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ABSTRACT. We introduce a notion of strongly continuous orbit equivalence
for one-sided topological Markov shifts. We prove that one-sided topologi-
cal Markov shifts (XA, σA) and (XB, σB) are strongly continuous orbit equiv-
alent if and only if there exists an isomorphism between the Cuntz–Krieger
algebras OA and OB preserving their maximal commutative C∗-subalgebras
C(XA) and C(XB) and giving cocycle conjugate gauge actions. An example
of one-sided topological Markov shifts which are strongly continuous orbit
equivalent but not one-sided topologically conjugate is presented.
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1. INTRODUCTION

Let A = [A(i, j)]Ni,j=1 be an N × N matrix with entries in {0, 1}, where 1 <

N ∈ N. Throughout the paper, we assume that matrices have their entries in
{0, 1}. We denote by XA the shift space

XA = {(xn)n∈N ∈ {1, . . . , N}N : A(xn, xn+1) = 1 for all n ∈ N}

of the right one-sided topological Markov shift for A. Under the condition that
the matrix A is irreducible and satisfies condition (I) in the sense of Cuntz–Krieger
[2], the space XA is a compact Hausdorff space with a natural product topology
on {1, . . . , N}N. The shift transformation σA on XA defined by σA((xn)n∈N) =
(xn+1)n∈N is a continuous surjective map on XA. The topological dynamical sys-
tem (XA, σA) is called the (right) one-sided topological Markov shift for A. The
two-sided topological Markov shift written (XA, σA) is defined by

XA = {(xn)n∈Z ∈ {1, . . . , N}Z : A(xn, xn+1) = 1 for all n ∈ Z}
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and σA((xn)n∈Z) = (xn+1)n∈Z. In [2], J. Cuntz and W. Krieger have introduced
a C∗-algebra associated to the topological Markov shift (XA, σA). It is called the
Cuntz–Krieger algebra written OA.

Let A and B be irreducible matrices satisfying condition (I). Cuntz and
Krieger have proved that the Cuntz–Krieger algebrasOA andOB with their gauge
actions are conjugate if the one-sided topological Markov shifts (XA, σA) and
(XB, σB) are topologically conjugate. They have also proved that the stabilized
Cuntz–Krieger algebras OA ⊗K(H) and OB ⊗K(H) with their stabilized gauge
actions are conjugate if the two-sided topological Markov shifts (XA, σA) and
(XB, σB) are topologically conjugate. We note that one-sided topological conju-
gacy of topological Markov shifts yields two-sided topological conjugacy.

In [9], the author has introduced the notion of continuous orbit equivalence
of one-sided topological Markov shifts. It is an equivalence relation in one-sided
topological Markov shifts inspired by studies of orbit equivalences in Cantor min-
imal systems by Giordano–Putnam–Skau (cf. [5], [6]), Giordano–Matui–Putnam–
Skau (cf. [4]). It is a weaker equivalence relation than one-sided topological con-
jugacy and gives rise to isomorphic Cuntz–Krieger algebras ([9]).

Let A and B be irreducible square matrices with entries in {0, 1}. One-sided
topological Markov shifts (XA, σA) and (XB, σB) are said to be continuously orbit
equivalent if there exists a homeomorphism h : XA → XB such that

σ
k1(x)
B (h(σA(x))) = σ

l1(x)
B (h(x)) for x ∈ XA,(1.1)

σ
k2(y)
A (h−1(σB(y))) = σ

l2(y)
A (h−1(y)) for y ∈ XB(1.2)

for some continuous functions k1, l1 ∈ C(XA,Z+), k2, l2 ∈ C(XB,Z+). Let GA de-
note the étale groupoid for (XA, σA) whose reduced groupoid C∗-algebra C∗r (GA)
is isomorphic to the Cuntz–Krieger algebra OA (cf. [13], [14], [16]).

Denote by DA the canonical maximal abelian C∗-subalgebra of OA realized
as the commutative C∗-algebra of continuous functions on the unit space G(0)

A
of GA. The algebra DA is canonically isomorphic to the C∗-algebra C(XA) of
continuous functions on the shift space XA. H. Matui has studied continuous
orbit equivalence from the view point of groupoids ([13], [14]).

In [11], we have obtained the following classification results of continuous
orbit equivalence of one-sided topological Markov shifts.

THEOREM 1.1 ([11], cf. [9], [10], [13], [14]). Let A and B be irreducible matrices
satisfying condition (I). Then the following four assertions are equivalent:

(i) (XA, σA) and (XB, σB) are continuously orbit equivalent.
(ii) The étale groupoids GA and GB are isomorphic.

(iii) There exists an isomorphism Ψ : OA → OB such that Ψ(DA) = DB.
(iv) OA and OB are isomorphic and det(id− A) = det(id− B).
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Let A be an irreducible square matrix with entries in {0, 1}, and consider
the two-sided topological Markov shift (XA, σA). Set

(1.3) HA
= C(XA,Z)/{ξ − ξ ◦ σA : ξ ∈ C(XA,Z)}.

The set HA has a natural structure of an abelian group induced by pointwise sum
of functions. The equivalence class of a function ξ ∈ C(XA,Z) is written [ξ]. We
define the positive cone HA

+ by

(1.4) HA
+ = {[ξ] : ξ(x) > 0 for all x ∈ XA}.

The pair (HA, HA
+) is called the ordered cohomology group of (XA, σA) (cf. [1],

[15]). We similarly define the ordered cohomology group (HA, HA
+) for the one-

sided topological Markov shift (XA, σA). The latter ordered group (HA, HA
+) is

naturally isomorphic to the former one (HA, HA
+) ([11], Lemma 3.1). The ordered

group (HA, HA
+) is also isomorphic to the first cohomology group H1(GA,Z) of

the groupoid GA ([11], Proposition 3.4). In [1], Boyle–Handelman have proved
that the ordered cohomology group (HA, HA

+) is a complete invariant for flow
equivalence of the two-sided topological Markov shift (XA, σA).

In the first part of this paper, we introduce a notion of continuous orbit map
from (XA, σA) to (XB, σB). A local homeomorphism h : XA → XB is said to be
continuous orbit map if there exist continuous functions k1, l1 : XA → Z+ such that

(1.5) σ
k1(x)
B (h(σA(x))) = σ

l1(x)
B (h(x)) for x ∈ XA.

It yields a morphism in the continuous orbit equivalence classes of one-sided
topological Markov shifts. For f ∈ C(XB,Z), define

(1.6) Ψh( f )(x) =
l1(x)−1

∑
i=0

f (σi
B(h(x)))−

k1(x)−1

∑
j=0

f (σj
B(h(σA(x)))) for x ∈ XA.

It is easy to see that Ψh( f ) ∈ C(XA,Z). Thus Ψh : C(XB,Z) → C(XA,Z) gives
rise to a homomorphism of abelian groups and induces a homomorphism from
HB to HA. We then show that the objects of continuous orbit equivalence classes
of one-sided topological Markov shifts with the morphisms of continuous orbit
maps form a category (Proposition 2.4). We have

THEOREM 1.2 (Theorem 3.10). The correspondence Ψ yields a contravariant
functor from the category of continuous orbit equivalence classes [(XA, σA)] of one-sided
topological Markov shifts for irreducible matrices A satisfying condition (I) to that of
ordered abelian groups (HA, HA

+).

The class [1A] ∈ HA of the constant function 1A(x) = 1, x ∈ XA is an
order unit of the ordered group (HA, HA

+). Let h : XA → XB be a continuous
orbit map giving rise to a continuous orbit equivalence between (XA, σA) and
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(XB, σB). It is a key ingredient in the papers [11], [12] that the class [Ψh(1B)] in
HA of Ψh(1B) ∈ C(XA,Z) belongs to the positive cone HA

+ .
In the second part of this paper, we introduce a notion of strongly con-

tinuous orbit equivalence between (XA, σA) and (XB, σB), which is defined by
the condition that [Ψh(1B)] = [1A] in HA. It has been proved in [12] that un-
der the condition that [Ψh(1B)] = [1A] in HA, their zeta functions coincide, that
is, det(id − tA) = det(id − tB). Hence strongly continuous orbit equivalence
preserves the structure of periodic points of their two-sided topological Markov
shifts. We know that strongly continuous orbit equivalence in one-sided topolog-
ical Markov shifts is a subequivalence relation in continuous orbit equivalence.
As a result, the objects of strongly continuous orbit equivalence classes of one-
sided topological Markov shifts with the morphisms of strongly continuous orbit
maps form a category (Corollary 4.5). Continuous orbit equivalence of one-sided
topological Markov shifts does not necessarily give rise to topological conjugacy
of their two-sided topological Markov shifts. We show the following theorem:

THEOREM 1.3 (Theorem 5.5 and Corollary 5.7). Assume that matrices A and
B are irreducible and satisfy condition (I). If (XA, σA) and (XB, σB) are strongly contin-
uous orbit equivalent, their two-sided topological Markov shifts (XA, σA) and (XB, σB)
are topologically conjugate. Hence their C∗-crossed products are isomorphic:

C(XA)×σ∗A
Z ∼= C(XB)×σ∗B

Z.

Let us denote by ρA the gauge action on OA. In general, continuous orbit
equivalence does not necessarily yield cocycle conjugacy of their gauge actions
on the associated Cuntz–Krieger algebras. We have the following result which is
a generalization of 2.17 Proposition in [2].

THEOREM 1.4 (Theorem 6.7). Assume that matrices A and B are irreducible and
satisfy condition (I). The following two assertions are equivalent:

(i) The one-sided topological Markov shifts (XA, σA) and (XB, σB) are strongly con-
tinuous orbit equivalent.

(ii) There exist a unitary one-cocycle vt ∈ U(OB), t ∈ T for the gauge action ρB on
OB and an isomorphism Φ : OA → OB such that

Φ(DA) = DB and Φ ◦ ρA
t = Ad(vt) ◦ ρB

t ◦Φ, t ∈ T.

Hence if (XA, σA) and (XB, σB) are strongly continuous orbit equivalent,
then the dual actions of the gauge actions on their Cuntz–Krieger algebras are
isomorphic (Corollary 6.8):

(OA×ρAT, ρ̂A,Z) ∼= (OB×ρBT, ρ̂B,Z).

One-sided topological conjugacy yields a strongly continuous orbit equiva-
lence. We finally present an example of a pair of one-sided topological Markov
shifts (XA, σA) and (XB, σB) which are strongly continuous orbit equivalent but
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not topologically conjugate. Let A and B be the following matrices:

(1.7) A =

[
1 1
1 1

]
, B =

1 1 0
1 0 1
1 0 1

 .

They are both irreducible and satisfy condition (I). We show the following theo-
rem.

THEOREM 1.5 (Theorem 7.1). The one-sided topological Markov shifts (XA, σA)
and (XB, σB) defined by the matrices (1.7) are strongly continuous orbit equivalent, but
not topologically conjugate.

Throughout the paper, we use the following notations. The set of positive
integers and the set of nonnegative integers are denoted by N and by Z+ respec-
tively. A word µ = µ1 · · · µk for µi ∈ {1, . . . , N} is said to be admissible for XA
if there exists an element x = (xn)n∈N ∈ XA such that µ1 · · · µk = x1 · · · xk. The
length of µ is k, which is denoted by |µ|. We denote by Bk(XA) the set of all admis-

sible words of length k. We set B∗(XA) =
∞⋃

k=0
Bk(XA) where B0(XA) denotes the

empty word ∅. Denote by Uµ the cylinder set {(xn)n∈N ∈ XA : x1 = µ1, . . . , xk =
µk} for µ = µ1 · · · µk ∈ Bk(XA). For x = (xn)n∈N ∈ XA and k, l ∈ N with k 6 l,
we set

x[k,l] = xkxk+1 · · · xl ∈ Bl−k+1(XA), x[k,∞) = (xk, xk+1, . . . ) ∈ XA.

We denote by C(XA,Z+) the set of Z+-valued continuous functions on XA. A
point x ∈ XA is said to be eventually periodic if σr

A(x) = σs
A(x) for some r, s ∈ Z+

with r 6= s.

2. CONTINUOUS ORBIT MAPS

DEFINITION 2.1. Let (XA, σA) and (XB, σB) be one-sided topological Markov
shifts. A local homeomorphism h : XA → XB is called a continuous orbit map if
there exist continuous functions k1, l1 : XA → Z+ such that

(2.1) σ
k1(x)
B (h(σA(x))) = σ

l1(x)
B (h(x)) for x ∈ XA.

If a local homeomorphism h : XA → XB is a continuous orbit map, it is written
h : (XA, σA) → (XB, σB). If a continuous orbit map h : (XA, σA) → (XB, σB)
is a homeomorphism such that its inverse h−1 : (XB, σB) → (XA, σA) is also a
continuous orbit map, it is called a continuous orbit homeomorphism.

Hence (XA, σA) and (XB, σB) are continuously orbit equivalent if and only
if there exists a continuous orbit homeomorphism h : (XA, σA)→ (XB, σB).
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For a continuous orbit map h : (XA, σA) → (XB, σB) with continuous func-
tions k1, l1 : XA → Z+ satisfying (2.1), we put for n ∈ N,

kn
1(x) =

n−1

∑
i=0

k1(σ
i
A(x)), ln

1 (x) =
n−1

∑
i=0

l1(σi
A(x)) for x ∈ XA.

We note that the following identities hold.

LEMMA 2.2 (cf. Lemma 3.1 of [12]). For n, m ∈ Z+, we have

kn+m
1 (x) = kn

1(x) + km
1 (σ

n
A(x)) for x ∈ XA,

ln+m
1 (x) = ln

1 (x) + lm
1 (σn

A(x)) for x ∈ XA

and

(2.2) σ
kn

1 (x)
B (h(σn

A(x))) = σ
ln
1 (x)

B (h(x)) for x ∈ XA.

LEMMA 2.3. Let h : (XA, σA) → (XB, σB) and g : (XB, σB) → (XC, σC) be
continuous orbit maps such that there exist continuous functions k1, l1 : XA → Z+ and
k2, l2 : XB → Z+ satisfying

σ
k1(x)
B (h(σA(x))) = σ

l1(x)
B (h(x)) for x ∈ XA,(2.3)

σ
k2(y)
C (g(σB(y))) = σ

l2(y)
C (g(y)) for y ∈ XB.(2.4)

Put

k3(x) = kl1(x)
2 (h(x)) + lk1(x)

2 (h(σA(x))) for x ∈ XA,(2.5)

l3(x) = ll1(x)
2 (h(x)) + kk1(x)

2 (h(σA(x))) for x ∈ XA.(2.6)

Then we have

(2.7) σ
k3(x)
C (g ◦ h(σA(x))) = σ

l3(x)
C (g ◦ h(x)) for x ∈ XA.

Hence g ◦ h : XA → XC gives rise to a continuous orbit map.

Proof. Take an arbitrary element x ∈ XA. For n ∈ N and y ∈ XB, we have
by (2.2)

(2.8) σ
kn

2 (y)
C (g(σn

B(y))) = σ
ln
2 (y)

C (g(y)).

Apply (2.8) for n = l1(x), y = h(x), one has

σ
k

l1(x)
2 (h(x))

C (g(σl1(x)
B (h(x)))) = σ

l
l1(x)
2 (h(x))

C (g(h(x))).

Apply (2.8) for n = k1(x), y = h(σA(x)), one has

σ
k

k1(x)
2 (h(σA(x)))

C (g(σk1(x)
B (h(σA(x))))) = σ

l
k1(x)
2 (h(σA(x)))

C (g(h(σA(x)))).

Put n = l1(x), m = k1(x). By (2.3), we have

σ
kn

2 (h(x))+lm
2 (h(σA(x)))

C (g ◦ h(σA(x))) = σ
kn

2 (h(x))
C (σ

km
2 (h(σA(x)))

C (g(σm
B (h(σA(x))))))
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= σ
kn

2 (h(x))
C (σ

km
2 (h(σA(x)))

C (g(σn
B(h(x)))))

= σ
km

g (h(σA(x)))
C (σ

ln
2 (h(x))

C (g(h(x))))

= σ
km

2 (h(σA(x)))+ln
2 (h(x))

C (g(h(x))).

Therefore we have

PROPOSITION 2.4. The objects of continuous orbit equivalence classes of one-sided
topological Markov shifts with the morphisms of continuous orbit maps form a category.

We note that the above proposition holds for matrices which are not neces-
sarily irreducible.

3. COHOMOLOGY GROUPS

For a one-sided topological Markov shift (XA, σA), we denote by cobdy(σA)
the subgroup {ξ − ξ ◦ σA : ξ ∈ C(XA,Z)} of C(XA,Z), and set

HA = C(XA,Z)/cobdy(σA).

The set HA has a natural structure of an abelian group induced by pointwise sum
of functions. The equivalence class of a function ξ ∈ C(XA,Z) is written [ξ]. We
define the positive cone HA

+ by

HA
+ = {[ξ] : ξ(x) > 0 for all x ∈ XA}.

The pair (HA, HA
+) is called the ordered cohomology group of (XA, σA). In this

section, we construct a contravariant functor Ψ from the category of continuous
orbit equivalence classes of one-sided topological Markov shifts to the category
of ordered abelian groups. Let h : (XA, σA)→ (XB, σB) be a continuous orbit map
with continuous functions k1, l1 : XA → Z satisfying (2.1).

LEMMA 3.1. Suppose that A is irreducible and satisfies condition (I). The function
c1(x) = l1(x) − k1(x) for x ∈ XA does not depend on the choice of the continuous
functions k1, l1 satisfing (2.1).

Proof. We first note that non eventually periodic points of any clopen set
U of XA are dense in U because A is irreducible and satisfies condition (I). Let
k′1, l′1 ∈ C(XA,Z) be another continuous functions for h satisfying

(3.1) σ
k′1(x)
B (h(σA(x))) = σ

l′1(x)
B (h(x)) for x ∈ XA.

Since k1, k′1 are both continuous, there exists K ∈ N such that k1(x), k′1(x) 6 K for
all x ∈ XA. Put c′1(x) = l′1(x)− k′1(x) so that we have

σ
c1(x)+K
B (h(x)) = σK

B (h(σA(x))) = σ
c′1(x)+K
B (h(x)) for x ∈ XA.
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Suppose that c1(x0) 6= c′1(x0) for some x0 ∈ XA. There exists a clopen neighbor-
hood U of x0 such that

c1(x) 6= c′1(x) for all x ∈ U.

Now h is a local homeomorphism, one may take a clopen neighborhood V ⊂ U
of x0 such that h : V → h(V) is a homeomorphism. As c1(x) + K 6= c′1(x) + K
for all x ∈ V, the points h(x) are eventually periodic for all x ∈ V, which is a
contradiction to the fact that the set of non eventualy periodic points of h(V) is
dense in h(V).

We call the above function c1 the cocycle function of h. For f ∈ C(XB,Z),
define

(3.2) Ψh( f )(x) =
l1(x)−1

∑
i=0

f (σi
B(h(x)))−

k1(x)−1

∑
j=0

f (σj
B(h(σA(x)))), x ∈ XA.

It is easy to see that Ψh( f ) ∈ C(XA,Z). Thus Ψh : C(XB,Z)→ C(XA,Z) gives rise
to a homomorphism of abelian groups.

LEMMA 3.2. Suppose that A and B be irreducible and satisfy condition (I). Then
the map Ψh : C(XB,Z)→ C(XA,Z) does not depend on the choice of the functions k1, l1
satisfying (2.1).

The proof is similar to the proof of Lemma 4.2 of [12].

EXAMPLE 3.3. (i) Let h : XA → XB be a topological conjugacy, that is, σB ◦
h = h ◦ σA. Then h is a continuous orbit map such that Ψh( f ) = f ◦ h for f ∈
C(XB,Z).

(ii) For A = B, the shift map σA : XA → XA is a continuous orbit map on XA
such that ΨσA( f ) = f ◦ σA for f ∈ C(XA,Z).

The identity in the following lemma is useful in our further discussions. The
proof is similar to the proof of Lemma 4.3 in [12].

LEMMA 3.4. Let h : (XA, σA) → (XB, σB) be a continuous orbit map with con-
tinuous functions k1, l1 satisfying (2.1). For f ∈ C(XB,Z), x ∈ XA and m = 1, 2, . . . ,
the following identity holds:

m−1

∑
i=0

{ l1(σi
B(x))−1

∑
i′=0

f (σi′
B(h(σ

i
A(x))))−

k1(σ
i
A(x))−1

∑
j′=0

f (σj′
B (h(σ

i
A(x))))

}

=
lm
1 (x)−1

∑
i′=0

f (σi′
B(h(x)))−

km
1 (x)−1

∑
j′=0

f (σj′
B (h(σ

m
A (x)))).

Let h : (XA, σA)→ (XB, σB) and g : (XB, σB)→ (XC, σC) be continuous orbit
maps with continuous functions k1, l1 ∈ C(XA,Z) and k2, l2 ∈ C(XB,Z) satisfying
(2.3) and (2.4), respectively. We write the continuous orbit map g ◦ h : XA → XC
as gh. We prove the following proposition
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PROPOSITION 3.5. Assume that A, B and C are irreducible and satisfy condition
(I). Then we have Ψh ◦Ψg = Ψgh.

As in Lemma 3.2, we require the condition that matrices are irreducible and
satisfy condition (I) to guarantee the well-definedness of the map Ψh.

To prove the proposition, we provide a lemma and its corollary. Let k3, l3 :
XA → Z+ be the continuous functions defined by (2.5), (2.6), respectively. By
Lemma 2.3, we have for f ∈ C(XC,Z)

(3.3) Ψgh( f )(x) =
l3(x)−1

∑
i=0

f (σi
C(gh(x)))−

k3(x)−1

∑
j=0

f (σj
C(gh(σA(x)))), x ∈ XA.

Keep the above situations. By Lemma 3.4, we have

LEMMA 3.6. For f ∈ C(XC,Z), x ∈ XA and m = 1, 2, . . . , the following identity
holds:

m−1

∑
i=0

{ l2(σi
B(h(x)))−1

∑
i′=0

f (σi′
C(g(σi

B(h(x)))))−
k2(σ

i
B(h(x)))−1

∑
j′=0

f (σj′
C (g(σi

B(h(x)))))
}

=
lm
2 (h(x))−1

∑
i′=0

f (σi′
C(gh(x)))−

km
2 (h(x))−1

∑
j′=0

f (σj′
C (g(σm

B (h(x))))).

Hence we have

COROLLARY 3.7. For f ∈ C(XC,Z) and x ∈ XA, we have

(i)
l1(x)−1

∑
i=0

Ψg( f )(σi
B(h(x)))=

l
l1(x)
2 (h(x))−1

∑
i′=0

f (σi′
C(gh(x)))−

k
l1(x)
2 (h(x))−1

∑
j′=0

f (σj′
C (g(σl1(x)

B (h(x))))).

(ii)
k1(x)−1

∑
j=0

Ψg( f )(σj
B(h(σA(x)))) =

l
k1(x)
2 (h(σA(x)))−1

∑
i′=0

f (σi′
C(gh(σA(x))))

−
k

k1(x)
2 (h(σA(x)))−1

∑
j′=0

f (σj′
C (g(σk1(x)

B (h(σA(x)))))).

Proof of Proposition 3.5. By the above corollary, we have

Ψh(Ψg( f ))(x)

=
l1(x)−1

∑
i=0

Ψg( f )(σi
B(h(x)))−

k1(x)−1

∑
j=0

Ψg( f )(σj
B(h(σA(x))))

=
{ l

l1(x)
2 (h(x))−1

∑
i′=0

f (σi′
C(gh(x)))−

k
l1(x)
2 (h(x))−1

∑
j′=0

f (σj′
C (g(σl1(x)

B (h(x)))))
}
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−
{l

k1(x)
2 (h(σA(x)))−1

∑
i′=0

f (σi′
C(gh(σA(x))))−

k
k1(x)
2 (h(σA(x)))−1

∑
j′=0

f (σj′
C (g(σk1(x)

B (h(σA(x))))))
}

.

By (2.6), the first { · } above goes to

l3(x)−1

∑
i′=0

f (σi′
C(gh(x)))(3.4)

−
{ l3(x)−1

∑
i′=l

l1(x)
2 (h(x))

f (σi′
C(gh(x))) +

k
l1(x)
2 (h(x))−1

∑
j′=0

f (σj′
C (g(σl1(x)

B (h(x)))))
}

.(3.5)

By (2.5), the second { · } above goes to

k3(x)−1

∑
i′=0

f (σi′
C(gh(σA(x))))(3.6)

−
{ k3(x)−1

∑
i′=l

k1(x)
2 (h(σA(x)))

f (σi′
C(gh(σA(x)))) +

k
k1(x)
2 (h(σA(x)))−1

∑
j′=0

f (σj′
C (g(σk1(x)

B (h(σA(x))))))
}

.(3.7)

We thus see
Ψh(Ψg( f ))(x) = {(3.4)− (3.5)} − {(3.6)− (3.7)}.

Since σ
l
l1(x)
2 (h(x))

C (gh(x)) = σ
k

l1(x)
2 (h(x))

C (g(σl1(x)
B (h(x)))), we have

(3.5) =
k

k1(x)
2 (h(σA(x)))−1

∑
j′=0

f (σj′
C (σ

l
l1(x)
2 (h(x))

C (gh(x))))+
k

l1(x)
2 (h(x))−1

∑
j′=0

f (σj′
C (g(σl1(x)

B (h(x)))))

=
k

l1(x)
2 (h(x))+k

k1(x)
2 (h(σA(x)))−1

∑
j′=0

f (σj′
C (g(σl1(x)

B (h(x))))).

Since σ
l
k1(x)
2 (h(σA(x)))

C (gh(σA(x))) = σ
k

k1(x)
2 (h(σA(x)))

C (g(σk1(x)
B (h(σA(x))))), we have

(3.7) =
k

l1(x)
2 (h(x))−1

∑
j′=0

f (σj′
C (σ

l
k1(x)
2 (h(σA(x)))

C (gh(σA(x)))))

+
k

k1(x)
2 (h(σA(x)))−1

∑
j′=0

f (σj′
C (g(σk1(x)

B (h(σA(x))))))

=
k

k1(x)
2 (h(σA(x)))+k

l1(x)
2 (h(x))−1

∑
j′=0

f (σj′
C (g(σk1(x)

B (h(σA(x)))))).
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As σ
j′
C (g(σk1(x)

B (h(σA(x))))) = σ
j′
C (g(σl1(x)

B (h(x)))), we have (3.5) = (3.7) so that

Ψh(Ψg( f ))(x) = (3.4)− (3.6) = Ψgh( f )(x).

COROLLARY 3.8 ([12], Proposition 4.5). Assume that matrices A and B are ir-
reducible and satisfy condition (I). Let h : (XA, σA) → (XB, σB) be a continuous orbit
homeomorphism. Then we have Ψh ◦Ψh−1 = idC(XA ,Z) and Ψh−1 ◦Ψh = idC(XB ,Z).

As Ψid = id, the assertion is clear.
For a continuous orbit map h : (XA, σA)→ (XB, σB), the identity

Ψh( f − f ◦ σB) = f ◦ h− f ◦ h ◦ σA, f ∈ C(XB,Z),

is easily seen. We thus have

PROPOSITION 3.9. Assume that matrices A and B are irreducible and satisfy con-
dition (I). Then the homomorphism Ψh : C(XB,Z) → C(XA,Z) induces a homomor-
phism of abelian groups Ψh : HB → HA.

By modifying an argument given in Section 5 of [12], one may prove that Ψh
preserves the positive cones of the ordered abelian groups, that is, Ψh(HB

+) ⊂ HA
+ .

We briefly state the machinery to prove Ψh(HB
+) ⊂ HA

+ . As the argument given in
Section 5 of [12] requires the condition that the matrices A and B are irreducible
and satisfy condition (I), we assume the conditions for the matrices. Following
Definition 5.5 of [12], an eventually periodic point x ∈ XA is said to be (r, s)-
attracting for some r, s ∈ Z+ if it satisfies the following two conditions:

(i) σr
A(x) = σs

A(x).
(ii) For any clopen neighborhood W ⊂ XA of x, there exist clopen sets U, V ⊂

XA and a homeomorphism ϕ : V → U such that
(a) x ∈ U ⊂ V ⊂W.
(b) ϕ(x) = x.
(c) σr

A(ϕ(w)) = σs
A(w) for all w ∈ V.

(d) lim
n→∞

ϕn(w) = x for all w ∈ V.

Let x ∈ XA be an eventually periodic point. By Lemma 5.6 and Lemma 5.7
of [12], there exist r, s ∈ Z+ such that x is (r, s)-attracting and hence σr

A(x) =
σs

A(x), r > s. Since h : XA → XB is a continuous orbit map, by using an argument
given in Lemma 5.8 and Corollary 5.9 of [12], one may show that h(x) is (lr

1(x) +
ks

1(x), kr
1(x) + ls

1(x))-attracting, and hence lr
1(x) + ks

1(x) > kr
1(x) + ls

1(x). Put r′ =

lq
1(σ

s
A(x)), s′ = kq

1(σ
s
A(x)) where q = r − s and z = σ

ls
1(x)+ks

1(x)
B (h(x)) ∈ XB. By

Lemma 5.3 of [12], we then have

r′ − s′ = (lr
1(x)− ls

1(x))− (kr
1(x)− ks

1(x)) > 0 and σr′
B (z) = σs′

B (z).

We set for f ∈ C(XA,Z)

ωr,s
f (x) =

r−1

∑
i=0

f (σi
A(x))−

s−1

∑
j=0

f (σj
A(x)).
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Then [ f ] belongs to HA
+ if and only if ωr,s

f (x) > 0 ([11], Lemma 3.2, [12], Lem-
ma 5.2). By Lemma 5.3 of [12], we have

ωr,s
Ψh( f )(x) = ωr′ ,s′

f (z) for f ∈ C(XB,Z).

Hence [ f ] ∈ HB
+ implies ωr,s

Ψh( f )(x) = ωr′ ,s′
f (z) > 0 so that [Ψh( f )] belongs to HA

+ .
We thus conclude

THEOREM 3.10. Assume that matrices A, B and C are irreducible and satisfy con-
dition (I). Let h : (XA, σA) → (XB, σB) and g : (XB, σB) → (XC, σC) be continuous
orbit maps. Then the homomorphisms

Ψh : C(XB,Z)→ C(XA,Z), Ψg : C(XC,Z)→ C(XB,Z)

satisfy the following conditions:
(i) Ψh ◦Ψg = Ψg◦h.

(ii) Ψh(cobdy(σB)) ⊂ cobdy(σA) and Ψg(cobdy(σC)) ⊂ cobdy(σB).
(iii) They induce homomorphisms Ψh : (HB, HB

+) → (HA, HA
+) and Ψg : (HC, HC

+)

→ (HB, HB
+) of ordered abelian groups such that Ψh ◦Ψg = Ψg◦h.

COROLLARY 3.11. The correspondence Ψ gives rise to a contravariant functor
from the category CCOE of the continuous orbit equivalence classes of one-sided topological
Markov shifts for irreducible matrices satisfying condition (I) with continuous orbit maps
as morphisms to the category A+ of ordered abelian groups:

(3.8) [(XA, σA)] ∈ CCOE → (HA, HA
+) ∈ A+.

4. STRONGLY CONTINUOUS ORBIT EQUIVALENCE

DEFINITION 4.1. A continuous orbit map h : (XA, σA) → (XB, σB) is called
a strongly continious orbit map if there exists a continuous function b1 : XA → Z
such that

(4.1) Ψh(1B)(x) = 1 + b1(x)− b1(σA(x)), x ∈ XA.

For a nonnegative integer N1, the function b′1(x) = b1(x) + N1 also satisfies
the above equality. One may assume that the funtion b1 in (4.1) is nonnegative.
If a continuous orbit homeomorphism is a strongly continuous orbit map, it is
called a strongly continuous orbit homeomorphism.

DEFINITION 4.2. One-sided topological Markov shifts (XA, σA) and (XB, σB)
are strongly continuous orbit equivalent if there exists a strongly continuous orbit
homeomorphism h : (XA, σA) → (XB, σB) such that its inverse h−1 : (XB, σB) →
(XA, σA) is also a strongly continuous orbit homeomorphism. In this case, we
write (XA, σA) ∼

SCOE
(XB, σB).
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By definition, (XA, σA) and (XB, σB) are strongly continuous orbit equiva-
lent if and only if there exist a homeomorphism h : XA → XB, continuous func-
tions k1, l1, b1 : XA → Z+ and k2, l2, b2 : XB → Z+ such that

σ
k1(x)
B (h(σA(x))) = σ

l1(x)
B (h(x)), x ∈ XA,(4.2)

σ
k2(y)
A (h−1(σB(y))) = σ

l2(y)
A (h−1(y)), y ∈ XB,(4.3)

and

l1(x)− k1(x) =1 + b1(x)− b1(σA(x)), x ∈ XA,(4.4)

l2(y)− k2(y) =1 + b2(y)− b2(σB(y)), y ∈ XB.(4.5)

Recall that the cocycle functions c1, c2 are defined by c1(x) = l1(x) − k1(x) for
x ∈ XA and c2(x) = l2(y)− k2(y) for y ∈ XB.

LEMMA 4.3. Assume that matrices A, B and C are irreducible and satisfy condi-
tion (I). Let h : XA → XB be a homeomorphism which gives rise to a continuous orbit
equivalence between (XA, σA) and (XB, σB). Then the following three conditions are
equivalent:

(i) (XA, σA) ∼
SCOE

(XB, σB).

(ii) [c1] = [1A] ∈ HA.
(iii) [c2] = [1B] ∈ HB.

Proof. (ii)⇒ (iii). Suppose that [c1] = [1A] ∈ HA. Take a continuous func-
tion b1 ∈ C(XA,Z+) such that c1(x) = 1A(x) + b1(x)− b1(σA(x)), x ∈ XA. Since
c1 = Ψh(1B), c2 = Ψh−1(1A), we have Ψh−1(c1) = Ψh−1(Ψh(1B)) = 1B so that

c2 = Ψh−1(c1 − b1 + b1 ◦ σA) = 1B − {Ψh−1(b1)−Ψh−1(b1) ◦ σB}.

This implies that [c2] = [1B] ∈ HB. (iii) ⇒ (ii) is similar. By definition (i) is
equivalent to both (ii) and (iii).

Therefore we have

PROPOSITION 4.4. Strongly continuous orbit equivalence is an equivalence re-
lation in one-sided topological Markov shifts for irreducible matrices satisfying condi-
tion (I).

Proof. Let h : (XA, σA) → (XB, σB) and g : (XB, σB) → (XC, σC) be strongly
continuous orbit homeomorphisms. By Lemma 2.3, the composition g ◦ h : XA →
XC yields a continuous orbit equivalence between (XA, σA) and (XC, σC). We
then see that [Ψg◦h(1C)] = [Ψh(1B)] = [1A] so that (XA, σA) ∼

SCOE
(XC, σC).

COROLLARY 4.5. The objects OSCOE of strongly continuous orbit equivalence
classes of one-sided topological Markov shifts for irreducible matrices satisfying condi-
tion (I) with the morphismsMSCOE of strongly continuous orbit maps form a category
CSCOE = (OSCOE,MSCOE).
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5. TWO-SIDED CONJUGACY

Throughout this section, we assume that h : XA → XB is a homeomorphism
which gives rise to a strongly continuous orbit equivalence between (XA, σA)
and (XB, σB). Let k1, l1, b1 : XA → Z+ and k2, l2, b2 : XB → Z+ be continuous
functions satisfying (4.2), (4.4) and (4.3), (4.5), respectively.

LEMMA 5.1. Put ϕb1(x) = σ
b1(x)
B (h(x)) for x ∈ XA. Then we have

(5.1) ϕb1(σA(x)) = σB(ϕb1(x)), x ∈ XA.

Proof. By using (1.1), we have

ϕb1(σA(x)) = σ
1+b1(x)−l1(x)
B (σ

k1(x)
B (h(σA(x)))) = σB(ϕb1(x)).

For n ∈ Z+, put cn
1 (x) = ln

1 (x) − kn
1(x), x ∈ XA and cn

2 (y) = ln
2 (y) −

kn
2(y), y ∈ XB.

LEMMA 5.2. Keep the above notations.
(i) cn

1 (x) = n + b1(x)− b1(σ
n
A(x)) for x ∈ XA.

(ii) cn
2 (y) = n + b2(y)− b2(σ

n
B(y)) for y ∈ XB.

Proof. (i) As l1(σm
A (x))− k1(σ

m
A (x)) = 1+ b1(σ

m
A (x))− b1(σ

m+1
A (x)) for m =

0, 1, . . . , n− 1, we have

cn
1 (x) =

n−1

∑
m=0

l1(σm
A (x))−

n−1

∑
m=0

k1(σ
m
A (x)) = n + b1(x)− b1(σ

n
A(x)).

(ii) is similar to (i).

Since (XA, σA) and (XB, σB) are continuously orbit equivalent, the follow-
ing identities hold. Their proof can be found in Lemma 3.3 of [12] in which the
assumption that A and B are irreducible and satisfy condition (I) is required.

LEMMA 5.3 ([12], Lemma 3.3). For x ∈ XA, y ∈ XB and p ∈ Z+, we have

(i) k
lp
1 (x)

2 (h(x)) + l
kp

1 (x)
2 (h(σp

A(x))) + p = k
kp

1 (x)
2 (h(σp

A(x))) + l
lp
1 (x)

2 (h(x)).

(ii) klp
2 (y)

1 (h−1(y))+ lkp
2 (y)

1 (h−1(σ
p
B(y)))+p= kkp

2 (y)
1 (h−1(σ

p
B(y)))+ llp

2 (y)
1 (h−1(y)).

We use Lemma 5.3 for p = 1 in the following lemma.

LEMMA 5.4. There exists Nh ∈ N such that b1(x) + b2(h(x)) = Nh for all
x ∈ XA, and equivalently b2(y) + b1(h−1(y)) = Nh for all y ∈ XB.

Proof. By Lemma 5.3, we have

kl1(x)
2 (h(x)) + lk1(x)

2 (h(σA(x))) + 1 = kk1(x)
2 (h(σA(x))) + ll1(x)

2 (h(x))

so that
ck1(x)

2 (h(σA(x))) + 1 = cl1(x)
2 (h(x)).
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By applying Lemma 5.2 for y = h(x) and n = k1(x), l1(x), we have

k1(x)+b2(h(σA(x)))−b2(σ
k1(x)
B (h(σA(x))))+1= l1(x)+b2(h(x))−b2(σ

l1(x)
B (h(x))).

As σ
k1(x)
B (h(σA(x))) = σ

l1(x)
B (h(x)), we have

k1(x) + b2(h(σA(x))) + 1 = l1(x) + b2(h(x))

so that c1(x) = b2(h(σA(x)))− b2(h(x)) + 1. Hence we have

b1(x)− b1(σA(x)) = b2(h(σA(x)))− b2(h(x)).

This implies that the function x ∈ XA → b1(x) + b2(h(x)) ∈ N is σA-invariant, so
that it is constant.

Assume that A and B are irreducible and satisfy condition (I). We may prove
the following theorem.

THEOREM 5.5. Suppose that (XA, σA) ∼
SCOE

(XB, σB). Then their two-sided topo-

logical Markov shifts (XA, σA) and (XB, σB) are topologically conjugate.

Proof. By Lemma 5.1, the map ϕb1:XA → XB defined by ϕb1(x)=σ
b1(x)
B (h(x))

satisfies (5.1). For x = (xi)i∈Z ∈ XA and j ∈ Z, put x(j) = x[j,∞) ∈ XA and
y[j] = ϕb1(x(j)) ∈ XB. It then follows that

σB(y[j]) = ϕb1(σA(x(j))) = ϕb1(x(j + 1)) = y[j + 1].

Hence we may define an element y = (yj)j∈Z ∈ XB such that y[j,∞) = y[j]. We set

h(x) = y so that h : XA → XB is a continuous map. Since (σA(x))(j) = x[j+1,∞) =

σA(x(j)), we have

[h(σA(x))][j,∞) = ϕb1([σA(x)](j)) = ϕb1(σA(x(j))) = [h(x)][j+1,∞) =[σB(h(x))][j,∞)

so that
h(σA(x)) = σB(h(x)), x ∈ XA.

This means that h : XA → XB is a sliding block code (see [8] for the defi-
nition of the sliding block code). One may similarly construct a sliding block

code h
−1

: XB → XA for the inverse h−1 : XB → XA of h. We denote by
ψb2 : XB → XA the continuous map defined by ψb2(y) = σ

b2(y)
A (h−1(y)), which

satisfies ψb2(σB(y)) = σA(ψb2(y)), y ∈ XB. Then the map h
−1

: XB → XA satisfies

the equality (h
−1

(y))[j,∞) = ψb2(y(j)) for j ∈ Z. It then follows that for j ∈ Z

(h
−1

(h(x)))[j,∞)=ψb2(ϕb1(x(j)))=ψb2(σ
b1(x(j))
B (h(x(j))))=σ

b1(x(j))
A (ψb2(h(x(j))))

=σ
b1(x(j))
A (σ

b2(h(x(j)))
A (h−1(h(x(j)))))=(σ

b1(x(j))+b2(h(x(j)))
A (x))[j,∞).

Take the constant number Nh in the preceding lemma so that we have

(h
−1

(h(x)))[j,∞) = (σ
Nh
A (x))[j,∞) for all j ∈ Z
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and hence

h
−1

(h(x)) = σ
Nh
A (x) for all x ∈ XA.

We thereby know that h : XA → XB is injective. Similarly we see

h(h
−1

(y)) = σ
Nh
B (y) for all y ∈ XB

so that h : XA → XB is surjective and gives rise to a topological conjugacy be-
tween (XA, σA) and (XB, σB).

We are assuming that A and B are irreducible and satisfy condition (I).

COROLLARY 5.6. Suppose that (XA, σA) ∼
SCOE

(XB, σB). Then each is a finite

factor of the other. In particular, (XA, σA) and (XB, σB) are weakly conjugate.

Proof. Since the two-sided topological Markov shifts (XA, σA) and (XB, σB)
are topologically conjugate, the assertion that each of their one-sided topological
Markov shifts (XA, σA) and (XB, σB) is a finite factor of the other comes from a
general theory of symbolic dynamics ([7], Exercise 2). One also knows it from the
equalities: ψb2 ◦ ϕb1 = σ

Nh
A and ϕb1 ◦ ψb2 = σ

Nh
B .

Let us denote by C(XA) the commutative C∗-algebra of complex valued
continuous functions on XA. The homeomorphism σA on XA naturally induces
an automorhism σ∗A on C(XA) by σ∗A( f ) = f ◦ σ−1

A for f ∈ C(XA).

COROLLARY 5.7. Suppose that (XA, σA) ∼
SCOE

(XB, σB). Then their C∗-crossed

products are isomorphic:

C(XA)×σ∗A
Z ∼= C(XB)×σ∗B

Z.

We note that the K0-group K0(C(XA)×σ∗A
Z) of the C∗-algebra C(XA)×σ∗A

Z
is isomorphic to the ordered group (HA, HA

+) (see Theorem 5.2 of [1], and Re-
mark 3.10 of [15]).

Let πA : XA→XA denote the surjection defined by πA((xn)n∈Z) = (xn)n∈N
∈ XA for (xn)n∈Z ∈ XA. The following proposition is a converse to Theorem 5.5.

PROPOSITION 5.8. Let h : XA → XB be a homeomorphism such that there exist a
topological conjugacy h : (XA, σA) → (XB, σB) as two-sided subshifts and continuous
functions f1 : XA → Z+, f2 : XB → Z+ such that

πB(h(x)) = σ
f1(x)
B (h(x)) for x ∈ XA,

πA(h
−1

(y)) = σ
f2(y)
A (h−1(y)) for y ∈ XB,

where x = πA(x), y = πB(y). Then h : XA → XB gives rise to a strongly continuous
orbit homeomorhism. Hence we have (XA, σA) ∼

SCOE
(XB, σB).
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Proof. As h ◦ σA = σB ◦ h and πB ◦ σB = σB ◦ πB, we have for x ∈ XA

πB(h(σA(x))) = σB(πB(h(x))) = σ
f1(x)+1
B (h(x)).

As πA(σA(x)) = σA(x), the left hand side of the above equality goes to

πB(h(σA(x))) = σ
f1(πA(σA(x)))
B (h(πA(σA(x)))) = σ

f1(σA(x))
B (h(σA(x)))

so that
σ

f1(x)+1
B (h(x)) = σ

f1(σA(x))
B (h(σA(x))), x ∈ XA.

This implies that h : XA → XB and similarly h−1 : XB → XA give rise to strongly
continuous orbit maps.

6. COCYCLE CONJUGACY

Let us denote by S1, . . . , SN the generating partial isometries of the Cuntz–
Krieger algebra OA satisfying

(6.1)
N

∑
j=1

SjS∗j = 1, S∗i Si =
N

∑
j=1

A(i, j)SjS∗j , i = 1, . . . , N.

For t ∈ R/Z = T, the correspondence Si → e2π
√
−1tSi gives rise to an automor-

phism of OA which we denote by ρA
t ∈ Aut(OA). The automorphisms yield an

action of T to Aut(OA) which we call the gauge action. Let us denote by DA the
C∗-subalgebra ofOA generated by the projections of the form Si1 · · · Sin S∗in · · · S

∗
i1

,
which is canonically isomorphic to the commutative C∗-algebra C(XA) by identi-
fying the projection Si1 · · · Sin S∗in · · · S

∗
i1

with the characteristic function χUi1 ···in
∈

C(XA) of the cylinder set Ui1···in for the word i1 · · · in.
Throughout the section, we assume that (XA, σA) ∼

SCOE
(XB, σB) and fix a

strongly continuous orbit homeomorphism h : (XA, σA) → (XB, σB) and contin-
uous functions k1, l1, b1 : XA → Z+ and k2, l2, b2 : XB → Z+ satisfying (4.2), (4.4)
and (4.3), (4.5), respectively. As Lemma 5.4 requires the condition that A and B
are irreducible and satisfy condition (I), we assume the condition on the matrices
in the following two lemmas.

LEMMA 6.1. (i) b1(x)− b1(σA(x)) = −b2(h(x)) + b2(h(σA(x))) for x ∈ XA.
(ii) b2(y)− b2(σB(y)) = −b1(h−1(y)) + b1(h−1(σB(y))) for y ∈ XB.

For i ∈ {1, . . . , N} and x = (xn)n∈N ∈ XA, we write ix = (i, x1, x2, . . . ).

LEMMA 6.2. For i ∈ {1, . . . , N} and y ∈ XB satisfying ih−1(y) ∈ XA, put
z = ih−1(y). Then we have

(6.2) b1(z)− b1(σA(z)) = b2(y)− b2(h(z)).

Proof. Since h(σA(z))=y, the desired equality comes from Lemma 6.1(i).
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Recall that ρB stands for the gauge action on OB. Denote by U(OB) and
U(DB) the group of unitaries of OB and that of DB respectively. A continuous
map t ∈ R/Z = T → vt ∈ U(OB) is called a one-cocycle for ρB if it satisfies
vt+s = vtρ

B
t (vs), t, s ∈ T. Then the map t ∈ T → Ad(vt) ◦ ρB

t ∈ Aut(OB) yields
an action called a perturbed action of ρB by v. Since the function b2 is regarded
as a positive element of DB, one may define unitaries ub2

t = exp(2π
√
−1tb2) ∈

U(DB), t ∈ T. As ρB
s (u

b2
t ) = ub2

t for all s, t ∈ T, the family {ub2
t }t∈T is a one-cocycle

for ρB.
The following proposition is a generalization of Proposition 2.17 in [2].

PROPOSITION 6.3. Assume that A and B are irreducible and satisfy condition (I).
Suppose that (XA, σA) ∼

SCOE
(XB, σB). Then there exists an isomorphism Φ : OA → OB

such that

Φ(DA) = DB and Φ ◦ ρA
t = Ad(ub2

t ) ◦ ρB
t ◦Φ, t ∈ T.

Proof. The proof below follows essentially the proof of Proposition 5.6 in
[9]. For the sake of completeness, we give the proof in the following way. Let
us denote by HA (respectively HB) the Hilbert space with its complete orthonor-
mal system {eA

x : x ∈ XA} (respectively {eB
y : y ∈ XB}). Consider the partial

isometries SA
i , i = 1, . . . , N on HA defined by

(6.3) SA
i eA

x =

{
eA

ix if ix ∈ XA,
0 otherwise.

Then the operators SA
i , i = 1, . . . , N are partial isometries satisfying the relations

(6.1). For the M × M matrix B = [B(i, j)]Mi,j=1, we similarly define the partial

isometries SB
i , i = 1, . . . , M on HB satisfying the relations (6.1) for B. Hence

one may identify the Cuntz–Krieger algebra OA (respectively OB) with the C∗-
algebra C∗(SA

1 , . . . , SA
N) (respectively C∗(SB

1 , . . . , SB
M)) generated by the partial

isometries SA
1 , . . . , SA

N (respectively SB
1 , . . . , SB

M). For the continuous function k1 :
XA → Z+, let K1 = max{k1(x) : x ∈ XA}. By adding K1 − k1(x) to k1(x)
and l1(x), one may assume that k1(x) = K1 for all x ∈ XA. Define the unitary
Uh : HA → HB by UheA

x = eB
h(x) for x ∈ XA. We see that Φ = Ad(Uh) satisfies the

desired properties. We fix i ∈ {1, . . . , N} and set X(i)
B = {y ∈ XB : ih−1(y) ∈ XA}.

For y ∈ XB, one has

UhSA
i U∗h eB

y =

{
eB

h(ih−1(y)) if y ∈ X(i)
B ,

0 otherwise.

For y ∈ X(i)
B , put z = ih−1(y) ∈ XA. By the equality h(σA(z)) = y with (2.1), one

has h(z) ∈ σ
−l1(z)
B (σ

k1(z)
B (y)) = σ

−l1(z)
B (σK1

B (y)) and

(6.4) h(z) = (µ1(z), . . . , µl1(z)(z), yK1+1, yK1+2, . . . )



STRONGLY CONTINUOUS ORBIT EQUIVALENCE OF ONE-SIDED TOPOLOGICAL MARKOV SHIFTS 475

for some word (µ1(z), . . . , µl1(z)(z)) ∈ Bl1(z)(XB). Define the constant number

L1 = max{l1(z) : z = ih−1(y), y ∈ X(i)
B }. The set

W(i) = {(µ1(z), . . . , µl1(z)(z)) ∈ Bl1(z)(XB) : z = ih−1(y), y ∈ X(i)
B }

of words is a finite subset of
L1⋃

j=0
Bj(XB). For a word ν = (ν1, . . . , νj) ∈W(i), define

the clopen set E(i)
ν in X(i)

B by

E(i)
ν = {y ∈ X(i)

B : µ1(z) = ν1, . . . , µl1(z)(z) = νj, z = ih−1(y)}

so that X(i)
B =

⋃
ν∈W(i)

E(i)
ν . Put the projection Q(i)

ν = χ
E(i)

ν
in DB so that χ

X(i)
B

=

∑
ν∈W(i)

Q(i)
ν where χ

E(i)
ν

and χ
X(i)

B
denote the characteristic functions on XB for E(i)

ν

and X(i)
B respectively. For y ∈ X(i)

B and ν ∈ W(i), we have y ∈ E(i)
ν if and only if

Q(i)
ν eB

y = eB
y . By (6.4), we have

UhSA
i U∗h eB

y = eB
h(ih−1(y)) = ∑

ν∈W(i)
∑

ξ∈BK1 (XB)

SB
ν SB

ξ
∗
Q(i)

ν eB
y for y ∈ X(i)

B

so that
UhSA

i U∗h = ∑
ν∈W(i)

∑
ξ∈BK1 (XB)

SB
ν SB

ξ
∗
Q(i)

ν .

As Q(i)
ν ∈ DB, we have Ad(Uh)(SA

i ) ∈ OB and hence Ad(Uh)(OA) ⊂ OB. Since
U∗h = Uh−1 , we symmetrically have Ad(Uh)(OA) = OB. By a straightforward
calculation, the equality Ad(Uh)( f ) = f ◦ h−1 for f ∈ DA follows from UheA

x =
eB

h(x) so that we have Ad(Uh)(DA) = DB.

We next show that Ad(Uh) ◦ ρA
t = Ad(ub2

t ) ◦ ρB
t ◦Ad(Uh) for t ∈ T. It fol-

lows that

(Ad(ub2
t ) ◦ ρB

t ◦Ad(Uh))(SA
i )e

B
y = ∑

ν∈W(i)
∑

ξ∈BK1 (XB)

ub2
t ρB

t (S
B
ν SB

ξ
∗
Q(i)

ν )ub2
−te

B
y .

Since Q(i)
ν eB

y 6= 0 if and only if Q(i)
ν eB

y = eB
y and ν1 = µ1(z), . . . , νj = µl1(z)(z). For

y ∈ E(i)
ν with y[1,K1]

= ξ, we have SB
ν SB

ξ
∗Q(i)

ν eB
y = eB

h(z) = eB
h(ih−1(y)) so that

ub2
t ρB

t (S
B
ν SB

ξ
∗
Q(i)

ν )ub2
−te

B
y

= exp(2π
√
−1(|ν| − |ξ| − b2(y))t)u

b2
t SB

ν SB
ξ
∗
Q(i)

ν eB
y

= exp(2π
√
−1(l1(z)− k1(z)− b2(y))t)u

b2
t eB

h(ih−1(y))

= exp(2π
√
−1(l1(z)− k1(z)− b2(y) + b2(h(ih−1(y))))t)eB

h(ih−1(y)).
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Lemma 6.2 ensures us the equality b2(y)− b2(h(ih−1(y))) = b1(z)− b1(σA(z)) so
that

l1(z)− k1(z)− b2(y) + b2(h(ih−1(y))) = 1.

As eB
h(ih−1(y)) = UhSA

i U∗h eB
y , we have

ub2
t ρB

t (S
B
ν SB

ξ
∗
Q(i)

ν )ub2
−te

B
y = exp(2π

√
−1t)UhSA

i U∗h eB
y = Ad(Uh)(ρ

A
t (S

A
i ))e

B
y .

Hence we have

(Ad(ub2
t ) ◦ ρB

t ◦Ad(Uh))(SA
i )e

B
y = ∑

ν∈W(i)
∑

ξ∈BK1 (XB)

ub2
t ρB

t (S
B
ν SB

ξ
∗
Q(i)

ν )ub2
−te

B
y

= Ad(Uh)(ρ
A
t (S

A
i ))e

B
y

so that
Ad(ub2

t ) ◦ ρB
t ◦Ad(Uh) = Ad(Uh) ◦ ρA

t for t ∈ T.

To prove the converse of the above proposition, we provide the following
lemma.

LEMMA 6.4. For a unitary representation u of T intoDB, there exists a continuous
function f0 ∈ C(XB,Z) such that ut = exp(2π

√
−1t f0) for t ∈ T.

Proof. For a unitary representation u of T intoDB, there exists a ∗-homomor-
phism ϕu from the group C∗-algebra C∗(T) of T toDB in a natural way. It induces
a homomorphism ϕu

∗ : K0(C∗(T)) → K0(DB) on their K-groups. Let χid de-
note the identity representation χid(s) = s, s ∈ T of T. As K0(C∗(T)) =

⊕
χ∈T̂

Z

and K0(DB) = C(XB,Z), by putting f0 = ϕu
∗(χid) ∈ C(XB,Z), one has ut =

exp(2π
√
−1t f0) for all t ∈ T.

We thus have the converse of the above proposition in the following way.

PROPOSITION 6.5. Assume that matrices A and B are irreducible and satisfy con-
dition (I). If there exist a unitary representation u of T into DB and an isomorphism
Φ : OA → OB such that Φ(DA) = DB and Φ ◦ ρA

t = Ad(ut) ◦ ρB
t ◦Φ for t ∈ T, then

(XA, σA) ∼
SCOE

(XB, σB).

Proof. Take f0 ∈ C(XB,Z) such that ut = exp(2π
√
−1t f0), t ∈ T. Repre-

sent the algebras OA on HA and OB on HB by (6.3). As the matrices A and B
are irreducible and satisfy condition (I), the isomorphism Φ : OA → OB satisfy-
ing Φ(DA) = DB induces a continuous orbit equivalence between (XA, σA) and
(XB, σB) by [9]. Take a continuous orbit homeomorphism h : XA → XB such
that Φ( f ) = f ◦ h−1 for f ∈ C(XA). Let Uh : HA → HB be the unitary oper-
ator defined by UheA

x = eB
h(x) for x ∈ XA. As in the proof of Proposition 6.3,

Ad(Uh) : OA → OB gives rise to an isomorphism such that Ad(Uh)( f ) = f ◦ h−1

for f ∈ C(XA). The automorphism α = Ad(Uh)
−1 ◦Φ on OA satisfies α|DA = id.

By Theorem 6.5 (1) of [9], there exists a unitary one-cocycle Vα in DA relative
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to α which satisfies α(Sµ) = Vα(k)Sµ for µ ∈ Bk(XA). As Vα(1) ∈ DA and
α(Si) = Vα(1)Si, i = 1, . . . , N, we see that

(Ad(ut) ◦ ρB
t ◦Φ)(SA

i ) = Ad(Uh)(Vα(1)) · (Ad(ut) ◦ ρB
t ◦Ad(Uh))(SA

i ),

(Φ ◦ ρA
t )(S

A
i ) = Ad(Uh)(Vα(1)) · (Ad(Uh) ◦ ρA

t )(S
A
i ).

Hence the equality

(Ad(ut) ◦ ρB
t ◦Ad(Uh))(SA

i ) = (Ad(Uh) ◦ ρA
t )(S

A
i ), i = 1, . . . , N

follows. Let k1 : XA → Z+ and l1 : XB → Z+ be continuous functions satisfying
(1.1). For i = 1, . . . , N and y ∈ X(i)

B put z = ih−1(y) ∈ XA. As in the proof of
Proposition 6.3, one sees that

(Ad(ut) ◦ ρB
t ◦Ad(Uh))(SA

i )e
B
y

= exp(2π
√
−1(l1(z)− k1(z)− f0(y) + f0(h(ih−1(y))))t)eB

h(ih−1(y))

and
Ad(Uh)(ρ

A
t (S

A
i ))e

B
y = exp(2π

√
−1t)eB

h(ih−1(y)),

so that the equality

l1(z)− k1(z)− f0(y) + f0(h(ih−1(y)))− 1 = 0

follows. By putting b1(z) = f0(h(z)), we have l1(z) − k1(z) = 1 + b1(z) −
b1(σA(z)) so that (XA, σA) ∼

SCOE
(XB, σB).

We note the following lemma.

LEMMA 6.6. Assume that matrices A and B are irreducible and satisfy condition
(I). Let vt ∈ U(OB), t ∈ T be a one-cocycle for the gauge action ρB onOB. If there exists
an isomorphism Ψ : OA → OB such that Ψ(DA) = DB and Ψ ◦ ρA

t = Ad(vt) ◦ ρB
t ◦Ψ

for t ∈ T, then vt belongs to DB and hence vt+s = vtvs, t, s ∈ T.

Proof. For f ∈ DA, we have Ψ(ρA
t ( f )) = vt(ρB

t (Ψ( f )))v∗t . As ρA
t ( f ) = f

and ρB
t (Ψ( f )) = Ψ( f ), we see that Ψ( f )vt = vtΨ( f ). Since the matrix B satisfies

condition (I), the subalgebra DB is a maximal commutative C∗-subalgebra of OB.
By Ψ(DA) = DB we see that the unitary vt belongs to DB.

Consequently we have the following theorem.

THEOREM 6.7. Assume that matrices A and B are irreducible and satisfy condi-
tion (I). The following two assertions are equivalent:

(i) One-sided topological Markov shifts (XA, σA) and (XB, σB) are strongly contin-
uous orbit equivalent.

(ii) There exist a unitary one-cocycle vt ∈ OB, t ∈ T for the gauge action ρB on OB
and an isomorphism Φ : OA → OB such that

Φ(DA) = DB and Φ ◦ ρA
t = Ad(vt) ◦ ρB

t ◦Φ, t ∈ T.
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As it is well-known that a cocycle conjugate covariant system of a locally
compact abelian group yields a conjugate dual covariant system, we have the
following corollary.

COROLLARY 6.8. Assume that matrices A and B are irreducible and satisfy condi-
tion (I). Suppose that (XA, σA) ∼

SCOE
(XB, σB). Then the dual actions of their C∗-crossed

products are isomorphic:

(OA×ρAT, ρ̂A,Z) ∼= (OB×ρBT, ρ̂B,Z).

7. EXAMPLES

1. Let A and B be the following matrices:

(7.1) A =

[
1 1
1 1

]
, B =

[
1 1
1 0

]
.

They are both irreducible and satisfy condition (I). The one-sided topological
Markov shifts (XA, σA) and (XB, σB) are continuously orbit equivalent as in [9].
This continuous orbit equivalence also comes from the fact that their Cuntz–
Krieger algebras OA and OB are isomorphic and det(id− A) = det(id− B) by
[11]. Since their Perron eigenvalues of A and of B are different, the topologi-
cal entropy of their two-sided topological Markov shifts (XA, σA) and (XB, σB)
are different so that they are not topologically conjugate as two-sided subshifts.
Hence (XA, σA) and (XB, σB) are not strongly continuously orbit equivalent.

2. If the one-sided topological Markov shifts (XA, σA) and (XB, σB) are topo-
logically conjugate, one may take a homeomorphism h : XA → XB such that
k1(x) = 0, l1(x) = 1 for all x ∈ XA, so that c1(x) = 1 for all x ∈ XA and hence
(XA, σA) and (XB, σB) are strongly continuous orbit equivalent. We present an
example of one-sided topological Markov shifts (XA, σA) and (XB, σB) such that
they are not topologically conjugate, but they are strongly continuous orbit equiv-
alent. Let A and B be the following matrices:

(7.2) A =

[
1 1
1 1

]
, B =

1 1 0
1 0 1
1 0 1

 .

Both of them are irreducible and satisfy condition (I). Since the total column amal-
gamation of B is itself, their one-sided topological Markov shifts (XA, σA) and
(XB, σB) are not topologically conjugate ([7], [17]). We have the following theo-
rem.

THEOREM 7.1. The one-sided topological Markov shifts (XA, σA) and (XB, σB)
are strongly continuous orbit equivalent.
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We prove Theorem 7.1 as follows. Let us denote by ΣA = {α, β} the symbols
of the shift space XA, and similarly ΣB = {1, 2, 3} those of (XB, σB), respectively.
We note that

B2(XA) = {(α, α), (α, β), (β, α), (β, β)},
B2(XB) = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 1), (3, 3)}.

Define the block maps Φ and ϕ by

Φ(α, α) = (1, 1), Φ(β, β, α) = (2, 1), Φ(β, α, α) = (3, 1),

Φ(α, β) = (1, 2), Φ(β, β, β) = (2, 3), Φ(β, α, β) = (3, 3)

and
ϕ(α, β) = 2, ϕ(β, β) = 3, ϕ(α, α) = 1, ϕ(β, α) = 1.

For k, l ∈ Z+, we denote by ϕ
[−k,l]
∞ the sliding block code with memory k and

anticipation l induced by the 2-block map ϕ : B2(XA)→ B1(XB) (see [8]). Define
h : XA → XB by setting for x = (xn)n∈N ∈ XA

h(x1, x2, x3, . . . ) =

{
(Φ(x1, x2), ϕ

[0,1]
∞ (x2, x3, . . . )) if x1 = α,

(Φ(x1, x2, x3), ϕ
[−1,0]
∞ (x3, x4, . . . )) if x1 = β.

It is straightforward to see that h(x) belongs to XB for all x ∈ XA.
We set

l1(x) =


1 if (x1, x2) = (α, α),
4 if (x1, x2) = (α, β),
2 if (x1, x2) = (β, α),
3 if (x1, x2) = (β, β),

k1(x) =


0 if (x1, x2) = (α, α),
2 if (x1, x2) = (α, β),
2 if (x1, x2) = (β, α),
2 if (x1, x2) = (β, β),

so that we have

σ
k1(x)
B (h(σA(x))) = σ

l1(x)
B (h(x)) for x ∈ XA.

Define b1 : XA → N by

b1(x) =

{
2 if x1 = α,
1 if x1 = β,

so that c1(x) = 1+ b1(x)− b1(σA(x)), x ∈ XA. This implies the following lemma.

LEMMA 7.2. h : XA → XB is a strongly continuous orbit map.

We next construct the inverse of h. Define the block maps Ψ and ψ by

Ψ(1, 1) = (α, α), Ψ(2, 1) = (β, β, α), Ψ(3, 1) = (β, α, α),

Ψ(1, 2) = (α, β), Ψ(2, 3) = (β, β, β), Ψ(3, 3) = (β, α, β),

and
ψ(1) = α, ψ(2) = β, ψ(3) = β.
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For k, l ∈ Z+, we denote by ψ
[−k,l]
∞ the sliding block code with memory k and

anticipation l induced by the 1-block map ψ : B1(XA) → B1(XB). Define g :
XB → XA by setting for y = (yn)n∈N ∈ XB

g(y1, y2, y3, y4, . . . ) =

{
(Ψ(y1, y2), ψ

[0,0]
∞ (y3, y4, . . . )) if y1 = 1,

(Ψ(y1, y2), ψ
[−1,−1]
∞ (y3, y4, . . . )) if y1 = 2, 3.

We set

l2(y) =

{
3 if (y1, y2) = (1, 1), (1, 2),
4 if (y1, y2) = (2, 1), (2, 3), (3, 1), (3, 3),

k2(y) =

{
2 if (y1, y2) = (1, 1), (2, 1), (3, 1),
3 if (y1, y2) = (1, 2), (2, 3), (3, 3),

so that we have

σ
k2(y)
A (g(σB(y))) = σ

l2(y)
A (g(y)) for y ∈ XB.

Define b2 : XB → N by

b2(y) =

{
1 if y1 = 1,
2 if y1 = 2, 3,

so that c2(y) = 1 + b2(y)− b2(σB(y)), y ∈ XB. This implies the following lemma.

LEMMA 7.3. g : XB → XA is a strongly continuous orbit map.

We next show that g, h are inverses to each other.
For x1 = α, we see

Ψ(Φ(α, x2)) =

{
Ψ(1, 1) = (α, α) if x2 = α,
Ψ(1, 2) = (α, β) if x2 = β,

so that Ψ(Φ(x1, x2)) = (x1, x2).
For x1 = β, we see

Ψ(Φ(β, x2, x3)) =


Ψ(2, 1) = (β, β, α) if (x2, x3) = (β, α),
Ψ(2, 3) = (β, β, β) if (x2, x3) = (β, β),
Ψ(3, 1) = (β, α, α) if (x2, x3) = (α, α),
Ψ(3, 3) = (β, α, β) if (x2, x3) = (α, β),

so that Ψ(Φ(x1, x2, x3)) = (x1, x2, x3). It is easy to see that the equalities

ψ(ϕ(α, x1, x2, . . . )) = (x1, x2, . . . ),

ψ(ϕ(β, x1, x2, . . . )) = (x1, x2, . . . ),

hold so that ψ ◦ ϕ = σA on XA.

LEMMA 7.4. g(h(x)) = x for x ∈ XA.
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Proof. It follows that

g(h(x1, x2, x3, . . . )) =

{
g(Φ(x1, x2), ϕ(x2, x3, . . . )) if x1 = α,
g(Φ(x1, x2, x3), ϕ(x3, x4, . . . )) if x1 = β,

=

{
(Ψ(Φ(x1, x2)), ψ(ϕ(x2, x3, . . . ))) if x1 = α,
(Ψ(Φ(x1, x2, x3)), ψ(ϕ(x3, x4, . . . ))) if x1 = β,

= (x1, x2, x3, x4, . . . ).

We finally prove that h(g(y)) = y for all y = (yn)n∈N ∈ XB. It is direct to
see that

Φ(Ψ(y1, y2)) = (y1, y2) for (y1, y2) ∈ B2(XB).

We have

ϕ(α, ψ(y3, y4, . . . )) = (y3, y4, . . . ) if y2 = 1,

ϕ(β, ψ(y3, y4, . . . )) = (y3, y4, . . . ) if y2 = 2, 3.

We set g(y) = (xn)n∈N ∈ XA. As

(x1, x2) =

{
(α, α) if (y1, y2) = (1, 1),
(α, β) if (y1, y2) = (1, 2),

(x1, x2, x3) =


(β, β, α) if (y1, y2) = (2, 1),
(β, β, β) if (y1, y2) = (2, 3),
(β, α, α) if (y1, y2) = (3, 1),
(β, α, β) if (y1, y2) = (3, 3),

we have

h(g(y))=h(Ψ(y1, y2), ψ(y3, y4, . . . ))

=

{
(Φ(Ψ(y1, y2)), ϕ(x2, ψ(y3, y4, . . . ))) if (y1, y2)=(1, 1), (1, 2),
(Φ(Ψ(y1, y2)), ϕ(x3, ψ(y3, y4, . . . ))) if (y1, y2)=(2, 1), (2, 3), (3, 1), (3, 3)

=(y1, y2, y3, y4, . . . ).

Hence h(g(y)) = y for y ∈ XB so that g = h−1. We get (XA, σA) ∼
SCOE

(XB, σB).

3. We finally present an example of two irreducible matrices with entries
in {0, 1} whose two-sided topological Markov shifts are topologically conjugate,
but whose one-sided topological Markov shifts are not strongly continuous orbit
equivalent. Let A and B be the following matrices:

(7.3) A =

1 1 1
1 1 1
1 0 0

 , B = At =

1 1 1
1 1 0
1 1 0

 .
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They are irreducible and satisfy condition (I). Since the row amalgamation of A

and the column amalgamation of B are both
[

2 1
1 0

]
, the two-sided topological

Markov shifts (XA, σA) and (XB, σB) are topologically conjugate (cf. [7]). We
however know that OA ∼= O3 and OB ∼= O3 ⊗M2(C) ([3]). Hence their Cuntz–
Krieger algebras are not isomorphic so that the one-sided topological Markov
shifts (XA, σA) and (XB, σB) are not continuously orbit equivalent.
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