
J. OPERATOR THEORY
74:2(2015), 485–515

doi: 10.7900/jot.2014sep04.2053

© Copyright by THETA, 2015

THE DRINFELD DOUBLE FOR C∗-ALGEBRAIC
QUANTUM GROUPS

SUTANU ROY

Communicated by Kenneth R. Davidson

ABSTRACT. In this article, we establish the duality between the generalised
Drinfeld double and generalised quantum codouble within the framework of
modular or manageable (not necessarily regular) multiplicative unitaries, and
discuss several properties.

KEYWORDS: C∗-algebra, Drinfeld pair, Drinfeld double, quantum codouble, Yetter–
Drinfeld C∗-algebras.

MSC (2010): Primary 81R50; Secondary 22D05, 46L65, 46L89.

1. INTRODUCTION

One of the milestones in the theory of Hopf algebras is the quantum double or
Drinfeld double construction [8]. This has subsequently been generalised in several
algebraic frameworks [6], [12].

The quantum double construction for analytic quantum groups was devel-
oped in many different frameworks, along with the development of a general the-
ory of compact and locally compact quantum groups. In fact, the terms “quantum
double” and “double crossed product” in the context of locally compact quantum
groups actually refers to the (analytically generalised) dual of the respective con-
structions in the algebraic framework.

In [18], Podleś and Woronowicz generalised the quantum double construc-
tion for compact quantum groups [22], under the name double group construc-
tion. They constructed q-deformations of SL(2,C) as the double group of SUq(2)
groups [23] for q ∈ [−1, 1] \ {0}.

The first step towards the general theory of (topological) locally compact
quantum groups, in the C∗-algebraic framework, goes back to the work of Baaj
and Skandalis [2]. As basic axioms they used a unitary operator, called the mul-
tiplicative unitary, having the regularity property. Also their Z-produit tensoriel for
regular multiplicative unitaries (see Section 8 of [2]) generalises the quantum
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double construction for compact quantum groups. Unfortunately, multiplica-
tive unitaries related to locally compact quantum groups are not always regular
(see [1]). The notion of manageability of multiplicative unitaries, introduced by
Woronowicz in [24], provides a more general approach to the C∗-algebraic theory
for locally compact quantum groups or, in short, C∗-quantum groups (see Defini-
tion 2.4).

A general theory of (measure theoretic) locally compact quantum groups
was proposed by Kustermans and Vaes [10], [11] and Masuda, Nakagami and
Woronowicz [14], assuming existence of Haar weights. Also, Proposition 6.10 of
[10] shows that the left (respectively right) regular representation associated to
the left (respectively right) Haar weight is a manageable multiplicative unitary.
According to Terminology 5.4 of [3], a locally compact quantum is regular if its
regular representation is a regular multiplicative unitary.

In [4], Baaj and Vaes developed the general theory of the double crossed
product of a matched pair of locally compact quantum groups. Tomita–Takesaki
operators of the respective quantum groups play the key role in their construc-
tion. A matching of two von Neumann algebraic quantum groups (M1, ∆M1)
and (M2, ∆M2) is a normal faithful ∗-homomorphism m : M1⊗M2 → M1⊗M2
with some additional property. Here ⊗ denotes the von Neumann algebraic ten-
sor product. The underlying von Neumann algebra Mm of the associated double
crossed product is M1⊗M2. In particular, every bicharacter V ∈ M1⊗M2 defines
an inner matching defined by m(x) = V(x)V∗ for all x ∈ M1⊗M2. The dou-
ble crossed product associated to an inner matching, is called generalised quantum
double (see Section 8 of [4]). The word “generalised” refers to the generalisation
of the quantum double construction for quasi Woronowicz algebras [13] (previ-
ously regarded as locally compact quantum groups in the von Neumann algebra
framework) by Yamanouchi [26].

In [25], Woronowicz and Zakrzewski constructed another q-deformation
(for q ∈ (0, 1)) of SL(2,C), in the C∗-algebraic framework, as the quantum double
(under the name double group) of the quantum E(2) group, which is not regular
(see [1]). Therefore, the C∗-algebraic description for Mm, given by Baaj and Vaes
([4], Proposition 9.5) does not cover this example because it assumes regularity
on both the locally compact quantum groups (M1, ∆M1) and (M2, ∆M2).

In this article, we construct and establish the duality between generalised
Drinfeld doubles and generalised quantum codoubles (called as generalised quantum
doubles in Section 8 of [4]) in the general framework of manageable multiplica-
tive unitaries. Therefore, our work generalises the C∗-algebraic picture of the gen-
eralised quantum doubles in Section 9 of [4], as we do not need to assume neither
Haar measures nor regularity on the factor quantum groups. In particular, our
work also generalises the quantum codouble (sometimes called double group [18],
[25], quantum double [26], and Drinfeld double ([17], Section 3)) construction
for locally compact quantum groups with Haar weights ([14], Section 8), and for
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manageable multiplicative unitaries (an unpublished work of S.L. Woronowicz
presented at RIMS in 2011).

Let us briefly outline the structure of this article. In Section 2, we recall
basic necessary preliminaries. In particular, the main results on modular and
manageable multiplicative unitaries, that give rise to C∗-quantum groups [24],
coactions and corepresentations of C∗-quantum groups, and several equivalent
notions of homomorphisms of C∗-quantum groups [15] are stated.

Let G = (A, ∆A) and H = (B, ∆B) be C∗-quantum groups (in the sense
of Definition 2.4), and V ∈ U (Â ⊗ B̂) be a bicharacter (in the sense of Defini-
tion 2.11).

In Section 3, we recall the concept of V-Heisenberg pairs from [16]. Then we
introduce the notion of V-Drinfeld pair in Section 4, which plays the fundamental
role in this article. Roughly, it is a pair of representations (ρ, θ) of A and B on some
Hilbert space H satisfying certain commutation relations governed by V. We
systematically construct a V-Drinfeld pair and a modular multiplicative unitary,
denoted by WD (see Theorem 4.6). Section 5 is devoted to the construction of the
generalised Drinfeld double, as a C∗-quantum group from WD , and generalised
quantum codouble as its dual.

In particular, the generalised Drinfeld double construction for a trivial
bicharacter yields the usual product of the respective C∗-quantum groups (see
Example 5.10). In Section 6, we extend certain known results for the product of
groups and C∗-quantum groups to generalised Drinfeld doubles. It is well known
that the Drinfeld double of a finite dimensionsal Hopf algebra has an R-matrix [8].
This was generalised in several analytic contexts [2], [6], [26]. We extend this re-
sult in the context of modular or manageable multiplicative unitaries. Finally, in
Section 7, we discuss the coaction and corepresentation of generalised quantum
codoubles.

2. PRELIMINARIES

Throughout we use the symbol “:=” to abbreviate the phrase “defined by”.
All Hilbert spaces and C∗-algebras (which are not explicitly multiplier alge-

bras) are assumed to be separable.
For two norm-closed subsets X and Y of a C∗-algebra, let

X ·Y := {xy : x ∈ X, y ∈ Y}CLS,

where CLS stands for the closed linear span.
For a C∗-algebra A, let M(A) be its multiplier algebra and U (A) be the

group of unitary multipliers of A. The unit of M(A) is denoted by 1A. Next
recall some standard facts about multipliers and morphisms of C∗-algebras from
Appendix A of [14]. Let A and B be C∗-algebras. A ∗-homomorphism ϕ : A →



488 SUTANU ROY

M(B) is called nondegenerate if ϕ(A) · B = B. Each nondegenerate ∗-homo-
morphism ϕ : A→M(B) extends uniquely to a unital ∗-homomorphism ϕ̃ from
M(A) to M(B). Let C∗alg be the category of C∗-algebras with nondegenerate
∗-homomorphisms A → M(B) as morphisms A → B; let Mor(A,B) denote this
set of morphisms. We use the same symbol for an element of Mor(A, B) and its
unique extenstion fromM(A) toM(B).

Let H be the conjugate Hilbert space to the Hilbert space H. The transpose
of an operator x ∈ B(H) is the operator xT ∈ B(H) defined by xT(ξ) := x∗ξ for
all ξ ∈ H. The transposition is a linear, involutive anti-automorphism B(H) →
B(H).

A representation of a C∗-algebra A on a Hilbert space H is a nondegenerate
∗-homomorphism π : A → B(H). Since B(H) =M(K(H)), the nondegeneracy
conditions π(A) ·K(H) = K(H) is equivalent to being π(A)(H) is norm dense
inH, and hence this is same as having a morphism from A to K(H). The identity
representation of K(H) on H is denoted by idH. The group of unitary opera-
tors on a Hilbert space H is denoted by U (H). The identity element in U (H) is
denoted by 1H.

We use ⊗ both for the tensor product of Hilbert spaces and minimal tensor
product of C∗-algebras, which is well understood from the context. We write Σ
for the tensor flipH⊗K → K⊗H, x⊗ y 7→ y⊗ x, for two Hilbert spacesH and
K. We write σ for the tensor flip isomorphism A⊗ B→ B⊗ A for two C∗-algebras
A and B.

Let A1, A2, A3 be C∗-algebras. For any t ∈ M(A1 ⊗ A2) we denote the leg
numberings on the level of C∗-algebras as t12 := t ⊗ 1A3 ∈ M(A1 ⊗ A2 ⊗ A3),
t23 := 1A3 ⊗ t12 ∈ M(A3 ⊗ A1 ⊗ A2) and t13 := σ12(t23) = σ23(t12) ∈ M(A1 ⊗
A3 ⊗ A2). In particular, let Ai = B(Hi) for some Hilbert spaces Hi, where i =
1, 2, 3. Then for any t ∈ B(H1⊗H2) the leg numberings are obtained by replacing
σ with the conjugation by Σ operator.

2.1. MULTIPLICATIVE UNITARIES AND QUANTUM GROUPS.

DEFINITION 2.1 ([2], Définition 1.1). Let H be a Hilbert space. A unitary
W ∈ U (H⊗H) is multiplicative if it satisfies the pentagon equation

(2.1) W23W12 = W12W13W23 in U (H⊗H⊗H).

Technical assumptions such as manageability ([24]) or, more generally, mod-
ularity ([20]) are needed in order to construct a C∗-algebras out of a multiplicative
unitary.

DEFINITION 2.2 ([20], Definition 2.1). A multiplicative unitary W ∈ U (H⊗
H) is modular if there are positive self-adjoint operators Q and Q̂ acting onH and
W̃ ∈ U (H⊗H) such that:

(i) Ker(Q) = Ker(Q̂) = {0} and W(Q̂⊗Q)W∗ = (Q̂⊗Q),
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(ii) (x ⊗ u | W | z ⊗ y) = (z ⊗ Qu | W̃ | x ⊗ Q−1y) for all x, z ∈ H, u ∈
Dom(Q) and y ∈ Dom(Q−1),
whereH is the complex-conjugate Hilbert space associated toH.

If Q̂ = Q then W is called manageable.

THEOREM 2.3 ([20], [21]). Let H be a Hilbert space and W ∈ U (H ⊗ H) a
modular multiplicative unitary. Let

A := {(ω⊗ idH)W : ω ∈ B(H)∗}CLS,(2.2)

Â := {(idH ⊗ω)W : ω ∈ B(H)∗}CLS.(2.3)

(i) A and Â are separable, nondegenerate C∗-subalgebras of B(H).
(ii) W ∈ U (Â ⊗ A) ⊆ U (H ⊗ H). We write WA for W viewed as a unitary

multiplier of Â⊗ A.
(iii) There is a unique ∆A ∈ Mor(A, A⊗ A) such that

(2.4) (idÂ ⊗∆A)WA = WA
12WA

13 in U (Â⊗ A⊗ A)

it is coassociative

(2.5) (∆A ⊗ idA)∆A = (idA ⊗∆A)∆A,

and satisfies the cancellation laws

(2.6) ∆A(A) · (1A ⊗ A) = A⊗ A = (A⊗ 1A) ·∆A(A).

(iv) There is a unique closed linear operator κA on the Banach space A such that {(ω⊗
idA)W : ω ∈ Â′} is a core for κA and

κA((ω⊗ idA)W) = (ω⊗ idA)W∗

for any ω ∈ Â′. Moreover, for all a, b ∈ Dom(κA) the product ab ∈ Dom(κA)
and κA(ab) = κA(b)κA(a), the image κA(Dom(κA)) coincides with Dom(κA)

∗, and
κA(κA(a)∗)∗ = a for all a ∈ Dom(κA).

(v) There is a unique one-parameter group, called the scaling group, {τA
t }t∈R of

∗-automorphisms of A and a unique ultraweakly continuous, involutive, ∗-anti-auto-
morphism, called the unitary antipode, RA of A such that:

(a) κA = RAτA
i/2;

(b) RA commutes with τA
t for all t ∈ R and Dom(κA) = Dom(τA

i/2);
(c) ∆AτA

t = (τA
t ⊗ τA

t )∆A for all t ∈ R;
(d) ∆ARA = σ(RA ⊗ RA)∆A, where σ denotes the flip map.

(vi) Let Q and W̃ be the operators associated to W in Definition 2.2. Then,
(a) for any t ∈ R and a ∈ A we have τA

t (a) = Q2itaQ−2it;
(b) writing aRA instead of RA(a), we have WT⊗RA = W̃

∗
, where the left hand

side is viewed as a unitary onH⊗H.

In general, a pair (A, ∆A) consisting of a C∗-algebra A and a morphism ∆A
∈ Mor(A, A ⊗ A) satisfying coassociativity condition (2.5) and (2.6) is called a



490 SUTANU ROY

bisimplifiable C∗-bialgebra (see Définition 0.1 of [2]). Two such pairs (A, ∆A) and
(B, ∆B) are isomorphic if there is an isomorphism ϕ ∈ Mor(A, B) intertwining
the comultiplications: (ϕ⊗ ϕ)∆A = ∆B ϕ.

DEFINITION 2.4 ([21], Definition 3). Let A be a C∗-algebra and a morphism
∆A ∈ Mor(A, A⊗ A). Then the pair G = (A, ∆A) is a C∗-quantum group if there is
a modular multiplicative unitary W ∈ U (H⊗H) such that (A, ∆A) is isomorphic
to the C∗-algebra with comultiplication associated to W as described in Theorem
2.3. Then we say G = (A, ∆A) is generated by W.

The notions of modularity and manageability are not very far from each
other: starting from a modular multiplicative unitary one can construct a man-
ageable multiplicative unitary on a different Hilbert space (see [20]) giving rise
to the same C∗-quantum group. Therefore, we shall consider only manageable
multiplicative unitaries from now on.

The dual multiplicative unitary is Ŵ := ΣW∗Σ ∈ U (H⊗H). It is modular
or manageable if W is. The C∗-quantum group Ĝ = (Â, ∆̂A) generated by Ŵ is

the dual of G. Define Ŵ
A ∈ U (A⊗ Â) by Ŵ

A
:= σ((WA)∗) ∈ U (A⊗ Â), where

σ(â⊗ a) = a⊗ â. It satisfies

(2.7) (idA ⊗ ∆̂A)Ŵ
A
= Ŵ

A
12Ŵ

A
13 in U (A⊗ Â⊗ Â).

Equivalently, we get the character condition on the first leg of WA:

(2.8) (∆̂A ⊗ idA)WA = WA
23WA

13 in U (Â⊗ Â⊗ A).

DEFINITION 2.5 ([21], page 53). The unitary WA ∈ M(Â ⊗ A) is called

the reduced bicharacter for (G, Ĝ). Equivalently, Ŵ
A ∈ U (A ⊗ Â) is the reduced

bicharacter for (Ĝ,G).

THEOREM 2.6 ([21], Theorem 5). The C∗-quantum group G = (A, ∆A) is in-
dependent of the choice of the modular multiplicative unitary that generates G. Further-
more, the dual C∗-quantum group Ĝ = (Â, ∆̂A) and the reduced bicharacter WA ∈
U (Â⊗ A) are determined uniquely (up to isomorphism) by G.

DEFINITION 2.7. A (unitary) corepresentation of G on a C∗-algebra C is an
element U ∈ U (C⊗ A) with

(2.9) (idC ⊗∆A)U = U12U13 in U (C⊗ A⊗ A).

In particular, U is said to be a corepresentation of G on a Hilbert space H when-
ever C = K(H).

EXAMPLE 2.8. The trivial corepresentation of G on a Hilbert spaceH is U =

1H ⊗ 1A ∈ U (K(H)⊗ A). Equation 2.4 shows that the reduced bicharacter WA ∈
U (Â⊗ A) is a corepresentation of G on Â.
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DEFINITION 2.9. A (right) coaction of G or G-coaction on a C∗-algebra C is a
morphism γ : C → C⊗ A with the following properties:

(i) γ is injective;
(ii) γ is a comodule structure, that is,

(2.10) (idC ⊗∆A)γ = (γ⊗ idA)γ;

(iii) γ satisfies the Podleś condition:

(2.11) γ(C) · (1C ⊗ A) = C⊗ A.

EXAMPLE 2.10. The trivial coaction of G on a C∗-algebra C, is defined by
τ : C → C ⊗ A, c 7→ c ⊗ 1A. The cancellation law (2.6) implies that ∆A : A →
A⊗ A is a G-coaction on A. More generally, idC ⊗ ∆A : C ⊗ A → C ⊗ A⊗ A is
a G-coaction on C ⊗ A for any C∗-algebra C. Lemma 2.9 in [16] says that any
coaction may be embedded into one of this form.

A pair (C, γ) consisting of a C∗-algebra C and a G-coaction γ on C is called
a G-C∗-algebra. A morphism f : C → D between two G-C∗-algebras (C, γ) and
(D, δ) is G-equivariant if δ f = ( f ⊗ idA)γ. Let C∗alg(G) denote the category with
G-C∗-algebras as objects and G-equivariant morphisms as arrows.

2.2. QUANTUM GROUP HOMOMORPHISMS. Let G = (A, ∆A) and H = (B, ∆B)

be C∗-quantum groups. Let Ĝ = (Â, ∆̂A) and Ĥ = (B̂, ∆̂B) be their duals.

DEFINITION 2.11 ([15], Definition 16). A bicharacter from G to Ĥ is a unitary
V ∈ U (Â⊗ B̂) with

(∆̂A ⊗ idB̂)V = V23V13 in U (Â⊗ Â⊗ B̂),(2.12)

(idÂ ⊗ ∆̂B)V = V12V13 in U (Â⊗ B̂⊗ B̂).(2.13)

A Hopf ∗-homomorphism from G to Ĥ is an element f ∈ Mor(A, B̂) that inter-
twines the comultiplications:

(2.14) ( f ⊗ f )∆A(a) = ∆̂B f (a) for a ∈ A.

Then V f := (idÂ ⊗ f )WA ∈ U (Â⊗ B̂) is a bicharacter from G to H. We say that
V f is induced by f .

Bicharacters in U (Â ⊗ B) are interpreted as quantum group morphisms
from G to H in [15]. We shall use bicharacters in U (Â ⊗ B̂) throughout. Let
us recall some definitions from [15] in this setting.

DEFINITION 2.12. A right quantum group homomorphism from G to Ĥ is a
morphism ∆R : A→ A⊗ B̂ with the following properties:

(2.15) (∆A ⊗ idB̂)∆R = (idA ⊗∆R)∆ A and (idA ⊗ ∆̂B)∆R = (∆R ⊗ idB̂)∆R.
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Similarly, a left quantum group homomorphism from G to Ĥ is a morphism ∆L : A→
B̂⊗ A satisfying the following properties:

(2.16) (idB̂ ⊗∆A)∆L = (∆L ⊗ idA)∆A and (∆̂B ⊗ idA)∆L = (idB̂ ⊗∆L)∆L.

The following theorem summarises some of the main results of [15].

THEOREM 2.13. There are natural bijections between the following sets:
(i) bicharacters V ∈ U (Â⊗ B̂) from G to Ĥ;

(ii) bicharacters V̂ ∈ U (B̂⊗ Â) from H to Ĝ;
(iii) right quantum group homomorphisms ∆R : A→ A⊗ B̂;
(iv) left quantum group homomorphisms ∆L : A→ B̂⊗ A;
(v) the functors F : C∗alg(G) → C∗alg(Ĥ) with ForĤ ◦ F = ForG for the forgetful

functors ForG : C∗alg(G)→ C∗alg and ForĤ : C∗alg(Ĥ)→ C∗alg.
The first bijection maps a bicharacter V to its dual V̂ ∈ U (B̂⊗ Â) defined by

(2.17) V̂ := σ(V∗).

A bicharacter V and a right quantum group homomorphism ∆R determine each other
uniquely via

(2.18) (idÂ ⊗∆R)(WA) = WA
12V13.

Similarly, a bicharacter V ∈ U (Â⊗ B̂) and a left quantum group homomorphisms ∆L
determine each other uniquely by

(2.19) (idÂ ⊗∆L)(WA) = V12WA
13.

The dual bicharacter V̂ ∈ U (B̂⊗ Â) describes the dual right quantum group
homomorphism ∆̂R : B→ B⊗ Â. Thus ∆R and ∆̂R are in bijection as are V and V̂.
A similar statement holds for ∆L and ∆̂L.

The functor F associated to ∆R is the unique one that maps (A, ∆A) to
(A, ∆R). In general, F maps a continuous G-coaction γ : C → C⊗ A to the unique
Ĥ-coaction δ : C → C⊗ B̂ for which the following diagram commutes:

(2.20)

C C⊗ A

C⊗ B̂ C⊗ A⊗ B̂

γ

δ idC ⊗∆R

γ⊗ idB̂

.

3. HEISENBERG PAIRS REVISITED

Let G = (A, ∆ A) and H = (B, ∆B) be C∗-quantum groups. Let V ∈ U (Â⊗
B̂) be a bicharacter.
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DEFINITION 3.1 ([16], Definition 3.1). A pair of representations α : A →
B(H), β : B→ B(H) is called a V-Heisenberg pair, or briefly Heisenberg pair, if

(3.1) WA
1αWB

2β = WB
2βWA

1αV12 in U (Â⊗ B̂⊗K(H));

here WA
1α := ((idÂ ⊗ α)WA)13 and WB

2β := ((idB̂ ⊗ β)WB)23. It is called a V-anti-
Heisenberg pair, or briefly anti-Heisenberg pair, if

(3.2) WB
2βWA

1α = V12WA
1αWB

2β in U (Â⊗ B̂⊗K(H)),

with similar conventions as above.
A V-Heisenberg or V-anti-Heisenberg pair (α, β) is called faithful if the asso-

ciated representations α and β are faithful.

Recall that the unitary antipode RA : A → A, is a linear, involutive anti-
automorphism (see Theorem 2.3). Given a pair of representations (α, β) of A and
B onH define the representations α : A→ B(H) and β : B→ B(H) by

α(a) := (α(RA(a)))T and β(b) := (β(RB(b)))T.(3.3)

Then Lemma 3.6 of [16] shows that (α, β) is a V-Heisenberg pair onH if and only
if (α, β) as a V-anti-Heisenberg pair onH.

In particular, assume that G and H have bounded counits eA : A → C and
eB : B → C, respectively. Then Proposition 31 of [21] gives (idÂ ⊗ eA)WA =

1Â and (idB̂ ⊗ eB)WB = 1B̂. Therefore (eA, eB) is a V-Heisenberg and V-anti-
Heisenberg pair for V = 1Â ⊗ 1B̂ ∈ U (Â⊗ B̂). Hence, in general, a V-Heisenberg
or V-anti-Heisenberg pair need not to be faithful.

When G = Ĥ and V = WA ∈ U (Â⊗ A), WA-Heisenberg pairs or WA-anti
-Heisenberg pairs are also called G-Heisenberg pairs or G-anti-Heisenberg pairs,
respectively. Lemma 3.4 in [16] shows that a pair of representations (π, π̂) of A
and Â onHπ is a G-Heisenberg pair if and only if

(3.4) WA
π̂3WA

1π = WA
1πWA

13WA
π̂3 in U (Â⊗K(Hπ)⊗ A).

Here WA
1π := ((idÂ ⊗ π)WA)12 and WA

π̂3 := ((π̂ ⊗ idA)WA)23.
Similarly, (ρ, ρ̂) is a G-anti-Heisenberg pair onHρ if and only if

(3.5) WA
1ρWA

ρ̂3 = WA
ρ̂3WA

13WA
1ρ in U (Â⊗K(Hρ)⊗ A).

Furthermore, Theorem 2.3 and [16], Lemma 3.6 ensure that faithful G-Heisenberg
andG-anti-Heisenberg pairs exist. The following result is due to S.L. Woronowicz
by a private communication.

PROPOSITION 3.2. Every G-Heisenberg pair or G-anti-Heisenberg pair is faith-
ful.

To prove this, we first establish the following lemma.
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LEMMA 3.3. Let (π, π̂) and (ρ, ρ̂) be a G-Heisenberg pair and a G-anti-Heisen-
berg pair on Hilbert spaces Hπ and Hρ, respectively. Then π ⊗ ρ̂ : A⊗ Â → B(Hπ ⊗
Hρ) and ρ⊗ π̂ : A⊗ Â→ B(Hρ ⊗Hπ) are unitarily equivalent.

Proof. Define Ψ := Wρ̂πΣWπ̂ρ ∈ U (Hπ ⊗ Hρ,Hρ ⊗ Hπ), where Wπ̂ρ :=
(π̂ ⊗ ρ)W ∈ U (Hπ ⊗Hρ), Wρ̂π := (ρ̂⊗ π) ∈ U (Hρ ⊗Hπ), and Σ : Hπ ⊗Hρ →
Hρ ⊗Hπ is the flip operator. We claim that Ψ intertwines π⊗ ρ̂ and ρ⊗ π̂. Using
(2.2) and (2.3), it suffices to show that

Ψ23W1πWρ̂4Ψ∗23 = W1ρWπ̂4 in U (Â⊗K(Hρ)⊗K(Hπ)⊗ A),

or, equivalently,

(3.6) Σ23(Wπ̂ρW1πWρ̂4(Wπ̂ρ)
∗)Σ23 = (Wρ̂π)

∗W1ρWπ̂4Wρ̂π

in U (Â⊗K(Hρ)⊗K(Hπ)⊗ A).
The following computation yields (3.6):

Σ23(Wπ̂ρW1πWρ̂4(Wπ̂ρ)
∗)Σ23 = Σ23(W1πW1ρWπ̂ρWρ̂4(Wπ̂ρ)

∗)Σ23

= W1πW1ρWρ̂4Wπ̂4

= (Wρ̂π)
∗W1ρWρ̂πWρ̂4Wπ̂4

= (Wρ̂π)
∗W1ρWπ̂4Wρ̂π ;

the first equality uses (3.4), the second equality uses (3.5) and an application of
Σ23, the third equality again uses (3.5), and the fourth equality uses (3.4).

Proof of Proposition 3.2. Let (π, π̂) and (ρ, ρ̂) be G-Heisenberg and anti
-Heisenberg pairs onHπ andHρ, respectively. Lemma 3.3 forces π⊗ ρ̂ and ρ⊗ π̂
to be unitarily equivalent. By Proposition 5.3 of [7], the representations π and
ρ of A on Hπ and Hρ are quasi-equivalent. Therefore there is a unique quasi-
equivalence class of representations of A that contains the first element of all
G-Heisenberg and G-anti-Heisenberg pairs. Therefore, π and ρ are quasi equiv-
alent to the faithful representation of A in Theorem 2.3, hence they are faithful.
Similarly, ρ̂ and π̂ are quasi-equivalent representations of Â on Hπ and Hρ, re-
spectively. A similar argument shows gives π̂ and ρ̂ are also faithful.

The character condition (2.4) and the pentagon equation (2.1) yield (idÂ ⊗
(π ⊗ idA)∆A)WA = WA

1πWA
13 = WA

π̂3WA
1π(W

A
π̂3)
∗ in U (Â ⊗K(H) ⊗ A), where

(π, π̂) is a G-Heisenberg pair on a Hilbert spaceH. Slicing the first leg by ω ∈ Â′

and using (2.2) we get

(3.7) (π ⊗ idA)∆A(a) = (WA
π̂2)(π(a)⊗ 1)(WA

π̂2)
∗ for all a ∈ A.

Since π is faithful, this says that ∆A is implemented by WA. Indeed, this is a well
known fact in the theory of locally compact quantum groups (e.g. see [21]).

Lemma 3.8 in [16] provides one way to construct faithful V-Heisenberg
pairs. A similar argument gives the following corollary:
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COROLLARY 3.4. Let (π, π̂) be a G-Heisenberg pair on a Hilbert spaceH and let
η : B → B(K) be a faithful representation of B on K. Then the pair of representations
(α, β) of A and B on K⊗H defined by α(a) := 1K ⊗ π(a) and β(b) := (η⊗ π̂)∆̂R(b)
is a faithful V-Heisenberg pair.

4. DRINFELD PAIRS

Let G = (A, ∆A) and H = (B, ∆B) be C∗-quantum groups. Let WA ∈ U (Â⊗
A) and WB ∈ U (B̂ ⊗ B) be their reduced bicharacters. Let V ∈ U (Â ⊗ B̂) be a
bicharacter from G to Ĥ.

DEFINITION 4.1. A pair (ρ, θ) of representations of A and B on a Hilbert
spaceH is a V-Drinfeld pair if

(4.1) V12WA
1ρWB

2θ = WB
2θWA

1ρV12 in U (Â⊗ B̂⊗K(H)).

A V-Drinfeld pair (ρ, θ) is faithful if the associated representations ρ and θ are
faithful.

EXAMPLE 4.2. Let G and H be locally compact groups and let A = C∗r (G)
and B = C∗r (H) be the associated reduced quantum groups. Then every bicharac-
ter V ∈ U (Â⊗ B̂) is indeed a continuous bicharacter on the group G× H. Hence,
any pair of commuting representations ρ : C∗r (G)→ B(H) and θ : C∗r (H)→ B(H)
satisfy (4.1) independent of the choice of bicharacters.

EXAMPLE 4.3. Let B̂ = A, ∆̂B = ∆ A and V = WA ∈ U (Â ⊗ A). We call
WA-Drinfeld pairs G-Drinfeld pairs. A pair of representations ρ : A → B(H) and
θ : Â→ B(H) is a G-Drinfeld pair if and only if it satisfies the G-Drinfeld commu-
tation relation:

(4.2) WA
1ρWA

13WA
θ3 = WA

θ3WA
13WA

1ρ in U (Â⊗K(H)⊗ A).

Define R := (θ ⊗ ρ)WA ∈ U (H⊗H). Equation (4.2) says that R is a solu-
tion to the Yang–Baxter equation:

(4.3) R12R13R23 = R23R13R12 in U (H⊗H⊗H).

Theorem 2.13 shows that a bicharacter V ∈ U (Â ⊗ B̂) naturally gives rise
to a dual bicharacter V̂ ∈ U (B̂ ⊗ Â), a right quantum group homomorphism
∆R : A→ A⊗ B̂, and a left quantum group homomorphism ∆L : A→ B̂⊗ A. This
leads us to reformulate the condition of being a V-Drinfeld pair in the following
way:

LEMMA 4.4. Let ρ and θ be representations of A and B on a Hilbert spaceH. Then
the following are equivalent:

(i) (ρ, θ) is a V-Drinfeld pair;
(ii) (θ, ρ) is a V̂-Drinfeld pair;
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(iii) (idB̂ ⊗ ρ)∆L(a) = (WB
1θ)((idB̂ ⊗ ρ)σ∆R(a))(WB

1θ)
∗ for all a ∈ A;

(iv) (idÂ ⊗ θ)∆̂L(b) = (WA
1ρ)((idÂ ⊗ θ)σ∆̂R(b))(WA

1ρ)
∗ for all b ∈ B.

Proof. (i)⇔(ii) (i) is equivalent to

WA
1ρWB

2θV∗12 = V∗12WB
2θWA

1ρ in U (Â⊗ B̂⊗K(H))

by (4.1). Applying σ12 gives

WA
2ρWB

1θV̂12 = V̂12WB
1θWA

2ρ in U (B̂⊗ Â⊗K(H)),(4.4)

which is equivalent to (θ, ρ) being a V̂-Drinfeld pair. Thus (i)⇔(ii).
(i)⇔(iii): Let (ρ, θ) be a V-Drinfeld pair. The following computation takes

place in U (Â⊗ B̂⊗K(H)):

(idÂ ⊗ idB̂ ⊗ ρ)(idÂ ⊗∆L)WA = V12WA
1ρ = (WB

2θ)W
A
1ρV12(WB

2θ)
∗

= (WB
2θ)(idÂ ⊗ ((idB̂ ⊗ ρ)σ∆R))(WB

2θ)
∗.

The first equality uses (2.19); the second equality uses (4.1); and the third equality
uses (2.18). Since {(ω⊗ idA)WA : ω ∈ Â′} is linearly dense in A, slicing the first
leg of the first and the last expression in the above equation shows that (i)⇒(iii).

Conversely, applying idÂ ⊗ idÂ ⊗ ρ on both sides of (2.19) and using (iv),
we get

V12WA
1ρ = (idÂ ⊗ (idB̂ ⊗ ρ)∆L)WA = (WB

2θ)W
A
1ρV12(WB

2θ)
∗

in U (Â⊗ B̂⊗K(H)), which is equivalent to (4.1). Thus (iii)⇒(i).
To prove (ii)⇔(iv), argue as in the proof that (i)⇔(iii).

4.1. HEISENBERG PAIR VERSUS DRINFELD PAIR. Certain ways of putting Heisen-
berg and anti-Heisenberg pairs together give ordinary commutation (see Propo-
sition 3.9 of [16]). This played a crucial role for the construction of twisted tensor
products of C∗-algebras in [16]. Changing their order yields the next proposition,
which ensures the existence of V-Drinfeld pairs.

PROPOSITION 4.5. Let (α, β) and (α, β) be a V-Heisenberg and V-anti-Heisenberg
pair on H and K, respectively. Define the representations ρ := (α ⊗ α)∆A and θ :=
(β⊗ β)∆B of A and B on K⊗H. Then (ρ, θ) is a V-Drinfeld pair on K⊗H.

Proof. We must check (4.1) for (ρ, θ). The character condition (2.4) for WA

and WB gives:

WA
1ρ = WA

1αWA
1α and WB

2θ = WB
2β

WB
2β in U (Â⊗ B̂⊗K(K⊗H)).
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Clearly, WA
1α commutes with WB

2β
and WA

1α commutes with WB
2β inside U (Â⊗ B̂⊗

K(K ⊗H)). The defining conditions (3.1) and (3.2) of V-Heisenberg and V-anti-
Heisenberg pairs give

V12WA
1ρWB

2θ = V12WA
1αWA

1αWB
2β

WB
2β = V12WA

1αWB
2β

WA
1αWB

2β

= WB
2β

WA
1αWB

2βWA
1αV12 = WB

2β
WB

2βWA
1αWA

1αV12

= WB
2θWA

1ρV12.

4.2. FROM DRINFELD PAIRS TO MULTIPLICATIVE UNITARIES. The goal of this
subsection is to systematically construct a modular or manageable multiplicative
unitary associated to certain V-Drinfeld pairs.

Let H be a Hilbert space, and let WA ∈ U (H⊗H) be a manageable multi-
plicative unitary that generates G. By Theorem 2.3, there is a G-Heisenberg pair
(π, π̂) onH such that WA = (π̂ ⊗ π)WA.

Similarly, let K be a Hilbert space, and let WB ∈ U (K ⊗ K) be a man-
ageable multiplicative unitary generating H. Let (η, η̂) be the corresponding
H-Heisenberg pair K such that WB = (η̂ ⊗ η)WB ∈ U (K⊗K).

Proposition 3.2 shows that the representations π, π̂, η and η̂ are faithful.
Hence, the V-Heisenberg pair (α, β) on K ⊗ H in Corollary 3.4 is also faithful.
Using (3.3) we construct the associated faithful V-anti-Heisenberg pair (α, β) on
K⊗H.

Define the representations of A, B, Â, B̂ on the Hilbert space HD := K ⊗
H⊗K⊗H by:

(4.5)

ρ(a) := (α⊗ α)∆A(a) for all a ∈ A,

θ(b) := (β⊗ β)∆B(b) for all b ∈ B,

ξ(â) := 1K⊗H ⊗ 1K ⊗ π̂(â) for all â ∈ Â,

ζ(b̂) := 1K⊗H ⊗ η̂(b̂)⊗ 1H for all b̂ ∈ B̂.

Let us denote (ξ⊗ ρ)WA ∈ U (HD ⊗HD) and (ζ⊗ θ)WB ∈ U (HD ⊗HD) by WA
ξρ

and WB
ζθ , respectively.

THEOREM 4.6. The unitary WD := WA
ξρWB

ζθ ∈ U (HD ⊗ HD) is a modular
multiplicative unitary.

The dual of a modular multiplicative unitary is again modular (see Proposi-

tion 2.2 of [20]). Hence, it is equivalent to show that ŴD := Ŵ
B
θζŴ

A
ρξ ∈ U (HD ⊗

HD) is a modular multiplicative unitary. The next result is the first step towards
the proof of this fact.

PROPOSITION 4.7. ŴD ∈ U (HD ⊗HD) is a multiplicative unitary.
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To prove this, we need to understand the commutation relations between
the representations in (4.5).

LEMMA 4.8. Consider the faithful representations onHD defined in (4.5). Then
(i) (ρ, ξ) is a G-Heisenberg pair;

(ii) (ρ, θ) is a V-Drinfeld pair;
(iii) θ and ζ commute in the following way:

(4.6) Ŵ
B
θ3Ŵ

B
1ζ = Ŵ

B
1ζVξ3Ŵ

B
13V∗ξ3Ŵ

B
θ3 in U (B⊗K(HD)⊗ B̂);

(iv) θ and ξ commute in the following way:

(4.7) Ŵ
B
θ3Ŵ

A
1ξ = Vξ3Ŵ

A
1ξV∗ξ3Ŵ

B
θ3 in U (A⊗K(HD)⊗ B̂);

(v) ρ and ζ commute;
(vi) ξ and ζ commute.

Proof. Corollary 3.4 gives ρ(a) = ((α⊗π)∆A(a))14 ∈ B(K(HD)⊗K⊗H⊗
K ⊗H); hence Lemma 3.8 of [16] gives (i). Proposition 4.5 yields (ii). Also, (v)
and (vi) follow from (4.5).

We express ∆̂R in terms of V̂, following (2.18):

(idB̂ ⊗ ∆̂R)WB = WB
12V̂13 in U (B̂⊗ B⊗ Â).

Applying σ23σ12 to the both sides of the last expression and taking adjoints yields

(4.8) (∆̂R ⊗ idB̂)Ŵ
B
= V23Ŵ

B
13 in U (B⊗ Â⊗ B̂).

By definition, θ(b) = (β⊗ ((η ⊗ π̂)∆̂R)⊗ idB̂)∆B. The character condition (2.8)

for Ŵ
B

gives

(4.9) Ŵ
B
θ4 = (β⊗ ((η ⊗ π̂)∆̂R)⊗ idB̂)l(Ŵ

B
23Ŵ

B
13r) = Vπ̂4 · Ŵ

B
η4Ŵ

B
β4

in U (K(K⊗H⊗K⊗H)⊗ B̂). Using (4.9), we get

Ŵ
B
θ5Ŵ

B
1ζ = Vπ̂5Ŵ

B
η5Ŵ

B
β5Ŵ

B
1η̂ in U (B⊗K(K⊗H⊗K⊗H)⊗ B̂).

Since Ŵ
B
β5 and Ŵ

B
1η̂ commute, (η, η̂) is anH-Heisenberg pair, and Vπ̂5 and Ŵ

B
1η̂Ŵ

B
15

commute, we get

Ŵ
B
θ5Ŵ

B
1ζ = Vπ̂5Ŵ

B
η5Ŵ

B
1η̂Ŵ

B
β5 = Vπ̂5Ŵ

B
1η̂Ŵ

B
15Ŵ

B
η5Ŵ

B
β5 = Ŵ

B
1η̂Vπ̂5Ŵ

B
15Ŵ

B
η5Ŵ

B
β5

in U (B⊗K(K⊗H⊗K⊗H)⊗ B̂). Hence (4.6) follows from (4.9) and (4.5), after
collapsing the respective legs under the identificationHD = K⊗H⊗K⊗H.

Similarly, (4.7) follows from (4.9) and (4.5) after collapsing the leg numbers:

Ŵ
B
θ3Ŵ

A
1ξ = Vπ̂5Ŵ

B
η5Ŵ

B
β5Ŵ

A
1π̂ = Vπ̂5Ŵ

A
1π̂Ŵ

B
η5Ŵ

B
β5 = Vξ3Ŵ

A
1ξV∗ξ3Ŵ

B
θ3.

NOTATION 4.9. We write πi when a representation π is acting on the ith leg
of a unitary.
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Proof of Proposition 4.7. Rewrite (4.1) for (ρ, θ) involving Ŵ
A

and Ŵ
B

in the
following way:

(4.10) Ŵ
A
ρ2Ŵ

B
θ3V23 = V23Ŵ

B
θ3Ŵ

A
ρ2 in U (K(HD)⊗ Â⊗ B̂).

Equations (4.10) and (4.7) give:

(4.11) Ŵ
A
ρ1ξ2

Ŵ
B
θ13Ŵ

B
θ23 = Vξ23Ŵ

B
θ13Ŵ

A
ρ1ξ2

V∗ξ23Ŵ
B
θ23 = Vξ23Ŵ

B
θ13V∗ξ23Ŵ

B
θ23Ŵ

A
ρ1ξ2

in U (K(HD ⊗HD)⊗ B̂).
The following computation takes place in U (K(HD ⊗HD)⊗ B̂⊗ Â):

Ŵ
B
θ23Ŵ

A
ρ24Ŵ

B
θ1ζ2

Ŵ
A
ρ1ξ2

(Ŵ
A
ρ24)

∗(Ŵ
B
θ23)
∗=Ŵ

B
θ23Ŵ

B
θ1ζ2

Ŵ
A
ρ24Ŵ

A
ρ1ξ2

(Ŵ
A
)∗ρ24(Ŵ

B
)∗θ23

=Ŵ
B
θ1ζ2

Vξ23Ŵ
B
θ13V∗ξ23Ŵ

B
θ23Ŵ

A
ρ1ξ2

Ŵ
A
ρ14(Ŵ

B
)∗θ23

=Ŵ
B
ρ1ζ2

Ŵ
A
ρ1ξ2

Ŵ
B
θ13Ŵ

B
θ23(Ŵ

B
)∗θ23Ŵ

A
ρ14

=Ŵ
B
θ1ζ2

Ŵ
A
ρ1ξ2

Ŵ
B
θ13Ŵ

A
ρ14.

The first equality follows from Lemma 4.8(v) the second equality uses (4.6) and

Lemma 4.8(i), the third equality uses (4.11) and that Ŵ
B
θ23, Ŵ

A
ρ14 commute, and

the last equality is trivial.
Finally, applying ξ and ζ on the third and fourth leg on both sides of the last

expression gives the pentagon equation (2.1) for ŴD ∈ U (HD ⊗HD).

Next we need to know what it means for V := (π̂ ⊗ η̂)V ∈ U (H⊗K) to be
manageable. By Lemma 3.2 of [15], V ∈ U (H⊗K) is adapted to ŴB ∈ U (K⊗K)
in the sense of Definition 1.3 in [24].

Theorem 1.6 of [24] gives the manageability of V ∈ U (H ⊗ K): there is a
unitary Ṽ ∈ U (H⊗K) with the following condition:

(4.12) (x⊗ u | V | z⊗ y) = (z⊗QBu | Ṽ | x⊗Q−1
B y),

for all x, z ∈ H, u ∈ Dom(QB) and y ∈ Dom(Q−1
B ). Here QB is the self-adjoint

operator defining manageability of WB ∈ U (K⊗K) in Definition 2.2. Moreover,

(4.13) Ṽ := VTπ̂⊗η̂RB̂ in U (H⊗K).

Similarly, by duality, V̂ := (η̂ ⊗ π̂)V̂ ∈ U (HB ⊗HA) is also manageable.

LEMMA 4.10. Ṽ and QT
A ⊗Q−1

B commute.

Proof. Combining Theorem 2.3(vi)(a) and Proposition 3.10 of [15] we obtain

(4.14) (QA ⊗QB)V(QA ⊗QB) = V.

Hence, in (4.12), we can replace x, u, z and y by Qit
A(x), Qit

B(u), Qit
A(z) and Qit

B(y),
respectively, for all t ∈ R. Thus we obtain

(z⊗QBu | Ṽ | x⊗Q−1
B y) = ([QT

A]
−itz⊗Qit

BQBu | Ṽ | [QT
A]
−itx⊗Qit

BQ−1
B u)
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and therefore Ṽ = ([QT
A]

it ⊗Q−it
B )Ṽ([QT

A]
it ⊗Q−it

B ) for all t ∈ R.

By duality, Lemma 40 of [21] gives (RB ⊗ RB̂)Ŵ
B
= Ŵ

B
. Using (3.3), and

(4.8) we compute

Ŵ
B
β2 = ((∆̂R ⊗ idB̂)Ŵ

B
)Tη̂⊗Tπ̂⊗RB̂ = (V23Ŵ

B
13)

Tη̂⊗Tπ̂⊗RB̂ = (Ŵ
B
)
Tη̂⊗RB̂
13 V

Tπ̂⊗RB̂
23 .

The third equality uses antimultiplicativity of Tη̂ ⊗ Tπ̂ ⊗ RB̂.
Combining Theorem 2.3(vi)(b), (4.5), and (4.9) we get

(4.15) Ŵ
B
θζ = V47ŴB

37
˜̂WB
∗

17 Ṽ∗27 in U (K⊗H⊗K⊗H⊗K⊗H⊗K⊗H).

A similar computation yields

(4.16) Ŵ
A
ρξ = ŴA

48
˜̂WA
∗

28 in U (K⊗H⊗K⊗H⊗K⊗H⊗K⊗H).

THEOREM 4.11. The multiplicative unitary ŴD := Ŵ
B
θζŴ

A
ρξ ∈ U (HD ⊗HD)

is modular.

Proof. RecallHD = K⊗H⊗K⊗H. Equations (4.15) and (4.16) give

(4.17) ŴD=V47ŴB
37
˜̂WB
∗

17 Ṽ∗27ŴA
48
˜̂WA
∗

28 ∈U (K⊗H⊗K⊗H⊗K⊗H⊗K⊗H).

Define

(4.18) Q̂D := (Q−1
B )T⊗(Q−1

A )T⊗QB⊗QA and QD := 1K⊗1H⊗QB⊗QA.

Clearly, Q̂D and QD are positive, self-adjoint operators onHD with trivial kernel.
The commutation relations in Definition 2.2(i), Proposition 1.4 (1) of [24] and

Lemma 4.10 show that Q̂D ⊗QD commutes with ŴB
θζ . A similar argument shows

that Q̂D ⊗ QD commutes with ŴA
ρξ . Therefore, Q̂D ⊗ QD commutes

with ŴD .
Now the character condition (2.7) for Ŵ

B
and Theorem 1.7 of [24] show that

Ŵ
B
θη̂ ∈ U (HD ⊗K) is adapted to ŴB ∈ U (K⊗K). Furthermore, Theorem 1.6 of

[24] shows that X := ((Ŵ
B
)∗θ2)

T⊗η̂RB̂ ∈ U (HD ⊗ K) satisfies a variant of (4.12).

Similarly, Y := ((Ŵ
A
)∗ρ2)

T⊗π̂RÂ ∈ U (HD ⊗H) is the unitary associated to the

manageability of Ŵ
A
ρπ̂ ∈ U (K(HD)⊗H).

Clearly, ξ and ζ act trivially on the factorK⊗H ofHD . Therefore, following

Notation 4.9, we can write ŴD = Ŵ
B
θη̂2

Ŵ
A
ρπ̂3
∈ U (HD ⊗K⊗H).

Let {ei}i=1,2,... be an orthonormal basis ofHD . The manageability condition
(4.12) for X and Y gives

(x⊗ k⊗ h | Ŵ
B
θη̂2

Ŵ
A
ρπ̂3
| z⊗ k′ ⊗ h′)

= (x⊗ k⊗ h | Ŵ
B
θη̂2 ∑

i
(|ei)(ei| ⊗ 1K ⊗ 1H)Ŵ

A
ρπ̂3
| z⊗ k′ ⊗ h′)
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= ∑
i
(x⊗ k | Ŵ

B
θη̂2
| ei ⊗ k′)(ei ⊗ h | Ŵ

A
ρπ̂3
| z⊗ h′)

= ∑
i
(z⊗QA(h) | Y | ei ⊗Q−1

A (h′))(ei ⊗QB(k) | X | x⊗Q−1
B (k′))

= (z⊗QB(k)⊗QA(h) | Y13X12 | x⊗Q−1
B (k′)⊗Q−1

A (h′)),

where x, z ∈ HD , k ∈ Dom(QB), h ∈ Dom(QA), k′ ∈ Dom(Q−1
B ) and h′ ∈

Dom(Q−1
A ), respectively.

Hence ˜̂WD := Y15X14 ∈ U (HD ⊗K⊗H⊗K⊗H) satisfies condition (ii) in
the Definition 2.2 for ŴD .

5. GENERALISED QUANTUM CODOUBLES AND GENERALISED DRINFELD DOUBLES

Let G = (A, ∆A) and H = (B, ∆B) be C∗-quantum groups and let V ∈
U (Â⊗ B̂) be a bicharacter.

The map σV : B̂⊗ Â→ Â⊗ B̂ defined by σV(b̂⊗ â) := V(â⊗ b̂)V∗ for â ∈ Â,
b̂ ∈ B̂ is an isomorphism of C∗-algebras.

Define D̂V := B̂⊗ Â and ∆̂DV : D̂V → D̂V ⊗ D̂V by

(5.1) ∆̂DV(b̂⊗ â) := (idB̂ ⊗ σV ⊗ idÂ)(∆̂B(b̂)⊗ ∆̂A(â)).

Let (ρ, θ) be the V-Drinfeld pair on the Hilbert space HD defined in (4.5).
Commutation relation (4.1) gives a C∗-algebra DV := ρ(A) · θ(B) ⊂ B(HD).

Define ∆DV : DV →M(DV ⊗DV) by

(5.2) ∆DV(ρ(a)θ(b)) := (ρ⊗ ρ)∆A(a)(θ ⊗ θ)∆B(b) for all a ∈ A, b ∈ B.

This section is devoted to proving the following main result:

THEOREM 5.1. Let ŴD ∈ U (HD ⊗HD) be the modular multiplicative unitary
in Theorem 4.11. Then

(i) DV(G,H)̂ := (D̂V, ∆̂DV) is a C∗-quantum group generated by ŴD .
(ii) DV(G,H) := (DV, ∆DV) is the dual C∗-quantum group of DV(G,H)̂.

(iii) ŴD := Ŵ
B
θ2Ŵ

A
ρ3 ∈ U (DV ⊗ B̂ ⊗ Â) is the reduced bicharacter for

(DV(G,H)̂,DV(G,H)).

DEFINITION 5.2. The C∗-quantum groups DV(G,H)̂ and DV(G,H) are
called the generalised quantum codouble and generalised Drinfeld double for the triple
(G,H, V), respectively.

REMARK 5.3. Let Ĥcop = (B̂, σ∆̂B) be the coopposite C∗-quantum group of
Ĥ. According to the convention used in Section 8 of [4], the map m : B̂⊗ Â→ B̂⊗
Â defined by m(b̂⊗ â) := V̂

∗
(b̂⊗ â)V̂ is an inner matching of Ĥcop and Ĝ in sense

of Definition 3.1 in [4]. In the presence of the Haar weights and the regularity
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assumption on G and H, the C∗-algebraic version of the generalised quantum
double of Ĥcop and Ĝ with respect m in [4] and DV(G,H)̂ in Definition 5.2 are
same.

PROPOSITION 5.4. Let ŴD ∈ U (HD ⊗HD) be the modular multiplicative uni-
tary in Theorem 4.11 and WD ∈ U (HD ⊗HD) be its dual. Then

(i) DV = {(ω⊗ idHD )W
D : ω ∈ B(HD)∗}CLS.

(ii) D̂V = {(ω⊗ idHD )Ŵ
D : ω ∈ B(HD)∗}CLS.

Proof. The representations ξ and ζ in (4.5) are faithful and commute, hence
WD = WA

2ρWB
1θ ∈ U (K(HD)⊗ B̂⊗ Â).

The set of continuous linear functionals of the form η⊗ ψ for η ∈ B̂′, ψ ∈ Â′

is linearly weak∗ dense in (B̂⊗ Â)′. Therefore,

{(ω⊗ idHD )W
D : ω ∈ B(HD)∗}CLS

= {((η ⊗ ψ⊗ idHD )W
A
2ρWB

1θ) : ψ ∈ Â′, η ∈ B̂′}CLS

= {((ψ⊗ idHD )W
A
1ρ)((η ⊗ idHD )W

B
1θ) : ψ ∈ Â′, η ∈ B̂′}CLS = ρ(A) · θ(B).

Let L = {(ω⊗ idHD )Ŵ
D : ω ∈ B(HD)∗}CLS.

We identify A, Â, B, B̂ with their images under the faithful representations
π, π̂, η, η̂ to avoid complicated notation.

Recall Ṽ∗ = VTRÂ⊗idK , ˜̂WA
∗
= (Ŵ

A
)TRA⊗idH , and ˜̂WB

∗
= (Ŵ

B
)TRB⊗idH .

We rewrite (4.17) as

ŴD = V47Ŵ
B
37(Ŵ

B
)TRB⊗idK

17 V
TRÂ⊗idK
27 Ŵ

A
48(Ŵ

A
)TRA⊗idH

28

in U (K⊗H⊗K⊗H⊗K⊗H⊗K⊗H).
We replace ω ∈ B(HD)∗ by µ⊗ ε⊗ ν⊗ υ, where µ ∈ B(K)∗, ε ∈ B(H)∗, ν ∈

B(K)∗, and υ ∈ B(H)∗. Next we use the leg numbering notation for functionals
to denote µ⊗ ε⊗ ν⊗ υ⊗ idHD by µ1ε2ν3υ4. Hence we have

L = {µ1ε2ν3υ4(V47Ŵ
B
37(Ŵ

B
)TRB⊗idK

17 V
TRÂ⊗idK
27 Ŵ

A
48(Ŵ

A
)TRA⊗idH

28 )}CLS.

The slices of ŴB ∈ U (K ⊗K) by functionals ν ∈ B(K)∗ on the first leg generate

a dense subspace of B. Therefore, we can replace (ν ⊗ idK)Ŵ
B

by b̂ ∈ B̂ in the
above expression and rewrite as follows:

L = {µ1ε2υ3(V36b̂6(Ŵ
B
)TRB⊗idK

16 V
TRÂ⊗idK
26 Ŵ

A
37(Ŵ

A
)TRA⊗idH

27 )}CLS.

Given µ ∈ B(K)∗ and x ∈ B(K), define x · µ(y) := µ(xy) for y ∈ B(K).
Replacing µ ∈ B(K)∗ by bRBT · µ, for b ∈ B, L becomes

{µ1ε2υ3(V36((b⊗ b̂)(Ŵ
B
))TRB⊗idK

16 V
TRÂ⊗idK
26 Ŵ

A
37(Ŵ

A
)TRA⊗idH

27 )}CLS.
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Since Ŵ
B ∈ U (B⊗ B̂), we may replace (B⊗ B̂)Ŵ

B
by B⊗ B̂, and then applying

µ on the first leg gives

L = {ε1υ2(V25b̂5V
TRÂ⊗idK
15 Ŵ

A
26(Ŵ

A
)TRA⊗idH

16 )}CLS.

Replacing ε ∈ B(H)∗ by âTRÂ · ε for â ∈ Â yields

L = {ε1υ2(V25((â⊗ b̂)V)
TRÂ⊗idK
15 Ŵ

A
26(Ŵ

A
)TRA⊗idH

16 )}CLS.

Since V ∈ U (Â⊗ B̂), we may replace (Â⊗ B̂)V by Â⊗ B̂ in the last expression.
Then we substitute âTRÂ · ε by ε and the resulting expression becomes

L = {ε1υ2(V25b̂5Ŵ
A
26(Ŵ

A
)TRA⊗idH

16 )}CLS.

After replacing (ε⊗ idH)Ŵ
A

by â ∈ Â in the above expression, we obtain

L = {υ1(V14b̂4Ŵ
A
15 â5)}CLS.

For all υ ∈ B(H)∗ and a ∈ A ⊂ B(H), define υ · a ∈ B(H)∗ by υ · a(y) := υ(ay)
for y ∈ B(H).

Replacing υ ∈ B(H)∗ by υ · a in the last expression gives

L = {υ1(V14b̂4(Ŵ
A
(a⊗ â)15))}CLS = {υ1(V14b̂4a1 â5)}CLS = {υ1(V14b̂4 â5)}CLS.

Finally, replacing υ ∈ B(H)∗ by υ · â for â ∈ Â in the last expression, we get

L={υ1((V(â⊗ b̂))14 â5)}CLS={υ1(â1b̂4 â5)}CLS={b̂3 â4}CLS=1K⊗H ⊗ B̂⊗ Â.

So far it is not clear that ∆DV is a well defined C∗-algebra morphism. For
the moment, we assume it exists.

PROPOSITION 5.5. The comultiplication maps ∆DV and ∆̂DV defined by (5.2) and
(5.1) satisfy cancellation laws (2.6). Equivalently, (DV, ∆DV) and (D̂V, ∆̂DV) are bisim-
plifiable C∗-bialgebras.

Proof. A routine computation using coassociativity (2.5) and cancellation
law (2.6) for ∆A and ∆B shows (DV, ∆DV) is a bisimplifiable C∗-bialgebra.

Cancellation law (2.6) for ∆̂A gives

∆̂DV(D̂V) · (1D̂V
⊗ D̂V)=V23(∆̂B(B̂)13∆̂A(Â)24)V∗23 · (1B̂⊗Â ⊗ B̂⊗ Â)

=V23(∆̂B(B̂)13(∆̂A(Â) · (1Â ⊗ Â))24)V∗23(1B̂⊗Â ⊗ B̂⊗ 1Â)

=V23(∆̂B(B̂)13(Â⊗ Â)24)V∗23(1B̂⊗Â ⊗ B̂⊗ 1Â).

The character condition on the second leg (2.13) for V is equivalent to

(5.3) V̂η̂′2Ŵ
B
η′3 = V23Ŵ

B
η′3V̂η̂′2 in U (K(Hη′)⊗ Â⊗ B̂),
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where (η, η̂′) is an H-Heisenberg pair acting on Hη′ . Recall that ∆̂B is imple-

mented by Ŵ
B

(see equation (3.7)). Therefore, we get

∆̂DV(D̂V)η̂′234 · (1Hη′
⊗ 1Â ⊗ D̂V)=V23Ŵ

B
η′3(η̂

′(B̂)⊗ Â⊗ 1B̂ ⊗ Â)(V23Ŵ
B
η′3)
∗ · B̂3

=V23Ŵ
B
η3(η̂(B̂)⊗Â⊗1B̂⊗Â)V̂η̂2(Ŵ

B
η3)
∗V̂
∗
η̂2B̂3.

Now V ∈ U (Â⊗ B̂) gives (η̂′(B̂)⊗ Â)V̂
∗
η̂′2 = η̂′(B̂)⊗ Â and V(Â⊗ B̂) = Â⊗ B̂.

Using the cancellation law (2.6) for ∆̂B, we obtain

∆̂DV(D̂V)η̂′234 · (1Hη′
⊗1Â⊗D̂V)=V23Ŵ

B
η3(η̂(B̂)⊗ Â⊗ 1B̂ ⊗ Â)(Ŵ

B
η3)
∗ · B̂3V̂

∗
η̂2

=V23((∆̂B(B̂) · (1⊗ B̂))η̂3V̂
∗
η̂2

=V23(η̂(B̂)⊗Â⊗B̂⊗Â)V̂
∗
η̂2= η̂(B̂)⊗Â⊗B̂⊗Â.

Since η̂ is faithful, we get ∆̂DV(D̂V) · (1D̂V
⊗ D̂V) = D̂V ⊗ D̂V. A similar compu-

tation yields ∆̂DV(D̂V) · (D̂V ⊗ 1D̂V
) = D̂V ⊗ D̂V.

Proof of Theorem 5.1. By virtue of Proposition 5.4 we can write ŴD=Ŵ
B
θ2Ŵ

A
ρ2

∈ U (DV ⊗ B̂⊗ A). Equivalently, WD = WA
2ρWB

1θ ∈ U (B̂⊗ Â⊗DV).

The following computation takes place in U (DV ⊗ B̂⊗ Â⊗ B̂⊗ Â):

(idDV ⊗ ∆̂DV)Ŵ
B
θ2Ŵ

A
ρ2 = V34Ŵ

B
θ2Ŵ

B
θ4Ŵ

A
ρ3Ŵ

A
ρ5V∗34 = Ŵ

B
θ2V34Ŵ

B
θ4Ŵ

A
ρ3V∗34Ŵ

A
ρ5

= Ŵ
B
θ2Ŵ

A
ρ3Ŵ

B
θ4Ŵ

A
ρ5.

The first equality uses (5.1) and the character condition (2.7) for Ŵ
A

and Ŵ
B

, the

second equality uses that V with Ŵ
B
θ2 and Ŵ

A
ρ5, and the last equality uses (4.10).

Collapsing the leg numbers we obtain (2.4) for ∆̂DV and ŴD :

(5.4) (idDV ⊗ ∆̂DV)Ŵ
D = ŴD12ŴD13 in U (DV ⊗ D̂V ⊗ D̂V).

Combining (5.4) with Proposition 5.5 gives (i).
Next we establish (ii). The character condition on the second leg (2.4) for

WA and WB yields

(idB̂⊗Â⊗∆DV)W
A
2ρWB

1θ =(((idÂ⊗(ρ⊗ρ)∆A))WA)234((idB̂⊗(θ⊗θ)∆B))Ŵ
B
)134

= WA
2ρ3

WA
2ρ4

WB
1θ3

WB
1θ4

= WA
2ρ3

WB
1θ3

WA
2ρ4

WB
1θ4

in U (B̂⊗ Â⊗DV ⊗DV).

Here we use Notation 4.9 for the representations ρ and θ. Collapsing the first two
legs we obtain (2.4) for ∆DV and WD :

(5.5) (id⊗∆DV)W
D = WD12WD13 in U (D̂V ⊗DV ⊗DV).
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Now equation (3.7) for ∆DV and WD yields

(5.6) ∆DV(ρ(a)θ(b)) = (WD)(ρ(a)θ(b)⊗ 1)(WD)∗ for all a ∈ A, b ∈ B.

Hence ∆DV is implemented by WD . By Theorem 2.3, ∆DV is the unique element
in Mor(DV,DV⊗DV) satisfying (5.5), and DV(G,H) is a C∗-quantum group gen-
erated by the modular multiplicative unitary WD ; hence it is dual of DV(G,H)̂.

From (5.4) and (5.5), it is clear that ŴD := Ŵ
B
θ2Ŵ

A
ρ3 ∈ U (DV ⊗ D̂V) is a

bicharacter, and its Hilbert space realisation is a modular multiplicative unitary
generating DV(G,H)̂.

Now the representations ρ and θ defined in (4.5) depends on the G-Heisen-
berg pair (π, π̂) andH-Heisenberg pair (η, η̂). Hence, on one hand, the C∗-algebra
DV depends on the representations π, π̂, η and η̂.

On the other hand, (D̂V, ∆̂DV) only depends on the triple (G,H, V). There-
fore, by virtue of Theorem 2.6, DV(G,H) does not depend on the choice of WD ,
which in turn, shows that DV does not depend on π, π̂, η and η̂. Hence, ŴD is
the reduced bicharacter for (DV(G,H)̂,DV(G,H)).

REMARK 5.6. By definition of the generalised quantum codouble (5.1), the
pair (D̂V, ∆D̂V

) only depends on the triple (G,H, V). Also, Theorem 2.6 ensures
that the generalised Drinfeld double DV(G,H) is uniquely determined (up to
isomorphism) by its dual (D̂V, ∆D̂V

). Hence, the generalised Drinfeld double also
depends only on the triple (G,H, V).

DEFINITION 5.7. The pair (ρ, θ) in (4.5) is called a canonical V-Drinfeld pair.

Next we gather other structure maps on the generalised quantum codouble.

PROPOSITION 5.8. Let (D̂V, ∆D̂V
) be the generalised quantum codouble for the

triple (G,H, V). Then
(i) RD̂V

(b̂⊗ â) := V̂(RB̂(b̂)⊗ RÂ(â))V̂
∗

is the unitary antipode,

(ii) τD̂V
t (b̂⊗ â) := τB̂

t (b̂)⊗ τ Â
t (â) for t ∈ R is the scaling group,

of DV(G,H)̂, where â ∈ Â, b̂ ∈ B̂.

Proof. To conclude (i) it is sufficient to show Theorem 2.3(vi)(b) for RD̂V
. Let

(π, π̂) and (η, η̂) be G and H-Heisenberg pairs acting on H and K, respectively.
The proof of Theorem 4.11 shows that

˜̂WD∗ = (Ŵ
B
θ2)

T⊗η̂RB̂(Ŵ
A
ρ3)

T⊗π̂RÂ in U (HD ⊗K⊗H).

We rewrite (4.10) in the following way:

(5.7) V̂23Ŵ
A
ρ3Ŵ

B
θ2 = Ŵ

B
θ2Ŵ

A
ρ3V̂23 in U (K(HD)⊗ B̂⊗ Â).
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Proposition 3.10 of [15] gives (RB̂ ⊗ RÂ)V̂ = V̂. Next, applying the antimulti-
plicative map T⊗ RB̂ ⊗ RÂ to the both sides of (5.7), gives

(Ŵ
B
θ2)

T⊗RB̂(Ŵ
A
ρ3)

T⊗RÂ V̂23 = V̂23(Ŵ
A
ρ3)

T⊗RÂ(Ŵ
B
θ2)

T⊗RB̂

in U (K(HD)⊗ B̂⊗ Â). Combining the first and last equations above, we get˜̂WD∗ = V̂23(Ŵ
A
ρ3)

T⊗π̂RÂ(Ŵ
B
θ2)

T⊗η̂RB̂V̂∗23 = V̂23(Ŵ
B
θ2Ŵ

A
ρ3)

T⊗η̂RB̂⊗π̂RÂV̂∗23

in U (HD ⊗K⊗H) and V̂ := (η̂ ⊗ π̂)V̂ ∈ U (K⊗H); hence ˜̂WD∗ = ŴDT⊗RD̂V .
Recall the positive self-adjoint operator QD = 1K⊗H ⊗QB ⊗QA from (4.18)

onHD . Theorem 2.3(vi)(a) gives

Q2it
D (ξ(â)ζ(b̂))Q−2it

D = Q2it
D (1K⊗H ⊗ η̂(b̂)⊗ π̂(â))Q−2it

D

= 1K⊗H ⊗ η̂(τB̂
t (b̂))⊗ π̂(τ Â

t (â))

for all â ∈ Â, b̂ ∈ B̂. Finally, faithfulness of π̂ and η̂ gives (ii)

Similarly, we can prove the following result.

PROPOSITION 5.9. Let (DV, ∆DV) be the generalised Drinfeld double for the triple
(G,H, V). Then

(i) the map RDV(ρ(a)θ(b)) := ρ(RA(a))θ(RB(b)) defines the unitary antipode,
(ii) {τDV

t (ρ(a)θ(b)) := ρ(τA
t (a))θ(τB

t (b))}t∈R is the scaling group,
on DV(G,H) for all a ∈ A and b ∈ B.

EXAMPLE 5.10. Let V = 1Â ⊗ 1B̂ ∈ U (Â⊗ B̂). Then ρ and θ in (4.1) com-
mute. Then we identifyHD with K⊗H, and WD with WA

24WB
13; hence DV(G,H)

becomes the product of G and H, denoted by G×H. Equivalently, DV = B⊗ A
and ∆DV(b̂ ⊗ â) = ∆̂B(b̂)13∆̂A(â)24 for â ∈ Â, b̂ ∈ B̂. Similarly, DV(G,H)̂ be-
comes the product of Ĝ and Ĥ.

EXAMPLE 5.11. Let Â = C0(G) and B̂ = C0(H) for locally compact groups
G and H, respectively. For any bicharacter V ∈ U (Â⊗ B̂), the representations ρ

and θ satisfying (4.1) commute. By Example 5.10, we identify HD = L2(H × G)
with respect to the right Haar measures on G and H. The the multiplicative uni-
tary WD := WA

24WB
13 is defined by WA

24WB
13 f (h1, g1, h2, g2) := f (h1h2, h2, g1g2, g2)

for f ∈ L2(H × G × H × G) and g1, g2 ∈ G, h1, h2 ∈ H. Then D̂V = C0(H × G)
and DV = C∗r (H × G).

EXAMPLE 5.12. In particular, let B̂ = A, ∆̂B = ∆A, and V = WA ∈ U (Â⊗
A). Let (π, π̂) be a G-Heisenberg pair on a Hilbert space H and let (π, π̂) be the
corresponding G-anti-Heisenberg pair on H. We can simplify (4.5) as follows:
HD = H ⊗H ⊗H, ρ(a) := (π ⊗ π)∆A(a)13, θ(â) := ((π̂ ⊗ π̂)∆̂A ⊗ π̂)∆̂A(â),
ξ(â) := idH⊗H ⊗ π̂(â), ζ(a) := idH ⊗ π(a) ⊗ idH, for a ∈ A, â ∈ Â, respec-
tively. Then the WA-Drinfeld double is called the G-Drinfeld double and denoted
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by D(G) = (DA, ∆DA). Here DA := ρ(A) · θ(Â), and ∆DA(ρ(a) · θ(â) := (ρ ⊗
ρ)∆A(a) · (θ ⊗ θ)∆̂A(â) for a ∈ A, â ∈ Â. Similarly, the dual of D(G) is called the
G-quantum codouble and denoted by D(G)̂ = (D̂A, ∆D̂A). Here D̂A := A ⊗ Â,

and ∆D̂A(a⊗ â) := σWA

23 (∆A(a)⊗ ∆̂A(â)) for a ∈ A, â ∈ Â.

EXAMPLE 5.13. Let A = C0(G) and Â = C∗r (G) for a locally compact group
G. Then Proposition 5.1 of [9] shows that the underlying C∗-algebra of the Drin-
feld double of G, denoted by DC0(G), is C0(G)o G for the conjugation action of G
on itself.

6. PROPERTIES OF GENERALISED DRINFELD DOUBLES

We start with the noncommutative version of the following classical fact:
given two locally compact groups G and H, there are canonical Hopf ∗-homo-
morphisms from C0(G) and C0(H) to C0(G× H).

LEMMA 6.1. The unitaries WA
1ρ ∈ U (Â⊗DV) and WB

1θ ∈ U (B̂⊗DV) are bi-
characters induced by the Hopf ∗-homomorphisms ρ∈Mor(A,DV) and θ∈Mor(B,DV),
respectively.

Proof. The character condition on the first leg (2.12), for both the unitaries,
follows from (2.8).

Using (5.6) we write

(idÂ ⊗∆DV)W
A
1ρ = WA

ξ2ρ3
WB

ζ2θ3
WA

1ρ2
(WB

ζ2θ3
)∗(WA

ξ2ρ3
)∗ in U (Â⊗DV ⊗DV).

By Lemma 4.8, ζ and ρ commute and (ρ, ξ) is a G-Heisenberg pair. This yields
(2.13) for WA

1ρ:

(idÂ ⊗∆DV)W
A
1ρ = WA

ξ2ρ3
WA

1ρ2
(WA

ξ2ρ3
)∗ = WA

1ρ2
WA

1ρ3
in U (Â⊗DV ⊗DV).

Furthermore, taking slices on the first leg of the last expression by ω ∈ Â′ and
using (2.4) for WA we get ∆DV ρ(a) = (ρ⊗ ρ)∆ A(a) for a ∈ A. Therefore, ρ is a
Hopf ∗-homomorphism from G to DV(G,H) and WA

1ρ is induced by ρ.
Similarly, we can show that WB

1θ is induced by the Hopf ∗-homomorphism
from H to DV(G,H).

6.1. COACTION ON THE TWISTED TENSOR PRODUCT OF C∗-ALGEBRAS. C∗-alge-
bras can be turned into a category, which we generically denote by C∗alg, using
several types of maps:

• morphisms (nondegenerate ∗-homomorphisms C1 →M(C2));
• proper morphisms (nondegenerate ∗-homomorphisms C1 → C2);
• completely positive maps C1 → C2;
• completely positive contractions C1 → C2;
• completely contractive maps C1 → C2;
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• completely bounded maps C1 → C2.
Let C∗alg(G) generically denote the category with G-C∗-algebras as objects and
G-equivariant “maps” as arrows.

The twisted tensor product construction in [16] of a G- and an H-C∗-algebra
with respect to V, denoted by �V, defines a bifunctor from C∗alg(G)× C∗alg(H)
to C∗alg (see Lemma 5.5 of [16]).

In particular, if V = 1Â ⊗ 1B̂, then C �V D = C ⊗ D, and DH(V,G) be-
comes the product of G and H (see Example 5.10). Then the map c ⊗ d 7→
γ(c)13δ(d)24 defines the coaction of the product of G and H on C ⊗ D. Equiv-
alently, ⊗ : C∗alg(G)× C∗alg(H) → C∗alg(G×H) is a bifunctor. The following
theorem is a noncommutative version of this fact.

THEOREM 6.2. �V : C∗alg(G)× C∗alg(H)→ C∗alg(DV(G,H)) is a bifunctor.

Let (C, γ) and (D, δ) be G- and H-C∗-algebras, respectively. Let (α, β) be a
V-Heisenberg pair on a Hilbert space L. Then C�V D, is defined by C�V D :=
ιC(C) · ιD(D) ⊂ M(C ⊗ D ⊗ K(L)) (see Lemma 3.11 of [16]). Here ιC(c) :=
γ(c)1α and ιD := δ(d)2β are nondegenerate ∗-homomorphisms from C and D to
M(C⊗ D⊗K(L)), respectively.

LEMMA 6.3. There is a canonical coaction Ψ : C�V D → C�V D ⊗DV of the
generalised Drinfeld double DV(G,H) on C�V D defined by

(6.1) ΨιC(c) = (ιC ⊗ ρ)γ(c) and ΨιD(d) = (ιD ⊗ θ)δ(d)

for c ∈ C, d ∈ D.

Proof. Define α̃(a) := (α ⊗ ρ)∆A(a) and β̃(b) := (β ⊗ θ)∆B(b) for a ∈ A,
b ∈ B. Then (α̃, β̃) is a pair of nondegenerate ∗-homomorphisms from A, B to
A⊗ B⊗K(L⊗ D)). Using (2.4) we get

WA
1α̃WB

2β̃
= WA

1αWA
1ρWB

2βWB
2θ = WA

1αWB
2βWA

1ρWB
2θ in U (Â⊗ B̂⊗K(L⊗ D)).

Now (α, β) satisfies (3.1) and (ρ, θ) satisfies (4.1); hence we get

WA
1α̃WB

2β̃
= WB

2βWA
1αV12WA

1ρWB
2θ = WB

2βWB
2θWA

1αWA
1ρV12 = WB

2β̃
WA

1α̃V12.

Thus (α̃, β̃) is a V-Heisenberg pair. By Theorem 4.6 of [16], there is an isomor-
phism Ψ between C�V D and γ(C)1α̃ · δ(D)2β̃

⊂ M(C⊗ D⊗K(L⊗HD)) such
that ψιC(c) = γ(c)1α̃ and ψιD(d) = δ(d)2β̃

for c ∈ C and d ∈ D. We compute

γ(c)1α̃ = ((idC ⊗ (α⊗ ρ)∆A)γ(c))134 = (((idC ⊗ α)γ⊗ ρ)γ(c))134 = (ιC ⊗ ρ)γ(c)

for c ∈ C, where the second equality uses (2.10) for γ. A similar computation for
δ gives (6.1).

A routine computation using Lemma 6.1 and (2.10) for γ and δ yields
(idC�VD ⊗∆DV)Ψ = (ψ⊗ idDV)Ψ. The Podleś condition (2.11) for γ gives

(ιC⊗ρ)γ(C)(1⊗ρ(A) · θ(B))=(ιC⊗ρ)((γ(C) · (1⊗A))θ(B)2)=ιC(C)⊗ρ(A) · θ(B).
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A similar compution shows (ιD⊗ ρ)δ(D)(1⊗ ρ(A) · θ(B)) = ιD(D)⊗ ρ(A) · θ(B),
hence we get the Podleś condition (2.11) for Ψ.

EXAMPLE 6.4. Let G = H be the compact quantum group A = C(Tn). Then
any coaction of G on A is the action of the group Tn by translation. A bicharac-
ter V ∈ U (Â ⊗ Â) is a map V: Zn × Zn → T which is multiplicative in each

variable: V((an), (bn)) :=
n
∏

i,j=1
λ

ai ·bj
ij for some (λi,j)16i,j6n ∈ T. The associated

V-Heisenberg pair ((Un), (Vn)) is a pair of n-tuples of unitaries with the follow-
ing commutation relations: UiUj = UjUi, ViVj = VjVi, and ViUj = UjViλij for
i, j ∈ {1, . . . , n}. The resulting twisted tensor product A�V A is the noncommu-
ative 2n-torus. Example 5.11 shows that the V-Drinfeld double is C(Tn × Tn).
Thus we get the standard product action of Tn × Tn on the noncommutative
2n-torus.

The coaction Ψ in Lemma 6.3 generalises the product action of groups.
Therefore Ψ is called the generalised product of coactions and denoted by γ�V δ.

Proof of Theorem 6.2. By virtue of Lemma 5.5 in [16], we already know that
�V is a bifunctor from C∗alg(G) × C∗alg(H) to C∗alg. More precisely, given a
G-equivariant “map” f : (C, γ) → (C1, γ1) and a H-equivariant “map” g : (D, δ)
→ (D1, δ1), there is a unique “map” f �V g : C�V D → C1 �V D1 defined by

(6.2) ( f �V g)(ιC(c)) = ιC1( f (c)), ( f �V g)(ιD(d)) = ιD1(g(d))

for all c ∈ C, d ∈ D. Therefore, we only need to show that the “map” f �V
g : (C�V D, γ�V δ)→ (C1 �V D1, γ1 �V δ1) is DV(G,H)-equivariant.

Using (6.2), we get

(6.3) (γ1 �V δ1)( f �V g)(ιC(c)ιD(d)) = (γ1 �V δ1)(ιC1( f (c))ιD1(g(d))).

Now (6.1) and the equivariance condition for f give

(γ1 �V δ1)ιC1( f (c)) = (ιC1 ⊗ ρ)γ1( f (c)) = (ιC1 f ⊗ ρ)γ(c).

Similarly, we have (γ1�V δ1)ιD1(g(d)) = (ιD1 g⊗ θ)δ(d). Combining the last two
equations with (6.3) completes the proof:

(γ′ �V δ′)( f �V g)(ιC(c)ιD(d)) = (ιC′ f ⊗ ρ)γ(c)(ιD′g⊗ θ)δ(d)

= ( f �V g⊗ idDV)(γ�V δ)(ιC(c)ιD(d)).

6.2. R-MATRIX ON DRINFELD DOUBLES.

DEFINITION 6.5. A bicharacter R ∈ U (A ⊗ A) is called an R-matrix on a
quantum group G = (A, ∆A) if

(6.4) R(σ∆ A(a))R∗ = ∆A(a) for all a ∈ A,

where σ is the standard flip on A⊗ A.
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Let B̂ = A, ∆̂B = ∆A, and V = WA ∈ U (Â⊗ A), and recall the G-Drinfeld
double D(G) from Example 5.12.

LEMMA 6.6. The unitary R := (θ ⊗ ρ)WA ∈ U (DA ⊗DA) is an R-matrix on
the G-Drinfeld double D(G).

Proof. The bicharacter conditions (2.12) and (2.13) for R follow from Lem-
ma 6.1 and (5.6). The comultiplication ∆A is the left and right quantum group
homomorphism associated to WA ∈ U (Â ⊗ A). Therefore, identifying B = Â
and ∆B = ∆̂A, we rewite (3) of Lemma 4.4 as

(6.5) (ρ⊗ ρ)∆A(a) = (WA
θρ)(σ∆ A(a))(WA

θρ)
∗ for all a ∈ A.

Similarly, identifying ∆̂L = ∆̂R = ∆̂A and B = Â in (4) of Lemma 4.4 gives

(6.6) (θ ⊗ θ)∆̂A(â) = (WA
θρ)(σ∆̂A(â))(Ŵ

A
θρ)
∗ for all â ∈ Â.

Combining (6.5), (6.6), and using (5.6) we obtain (6.5) for R = (θ ⊗ ρ)WA.

7. PROPERTIES OF GENERALISED QUANTUM CODOUBLES

The definition of a closed quantum subgroup in the sense of Woronowicz (see
Definition 3.2 of [5]) uses the notion of a C∗-algebra generated by a quantum
family of multipliers. Equivalently, a C∗-quantum group H1 = (B1, ∆B1) is a
closed quantum subgroup of a C∗-quantum group G1 = (A1, ∆A1) if there is a
bicharacter V1 ∈ U (Â1 ⊗ B1) such that the norm closure of {(ω ⊗ idB1)V

′ : ω ∈
Â1
′} is B1 (see Theorem 3.6 (2) of [5]).

PROPOSITION 7.1. Ĝ and Ĥ are closed quantum subgroups of DV(G,H)̂ in the
sense of Woronowicz.

Proof. The bicharacter Ŵ
A
ρ2 ∈ U (DV ⊗ Â) corresponds to a quantum group

homomorphism from DV(G,H)̂ to Ĝ. Furthermore, the slices (ω⊗ idÂ)Ŵ
A
ρ2 for

ω ∈ (DV)′ are dense in Â. Hence Ĝ is a closed quantum subgroup of DV(G,H)̂
in the sense of Woronowicz. Also, Ŵ

B
θ2 ∈ U (DV ⊗ B̂) yields a similar conclusion

for Ĥ.

7.1. COACTIONS AND COREPRESENTATIONS.

DEFINITION 7.2. A C∗-algebra C along with the coactions γ : C → C ⊗ Â
and δ : C → C⊗ B̂ of Ĝ and Ĥ is called a (right, right) V-Yetter–Drinfeld C∗-algebra
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if the following diagram commutes:

(7.1)
C C⊗ B̂ C⊗ Â⊗ B̂

C⊗ Â C⊗ B̂⊗ Â C⊗ Â⊗ B̂

δ γ⊗ idB̂

idC ⊗AdVγ
δ⊗ idÂ idC ⊗ σ

.

Let YD(Ĝ, Ĥ, V) be the category with V-Yetter–Drinfeld C∗-algebras as objects
and Ĝ- and Ĥ-equivariant morphism as arrows.

EXAMPLE 7.3. Consider Â = C0(G) and B̂ = C0(H) for locally compact
groups G and H. Then any G-C∗-algebra with trivial H-coaction makes it Yetter–
Drinfeld in this generalised sense.

EXAMPLE 7.4. In particular, let B̂ = A, ∆̂B = ∆A, and V = WA ∈ U (Â⊗
A). Then WA-Yetter–Drinfeld C∗-algebras are the same as G-Yetter–Drinfeld
C∗-algebras defined by Nest and Voigt in [17]. The category of G-Yetter–Drinfeld
C∗-algebras is denoted by YD(G).

Proposition 3.2 from [17] shows that the categories C∗alg(D(G)̂) and
YD(G) are equivalent for a regular C∗-quantum group G with Haar weights (be-
cause it uses the C∗-algebraic picture from [4]). We generalise this fact in the next
proposition:

PROPOSITION 7.5. Every DV(G,H)̂-C∗-algebra is a V-Yetter–Drinfeld C∗-al-
gebra, and vice versa.

Define ∆R : D̂V → D̂V ⊗ Â by ∆R := (idB̂ ⊗ ∆̂A). Equation (2.18) and (2.4)

for Ŵ
A

give

(idDV ⊗∆R)ŴD = (idDV ⊗∆R)(Ŵ
B
θ2Ŵ

A
ρ3) = Ŵ

B
θ2Ŵ

A
ρ3Ŵ

A
ρ4

in U (DV ⊗ B̂⊗ Â⊗ Â). Collapsing the second and third leg in the last computa-
tion we obtain

(7.2) (idDV ⊗∆R)ŴD = ŴD12Ŵ
A
ρ3 in U (DV ⊗ D̂V ⊗ Â).

Comparing the last expression with (2.18), we conclude that ∆R is the right quan-

tum group homomorphism corresponding to the bicharacter Ŵ
A
ρ2 ∈ U (DV ⊗ Â).

Similarly, using (5.7) we can show that ∆′R : D̂V → D̂V ⊗ B̂ defined by
∆′R(b̂⊗ â) := σV

23(∆̂B(b̂)⊗ â) satisfies

(7.3) (idDV ⊗∆′R)ŴD = ŴD12Ŵ
B
θ3 in U (DV ⊗ D̂V ⊗ B̂).

Hence ∆′R is the right quantum group homomorphism associated to the bichar-

acter Ŵ
B
θ2 ∈ U (DV ⊗ B̂).

LEMMA 7.6. D̂V is a V-Yetter–Drinfeld algebra.
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Proof. Using (5.7) we compute

σV
34((idDV ⊗ ((∆′R ⊗ idÂ)∆R))Ŵ

B
θ2Ŵ

A
ρ3) = Ŵ

B
θ2σV

34(Ŵ
A
ρ3Ŵ

B
θ4)Ŵ

A
ρ5

= Ŵ
B
θ2Ŵ

B
θ3Ŵ

A
ρ4Ŵ

A
ρ5

= (idDV ⊗ ((∆R ⊗ idÂ)∆
′
R))Ŵ

B
θ2Ŵ

A
ρ3.

Taking slices on the first leg by functionals on DV shows that D̂V is a V-Yetter–
Drinfeld C∗-algebra with respect to the coactions ∆R and ∆′R of Ĝ and Ĥ on D̂V.

Proof of Proposition 7.5. Let C be a DV(G,H)̂-C∗-algebra. Now Lemma 2.9
of [16] identifies C with a subalgebra ofM(C′⊗ D̂V) for some C∗-algebra C′ with
the coaction of DV(G,H)̂ only on D̂V. By Proposition 7.6, D̂V is a V-Yetter–
Drinfeld C∗-algebra, hence so is C.

Conversely, let γ : C → C ⊗ Â and δ : C → C ⊗ B̂ satisfy (7.1). Define a
nondegenerate, injective ∗-homomorphism γ̃ : C → C⊗ D̂V by γ̃ := (δ⊗ idÂ)γ.

The Podleś condition (2.11) for γ̃ is induced from those for γ and δ in the
following way:

γ̃(C) · (1C ⊗ D̂V) = ((δ⊗ idÂ)(γ(C) · (1C ⊗ Â))) · (1C ⊗ B̂⊗ 1Â)

= (δ(C) · (1C ⊗ B̂))⊗ Â = C⊗ D̂V.

The following computation yields (2.10) for γ̃:

(γ̃⊗ idB̂⊗Â)γ̃ = (δ⊗ idÂ⊗B̂⊗Â)((γ⊗ idB̂)δ⊗ idÂ)γ

= σV
34(((δ⊗ idB̂)δ⊗ idÂ⊗Â)(γ⊗ idÂ)γ)

= σV
34((idC ⊗ ∆̂B ⊗ ∆̂ A)(δ⊗ idÂ)γ) = (idC ⊗ ∆̂DV)γ̃.

The first equality is trivial, the second equality uses (7.1), the third equality uses
(2.9), and the last equality uses (5.1).

Let UĜ ∈ U (K(K)⊗ Â) and UĤ ∈ U (K(K)⊗ B̂) be corepresentations of Ĝ
and Ĥ on K.

DEFINITION 7.7. A pair (UĜ, UĤ) is called DV(G,H)̂-compatible if UĜ and
UĤ commute in the following way:

(7.4) σV
23(U

Ĥ
12UĜ

13) = UĤ
13UĜ

12 in U (K(K)⊗ Â⊗ B̂).

EXAMPLE 7.8. Equation (4.10) shows that the pair (Ŵ
A
ρ2, Ŵ

B
θ2) of corepresen-

tations of Ĝ and Ĥ on HD is DV(G,H)̂-compatible. This is the corepresentation
version of Lemma 7.6.

PROPOSITION 7.9. Corepresentations of DV(G,H)̂ are in one-to-one correspon-
dence with DV(G,H)̂-compatible pairs of corepresentations.
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Proof. A routine computation shows that any DV(G,H)̂-compatible pair of
corepresentations (UĜ, UĤ) on K gives a corepresentation X ∈ U (K(K)⊗ D̂V) of
DV(G,H)̂ by

(7.5) X := UĤ
12UĜ

13 in U (K(K)⊗ B̂⊗ Â).

Conversely, let X ∈ U (K(K) ⊗ D̂V) be a corepresentation of DV(G,H)̂ on K.
By Proposition 6.5 of [15] or Proposition 3.31 of [19] the right quantum group
homomorphism ∆R in (7.2) induces a corepresentation U ∈ U (K(K)⊗ Â) of Ĝ
on K such that

(idK ⊗∆R)X = X12UĜ
13 in U (K(K)⊗ D̂V ⊗ Â).

Similarly, the right quantum group homomorphism ∆′R in (7.3) gives a corepre-

sentation UĤ ∈ U (K(K)⊗ B̂) of Ĥ satisfying

(idK ⊗∆′R)X = X12UĤ
13 in U (K(K)⊗ D̂V ⊗ B̂).

Lemma 7.6 gives

X12UĜ
13UĤ

14 = (idK ⊗ (∆R ⊗ idÂ)∆
′
R)X = σV

34(idK ⊗ (∆′R ⊗ idÂ)∆R)X

= σV
34(X12UĤ

13UĜ
14) = X12σV

34(U
Ĥ
13UĜ

14).
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