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1. INTRODUCTION

One of the milestones in the theory of Hopf algebras is the quantum double or
Drinfeld double construction [8]. This has subsequently been generalised in several
algebraic frameworks [6]], [12].

The quantum double construction for analytic quantum groups was devel-
oped in many different frameworks, along with the development of a general the-
ory of compact and locally compact quantum groups. In fact, the terms “quantum
double” and “double crossed product” in the context of locally compact quantum
groups actually refers to the (analytically generalised) dual of the respective con-
structions in the algebraic framework.

In [18], Podles and Woronowicz generalised the quantum double construc-
tion for compact quantum groups [22], under the name double group construc-
tion. They constructed g-deformations of SL(2, C) as the double group of SU;(2)
groups [23] for g € [—1,1] \ {0}.

The first step towards the general theory of (topological) locally compact
quantum groups, in the C*-algebraic framework, goes back to the work of Baaj
and Skandalis [2]. As basic axioms they used a unitary operator, called the mul-
tiplicative unitary, having the reqularity property. Also their Z-produit tensoriel for
regular multiplicative unitaries (see Section 8 of [2]) generalises the quantum
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double construction for compact quantum groups. Unfortunately, multiplica-
tive unitaries related to locally compact quantum groups are not always regular
(see [1]). The notion of manageability of multiplicative unitaries, introduced by
Woronowicz in [24]], provides a more general approach to the C*-algebraic theory
for locally compact quantum groups or, in short, C*-quantum groups (see Defini-
tion 2.4).

A general theory of (measure theoretic) locally compact quantum groups
was proposed by Kustermans and Vaes [10], [11] and Masuda, Nakagami and
Woronowicz [14], assuming existence of Haar weights. Also, Proposition 6.10 of
[10] shows that the left (respectively right) regular representation associated to
the left (respectively right) Haar weight is a manageable multiplicative unitary.
According to Terminology 5.4 of [3], a locally compact quantum is regular if its
regular representation is a regular multiplicative unitary.

In [4], Baaj and Vaes developed the general theory of the double crossed
product of a matched pair of locally compact quantum groups. Tomita—Takesaki
operators of the respective quantum groups play the key role in their construc-
tion. A matching of two von Neumann algebraic quantum groups (Mj, Ay, )
and (M, Ap,) is a normal faithful *-homomorphism m: M{@®M,; — M;®@M,
with some additional property. Here @ denotes the von Neumann algebraic ten-
sor product. The underlying von Neumann algebra M, of the associated double
crossed product is M1®Mp. In particular, every bicharacter V € M;®M, defines
an inner matching defined by m(x) = V(x)V* for all x € M;®M;. The dou-
ble crossed product associated to an inner matching, is called generalised quantum
double (see Section 8 of [4]). The word “generalised” refers to the generalisation
of the quantum double construction for quasi Woronowicz algebras [13] (previ-
ously regarded as locally compact quantum groups in the von Neumann algebra
framework) by Yamanouchi [26].

In [25], Woronowicz and Zakrzewski constructed another g-deformation
(forg € (0,1)) of SL(2, C), in the C*-algebraic framework, as the quantum double
(under the name double group) of the quantum E(2) group, which is not regular
(see [1]). Therefore, the C*-algebraic description for M,,, given by Baaj and Vaes
([4]], Proposition 9.5) does not cover this example because it assumes regularity
on both the locally compact quantum groups (My, Ay, ) and (M, Ay, )-

In this article, we construct and establish the duality between generalised
Drinfeld doubles and generalised quantum codoubles (called as generalised quantum
doubles in Section 8 of [4]) in the general framework of manageable multiplica-
tive unitaries. Therefore, our work generalises the C*-algebraic picture of the gen-
eralised quantum doubles in Section 9 of [4]], as we do not need to assume neither
Haar measures nor regularity on the factor quantum groups. In particular, our
work also generalises the quantum codouble (sometimes called double group [18],
[25], quantum double [26], and Drinfeld double ([17], Section 3)) construction
for locally compact quantum groups with Haar weights ([14], Section 8), and for



THE DRINFELD DOUBLE FOR C*-ALGEBRAIC QUANTUM GROUPS 487

manageable multiplicative unitaries (an unpublished work of S.L. Woronowicz
presented at RIMS in 2011).

Let us briefly outline the structure of this article. In Section [2} we recall
basic necessary preliminaries. In particular, the main results on modular and
manageable multiplicative unitaries, that give rise to C*-quantum groups [24],
coactions and corepresentations of C*-quantum groups, and several equivalent
notions of homomorphisms of C*-quantum groups [15] are stated.

Let G = (A,A4) and H = (B,Ap) be C*-quantum groups (in the sense
of Definition , and V € U(A ® B) be a bicharacter (in the sense of Defini-
tion[2.11).

In Section 3] we recall the concept of V-Heisenberg pairs from [16]. Then we
introduce the notion of V-Drinfeld pair in Section [, which plays the fundamental
role in this article. Roughly, it is a pair of representations (p, ) of A and B on some
Hilbert space ‘H satisfying certain commutation relations governed by V. We
systematically construct a V-Drinfeld pair and a modular multiplicative unitary,
denoted by WP (see Theorem . Section is devoted to the construction of the
generalised Drinfeld double, as a C*-quantum group from WP, and generalised
quantum codouble as its dual.

In particular, the generalised Drinfeld double construction for a trivial
bicharacter yields the usual product of the respective C*-quantum groups (see
Example [5.10). In Section 6| we extend certain known results for the product of
groups and C*-quantum groups to generalised Drinfeld doubles. It is well known
that the Drinfeld double of a finite dimensionsal Hopf algebra has an R-matrix [8].
This was generalised in several analytic contexts [2], [6], [26]. We extend this re-
sult in the context of modular or manageable multiplicative unitaries. Finally, in
Section [7} we discuss the coaction and corepresentation of generalised quantum
codoubles.

2. PRELIMINARIES

Throughout we use the symbol “:=" to abbreviate the phrase “defined by”.

All Hilbert spaces and C*-algebras (which are not explicitly multiplier alge-
bras) are assumed to be separable.

For two norm-closed subsets X and Y of a C*-algebra, let

X-Y:i={xy:x€X,ye Y},

where CLS stands for the closed linear span.

For a C*-algebra A, let M(A) be its multiplier algebra and U/ (A) be the
group of unitary multipliers of A. The unit of M(A) is denoted by 14. Next
recall some standard facts about multipliers and morphisms of C*-algebras from
Appendix A of [14]. Let A and B be C*-algebras. A *-homomorphism ¢: A —



488 SUTANU RoY

M(B) is called nondegenerate if ¢(A)-B = B. Each nondegenerate *-homo-
morphism ¢: A — M(B) extends uniquely to a unital *-homomorphism ¢ from
M(A) to M(B). Let €*alg be the category of C*-algebras with nondegenerate
*-homomorphisms A — M(B) as morphisms A — B; let Mor(A,B) denote this
set of morphisms. We use the same symbol for an element of Mor(A, B) and its
unique extenstion from M(A) to M(B).

Let H be the conjugate Hilbert space to the Hilbert space H. The transpose
of an operator x € B(#) is the operator xT € B(#) defined by xT (Z) := x*¢ for
all { € H. The transposition is a linear, involutive anti-automorphism B(H) —
B(H).

A representation of a C*-algebra A on a Hilbert space H is a nondegenerate
s-homomorphism 71: A — B(H). Since B(H) = M(K(#)), the nondegeneracy
conditions 7(A) - K(H) = K(#H) is equivalent to being 7r(A)(#) is norm dense
in H, and hence this is same as having a morphism from A to K(# ). The identity
representation of K(#) on H is denoted by idy. The group of unitary opera-
tors on a Hilbert space H is denoted by U/ (#). The identity element in U/ (H) is
denoted by 14.

We use ® both for the tensor product of Hilbert spaces and minimal tensor
product of C*-algebras, which is well understood from the context. We write X
for the tensor flip H @ K - K Q@ H, x @y — y ® x, for two Hilbert spaces H and
K. We write ¢ for the tensor flip isomorphism A ® B — B ® A for two C*-algebras
A and B.

Let A1, Ay, A3 be C*-algebras. For any t € M(A; ® A;) we denote the leg
numberings on the level of C*-algebras as t1; 1= t ® 14, € M(A; ® Ay ® A3),
tyy 1= 14, ® t1p € M(A3® A1 ® Az) and t3 1= 012(t23) = 023(t2) € M(A1 ®
A3 ® Ap). In particular, let A; = B(H;) for some Hilbert spaces #;, where i =
1,2,3. Then forany t € B(?H; ® H;) the leg numberings are obtained by replacing
o with the conjugation by X operator.

2.1. MULTIPLICATIVE UNITARIES AND QUANTUM GROUPS.

DEFINITION 2.1 ([2], Définition 1.1). Let H be a Hilbert space. A unitary
W e U(H ® H) is multiplicative if it satisfies the pentagon equation

(21) W23W12 = W12W13W23 in M(H & H (9 7{)

Technical assumptions such as manageability ([24]) or, more generally, mod-
ularity ([20]) are needed in order to construct a C*-algebras out of a multiplicative
unitary.

DEFINITION 2.2 ([20], Definition 2.1). A multiplicative unitary W € U (H ®
H) is modular if there are positive self-adjoint operators Q and Q acting on H and
W € U(H ® H) such that:
(i) Ker(Q) = Ker(Q) = {0} and W(Q® Q)W* = (Q® Q),
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() (xQu | W |z0y) = ZoQu | W |x®@Q ly) forallx,z € H, u €
Dom(Q) and y € Dom(Q~1),

where H is the complex-conjugate Hilbert space associated to H.
If Q = Q then W is called manageable.

THEOREM 2.3 ([20], [21]). Let H be a Hilbert space and W € U(H @ H) a
modular multiplicative unitary. Let
2.2) A= {(w®idy)W : w € B(H),}S,
(2.3) A= {(idy ® w)W : w € B(H), .
(i) A and A are separable, nondegenerate C*-subalgebras of B(H).

(i)W e UAR A) C U(H @ H). We write WA for W viewed as a unitary
multiplier of A ® A.

(iii) There is a unique A 5, € Mor(A, A ® A) such that

(2.4) (id; @A) WA = WHWE, inU(ARA® A)
it is coassociative

(2.5) (Aa®ida)Aa = (ida ®A4)A 4,

and satisfies the cancellation laws

(2.6) Ap(A)- (142 A) =ARA=(A®14) As(A).

(iv) There is a unique closed linear operator x 4 on the Banach space A such that {(w @
ids)W : w € A’} is a core for k 4 and
KA((CU & idA)W) = (w ® idA)W*
for any w € A'. Moreover, for all a,b € Dom(ka) the product ab € Dom(x,)
and x4 (ab) = xa(b)xa(a), the image x4 (Dom(x4)) coincides with Dom(x 4)*, and
ka(ka(a)*)* =aforalla € Dom(xn).
(v) There is a unique one-parameter group, called the scaling group, {7/ }icr of

x-automorphisms of A and a unique ultraweakly continuous, involutive, x-anti-auto-
morphism, called the unitary antipode, R 4 of A such that:

(a) K = Ratil;
(b) Ry commutes with t* for all t € R and Dom(x4) = Dom(Ti‘}z);
@At = (A @7 Ay forall t € R;
(d) AaRg = 0(Rg @ R4)A 4, where o denotes the flip map.

(vi) Let Q and W be the operators associated to W in Definition Then,
(a) forany t € Rand a € A we have 7/ (a) = Q**aQ =2,

b) writing aR4 instead of R 4 (a), we have WT®Ra = W*, where the left hand
8
side is viewed as a unitary on H @ H.

In general, a pair (A, A 4) consisting of a C*-algebra A and a morphism A 4
€ Mor(A, A ® A) satisfying coassociativity condition (2.5) and (2.6) is called a
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bisimplifiable C*-bialgebra (see Définition 0.1 of [2]). Two such pairs (A,A,4) and
(B, Ap) are isomorphic if there is an isomorphism ¢ € Mor(A, B) intertwining
the comultiplications: (¢ ® ¢)A4 = Agg.

DEFINITION 2.4 ([21], Definition 3). Let A be a C*-algebra and a morphism
Ap € Mor(A,A® A). Then the pair G = (A, A 4) is a C*-quantum group if there is
a modular multiplicative unitary W € U (H ® H ) such that (A, A 4) is isomorphic
to the C*-algebra with comultiplication associated to W as described in Theorem
Then we say G = (A, A4) is generated by W.

The notions of modularity and manageability are not very far from each
other: starting from a modular multiplicative unitary one can construct a man-
ageable multiplicative unitary on a different Hilbert space (see [20]) giving rise
to the same C*-quantum group. Therefore, we shall consider only manageable
multiplicative unitaries from now on.

The dual multiplicative unitary is W := SW*X € U(H ® H). It is modular
or manageable if W is. The C*-quantum group G = (AAn) generated by W is

the dual of G. Define W ¢ U(A® A) by W= oc((WA)*) € U(A ® A), where
c(@®a) =a®a. It satisfies

. N A ~ANA U
(27) (ldA ®AA)W = W12W13 1nU(A®A ®A)
Equivalently, we get the character condition on the first leg of W4:
(2.8) (Ax @idg ) WA = WEHEWES inU(A® A® A).

DEFINITION 2.5 ([21], page 53). The unitary W4 € M(A ® A) is called

the reduced bicharacter for (G,G). Equivalently, W' cu (A® A) is the reduced
bicharacter for (G, G).

THEOREM 2.6 ([21], Theorem 5). The C*-quantum group G = (A, A4) is in-
dependent of the choice of the modular multiplicative unitary that generates G. Further-
more, the dual C*-quantum group G = (A, A ) and the reduced bicharacter W4 €
U(A® A) are determined uniquely (up to isomorphism) by G.

DEFINITION 2.7. A (unitary) corepresentation of G on a C*-algebra C is an
element U € U(C ® A) with
In particular, U is said to be a corepresentation of G on a Hilbert space H when-
ever C = K(H).

EXAMPLE 2.8. The trivial corepresentation of G on a Hilbert space His U =
1y 14 eUK(H)RA). Equationshows that the reduced bicharacter W4 &
U(A® A) is a corepresentation of G on A.
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DEFINITION 2.9. A (right) coaction of G or G-coaction on a C*-algebra C is a
morphism v: C = C ® A with the following properties:
(i) 7y is injective;
(ii) 7y is a comodule structure, that is,

(2.10) (idc®@Aa)y = (y®ida)y;
(iii) -y satisfies the Podles condition:

(2.11) Y(C)-(1c®A) =C® A.

EXAMPLE 2.10. The trivial coaction of G on a C*-algebra C, is defined by
T:C =+ C® A, c = c®1y. The cancellation law implies that Ay: A —
A ® A is a G-coaction on A. More generally, idc @ A4: C®A - CRA®Ais
a G-coaction on C ® A for any C*-algebra C. Lemma 2.9 in [16] says that any
coaction may be embedded into one of this form.

A pair (C,y) consisting of a C*-algebra C and a G-coaction 7y on C is called
a G-C*-algebra. A morphism f: C — D between two G-C*-algebras (C,y) and
(D, 6) is G-equivariant if §f = (f ®id4)7. Let €*alg(G) denote the category with
G-C*-algebras as objects and G-equivariant morphisms as arrows.

2.2. QUANTUM GROUP HOMOMORPHISMS. Let G = (A,A4) and H = (B, Ap)
be C*-quantum groups. Let G = (A, A4) and H = (B, Ap) be their duals.

DEFINITION 2.11 ([15], Definition 16). A bicharacter from G to Hisa unitary
V € U(A ® B) with
(2.12) (Ap®idg)V=VpVi; inU(A®A®B),
(2.13) (id; ® Ap)V = VipVi3 inU(A®B®B).

A Hopf x-homomorphism from G to H is an element f € Mor(A, B) that inter-
twines the comultiplications:

(2.14) (f @ f)Aa(a) = Apf(a) forac A.

Then V := (id; ® fYWA € U(A @ B) is a bicharacter from G to H. We say that
V is induced by f.

Bicharacters in U (ﬁ ® B) are interpreted as quantum group morphisms
from G to H in [I5]. We shall use bicharacters in 2/(A ® B) throughout. Let
us recall some definitions from [15] in this setting.

DEFINITION 2.12. A right quantum group homomorphism from G to H is a
morphism Agr: A — A ® B with the following properties:

(2.15) (A4 ®idg)AR = (ida ® AR)Ax and (ida ® Ap)AR = (AR ®idg)AR.
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Similarly, a left quantum group homomorphism from G to Hisa morphism Ay : A —
Bo A satisfying the following properties:

(2.16) (idz®Aa)AL = (AL ®ida)Ax and (Ap®ida)AL = (idg ® Ap)AL
The following theorem summarises some of the main results of [15].

THEOREM 2.13. There are natural bijections between the following sets:
(i) bicharacters V € U(A ® B) from G to H;
(ii) bicharacters V € U(B ® A) from H to G;
(iii) right quantum group homomorphisms Ag: A — A ® B;
(iv) left quantum group homomorphisms Ay: A — B® A;
(v) the functors F: €*alg(G) — €*alg(H) with Forg o F = Forg for the forgetful

functors Forg: €*alg(G) — €*alg and Forg : €*alg(H) — ¢*alg.
The first bijection maps a bicharacter V to its dual V € U(B ® A) defined by

(2.17) Vi=o(V*).

A bicharacter V and a right quantum group homomorphism AR determine each other
uniquely via

(2.18) (id; ® AR) (WA) = Wi, Vi3,

Similarly, a bicharacter V€ U(A ® B) and a left quantum group homomorphisms Ay
determine each other uniquely by

(2.19) (id; ® AL) (W) = Vo Wi,

The dual bicharacter V € U(B ® A) describes the dual right quantum group
homomorphism AAR: B — B® A. Thus AR and ER are in bijection as are V and V.
A similar statement holds for Ay and Ay.

The functor F associated to AR is the unique one that maps (A,A4) to
(A, AR). In general, F maps a continuous G-coaction y: C — C ® A to the unique
H-coaction é: C — C ® B for which the following diagram commutes:

c— T  cea
(2.20) (sl lidc ® Ag
C®B — - C®A®B
'Y®1d§

3. HEISENBERG PAIRS REVISITED

Let G = (A,A,) and H = (B, Ag) be C*-quantum groups. Let V € U(A ®
B) be a bicharacter.
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DEFINITION 3.1 ([16], Definition 3.1). A pair of representations a: A —
B(H), B: B — B(H) is called a V-Heisenberg pair, or briefly Heisenberg pair, if

(3.1) WHWE, = WEW{ Vi, inU(A®BRK(H));

here Wi := (dgz® a)W4)13 and Wgﬁ = ((dg® BYWB) 3. Tt is called a V-anti-
Heisenberg pair, or briefly anti-Heisenberg pair, if

(3.2) WEW1, = VWi WE  inU(A® B K(H)),

with similar conventions as above.
A V-Heisenberg or V-anti-Heisenberg pair («, B) is called faithful if the asso-
ciated representations « and f are faithful.

Recall that the unitary antipode R4: A — A, is a linear, involutive anti-
automorphism (see Theorem[2.3). Given a pair of representations («, 8) of A and
B on H define the representations &: A — B(H) and B: B — B(#H) by

(33) (a) := (a(Ra(a)))" and B(b) = (B(Rp(1)))".
Then Lemma 3.6 of [16] shows that (&, B) is a V-Heisenberg pair on # if and only

if (¥, B) as a V-anti-Heisenberg pair on H.

In particular, assume that G and H have bounded counits e#: A — C and
eB: B — C, respectively. Then Proposition 31 of [21] gives (id A® WA =
1; and (idg ® e® WB = 15. Therefore (e4,eP) is a V-Heisenberg and V-anti-
Heisenberg pair for V=1;® 15 € U (A ® B). Hence, in general, a V-Heisenberg
or V-anti-Heisenberg pair need not to be faithful.

When G = Hand V = WA € U(A® A), W4 -Heisenberg pairs or W-anti
-Heisenberg pairs are also called G-Heisenberg pairs or G-anti-Heisenberg pairs,
respectively. Lemma 3.4 in [16] shows that a pair of representations (7, 77) of A

and A on H is a G-Heisenberg pair if and only if

(3.4) WAWE = Wi WAWA, inU(ARK(Hy) @ A).

Here W1 = ((id; ® )W) 12 and W4, := ((F @ ida) W) 3.
Similarly, (p, p) is a G-anti-Heisenberg pair on H,, if and only if

(3.5) WHLW = WAWRWL  inU(A@K(Hy) ® A).

Furthermore, Theoremand [16], Lemma 3.6 ensure that faithful G-Heisenberg
and G-anti-Heisenberg pairs exist. The following result is due to S.L. Woronowicz
by a private communication.

PROPOSITION 3.2. Every G-Heisenberg pair or G-anti-Heisenberg pair is faith-
ful.

To prove this, we first establish the following lemma.
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LEMMA 3.3. Let (71, 7t) and (p,p) be a G-Heisenberg pair and a G-anti-Heisen-
berg pair on Hilbert spaces H and H,, respectively. Then T @ p: A ® A-BH,®
Ho)and p@ t: A® A — B(H, ® Hy) are unitarily equivalent.

PTOOf. Define Y = Wﬁnzwﬁp S U(HT[ ® Hp, H‘g ® HT[), Whel‘e Wﬁp =
(TRp)W c U(H®@H)p), W 1= pen)ceU(Hp@Hr),and Z: Hr @ Hp —
Hp @ Hr is the flip operator. We claim that ¥ intertwines 77 ® p and p ® 7. Using
and (2.3), it suffices to show that

FosWi Way W3 = Wi, Wy inU(AQK(Hy) @K(Hr) ® A),
or, equivalently,

(3.6) Z3(Wa Wi W (Wi, ) ") 223 = (W5,) "Wy Wa, W

pr
inU(ARK(Hy) @ K(Hr) @ A).
The following computation yields (3.6):
I3 (Wi Wi Wi (W) ) X3 = Zog(Wy Wi W Wiy (Wi)*) Z23
= W1nW1pWﬁ4Wﬁ4
= (W5) "W, W5, W5, Wy
= (Wﬁn)*wlpwﬁllw
the first equality uses (3.4), the second equality uses and an application of
353, the third equality again uses (3.5), and the fourth equality uses (3.4).

Proof of Proposition[3.2] Let (7,7) and (p,p) be G-Heisenberg and anti
-Heisenberg pairs on H and H,, respectively. Lemmaforces n®pandp® 7T
to be unitarily equivalent. By Proposition 5.3 of [7], the representations 77 and
p of A on Hy and H, are quasi-equivalent. Therefore there is a unique quasi-
equivalence class of representations of A that contains the first element of all
G-Heisenberg and G-anti-Heisenberg pairs. Therefore, 7t and p are quasi equiv-
alent to the faithful representation of A in Theorem hence they are faithful.
Similarly, § and 7 are quasi-equivalent representations of A on H, and Hp, re-
spectively. A similar argument shows gives 77 and p are also faithful. 1

The character condition and the pentagon equation yield (id ; ®
(m®@ida)Aa)WA = W WL = WAWE (WA inU(ARK(H) ® A), where
(7, T) is a G-Heisenberg pair on a Hilbert space H. Slicing the first leg by w € A’
and using we get

(3.7) (r®ida)Aa(a) = (W) (r(a) ®1)(W4,)* foralla € A.

pr/

Since 7t is faithful, this says that A 4 is implemented by W4, Indeed, this is a well
known fact in the theory of locally compact quantum groups (e.g. see [21]).

Lemma 3.8 in [16] provides one way to construct faithful V-Heisenberg
pairs. A similar argument gives the following corollary:



THE DRINFELD DOUBLE FOR C*-ALGEBRAIC QUANTUM GROUPS 495

COROLLARY 3.4. Let (7, 1) be a G-Heisenberg pair on a Hilbert space H and let
n: B — B(K) be a faithful representation of B on K. Then the pair of representations
(a, B) of A and B on K @ H defined by a(a) := 1x @ 7t(a) and B(b) := (1 @ 7)Ar(b)
is a faithful V-Heisenberg pair.

4. DRINFELD PAIRS

LetG = (A,A4) and H = (B, Ap) be C*-quantum groups. Let WA € U(A®
A) and W8 € U(B ® B) be their reduced bicharacters. Let V € U(A ® B) be a
bicharacter from G to H.

DEFINITION 4.1. A pair (p,6) of representations of A and B on a Hilbert
space H is a V-Drinfeld pair if

(4.1) VWi, Why = WEW{L Vi, inU(A@ BoK(H)).

A V-Drinfeld pair (p,0) is faithful if the associated representations p and 6 are
faithful.

EXAMPLE 4.2. Let G and H be locally compact groups and let A = C;(G)
and B = C; (H) be the associated reduced quantum groups. Then every bicharac-
ter V € U(A ® B) is indeed a continuous bicharacter on the group G x H. Hence,
any pair of commuting representations p: C;(G) — B(#)and 6: C;(H) — B(H)
satisfy independent of the choice of bicharacters.

EXAMPLE 43. Let B = A, Ay = Ayjand V = WA € U(A® A). We call
WA -Drinfeld pairs G-Drinfeld pairs. A pair of representations p: A — B(#) and
0: A — B(H) is a G-Drinfeld pair if and only if it satisfies the G-Drinfeld commu-
tation relation:

(4.2) Wi, WEWE = WEWEWL inU(AQK(H) @ A).

Define R := (6 ® p))W* € U(H ® H). Equation says that R is a solu-
tion to the Yang—Baxter equation:

(4.3) R12R13R23 = R3RizR12 inU(HROHQH).

Theorem shows that a bicharacter V € U(A ® B) naturally gives rise
to a dual bicharacter V € U(B ® A), a right quantum group homomorphism
AR: A— A® B, and a left quantum group homomorphism Ay : A — B® A. This
leads us to reformulate the condition of being a V-Drinfeld pair in the following
way:

LEMMA 4.4. Let p and 0 be representations of A and B on a Hilbert space H. Then
the following are equivalent:

(i) (p,0) is a V-Drinfeld pair;
(ii) (6, p) is a V-Drinfeld pair;
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(i) (idg @ p)Ar(a) = (Wip)((idg ® p)ﬂ{R(ﬂ))(W?Q)*for alla € A;
(iv) (id; © 0)AL(b) = (W1,)((id; ® 0)cAR(D))(W1,)* forall b € B.

Proof. (i)« (ii) (i) is equivalent to
Wi WE Vi, = Vi,WEW1, inU(A @ BRK(H))

by (.1). Applying o1, gives

~

(4.4) WH,WH V1, = VioWhRWg,  inlU(B® A @ K(H)),

which is equivalent to (6, p) being a V-Drinfeld pair. Thus (i)<(@ii).
(i)« (iii): Let (p,0) be a V-Drinfeld pair. The following computation takes
place in (A ® B K(H)):

(id; @idg ® p)(id ; © AL)W = VWi, = (W) Wi, V1o (W5y)*
= (Wge))(ldg ® ((idg © p)oAR)) (W)™

The first equality uses (2.19); the second equality uses ; and the third equality
uses (2.18). Since {(w ®id4)W* : w € A’} is linearly dense in A, slicing the first
leg of the first and the last expression in the above equation shows that (i)=-(iii).

Conversely, applying id ; ® id ; ® p on both sides of and using (iv),
we get

VWi, = (id; @ (idg © p)AL)W? = (W3g) W1, Vip(Wp)*

inU(A ® B®K(H)), which is equivalent to @&1). Thus (iii)=(i).
To prove (ii)<(iv), argue as in the proof that (i)<(iii). 1

4.1. HEISENBERG PAIR VERSUS DRINFELD PAIR. Certain ways of putting Heisen-
berg and anti-Heisenberg pairs together give ordinary commutation (see Propo-
sition 3.9 of [16]]). This played a crucial role for the construction of twisted tensor
products of C*-algebras in [16]. Changing their order yields the next proposition,
which ensures the existence of V-Drinfeld pairs.

PROPOSITION 4.5. Let («, B) and (w, B) be a V-Heisenberg and V-anti-Heisenberg
pair on H and K, respectively. Define the representations p := (X @ a)Ap and 0 :=
(B® B)Ap of Aand B on K @ H. Then (p,0) is a V-Drinfeld pair on K @ H.

Proof. We must check for (p,0). The character condition for WA
and W® gives:

W =Wiwd and W5 =wE Wzﬁ inU(A K(K®H)).

26
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Clearly, W{, commutes with Wé% and W{.. commutes with Wgﬁ inside U (A ® B®
K(K ® H)). The defining conditions and of V-Heisenberg and V-anti-
Heisenberg pairs give

Vi, Wi, W5y = vlzwfawﬁw%wgﬁ = vlzwfﬁwfﬁwfawgﬁ

= WgWiWas Wiy Viz = W WE W W Vi

= W3WiVip.

4.2. FROM DRINFELD PAIRS TO MULTIPLICATIVE UNITARIES. The goal of this
subsection is to systematically construct a modular or manageable multiplicative
unitary associated to certain V-Drinfeld pairs.

Let H be a Hilbert space, and let WA € U/ (H ® H) be a manageable multi-
plicative unitary that generates G. By Theorem 2.3} there is a G-Heisenberg pair
(71, ) on H such that WA = (7 @ m)W,

Similarly, let K be a Hilbert space, and let W8 € #(K ® K) be a man-
ageable multiplicative unitary generating H. Let (7,7) be the corresponding
H-Heisenberg pair K such that W8 = (77 7)WB € U(K @ K).

Proposition shows that the representations 7, 7, # and 7 are faithful.
Hence, the V-Heisenberg pair («, ) on K ® H in Corollary [3.4]is also faithful.
Using we construct the associated faithful V-anti-Heisenberg pair (&, 8) on
KoH.

Define the representations of A, B, fT, B on the Hilbert space Hp = K®
H® K @ H by:

pla) = (@@a)As(a) foralla € A,
0(b) := (B B)Ag(b) forallb € B,
*3) E@) =177 @ 1 @ A(@) foralld € A,
{(b) :=1p 5 ®7(b) ®1y forallb € B.

Let us denote (¢ ® p)WA € U(Hp @ Hp) and ({ @ 0)WB € U(Hp @ Hp) by W‘ép
and ng, respectively.

THEOREM 4.6. The unitary WP := wg‘pwgg € U(Hp ® Hp) is a modular
multiplicative unitary.

The dual of a modular multiplicative unitary is again modular (see Proposi-

tion 2.2 of [20]). Hence, it is equivalent to show that WP .= ngwl?g ceUHp®
Hp) is a modular multiplicative unitary. The next result is the first step towards
the proof of this fact.

PROPOSITION 4.7. WP € U(Hp @ Hp) isa multiplicative unitary.
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To prove this, we need to understand the commutation relations between
the representations in (4.5).

LEMMA 4.8. Consider the faithful representations on Hp defined in @5). Then
@) (p, ¢) is a G-Heisenberg pair;
(i) (p, 0) is a V-Drinfeld pair;
(iif) @ and ¢ commute in the following way:

~B ~B ~ B ~ B ~ B . D
(4:6) W93W1€ = W1§VC3W13VE3W93 m U(B ® K(H’D) X B),
(iv) 0 and ¢ commute in the following way:
B ~A A ~B . =
(4:7) W93W1§ = V§3W1§VE3W93 m Z/{(A X K(HD) X B),

(V) p and { commute;
(vi) ¢ and { commute.

Proof. Corollarygives pla) = (@xm)Ax(a))1s € BK(Hp) @K@ H ®
K ® H); hence Lemma 3.8 of [16] gives (i). Propositionyields (ii). Also, (v)
and (vi) follow from (4.5).

We express Ay in terms of V, following 2.18):

(ldg & A\R)WB = W%VKJ, in U(E ®B® A\)
Applying 09307, to the both sides of the last expression and taking adjoints yields
~ . ~ B ~B . PPN
(4.8) (AR ®@idg)W" = VW3 inU(B® A® B).
By definition, 8(b) = (B® ((7 ® 7)AR) ®id5)Ap. The character condition 2.8)
for W" gives
~ B — P . ~B ~B ~B ~B
(4.9) Wey = (B® ((n @ T)AR) ®idg)[(WosWisr) = Vg - W Wiy
inU(K(K®H®KoH)® B). Using @9), we get
~B ~B ~B ~B ~B — = ~
W95W1g = VﬁSW”5WBSW1ﬁ m Z/{(B@K(’C@H ®’C®H) ®B)
Since VAVBB5 and Wfﬁ commute, (77, 77) is an H-Heisenberg pair, and V 5 and VA\/fﬁWfS
commute, we get
~B ~B ~B ~B ~B ~B ~B ~B ~B  ~B ~B ~B ~B
WosWiz = VasWsWiWes = VasWiWis W, sWegs = Wi ViasWis W sWes
inU(BRK(K®H®K®H)® B). Hence follows from and (£.5), after

collapsing the respective legs under the identification Hp = K @ H @ K @ H.
Similarly, follows from and after collapsing the leg numbers:

B ~A ~B ~B ~A A ~B ~B ~ A ~ B
WesWie = VasW,sWgs Wiz = VasWiz W sWes = Vs Wi Vs Wes. B
NOTATION 4.9. We write 71; when a representation 7 is acting on the ith leg

of a unitary.
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Proof of Proposition[&.7] Rewrite @) for (p, ) involving W” and W" in the
following way:

o~

~A B ~B ~A 5
(4:].0) Wp2W93V23 = V23W93Wp2 m M(K(HD) ® A ® B)
Equations {#.10) and (4.7) give:

(4.11) WPl€2W913W923 - V§23W913W91§2

inU(K(Hp @ Hp) ® B). R
The following computation takes place in U (K(Hp @ Hp) ® B ® A):

~B ~A ~B ~A ~Avx B

W923WP24W91€2WP1§2 (sz4) (W923) _W923W91§2WP24WP1§2 (W )p24(w )923

B *
_W91CzV§23W913V623W923WP1CZWP14(W )63

W913W923(W )923W

V§23W923 — V623W913V(§23W923Wp1 62

WW

P1Cz P1§2 P14

_W91§2WP1§2W913WP14
The first equality follows from Lemma [£.8(v) the second equality uses and

Lemma @ i), the third equality uses and that \7\/523, VAV;?14 commute, and
the last equality is trivial.

Finally, applying ¢ and { on the third and fourth leg on both sides of the last
expression gives the pentagon equation for WP € U(Hp @ Hp).

Next we need to know what it means for V:= (T ® 77)V € U(H @ K) to be
manageable. By Lemma 3.2 of [15], V € U(H © K) is adapted to W8 € (K ® K)
in the sense of Definition 1.3 in [24].

Theorem 1.6 of [24] gives the manageability of V € U(H ® K): there is a
unitary V € U(H ® K) with the following condition:

(4.12) (x@u|V|zey)=(ZoQmu|V|[x®Qp'y),

forall x,z € H, u € Dom(Qp) and y € Dom(Qp"). Here Qp is the self-adjoint
operator defining manageability of W? € /(K ® K) in Definition 2.2, Moreover,

(4.13) V= VTRs in Y (H @ K).
Similarly, by duality, V := (7 ® 7)V € U(Hp @ H,) is also manageable.

LEMMA 4.10. V and QX ® le commute.

Proof. Combining Theorem 2.3(vi)(a) and Proposition 3.10 of [15] we obtain
(4.14) (Qa®QB)V(Qa®Qp) =V

Hence, in (#12), we can replace x, u, z and y by Q¥ (x), Qif(u), Q¥ (z) and Q¥(y),
respectively, for all t € R. Thus we obtain

Z®Qpu|V|¥®Qp'y) = ([Q4] 2@ Q¥Qpu | V | [Qf] ¥ ® Q¥Qz u)
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and therefore V = ([Q]]¥ ® Q") V([Q}]* ® Q5") forall t € R. u

By duality, Lemma 40 of [21] gives (Rp ® RE)VAV =W Using (3.3), and
we compute

~ B R o TARR- ~ B\ T®R; ., TA®R;
WEZ _ ((AR ®ids ) )T?]@TTL’@R _ (V23W )T17®T7I®RB — (W )13 BV23 .

The third equality uses antimultiplicativity of Tif ® T7t @ Rj.
Combining Theorem 2.3(vi)(b), #.5), and we get
415)  Wo =V, WEWE V3, mUKeHoKeHoKeaHoKoH).

A similar computation yields
(4.16) Wi =WiWes inURKoHoKkoHoKeHoKoH).

THEOREM 4.11. The multiplicative unitary WP .= ngv?ffg € U(Hp ® Hp)
is modular.

Proof. Recall Hp = K @ H ® K ® H. Equations (£15) and (£.16) give
417) WP :V47W§7W§7 @%WﬁSWg&S cUKIHRIKHOKOHRKRMH).
Define
418) Qp:=(Q")T®(Q,") ®Qs®Qs and Qp = 1x@1zRQER Q4.

Clearly, QD and Qp are positive, self-adjoint operators on Hp with trivial kernel.
The commutation relations in Definition ul) Proposition 1.4 (1) of [24] and

Lemmashow that Op ® Qp commutes with WQ oA similar argument shows
that QD ® Qp commutes with Wﬁg. Therefore, QD ® Qp commutes
with WP.
Now the character condition for WB and Theorem 1.7 of [24] show that
Wfﬁ € U(Hp ® K) is adapted to WB € U (K @ K). Furthermore, Theorem 1.6 of
[24] shows that X := ((WB)SZ)T®’7RE € U(Hp ® K) satisfies a variant of (£.12).
Similarly, Y := ((WA);§2)T®7?RK € U(Hp ® H) is the unitary associated to the
manageability of VAV;% cUK(Hp) @H).
Clearly, ¢ and { act trivially on the factor K ® H of Hp. Therefore, following
Notationwe can write WP = WgﬁZVAV?ﬁS EUHPRIKLRDH).
Let {¢; };=17 .. be an orthonormal basis of Hp. The manageability condition
for X and Y gives
(x@k@ I | Wop, Wo, | 20K @ 1)
— (x®k@h | Wiy, Y(le) (@] @ 1e @ 1) Wis, | z0K @ 1)
i
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2x®k|W9”2|el®k’ (el®h|W |z H)

P73
=ZZ®QA ) 1Y |Z@Qy ()@@ Qs(k) [ X [T®Qp' (k)

= (Z®Qp(k)® Qa(h) | Y13X12 | x® Q' (k) @ Q1 (1)),

where x,z € Hp, k € Dom(Qp), h € Dom(Qa), k' € Dom(Qz') and I' €
Dom(Q} "), respectively.

Hence WP := Y5Xy4 € U (Hp ® K@ H ® K ® H) satisfies condition (ii) in
the Definition for WP, 1

5. GENERALISED QUANTUM CODOUBLES AND GENERALISED DRINFELD DOUBLES

Let G = (A,A4) and H = (B,Ap) be C*-quantum groups and let V €
U(A ® B) be a bicharacter.
Themapoc¥: B® A — A® Bdefined by 0V (b®7) := V(@@ b)V* ford € A,

be Bisan 1somorph1sm of C *—algebras
Define DV = B® A and ADV DV — DV ® DV by

(5.1) Ap,(b®7d) = (idz ® 0¥ ®id ;) (Ap(b) ® Aa(d)).
Let (p,0) be the V-Drinfeld pair on the Hilbert space Hp defined in @.5).

Commutation relation gives a C*-algebra Dy := p(A) - 6(B) C B(Hp).
Define Ap, : Dy — M(Dy ® Dy) by

(5.2) Ap, (p(a)8()) :== (o ®p)Aa(a)(0 ®0)Ap(b) forallac A, be B.
This section is devoted to proving the following main result:

THEOREM 5.1. Let WP ¢ U(Hp ® Hp) be the modular multiplicative unitary
in Theorem W11 Then
(i) Ov(G H)™ := (@V,A\DV) is a C*-quantum group generated by WP,
(ii) v (G, H) := (Dy, Ap, ) is the dual C*-quantum group of Oy (G, H)™.
(i) WP = W§2W§3 € UMDy ® B® A) is the reduced bicharacter for
(Dv(G,H)™, Dv(G, H)).

DEFINITION 5.2. The C*-quantum groups ©y (G, H)™ and Dy (G, H) are
called the generalised quantum codouble and generalised Drinfeld double for the triple
(G, H, V), respectively.

REMARK 5.3. Let HP = (B, sAp) be the coopposite C*-quantum group of
H. According to the conventlon used in Section 8 of [4]], the map m: BRA - B®
A defined by m(b ® ) := = V' (b®a)V is an inner matching of HP and G in sense
of Definition 3.1 in [4]. In the presence of the Haar weights and the regularity
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assumption on G and M, the C*-algebraic version of the generalised quantum
double of HP and G with respect m in [4] and Dy (G, H)™ in Definition are
same.

PROPOSITION 5.4. Let WP € U(Hp @ Hp) be the modular multiplicative uni-
tary in Theoremand WP € U(Hp @ Hp) be its dual. Then
(i) Dy = {(w ®idy, )WP : w € B(Hp). }L5.
(i) Dy = {(w @idy, )WP : w € B(Hp). LS.
Proof. The representations ¢ and { in are faithful and commute, hence
WP = W3, Wi, € U(K(Hp) © B A).
The set of continuous linear functionals of the form @ ¢ forny € B', p € A’
is linearly weak* dense in (E ® A)'. Therefore,

{(w ®idy, )WP : w € B(Hp).} S
= {((1© p©idy, )\WsyWiy) : p € A’y € B}
= {((p @idyp,, ) Wi,) (7 @iy, )Wip) 1 g € A1y € B} = p(A) -6(B).
Let L = {(w ®idy, )WP : w € B(Hp). }°LS.

We identify A, A, B, B with their images under the faithful representations
7T, 7T, 1, 1] to avoid complicated notation.

Recall V* = VTR;®ide {gA4 — (WA
We rewrite (4.17) as

)TRA@idHl and ﬁ* — (WB)TR)[;@idH‘

WP = Vg Way (W) [0y, O (W) i
NUKIHIKIHRIKQIHRKQH). B
We replace w € B(Hp)« by p ®e®@v ®v, where p € B(K)4, e € B(H)+, v €
B(K)«, and v € B(H)+. Next we use the leg numbering notation for functionals
to denote y ® e ® v ®@ v ®idy, by p1e2v3v4. Hence we have

~B , ~ B\ TRp®idi~, T R2®id A oA TR s ®id
L = {p182v304 (Vi Wiy (W) 1, BTV, AT W (W) jg 910y LS

The slices of W2 € U(K ® K) by functionals v € B(K). on the first leg generate

a dense subspace of B. Therefore, we can replace (v ® idK)WB by b € Bin the
above expression and rewrite as follows:

~ ~B TRp®idi~, TR7®Qid A oA TR  ®id
L = {p1e203(Vabe (W ) g BE NV, AT Wi, (W) a1 )} CLS

Given u € B(K). and x € B(K), define x - u(y) := u(xy) fory € B(K).
Replacing u € B(K). by bR8T - 4, for b € B, L becomes

~ B\ TRr®ide <, TR ®id v A o5 AL TR 4 ®id
{ﬂ1€2U3(V36((b®b)(W ))16 B KV26A KW37(W )27 A H)}CLS-
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Since W’ ¢ U(B ® B), we may replace (B ® E)WB by B ® B, and then applying
u on the first leg gives

TR ;®id
L = {eq0p(VashsVys A F Wi (W) [fa 1) 1 €L,
Replacing ¢ € B(H). by @' X4 - ¢ for @ € A yields
TR;®id ~A , ~AT id
L= {e0a(Vas([@@B)V)y5 * Wi (W) g4 71) 15,

Since V € U(A ® B), we may replace (A®B)V by A ® B in the last expression.

Then we substitute ' *4 - ¢ by € and the resulting expression becomes

S AA A TR cid
L = {e1vz(Vasbs Wag (W) 5 A @) }CLS,
After replacing (e ® idH)VAVA by @ € A in the above expression, we obtain
~ ~A
L = {01(V14bsW1sd5) } 5.

Forallv € B(H).anda € A C B(H), definev-a € B(H). by v-a(y) := v(ay)
fory € B(H).
Replacing v € B(# ). by v - a in the last expression gives

~ ~A = ~ ~
L = {v1(Viabs(W" (a ®2)15)) }° = {01(Viabam ) }° = {v1(V1abytis) }°.
Finally, replacing v € B(H). by v- @ for @ € A in the last expression, we get

L={v1((V(@®b))1485) } "5 = {v1 (@1 b4d5) } " = {0384} 5 =15 . BR A,

So far it is not clear that Ap, is a well defined C*-algebra morphism. For
the moment, we assume it exists.

PROPOSITION 5.5. The comultiplicution maps Ap, and AADV defined by (6.2) and

1) satisfy cancellation laws 2.6). Equivalently, (Dy, Ap,) and (Dy, Ap,) are b151m-
plzﬁable C*-bialgebras.

Proof. A routine computation using coassociativity (2.5) and cancellation
law (2.6) for A 4 and Ap shows (Dy, Ap, ) is a bisimplifiable C*-bialgebra.
Cancellation law (2.6) for A 4 gives

-~

AADV(ﬁV) . (173\/ ® ﬁv) =V23(AAB(B)13AAA(2)24)V§3 (1§®A ®B® A)
=V23(AAB(§>13(AAA(A> (1@ A))24)V§3(1§®A ®B® 13)
=Vx3(Ap(B)13(A® A)24)V§3(1§®A ®B@1y).

The character condition on the second leg (2.13) for V is equivalent to

~ B B o~ . S
(5.3) V,TZW,]@, = V23W,7/3V77/2 n M(K(HW/) RAR B),
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where (77,7’') is an H-Heisenberg pair acting on #,,. Recall that Ap is imple-
mented by w" (see equation (3.7)). Therefore, we get

- N B,
Dy (Dv)jrass - (I3, @13 @ Dy) =Vaos W5 (77' (B B)® A®15® A)(VsW, )"
—VaosWis (1(B) @ A2 150 A) Vo (W) * Vi, Bs.

Now V € U(A ® B) gives (ij' (B) ®A)\A7;/2 =i7(B)® Aand V(A® B) = A® B.
Using the cancellation law for A, we obtain

~

~ ~ B, -~ —~ ~  ~B ~ o~
Apy (Dv)iass - (g, ®1380Dy) =VosWy3(71(B) © A @ 15 © A)(Wy3)" - BV,

Proof of Theorem By virtue of Propositionﬂwe can write WD:VAVEZW;;
€ U(Dy ® B® A). Equivalently, WP = Wngg cU(B® A®Dy).
The following computation takes place inU (DV ®BRA®QB® A):

92 -
= W92wp3W94Wp5
The first equality uses and the character condition for W" and W”, the
second equality uses that V with sz and Wﬁ;, and the last equality uses (4.10).
Collapsing the leg numbers we obtain for Ap, and WP:
(5.4) (idp, ® Ap, ) WP = WOWE,  inU(Dy @ Dy © Dy).
Combining with Proposition 5.5 gives (i).
Next we establish (ii). The character condition on the second leg for
4 and WP yields
. . . ~ B
(idg, 1Ay YW, Wiy = (((id ;0 (0©p)A 4) )W) 234 ((id 5@ (026) A) )W ) 134
= W5‘P3W§l74 Wl393wl394

Here we use Notation[d.9|for the representations p and 0. Collapsing the first two
legs we obtain for Ap, and WP:

(5.5) (id ® Ap, )WP = WEWE,  inU(Dy @ Dy @ Dy).
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Now equation for Ap,, and WP yields
(5.6)  Ap,(p(a)8(b)) = (WP)(0(a)8(b) ®1)(WP)* forallac A, b€ B.

Hence Ap, is implemented by W?. By Theorem Ap, is the unique element
in Mor(Dy, Dy ® Dy ) satisfying (5.5), and Dy (G, H) is a C*-quantum group gen-
erated by the modular multiplicative unitary WP; hence it is dual of Dy (G, H)".

From and (5.5), it is clear that WP = WEZW;% € U(Dy ® Dy) is a
bicharacter, and its Hilbert space realisation is a modular multiplicative unitary
generating Dy (G, H)™.

Now the representations p and 6 defined in depends on the G-Heisen-
berg pair (77, 77) and H-Heisenberg pair (7, i7). Hence, on one hand, the C*-algebra
Dy depends on the representations 7, 77, # and 7.

On the other hand, (Dy, Ap,) only depends on the triple (G, H, V). There-
fore, by virtue of Theorem Dv (G, H) does not depend on the choice of WP,
which in turn, shows that Dy does not depend on 7, 7, n and 7. Hence, WP is
the reduced bicharacter for (Dy (G, H)™, Dy (G, H)). 1

REMARK 5.6. By definition of the generalised quantum codouble (5.1), the
pair (Dy, 45 ) only depends on the triple (G, H, V). Also, Theorem 2.6/ensures
that the generalised Drinfeld double ©vy (G, H) is uniquely determined (up to
isomorphism) by its dual (Dy, A5, ). Hence, the generalised Drinfeld double also
depends only on the triple (G, H, V).
DEFINITION 5.7. The pair (p,6) in is called a canonical V-Drinfeld pair.
Next we gather other structure maps on the generalised quantum codouble.
PROPOSITION 5.8. Let (ﬁV,AﬁV) be the generalised quantum codouble for the
triple (G, H, V). Then
(i) Rp,, (b@a):= V(RE(E) ® Rg(a))\A/* is the unitary antipode,
(ii) Ttﬁ V(b @a) = Ttg (b)® Ttg (@) for t € R is the scaling group,
of Ov(G,H)™, whered € AbeB.
Proof. To conclude (i) it is sufficient to show Theorem Vi)(b) for Rﬁv' Let

(7, 77) and (7,17) be G and H-Heisenberg pairs acting on H and K, respectively.
The proof of Theorem shows that

WP = (W) TR (Woy) T2R3 i U (FHp © K © H).
We rewrite (4.10) in the following way:

S A ~B ~B ~A . ~ ~
(57) V23Wp3W92 = WGZWP3V23 m M(K(HD) RB® A)
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Proposition 3.10 of [15] gives (Rz ® R A)\A/ = V. Next, applying the antimulti-
plicative map T ® R ® R ; to the both sides of (5.7), gives

~ B A S P ~ A _ B SR~
(W) TR (Wi3) T¥RAV 3 = Vg (W) TORA (W, ) TR
UK (ﬁp) ®B®A). Combining the first and last equations above, we get
TRA* ¥ INCRTY o *
wWo = =V (W 5) TERA (W) TETR5 U3, = V23(W92Wp ) TGRS

inU(Hp @K @H)and V := (7@ 7)V € U(K @ H); hence WP = W2 “Roy
Recall the positive self-adjoint operator Qp = 1g,7 ® Qp ® Q4 from (4.18)
on Hp. Theorem[2.3(vi)(a) gives

QB (E@)(8))Qp™" = QB (Igey ® 7(b) ® (@) Qp™
= lgon @ (T (0)) ® A7 (@))
foralld € A, beB. Finally, faithfulness of 7T and 77 gives (ii)
Similarly, we can prove the following result.

PROPOSITION 5.9. Let (Dy, Ap,,) be the generalised Drinfeld double for the triple

(G,H, V). Then
(i) the map Rp,, (p(a)8(b)) := p(R ( ))0(Rp (D)) defines the unitary antipode,
(i) {77 (p()6(0)) := p(t/*(a) (T (b)) }rer s the scaling group,

on Oy (G,H) foralla € Aand b € B.

EXAMPLE 5.10. Let V = 1; ® 15 € U(A ® B). Then p and 6 in @1) com-
mute. Then we identify Hp with K ® H, and WP with W, WE,; hence ZDV(G, H)
becomes the product of G and H, denoted by G x H. Equivalently, Dy = B® A
and ADV(/Z;@)ﬁ) = A\B(b>13AA( @)y for@ € A, b € B. Similarly, Dy(G, H)" be-
comes the product of G and H.

EXAMPLE 5.11. Let A = Cy(G) and B = Cy(H) for locally compact groups
G and H, respectively. For any bicharacter V € U(A ® B), the representations p
and 0 satisfying commute. By Example we identify Hp = L?(H x G)
with respect to the right Haar measures on G and H. The the multiplicative uni-
tary WP := WiW% is defined by WﬁW% (h1,81,h2,§2) = f(hiha, hy, 8182, §2)
for f € [2(Hx Gx Hx G)and g1,8 € G, Iy, hy € H. Then Dy = Co(H x G)
and Dy = C} (H x G).

EXAMPLE 5.12. In particular, let B=AAp=44andV =WA4 e U(A ®
A). Let (7, 77) be a G-Heisenberg pair on a Hilbert space H and let (77, 77) be the
corresponding G-anti-Heisenberg pair on H. We can simplify as follows:
Hp = HOHRH, p(a) == (TR m)Aa(a)z, 0(@) = (AR A)AL @ 7)A43),
§(a) = idggy ® 7(a), {(a) = idzy ®@ 7(a) ®idy, fora € A, 7 € A, respec-
tively. Then the W*-Drinfeld double is called the G-Drinfeld double and denoted
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by D(G) = (D4, Apa). Here DA := p(A) - 8(A), and Apa(p(a) - 0(a) == (p @
p)Aa(a)- (0®0)A4(a) fora € A, a € A. Similarly, the dual of D(G) is called the
G-quantum codouble and denoted by D(G)~ = (D4, Az,). Here D/ := A® 4,

and Ap,(a®7) = oW (Aa(a) @ As(@)) fora € A, 7 € A.

EXAMPLE 5.13. Let A = Co(G) and A = C(G) for a locally compact group
G. Then Proposition 5.1 of [9] shows that the underlying C*-algebra of the Drin-
feld double of G, denoted by D%(C), is Cy(G) x G for the conjugation action of G
on itself.

6. PROPERTIES OF GENERALISED DRINFELD DOUBLES

We start with the noncommutative version of the following classical fact:
given two locally compact groups G and H, there are canonical Hopf *-homo-
morphisms from Cy(G) and Cy(H) to Co(G x H).

LEMMA 6.1. The unitaries Wfp € U(A® Dy) and W8 € U(B ® Dy) are bi-
characters induced by the Hopf x-homomorphisms p € Mor(A, Dy ) and 6 € Mor(B, Dy ),
respectively.

Proof. The character condition on the first leg (2.12), for both the unitaries,
follows from (2.8).

Using we write
: A _ A B A B * A * s n \Y% \Y%
(idg ® Apv)wh’ o W§2P3W§293W1P2 (W5293) (W§2P3) inU(A®D"@D").

By Lemma 4.8 { and p commute and (p,¢) is a G-Heisenberg pair. This yields
(2.13) for Wlp:

(id; @ Ap, )W, = Wg , Wi (WE ) = Wi, Wi, inU(AeDYeDY).

Furthermore, taking slices on the first leg of the last expression by w € A’ and
using for WA we get Ap,p(a) = (0 ®p)Aa(a) for a € A. Therefore, p is a
Hopf *-homomorphism from G to ©v (G, H) and Wfp is induced by p.

Similarly, we can show that W5, is induced by the Hopf *-homomorphism
from H to Dy (G, H).

6.1. COACTION ON THE TWISTED TENSOR PRODUCT OF C*-ALGEBRAS. C*-alge-
bras can be turned into a category, which we generically denote by €*alg, using
several types of maps:

morphisms (nondegenerate x-homomorphisms C; — M (Cp));
proper morphisms (nondegenerate *-homomorphisms C; — Cy);
completely positive maps C; — Cp;

completely positive contractions C; — Cy;

completely contractive maps C; — Cy;
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e completely bounded maps C; — C,.
Let €*alg(G) generically denote the category with G-C*-algebras as objects and
G-equivariant “maps” as arrows.

The twisted tensor product construction in [16] of a G- and an H-C*-algebra
with respect to V, denoted by Xy, defines a bifunctor from ¢*alg(G) x €*alg(H)
to C*alg (see Lemma 5.5 of [16]).

In particular, if V. = 1; ® 15, then CRy D = C® D, and Du(V,G) be-
comes the product of G and H (see Example 5.10). Then the map c® d
7(c)136(d)24 defines the coaction of the product of G and H on C ® D. Equiv-
alently, ®: €*alg(G) x €*alg(H) — ¢€*alg(G x H) is a bifunctor. The following
theorem is a noncommutative version of this fact.

THEOREM 6.2. Ky : €*alg(G) x €*alg(H) — ¢*alg(Dv (G, H)) is a bifunctor.

Let (C,7v) and (D, é) be G- and H-C*-algebras, respectively. Let («, 8) be a
V-Heisenberg pair on a Hilbert space £. Then C Ky D, is defined by CXy D :=
1c(C) - 1ip(D) € M(C®D ®K(L)) (see Lemma 3.11 of [16]). Here ic(c) :=
7Y(c)14 and tp := 6(d)2p are nondegenerate *-homomorphisms from C and D to
M(C® D ®@K(L)), respectively.

LEMMA 6.3. There is a canonical coaction ¥: CXy D — C Xy D ® Dy of the
generalised Drinfeld double ©v (G, H) on C Xy D defined by
(6.1) Yic(c) = (tc@p)y(c) and Yip(d) = (1p ®06)d(d)
force C,deD.

Proof. Define &(a) := (a ® p)As(a) and B(b) == (B®0)Ag(b) fora € A,
b € B. Then (&, p) is a pair of nondegenerate *-homomorphisms from A, B to

A®B®K(L®D)). Using we get

wf&wgg = W W, WE WS, = WL WEWE WS, int/(A® BeK(L®D)).

Now («, B) satisfies and (p, 0) satisfies (4.T); hence we get

A A A A YATA A
wmwfl3 = wgﬁwmvuw1 pwfg = Wg‘ﬂw%wmw1 AYTE ngwmvu.

Thus (&, ) is a V-Heisenberg pair. By Theorem 4.6 of [16], there is an isomor-
phism ¥ between C Ky D and y(C)1z - (5(D)2B CM(C®DK(L®Hp)) such

that ic(c) = y(c)1z and Yip(d) = 5(d)25 forc € Cand d € D. We compute

Y(c)hz = ((dc @ (e ®@p)Aa)7(c))134 = (((i[dc @ a)y ®p)7(c))134 = (1c @ p)¥(c)

for ¢ € C, where the second equality uses (2.10) for . A similar computation for

J gives (6.1).
A routine computation using Lemma and (2.10) for v and ¢ yields
(idegyp ® Apy ) ¥ = (P ®idp, )¥. The Podles condition 2.11)) for «y gives

(tc®p)y(C)(10p(A) - 6(B))=(1c@p)((Y(C) - (18 A))0(B)2)=tc(C)®p(A) - 6(B).
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A similar compution shows (1p ® p)d(D)(1® p(A)-6(B)) = ip(D) ® p(A) -0(B),
hence we get the Podle$ condition for¥.

EXAMPLE 6.4. Let G = H be the compact quantum group A = C(T"). Then
any coaction of G on A is the action of the group T" by translation. A bicharac-
ter Ve U(A® A)isamap V: Z" x Z" — T which is multiplicative in each

n b
variable: V((ay), (by)) = TI /\?]f ! for some (A;;)i<ij<n € T. The associated
ij=1
V-Heisenberg pair ((U,), (Vy)) is a pair of n-tuples of unitaries with the follow-
ing commutation relations: U;U; = U;U;, V;V; = V;V;, and V;U; = U;V;A;; for
i,j € {1,...,n}. The resulting twisted tensor product A Xy A is the noncommu-
ative 2n-torus. Example shows that the V-Drinfeld double is C(T" x T").
Thus we get the standard product action of T" x T" on the noncommutative
2n-torus.

The coaction ¥ in Lemma generalises the product action of groups.
Therefore ¥ is called the generalised product of coactions and denoted by v Xy 9.

Proof of Theorem By virtue of Lemma 5.5 in [16], we already know that
Xy is a bifunctor from €*alg(G) x €*alg(H) to €*alg. More precisely, given a
G-equivariant “map” f: (C,v) — (Cy,71) and a H-equivariant “map” g: (D, J)
— (Dy,61), there is a unique “map” f Ky g: C Xy D — C; Ky D; defined by

(6.2) (f Ry g)(tc(c)) = 1, (fe),  (f By g)(en(d)) = ip, (g(d))

forall c € C, d € D. Therefore, we only need to show that the “map” f Xy
¢: (CRy D,yXRy d) — (C; Ry D1, 71 Ky 1) is Dy (G, H)-equivariant.
Using (6.2), we get

63) (M Wya)(fByg)(cle)in(d) = (11 Ry 1) (i, (f(e))ip, (8(d)))-
Now and the equivariance condition for f give
(1 By d1)ic, (f(€)) = (1e; @ p)m1(f(e)) = (i, f @ p)7(e)-

Similarly, we have (y; Xy d1):p, (§(d)) = (tp,g ® 0)é(d). Combining the last two
equations with completes the proof:

(v By &')(f By g)(1c(c)in(d)) = (1o f @ p)y(c) (1prg ® 0)d(d)
= (fRy g®idp,)(y Xy d)(ic(c)ip(d)).
6.2. R-MATRIX ON DRINFELD DOUBLES.

DEFINITION 6.5. A bicharacter R € U(A ® A) is called an R-matrix on a
quantum group G = (A, A,) if

(6.4) R(cA4(a))R* =Ax(a) foralla € A,
where ¢ is the standard flip on A ® A.
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Let B= A, Ag = Ay, and V= WA € U(A® A), and recall the G-Drinfeld
double ©(G) from Example

LEMMA 6.6. The unitary R := (0 ® p)W# € U(D4 @ D?) is an R-matrix on
the G-Drinfeld double ©(G).

Proof. The bicharacter conditions (2.12) and (2.13) for R follow from Lem-
ma [6.1] and (5.6). The comultiplication A A is the left and right quantum group
homomorphlsm associated to WA € U(A ® A). Therefore, identifying B = A
and Ag = A A, we rewite (3) of Lemmaas

(6.5) (p®p)Aa(a) = (Wg,)(0A(a))(Wp,)* foralla € A.
Similarly, identifying A; = Ag = A, and B = A in (4) of Lemmagives
(6.6) (0 0)A4(@) = (WE)(0ha(@))(Wpy)* foralld € A.

Combining (6.5), (6.6), and using we obtain for R = (@ p)W2. 1

7. PROPERTIES OF GENERALISED QUANTUM CODOUBLES

The definition of a closed quantum subgroup in the sense of Woronowicz (see
Definition 3.2 of [5]) uses the notion of a C*-algebra generated by a quantum
family of multipliers. Equivalently, a C*-quantum group H; = (B, Ap,) is a
closed quantum subgroup of a C*-quantum group G; = (Ay,Ay,) if there is a
bicharacter V; € U(A; ® B;) such that the norm closure of {(w ® idg, )V 1w €
1/4\1/} is By (see Theorem 3.6 (2) of [5]).

PROPOSITION 7.1. G and H are closed quantum subgroups of Oy (G, H)™ in the
sense of Woronowicz.

Proof. The bicharacter VAV;Z € U(Dy ® A) corresponds to a quantum gjoup
homomorphism from Dy (G, H)"~ to G. Furthermore, the slices (w ® id A)VA\/pz for
w € (DV) are dense in A. Hence G is a closed quantum subgroup of Dy (G, H)™

in the sense of Woronowicz. Also, VAng €EU(Dy® B ) yields a similar conclusion
forH. 1

7.1. COACTIONS AND COREPRESENTATIONS.

DEFINITION 7.2. A C*-algebra C along with the coactions 7: C — C® A
and §: C — C® B of G and H is called a (right, right) V-Yetter—Drinfeld C*-algebra
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if the following diagram commutes:

1) ~ ’)’®id§ ~ o~
C C®B CRA®B
(7.1) 'yl TidC®Adv
~ 5®idg - . lde®co PO
C®A CRB®A CRA®B

Let YD(G, H, V) be the category with V-Yetter-Drinfeld C*-algebras as objects
and G- and H-equivariant morphism as arrows.

EXAMPLE 7.3. Consider A = Co(G) and B = Cy(H) for locally compact
groups G and H. Then any G-C*-algebra with trivial H-coaction makes it Yetter—
Drinfeld in this generalised sense.

EXAMPLE 74. In particular, let B=A,Ag =A4,andV = WA € Z/l(g ®
A). Then W/-Yetter-Drinfeld C*-algebras are the same as G-Yetter-Drinfeld

C*-algebras defined by Nest and Voigt in [17]. The category of G-Yetter—Drinfeld
C*-algebras is denoted by YD(G).

Proposition 3.2 from [17] shows that the categories €*alg(®(G)™) and
YD(G) are equivalent for a regular C*-quantum group G with Haar weights (be-
cause it uses the C*-algebraic picture from [4]). We generalise this fact in the next
proposition:

PROPOSITION 7.5. Every ©vy (G, H)™-C*-algebra is a V-Yetter-Drinfeld C*-al-
gebra, and vice versa.

Define Ag: Dy — Dy ® Aby Ag = (idg ® A 4). Equation (Z.18) and
for W” give

—~

(idp, ® Ag)WP = (idp, ® AR)(W(I;;ZW?B) = Wgzwﬁawi

inU(Dy ® B® A® A). Collapsing the second and third leg in the last computa-
tion we obtain
(7.2) (idpy © AR)WP = WHWos inU(Dy @ Dy © A).
Comparing the last expression with (2.18), we conclude that A is the right quan-
tum group homomorphism corresponding to the bicharacter VAV;‘Q € U(Dy @ A).

Similarly, using we can show that Af: Dy — Dy ® B defined by
A (b @73) = 0} (Ap(b) ® @) satisfies
(7.3) (idp, ® AR)WP = WEWg, inlUd(Dy ® Dy @ B).
Hence A} is the right quantum group homomorphism associated to the bichar-
acter sz € U(Dy ® B).

LEMMA 7.6. Dy is a V-Yetter-Drinfeld algebra.
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Proof. Using we compute

oy ((idp, ® (AR ® idg)AR))Wgzwﬁs) = Wgz‘faz;(w 3W94)WA

= Wi WesWps W5

— (idp, ® ((Ar © id)8%)) Wer W
Taking slices on the first leg by functionals on Dy shows thatAﬁv is a V-\Eetter—
Drinfeld C*-algebra with respect to the coactions Ag and A} of Gand Hon Dy. 1

Proof of Proposition[7.5] Let C be a Dy (G, H) -C*-algebra. Now Lemma 2.9
of [16] identifies C with a subalgebra of M (C’ ® Dy ) for some C*-algebra C’ with
the coaction of Dy (G, H)™ only on Dy. By Proposition Dy is a V-Yetter—
Drinfeld C*-algebra, hence so is C.

Conversely, let 7: C — C® A and §: C — C @ B satisfy (7.1). Define a
nondegenerate, injective *-homomorphism 7: C — C® DY by 7 := (§ ® id )7

The Podles condition (2.11) for 7 is induced from those for v and J in the
following way:

7(C) - (1c® DY) = ((6®id5)(v(C) - (Ic ® A))) - (lc @ B@ 1)
= (6(C)-(1c®B))® A = C® Dy.

The following computation yields (2.10) for 7:

(7®1dB®A) (5®1dA®B®A)((’7®idA)5®idj)'y
= oy (0 ®idy p)d®idz 2)(y®idy)Y)
= oy, ((idc ® Ap ® A p) (6 ®id3)7) = (idc ® Ap,)7.
The first equality is trivial, the second equality uses (7.1), the third equality uses
(2.9), and the last equality uses (5.I). 1
Let UG ¢ U(K(K)® A) and UH ¢ U(K(K) ® B) be corepresentations of G
and H on .
DEFINITION 7.7. A pair (U@, Uﬁ) is called ©v (G, H) -compatible if U® and
U commute in the following way:
(7.4) oS (UEUS) = URUE, inu(K(K)® A ® B).

A ~B

EXAI\A/IPLE 7.?. Equation (4.10) shows that the pair (W ,, Wy, ) of corepresen-

tations of G and H on Hp is Dy (G, H) -compatible. This is the corepresentation
version of Lemma [Z.6]

PROPOSITION 7.9. Corepresentations of ©v (G, H)™ are in one-to-one correspon-
dence with Dv (G, H) -compatible pairs of corepresentations.
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Proof. A routine computation shows that any v (G, H) -compatible pair of

corepresentations (U®, UM) on K gives a corepresentation X € U (K(K) @ Dy) of
Dv(G, H)™ by

(7.5) X:=URUS, inU(K(K)®B® A).

Conversely, let X € U(K(K) ® Dy) be a corepresentation of Dy (G, H)™ on K.
By Proposition 6.5 of [15] or Proposition 3.31 of [19] the right quantum group
homomorphism Ay in induces a corepresentation U € U(K(K) ® A) of G
on K such that

(ide ® AR)X = X1,US,  in U(K(K) ® Dy ® A).

Similarly, the right quantum group homomorphism A}, in gives a corepre-
sentation UM € ¢/(K(K) @ B) of H satisfying

(idx ® AR)X = XU inU(K(K) @ Dy @ B).
Lemma 7.6 gives
X12URUY, = (ide ® (Ar ®id 3)AR)X = oy (idc ® (AR @ id 7)AR)X

= 0’3\,51 (Xle]%Uﬁ) = X120'3\’2 (U%Uﬁ) |
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