)
∂

∂b
[(a− b)(b− c)] = a− 2b + c

which can be easily verified using calculus techniques. Assume now inductively
that equation (3.5) holds for indices up to a certain index k > 2 and proceed



NILPOTENT COMMUTATORS WITH A MASA 379

towards the next index. First observe that, using inductive hypothesis, we have( k−1

∏
j=2

∂

∂xj

)
Π̂k+1(x

(k+1)) = Λ̂k(x
(k))(xk − xk+1)

and apply the partial derivative with respect to xk to this equation. Use equation
(3.6), with b = xk, c = xk+1 and

(−1)ka = x1 + 2
( k−1

∑
j=2

(−1)j−1xj

)
,

and multiply the result by (−1)k to get the desired conclusion.

PROPOSITION 3.5. Under the inductive hypothesis for m let k be such that 2 6
k < m and assume for some distinct indices i1, i2, . . . , ik it holds that

ai1, i2 ai2, i3 · · · aik−1, ik 6= 0.

Then it holds that Aik · A · i1 = 0.

Proof. Recall the notation Pj for rank one idempotent in D whose range
equals the span of the j-th basis vector. To simplify the notation assume (after a
possible permutation of the basis vectors) with no loss that i1 = 1, i2 = 2, . . . , ik =
k. By Lemma 3.3 the inductive hypothesis implies the northwest k× k corner of

A is strictly upper triangular. We let D =
k
∑

j=1
xjPj for some choice of x1, x2, . . . , xk

and compute ∆k+1(x(k)) := ∆k+1(DA − AD). Note that the assumption that
DA − AD (of finite rank) is nilpotent implies that ∆k+1(x(k)) = 0. We separate
the sum of determinants ∆k+1(DA − AD) corresponding to minors containing
the northwest k × k corner, to be denoted by S from the rest of the sum to be
denoted by R.

First, observe that a summand Sj of S is determined by an index j > k such
that the j-th column and j-th row (actually the according parts of them) are added
to the northwest k × k corner of the matrix under consideration, i.e. DA − AD.
To compute this determinant we observe that the only not necessarily zero entry
of the first column of it is the (k + 1)-st one and it equals −aj, 1x1. Similarly, the
only not necessarily zero entry of the k-th row of this determinant is the (k + 1)-
st one and it equals ak, jxk. So, the determinant can be computed easily by first
expanding it in terms of the first column and then in terms of the last remaining
row. What we are left with is an upper triangular determinant so that we simply
multiply its diagonal entries. The result is

Sj = (−1)k−1(x1 − x2) (x2 − x3) · · · (xk−1 − xk) x1 xka12 a23 · · · ak−1, k ak, j aj, 1

which simplifies into

Sj = (−1)k−1Πk(x
(k))Ck ak, j aj, 1,
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where we have denoted x(k) and for k > 2 Πk(x(k)) as above, and

Ck := a12 a23 · · · ak−1, k.

Note that in the sum S = ∑
j>k

Sj the product Πk(x(k))Ck can be factored out so

that

(3.7) S = Πk(x
(k))Ck ∑

j>k
ak, j aj, 1 = Πk(x

(k))Ck Ak · A · 1.

It is clear that the series in this expression is convergent (even if not finite) since
it represents the inner product of two members ofH.

Next, consider a term R′ of R. There exists at least one index i such that
1 6 i 6 k and that determinant of R′ contains no i-th column nor i-th row, so
that it is independent of xi. It follows that the k-th mixed partial derivative of
R′ to all the variables x1, x2, . . . , xk is zero. This implies that monomials of R′

divisible by the product x1x2 · · · xk are all zero and the same is consequently true
for R. Following Lemma 3.4, R is not divisible by Πk(x(k)) if nonzero. This is
contradicting the fact that ∆k = R + S equals zero unless R and S are both zero.
Now, since Ck 6= 0 by the assumption of the proposition, equation (3.7) implies
that Ak · A · 1 = 0.

PROPOSITION 3.6. Under the inductive hypothesis for m let i1, i2, . . . , im be any
distinct indices. Then

ai1, i2 ai2, i3 · · · aim−1, im aim , i1 = 0.

Proof. Assume the contrary. As in the proof of Proposition 3.5 we assume
with no loss that i1 = 1, i2 = 2, . . . , im = m. Using Lemma 3.3 we will show
that all entries of the northwest m × m corner of A equal zero except for the
entries a12, a23, . . . , am−1, m, and am, 1. First, by Lemma 3.3 the principal minor
{1, . . . , m− 1} (in this proof principal minor means the corresponding submatrix
of A) is strictly upper triangular and hence for 1 6 j < i 6 m− 1 we have that
aij = 0. The fact that the principal minor {2, . . . , m} is strictly upper triangular
then implies that am1 is the only nonzero entry below the diagonal in the north-
west m× m corner. Now, suppose towards contradiction that some entry in the
corner aij with i + 2 6 j is nonzero. Then, by Lemma 3.3 the principal minor
{1, . . . , i, j, . . . , m} is strictly upper triangular contradicting the fact that a1,m 6= 0.

By the starting assumption of this proof (opposing the conclusion of the
proposition), all the elements a12, a23, . . . , am−1, m, and am, 1 are nonzero and after
multiplying the matrix A, if necessary, by a scalar we may assume with no loss
that their product equals 1. Moreover, by going to a diagonal similarity, if nec-
essary, we may further assume with no loss that a12 = a23 = · · · = am−1, m =
am, 1 = 1.

Denote by A0 the northwest m × m corner of A, and by B, respectively C,
the corresponding northeast, respectively the southwest corner of A. Note that
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A0 is a cyclic matrix of the form
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0


so that Am

0 = I. Let S be the semigroup, generated by A0 and all the diagonal
m×m matrices with all the diagonal entries nonzero. Observe that S is actually
a group so that in particular all the powers of its members are nonzero. Now,
choose a D ∈ D such that the first m of its diagonal entries are nonzero and
distinct, while all the remaining ones are equal to zero. Consider the 2× 2 block
decomposition of our matrices where the first block is made of the first m rows,
respectively columns. It follows that commutators DA− AD are of the form

DA− AD =

(
S TB

CR 0

)
with respect to this decomposition, where S, T, R ∈ S . We want to show that
BC = 0; this will imply that all the products of commutators DA− AD are of the
form given in Lemma 3.1 (with U = 0). This will tell us, in particular, that all the
powers of any DA − AD of the kind are nonzero in contradiction with the fact
that DA− AD is nilpotent and the proposition will follow.

Therefore, it remains to show that BC = 0. With this goal in mind we first
want to show that for every j = 1, . . . , k it holds that A1 · A · j = 0. Choose D =
P1, compute DA − AD, and observe that the trace of the square of DA − AD
equals 2 A1 · A · 1 giving the desired conclusion in case j = 1. Next, let j > 1
and observe that a12 · · · aj−1,j 6= 0 so that A1 · A · j = 0 by Proposition 3.5. These
facts together imply that the product of the first row of B with C equals zero. Let
us now consider a block-diagonal similarity that equals the direct sum of Aj

0, for
some power j, and identity. When we apply the kind of similarity, it does not
change the northwest corner of A and leaves the masa invariant. This similarity
permutes the rows of B (and less importantly the columns of C) and it does that
transitively. Apply the above consideration on the matrix obtained from A by
this similarity to see that the product of any row of B with C equals zero.

THEOREM 3.7. Let D ⊂ B(H) be a discrete masa on a separable Hilbert spaceH
and let A ∈ B(H) be a bounded operator satisfying condition (3.1), i.e.

ρ(AD− DA) = 0, for all D ∈ D.

Then there exists an indexation of the basis in which D consists of diagonal matrices and
A is an upper triangular matrix.

For the proof combine Proposition 3.6 and Lemma 2.1.
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At this point we may remove the standing hypothesis that the diagonal en-
tries of A are zero. Namely if this were not so, we could first set them equal to
zero, then prove the theorem and finally put the original diagonal entries back in.

Let us now prove the main result for linear spaces.

THEOREM 3.8. Let D ⊂ B(H) be a discrete masa on a separable Hilbert space
H and let L be a linear space of bounded operators on H, each A ∈ L satisfying condi-
tion (3.1), i.e.

ρ(AD− DA) = 0, for all D ∈ D.
Then there exists an indexation of the basis in which D consists of diagonal matrices and
all elements of L are simultaneously upper triangular matrices.

For the proof combine Proposition 3.6, Lemma 2.1, and Lemma 2.2.

4. PRELIMINARIES FOR THE CONTINUOUS CASE

Since we will rely on a result of [2], we assume that the underlying topo-
logical space S is a Hausdorff, Lindelöf, and locally compact topological space
and that µ is a σ-finite, regular Borel measure. Moreover, we will assume µ to be
a (purely) non-atomic measure. Note that all these assumptions are satisfied for
the usual Lebesgue measure on subsets of Rn. We assume that H = L2(µ) is a
Hilbert space of (equivalence classes of) (complex or real) measurable functions
on S whose absolute squares are integrable with respect to µ. It is well known
that the set D of multiplications M f by bounded measurable functions f on S
forms a continuous masa of operators in B(H). We will assume from now on
that A ∈ B(H) is an operator of finite rank satisfying

(4.1) ρ(AD− DA) = 0

for every D ∈ D. Then the commutator in (4.1) is also of finite rank and conse-
quently it is nilpotent. Let us write A in the form

(4.2) A = f1 ⊗ g1 + f2 ⊗ g2 + · · ·+ fn ⊗ gn,

for some f j, gj ∈ H for j = 1, 2, . . . , n. We may and will assume throughout that n
is actually equal to the rank of A, which is equivalent to saying that both sets of
vectors { f j}n

j=1 and {gk}n
k=1 are linearly independent. For any idempotent P ∈ D

let us introduce the P-matrix of A as

(4.3) M(P) = MA(P) =
{ ∫

P
f jgk dµ

}n

j,k=1
.

Since A is a fixed operator throughout, we will be omitting it. Here we abuse the
notation by conflating the notions of the idempotent P and its support. Note that
all these matrices are square matrices of order n.

Next, let

(4.4) P0, P1, . . . , PN ∈ D,
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be disjoint idempotents whose sum equals the identity. We assume that P0 preser-
ves independence in the sense that both sets of vectors {P0 f j}n

j=1 and {P0gk}n
k=1 as

members of the L2 of restrictions to the support of P0 are still linearly indepen-
dent.

LEMMA 4.1. Let N = 2n + 1, where n = rank A, and let the idempotents given
by (4.4) be such that P0 preserves independence. Furthermore, let the Pi-matrices M(Pi),
i = 1, . . . , N, be defined as in (4.3). Then, it holds that

(4.5) ∑
π∈SN

M(Pπ1)M(Pπ2) · · ·M(PπN) = 0.

Proof. Introduce f = x0P0 + x1P1 + · · ·+ xN PN , where x0, x1, . . . , xN are ar-
bitrary unknowns, and observe that D = M f ∈ D. Clearly, AD− DA is a nilpo-
tent of rank no more than 2n, so that its N-th power is equal to zero. Consider
the coefficient of the N-th power of AD − DA at the product x0x1x2 · · · xN−1xN
of the (0, 0) block entry with respect to the block partition given by the idempo-
tents P0, . . . , PN . Since coefficient of x0x1 · · · xN in (x0 − x1)(x1 − x2) · · · (xN−1 −
xN)(xN − x0) is 1 + (−1)N+1 = 2 6= 0, it follows that

n

∑
j=1

n

∑
k=1

P0 f j ⊗ P0gk

[
∑

π∈SN

M(Pπ1)M(Pπ2) · · ·M(Pπ N)
]

jk
= 0,

and (4.5) follows by the fact that P0 preserves independence.

A careful reader may have noticed that in the proof above it was crucial to
have N odd. However, it is easy to see that as soon as we prove the conclusion
for certain N the same is true for all larger numbers. We do not explain this in
detail since we do not need this fact.

We now introduce for any idempotent P ∈ D a number

Λ(P) =
n

∑
j=1

n

∑
k=1

∫
P

| f j| |gk|dµ

which represents a sort of upper bound of some norm of the matrix of the idem-

potent P. Namely,
n
∑

j=1

n
∑

k=1
|ajk| 6 Λ(P) for {ajk}n

j,k=1 = M(P), and consequently

there is a constant C, possibly depending on n, such that ‖M(P)‖ 6 CΛ(P) (here
‖ · ‖ denotes the operator norm on matrices). The latter conclusion follows from
the fact that all the matrix norms on square matrices of the same order are equiv-
alent. Due to the fact that the measure µ has no atoms, it follows that there is for

every K ∈ N a partition of P, P = Q1 + Q2 + · · ·+ QK such that Λ(Qi) =
1
K

Λ(P)
for i = 1, 2, . . . , K. This implies that

(4.6) ‖M(Qi)‖ 6
C
K

Λ(P), for i = 1, 2, . . . , K.
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LEMMA 4.2. Let N = 2n + 1, where n = rank A. Let {P1, P2, . . . , PN} be a set
of standard idempotents such that either Pi = Pj or PiPj = 0 for every pair of indices
1 6 i, j 6 N. As before denote by P0 the complement of the span of {Pi}N

i=1. Then, (4.5)
is still true.

Proof. We will prove this by induction on a lexicografically ordered number
of repetitions. Note that in the case that there is no repetitions the lemma is true
by Lemma 4.1. We would like to show that the lemma holds for all words with
r > 1 repeating idempotents, where the first one is repeated k1 times, the second
one k2 times and so on to the r-th one which is repeated kr times. Here we assume
with no loss of generality that kr > kr−1 > · · · > k1 > 2 and that the lemma
is valid inductively for all smaller indices k j satisfying these relations and for
all smaller indices r. More precisely, if we have another word with 1 6 s 6 r
repetitions, where the first idempotent is repeated l1 times, the second one l2
times and so on to the s-th one which is repeated ls times (here again we assume
with no loss of generality that ls > ls−1 > · · · > l1 > 2), then the conclusion of
the lemma holds for that word provided that either s < r or s = r and there exists
1 6 i 6 s such that li < ki and lj = k j for all j > i.

Take a word of the kind and denote by X = M(P) the letter that is repeating
kr times. To simplify the notation let k = kr. Furthermore, choose a permutation
π ∈ SN and let wπ

0 be the part of the word wπ = M(Pπ1)M(Pπ2) · · ·M(PπN) that
stands to the left of the first appearance of X, by wπ

1 the part of the word that
stands in between the first and the second appearance of X and so on, up to wπ

k
which stands to the right of the last appearance of X. If any of these words wπ

j are
empty, we write wπ

j = I, the identity matrix. So, the word under consideration
can be written as wπ = M(Pπ1)M(Pπ2) · · ·M(PπN) = wπ

0 Xwπ
1 X · · ·Xwπ

k , so that
we get, when going through all the permutations, the sum of the words

(4.7) Z = ∑
π∈SN

wπ
0 Xwπ

1 X · · ·Xwπ
k

which we want to show to be equal to zero.
Let us now find a partition of P, P = Q1 + Q2 + · · ·+ QK, for a given K ∈

N as in the paragraph just preceding the lemma. Observe that X = M(P) =
K
∑

i=1
M(Qi) and insert this into the sum Z given by (4.7). For each permutation

π the corresponding summand of (4.7) develops into a sum of Kr words of the
form wπ

0 Y1wπ
1 Y2 · · ·Ykwπ

k , where each of the Yj’s equals a certain Xi = M(Qi).
Consider a given variation of K of the Xi’s that are not all equal and sum up the
corresponding words over all π ∈ SN . By the inductive hypothesis the sum is
zero, so that (4.7) reduces to

Z = ∑
π∈SN

K

∑
i=1

wπ
0 Xiwπ

1 Xi · · ·Xiwπ
k .
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Next apply the estimate (4.6) to this sum to get

‖Z‖ 6 ∑
π∈SN

K

∑
i=1
‖wπ

0 ‖ ‖wπ
1 ‖ · · · ‖wπ

k ‖ ‖Xi‖k,

so that

‖Z‖ 6 ∑
π∈SN

‖wπ
0 ‖ ‖wπ

1 ‖ · · · ‖wπ
k ‖K

(C
K

Λ(P)
)k

.

Finally, send K to infinity to get the desired result.

5. OPERATORS COMMUTING WITH A CONTINUOUS MASA MODULO NILPOTENT
OPERATORS

PROPOSITION 5.1. Let Xi = M(Pi) for i = 1, 2, . . . , k be Pi-matrices, where
Pi ∈ D are disjoint idempotents such that the complement P0 of their span preserves
independence. Then, any linear combination of Xi’s is nilpotent.

Proof. Any linear combination of Xi’s can be written as Y = x1X1 + x2X2 +
· · ·+ xkXk, where x1, x2, . . . , xk are arbitrary unknowns. In order to see that it is
nilpotent let us compute the N-th power of Y, where N > 2n + 1 and n = rank A.
For a given variation of indices 1 6 i1 6 i2 6 · · · 6 iN 6 k the coefficient of the
N-th power of Y at xi1 xi2 · · · xiN can be written in terms of permutations π ∈ Sn as

1
m1!

1
m2!
· · · 1

mk! ∑
π∈Sn

Xiπ1 Xiπ2 · · ·XiπN ,

where mi is the number of repetitions of the index i ∈ {1, 2, . . . , k} in the given
variation. However, this sum is equal to zero by Lemma 4.2.

LEMMA 5.2. For any idempotent P ∈ D that preserves independence there exists
a partition P = P1 + P2 such that P1 and P2 each preserves independence.

Proof. Let {h1, h2, . . . , hm} be a maximal linearly independent subset of the
union of the sets { f1, f2, . . . , fn} and {g1, g2, . . . , gn}. It is a simple exercise in lin-
ear algebra to show that P preserves independence if the set {Ph1, Ph2, . . . , Phm}
is linearly independent. We will prove the lemma using this observation induc-
tively on m. The start of induction is clear since for a function h1 which is not
equal to zero a.e. on the support of P we can always find two subsets of nonzero
measure such that it is not equal to zero a.e. on either of them. Assume that
the set of functions H = {h1, h2, . . . , hk, hk+1} is linearly independent and that
the lemma is true for all sizes of H that are strictly smaller. Inductively find
a partition P = P1 + P2 such that the set H′ = {h1, h2, . . . , hk} is linearly in-
dependent on both the support of P1 and P2. Now if after adjoining hk+1 they
are still linearly independent on both the supports, we are done. If not, then at
least on one of them (and we may and will assume with no loss that this is the
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support of P1) they are linearly dependent, so that there are scalars α1, α2, . . . , αk

such that h = hk+1 −
k
∑

i=1
αihi = 0 a.e. on the support of P1. The fact that H is

linearly independent now yields that h is not equal to zero a.e. on the support
of P2. Apply the inductive hypothesis for the set H′ on P1 to find a partition
P1 = Q1 + Q2 such that the set H′ is linearly independent on both the supports
of Q1 and Q2. Next apply the inductive hypothesis for the set {h} on P2 to find a
partition P2 = Q3 + Q4 such that {h} is not equal to zero a.e. on both the supports
of Q3 and Q4. It follows that idempotents R1 = Q1 + Q3 and R2 = Q2 + Q4 form
a partition P = R1 + R2 that solves the problem.

Denote byM the span of all M(P) when P runs through the idempotents
of D.

PROPOSITION 5.3. There exists a k ∈ N and a pairwise disjoint set of idempotents
P1, P2, . . . , Pk ∈ D such that the complement of their span preserves independence and
such that the matrices M(P1), M(P2), . . . , M(Pk) spanM.

Proof. It is first clear that we may choose a finite number of Pi’s, P1, P2, . . . , Pk
say, whose matrices would spanM since the dimension of all square matrices of
order n cannot exceed n2. Next we show that we may assume them pairwise dis-
joint with no loss using the law of inclusion-exclusion. Namely, for any partition
α, β of {1, 2, . . . , n} we let

Pα,β =
(⋂

i∈α

Pi
)
\
( ⋃

l∈β

Pl
)

to get a set of pairwise disjoint idempotents that spanM.
Finally, we want to show that the idempotents can be chosen so that the

complement of their span preserves independence. To this end we first apply
Lemma 5.2 inductively to find a partition I = Q1 + Q2 + · · ·+ Qn2+1 such that
each of Ql’s preserve independence. It follows that matrices of idempotents Pil =
Pi ∩ Ql for i = 1, 2, . . . , k and l = 1, 2, . . . , n2 + 1 span M. Choose a maximal
linearly independent subset R1, R2, . . . , Rm among them and observe that it must
still spanM and that it can be no greater than n2. This implies that each of the
chosen idempotents Rj can belong to no more than one of Ql’s showing that there
exists one of them, say Ql , disjoint with all Ri’s, so that Ql is in the complement
of the union of Rj’s.

THEOREM 5.4. The linear spaceM contains only nilpotent matrices.

Proof. By Proposition 5.3 the space is spanned by matrices that belong to
pairwise disjoint idempotents whose complement preserves independence. How-
ever, by Proposition 5.1 a linear combination of matrices of the kind is always
nilpotent.

COROLLARY 5.5. For any idempotent P ∈ D the compression PAP is nilpotent.
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Proof. Observe that after the sets of vectors { f j}n
j=1 and {gk}n

k=1 are chosen,

then M(PAP)k (P) = MA(P)k. So, a high enough power of PAP is zero due to the
fact that M(P) is nilpotent, which is true by Theorem 5.4.

THEOREM 5.6. The operator A admits standard multiplicity-free triangulariza-
tion.

The proof follows from the corollary above and Theorem 3.17 of [2].
Observe that the condition of the rank to be finite is necessary in this theo-

rem.

EXAMPLE 5.7. There exist a compact operator W on a Hilbert space such
that for every D ∈ D, where D is a continuous masa, it holds that WD− DW is
quasinilpotent but that W does not admit a standard multiplicity-free triangular-
ization.

Proof. Define on the direct sum H(2) of H = L2[0, 1] with itself the compact
operator, defined by an operator matrix

W =

(
V V
−V −V

)
,

where V is the Volterra operator on L2[0, 1]. It was shown in Example 3.2 of [2]
that W admits no standard multiplicity-free triangularization. Here, the standard
masa D is generated by idempotents D = P ⊕ Q, where P and Q run through
multiplications by characteristic functions of measurable subsets of the interval
[0, 1]. We want to show that [W, D] = WD− DW is always quasinilpotent. Com-
pute

[W, D] =

(
VP− PV VQ− PV
−VP + QV −VQ + QV

)
,

and write the following estimate in the notation that treats the Hilbert space
L2[0, 1] as a Riesz space using the fact that V, P, I − P, Q, and I − Q are all pos-
itive in the Riesz sense. We thus have the following relation, where |X| denotes
the modulus of an operator X:

| [W, D] | 6
(

VP + PV VQ + PV
VP + QV VQ + QV

)
6 2|W|.

Now, since |W| is clearly quasinilpotent, so is [W, D].

LEMMA 5.8. Let D be a continuous masa and let C ⊆ D be an uncountable
collection of nontrivial projections. If n is a positive integer, then the collection of products

{P1 P2 · · · Pn : Pi ∈ C for all i}

also contains an uncountable collection of nontrivial projections.
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Proof. If n = 2 this follows from the fact that the measure on the underly-
ing topological space is σ-finite proving that no uncountable collection of projec-
tions is disjoint. This argument extends to an inductive argument on k, where
n = 2k.

THEOREM 5.9. Let A be a finite-dimensional linear space of operators satisfying
the standing hypothesis of Theorem 5.6 (i.e. they are of finite rank and satisfy condition
(4.1)). Then they simultaneously admit a standard multiplicity-free triangularization.

Proof. We first prove that every member A ∈ A has a nontrivial standard
idempotent in its kernel. We will prove this by induction on the rank of A. To
this end we write A in the block-form

A =

(
A′ ∗
0 A′′

)
with respect to some standard idempotent P. By the fact that A is triangularizable
with respect to D such a P different from 0 and I always exists. Let the rank of
A be 1. If we show the existence of such a P with A′ = 0 we are done. If not,
then A′′ = 0. Choose a descending chain of P’s of this kind whose intersection
is trivial. If we have always A′ 6= 0 this yields A = 0 in contradiction with the
fact that it is of rank 1. For the inductive step it is enough to find a standard
idempotent P such that the rank of A′ is strictly smaller than the rank of A. If
this cannot be done we have A′′ = 0 which brings us to contradiction in a similar
way.

Now we pick a basis A1, . . . , An (actually we only need it to be a spanning
set) for the linear space A. We will establish simultaneous standard multiplicity
free triangularization by induction on the sum s of the ranks of Ai’s. If s = 1 the
conclusion follows from Theorem 5.6. Now assume s > 1. We will first show
that there exists a projection P ∈ D in the common kernel of all of them and
consequently in the common kernel of all operators of A. In order to see this we
first take an uncountable set S of n-tuples of scalars every n of which form a basis
for Cn. Next consider all linear combinations of the Ai’s with coefficients coming
from S . For each such combination pick a nontrivial P in D that is in its kernel.
Now use Lemma 5.8 to get a nontrivial projection P (actually, an uncountable lot
of them!) in the common kernel of some set of n linear combinations of S , and
since these combinations still spanA, P is in the common kernel of all of the Ai’s.

Next, denote by P the supremum of the projections in the common kernel
of all members of A. Introduce Â = {Â : A ∈ A}, where Â is the compression
of A ∈ A to I − P. Note that the linear space of all such compressions satisfies
the same condition as the starting linear space did. Observe also that Â1, . . . , Ân

obtained from the spanning set picked in the previous paragraph, span Â. Us-
ing the considerations of the previous paragraph we see that Â have a standard
idempotent in their joint kernel. Now, since P was maximal, we observe that
in at least one Ai, the corresponding compression Âi has strictly diminished the
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rank. Hence the sum of the ranks of Âi’s is strictly smaller than s and therefore
by inductive hypothesis the theorem follows.
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