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ABSTRACT. Let H2(D) denote the classical Hardy space of the open unit disk
D in the complex plane. We obtain descriptions of both the spectrum and es-
sential spectrum of composition operators on H2(D) whose symbols belong
to the class S(2) introduced by Kriete and Moorhouse (Trans. Amer. Math. Soc.
359(2007), 2915–2944). Our work reveals new possibilities for the shapes of
composition-operator spectra, settling a conjecture of Cowen (J. Operator The-
ory 9(1983), 77–106). Our results depend on a number of lemmas, perhaps of
independent interest, that provide spectral characterizations of sums of ele-
ments of a unital algebra over a field when certain pairwise products of the
summands are zero.
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1. INTRODUCTION

Let D be the open unit disk in the complex plane, let H(D) be the space of
analytic functions on D, and let H2(D) be the classical Hardy space, consisting of
those functions in H(D) whose Maclaurin coefficients are square summable. For
ϕ an analytic selfmap of D, let Cϕ be the composition operator with symbol ϕ,
so that Cϕ f = f ◦ ϕ for any f ∈ H(D). Clearly Cϕ preserves H(D). Littlewood
[20] proved Cϕ also preserves H2(D); and thus, by the closed-graph theorem,
Cϕ : H2(D) → H2(D) is a bounded linear operator. For the remainder of this
paper, we assume all composition operators act on H2(D).

Beginning in the late 1960s, through the 1970s, and early 1980s, Nordgren
[22], Deddens [14], Caughran and Schwartz [5], Kamowitz [16], and Cowen [10]
characterized the spectrum of composition operators on H2(D) whose symbols
ϕ are linear-fractional selfmaps of D. These spectra take a variety of forms, e.g.,
disks, annuli, and spirals, depending on the location of the Denjoy–Wolff point
ω of the symbol ϕ, the derivative ϕ′(ω), whether or not ϕ is inner, and whether
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or not ϕ induces a composition operator is that is power-compact. See [11] for
details. In this paper, we use these known spectral characterizations for linear-
fractional composition operators to obtain spectral characterizations for composi-
tion operators whose symbols belong to the class S(2) introduced by Kriete and
Moorhouse [18]. When ϕ ∈ S(2), Cϕ is equivalent, in the Calkin algebra, to a
sum of linear-fractional composition operators, and this equivalence permits us
to characterize the essential spectrum of Cϕ. Obtaining the full spectrum, once
the essential spectrum is known, is not difficult for the composition operators we
consider. This paper may be viewed as a sequel to [3], which contains characteri-
zations of spectra of certain composition operators Cϕ under the assumption that
Cϕ is equivalent, in the Calkin algebra, to a single linear-fractional composition
operator.

In the next section, we show that

(1.1) ϕlp(z) =
2z2 − z− 2

2z2 − 3

belongs to the class S(2) and that Cϕlp − Cψ1 − Cψ2 is a compact operator on
H2(D), where

(1.2) ψ1(z) =
4− 3z
5− 4z

and ψ2(z) =
41z + 32
40z + 49

.

By Corollary 6.2 of [10], the essential spectrum of Cψ1 is the segment [0, 1], while
the essential spectrum of Cψ2 is the disk {z : |z| 6 1/3} ([11], Proof of Theorem 5;
see also Theorem 3.2 of [3]). By Theorem 4.4 below, the essential spectrum and
spectrum of Cϕlp both equal the union of [0, 1] and {z : |z| 6 1/3}. Thus the
spectrum of Cϕlp is shaped like a lollipop. The selfmap ϕlp of D is of “parabolic
non-automorphism type” (see Definition 2.1 below). For ϕ of this type, Cowen
([10], Conjecture 4 of Section 6) conjectures that the spectrum of Cϕ is a region
between two spirals; that is, for some θ1, θ2 with −π/2 6 θ1 6 θ2 6 π/2, the
spectrum is {e−β : θ1 6 arg β 6 θ2} ∪ {0}. A lollipop is not such a region and
thus our work settles Cowen’s conjecture in the negative.

In the next section, we present background information needed for our
work. Section 3 contains some lemmas characterizing the spectrum of a sum
a1 + a2 + · · · + an of elements of a unital algebra A over a field, where certain
pairwise products with factors from the set {a1, a2, . . . , an} are zero. We rely on
these lemmas in Section 4, which contains our main results.

2. BACKGROUND

We begin by describing function-theoretic properties of ϕ known to influ-
ence the spectral behavior of the composition operator Cϕ : H2(D)→ H2(D).
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2.1. FUNCTION-THEORETIC PRELIMINARIES. Throughout this paper ϕ denotes
an analytic selfmap of D and ϕ[n] represents the n-th iterate of ϕ, ϕ ◦ ϕ ◦ · · · ◦ ϕ,
n times (ϕ[0] is the identity). Let n be a positive integer, let ζ ∈ ∂D, and let 0 6
ε < 1. Following p. 50 of [1], we say that ϕ belongs to Cn+ε(ζ) provided that ϕ is
differentiable at ζ up to order n (viewed as a function with domain D∪ {ζ}) and,
for z ∈ D, has the expansion

ϕ(z) =
n

∑
k=0

ϕ(k)(ζ)

k!
(z− ζ)k + γ(z),

where γ(z) = o(|z− ζ|n+ε) as z→ ζ from within D. It is not difficult to show that
ϕ ∈ Cn(ζ) whenever ϕ(n) extends continuously to D∪ {ζ}.

The spectral properties of a composition operator are strongly tied to the
location of the Denjoy–Wolff point of its symbol. Recall that an elliptic automor-
phism is an automorphism of D fixing a point in D.

THE DENJOY–WOLFF THEOREM. If ϕ is an analytic selfmap of D that is not an
elliptic automorphism, then there is a point ω in the closed disk D− such that

for all z ∈ D, ϕ[n](z)→ ω as n→ ∞.

The Denjoy–Wolff point ω of ϕ may be characterized as follows:
(i) if |ω| < 1, then ϕ(ω) = ω and |ϕ′(ω)| < 1;

(ii) if |ω| = 1, then ϕ(ω) = ω and 0 < ϕ′(ω) 6 1.

When (ii) holds, ϕ(ω) is the angular (nontangential) limit of ϕ at ω ∈ ∂D
and ϕ′(ω) represents the angular derivative, which may be computed as the an-
gular limit of ϕ′ at ω. Observe that if ω ∈ ∂D is the Denjoy–Wolff point of ϕ,
then (ii) above yields, in particular, that ϕ′(ω) > 0. This is a general property of
angular derivatives at fixed points of ϕ that lie on ∂D; that is, if ζ ∈ ∂D is fixed
by ϕ and the angular derivative of ϕ exists at ζ, then it follows (from the Julia–
Carathéodory theorem) that ϕ′(ζ) > 0. For details about angular derivatives and
the Julia–Carthéodory theorem, the reader may consult Chapter 4 of [24] or Sec-
tion 2.3 of [13]. As an example, note ϕlp defined by (1.1) has Denjoy–Wolff point
1: ϕ(1) = 1 and ϕ′(1) = 1.

DEFINITION 2.1. Suppose that ϕ has Denjoy–Wolff point ω. We classify ϕ
as follows (cf. Definition 0.3 of [1]):

(i) If ω ∈ D, we say ϕ is of dilation type.
(ii) If ω ∈ ∂D and ϕ′(ω) < 1, we say ϕ is of hyperbolic type.

(iii) If ω ∈ ∂D and ϕ′(ω) = 1, then ϕ is of parabolic type. Furthermore, if the or-
bit (ϕ[n](0)) has consecutive terms separated in the hyperbolic metric on D, then
ϕ is of parabolic automorphism type; otherwise, ϕ is of parabolic non-automorphism
type.
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Distinguishing the two subcases of parabolic type can be difficult, but for
maps having sufficient smoothness on D ∪ {ω}, there is the following test ([1],
Theorem 4.4):

PARABOLIC-TYPE TEST. Suppose that ϕ ∈ C2(ω) and ϕ′(ω) = 1. Then
Re (ωϕ′′(ω)) > 0; moreover,

(a) if ϕ′′(ω) = 0 or if Re (ωϕ′′(ω)) > 0, then ϕ is of parabolic non-automorphism
type;

(b) if ωϕ′′(ω) is pure imaginary (and nonzero) and ϕ ∈ C3+ε(ω) for some positive
ε, then ϕ is of parabolic automorphism type.

Note the Parabolic-type test says in particular that if 1 is the Denjoy–Wolff
point of a parabolic type ϕ and ϕ ∈ C2(1), then Re (ϕ′′(1)) > 0 is sufficient to
ensure that ϕ is of parabolic non-automorphism type.

To explore further the notion of type for analytic selfmaps ϕ of D, we con-
sider the “right-halfplane incarnation” of such maps under conjugation by R(z) =
(1 + z)/(1− z), where R maps D onto the right halfplane {z : Re (z) > 0} with
the boundary points 1 and −1 taken, respectively, to ∞ and 0. Observe that ϕ is
an analytic selfmap of D if and only if Φ := R ◦ ϕ ◦ R−1 is an analytic selfmap of
the right halfplane. For instance, the selfmap of D

ϕlp(z) =
2z2 − z− 2

2z2 − 3

has right-halfplane incarnation Φlp := R ◦ ϕlp ◦ R−1 given by

(2.1) Φlp(w) = w + 8− 8
w + 1

.

Observe that if Re (w) > 0, then clearly Re (Φlp(w)) > 0; so this right-halfplane
incarnation provides a simple way to see that ϕlp is indeed a selfmap of D. In
general, if ϕ is a selfmap of D having Denjoy–Wolff point 1 and ϕ ∈ C2(1), then
the right-halfplane incarnation of Φ of ϕ will have the form

(2.2) Φ(w) =
1

ϕ′(1)
w +

1
ϕ′(1)

− 1 +
ϕ′′(1)
ϕ′(1)2 + Γ(w),

where Γ(w) → 0 as w → ∞ in the right halfplane (cf. equation (27) of [4]).
Thus for a selfmap ϕ of D that belongs to C2(1) and has Denjoy–Wolff point
1, the coefficient of w in its right-halfplane incarnation Φ reveals whether the
map is of hyperbolic or parabolic type and, in the parabolic case, the constant
term in (2.2), which reduces to ϕ′′(1), can indicate whether the map is of non-
automorphism type. For example, using (2.2) and (2.1), we see that ϕ′′lp(1) = 8
and the Parabolic-type test assures us that ϕlp is of non-automorphism type be-
cause Re (ϕ′′lp(1)) > 0. The right-halfplane incarnation of ϕ also provides a
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convenient way to understand the terminology “automorphism-type” and “non-
automorphism type” as well as the naturalness of the Parabolic-type test. A par-
abolic automorphism of the disk with Denjoy–Wolff point ω = 1 is precisely a
linear-fractional selfmap of D whose right-halfplane incarnation takes the form

Φ(w) = w + a,

where a is pure imaginary (nonzero). If, on there other hand, Φ(w) = w+ a where
a has positive real part, then the corresponding ϕ would be a parabolic (linear-
fractional) non-automorphism of D and Re (ϕ′′(1)) = Re (a) > 0, consistent with
the Parabolic-type test.

The notion of the “order of contact” (or “order of approach”) that ϕ(D) has
with ∂D has long played an important role in composition-operator theory (see,
e.g. Section 3.6 of [24] for a discussion of order of contact and the compactness
question).

DEFINITION 2.2. Following Kriete and Moorhouse [18], we say that ϕ has
order of contact 2 at ζ ∈ ∂D provided that |ϕ(ζ)| = 1 and

(2.3)
1− |ϕ(eiθ)|2
|ϕ(ζ)− ϕ(eiθ)|2

is essentially bounded above and away from 0 as eiθ → ζ.

Let Cr be a circle of radius r < 1 that is internally tangent to ∂D at ϕ(ζ).
The point ϕ(eiθ) in D lies on Cr for some θ if and only if the quantity (2.3) equals
(1 − r)/r. Thus, geometrically speaking, ϕ has order of contact 2 at ζ means
that there are two circles, each internally tangent to ∂D at ϕ(ζ) and a subset E
of ∂D having full measure such that if eiθ ∈ E is sufficiently close to ζ, then
ϕ(eiθ) lies between the two circles. It follows that if ϕ is a linear-fractional non-
automorphism such that ϕ(ζ) ∈ ∂D, then ϕ has order of contact 2 at ζ.

For selfmappings ϕ of D that belong to C2(ζ), we establish the following
easy test (cf. p. 49 of [4] and Propositions 1.2, 1.3 of [3]) involving ϕ′(ζ) and ϕ′′(ζ)
that reveals whether ϕ has order of contact 2 at ζ.

PROPOSITION 2.3. Suppose that ϕ ∈ C2(ζ) and that ϕ(ζ) = η ∈ ∂D. Then ϕ
has order of contact 2 at ζ if and only if

(2.4) Re
( 1
|ϕ′(ζ)| +

ζϕ′′(ζ)

ϕ′(ζ)|ϕ′(ζ)| − 1
)
> 0.

Proof. Set ψ(z) = ηϕ(ζz) and note ψ(1) = 1 because ϕ(ζ) = η. Observe
that

1− |ϕ(eiθ)|2
|ϕ(ζ)− ϕ(eiθ)|2

=
1− |ψ(ζeiθ)|2

|1− ψ(ζeiθ)|2
.

Thus, ϕ satisfies the order of contact 2 condition at ζ if and only if ψ satisfies
the order of 2 contact condition at its fixed point 1. Also note that ψ is C2(1) if
and only if ϕ ∈ C2(ζ). We show that ψ has order of contact 2 at 1 if and only



26 PAUL S. BOURDON

if Re (1/ψ′(1) + ψ′′(1)/ψ′(1)2 − 1) > 0. This will complete the proof because
ψ′(1) = ζηϕ′(ζ) is positive (a consequence of the Julia–Carathéodory theorem;
see, e.g., Theorem 2.44 of [13]), making ψ′(1) = |ϕ′(ζ)|; moreover,

ψ′′(1)
ψ′(1)2 =

ζ2ηϕ′′(ζ)

ζ2η2 ϕ′(ζ)2
=

ζϕ′′(ζ)

ϕ′(ζ)|ϕ′(ζ)| .

Let Ψ = R ◦ ψ ◦ R−1 be the right-halfplane incarnation of ψ. Let z ∈ D and
w = R(z); we have

ψ(z) = R−1(Ψ(w)) =
Ψ(w)− 1
Ψ(w) + 1

.

Hence

1− |ψ(z)|2
|1− ψ(z)|2 =

|Ψ(w) + 1|2 − |Ψ(w)− 1|2
4

= Re (Ψ(w)).

Because ψ ∈ C2(1), we may replace Ψ with its expansion

Ψ(w) =
1

ψ′(1)
w +

1
ψ′(1)

+
ψ′′(1)
ψ′(1)2 − 1 + Γ(w),

where Γ(w)→ 0 as w→ ∞ (where w is in the right-halfplane). We obtain

(2.5)
1− |ψ(z)|2
|1− ψ(z))|2 = Re

( 1
ψ′(1)

w +
1

ψ′(1)
+

ψ′′(1)
ψ′(1)2 − 1 + Γ(w)

)
,

where w = R(z).
For all ξ belonging to some subset E of ∂D having full measure, ψ has non-

tangential limit 6= 1 at ξ while necessarily then Ψ has nontangential limit R(ψ(ξ))
at R(ξ) (approach from the right halfplane). Because R(ξ) lies on the imaginary
axis and ψ′(1) is positive, we conclude from (2.5) that for all ξ ∈ E, we have

(2.6)
1− |ψ(ξ)|2
|ψ(1)− ψ(ξ))|2 = Re

( 1
ψ′(1)

+
ψ′′(1)
ψ′(1)2 − 1 + Γ(R(ξ))

)
.

Because Γ(w)→ 0 as w→ ∞, we must have Γ(R(ξ))→ 0 as ξ ∈ E approaches 1.
Thus, from (2.6), we see

1− |ψ(ξ)|2
|ψ(1)− ψ(ξ))|2 → Re

( 1
ψ′(1)

+
ψ′′(1)
ψ′(1)2 − 1

)
, as ξ ∈ E approaches 1.

Thus (1− |ψ(ξ)|2)/|ψ(1)− ψ(ξ)|2 is essentially bounded above and away from
0, as ξ in E approaches 1, if and only if Re (1/ψ′(1) + ψ′′(1)/ψ′(1)2 − 1) > 0, as
desired.

REMARK 2.4. (i) Observe that if ϕ has Denjoy–Wolff point ω ∈ ∂D, ϕ′(ω) =
1 (parabolic case), and ϕ ∈ C2(ω), then the second-order contact condition (2.4)
reduces to simply:

Re (ωϕ′′(ω)) > 0 if and only if ϕ has order of contact 2 at ω.
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Thus, by the Parabolic-type test, for ϕ ∈ C2(ω) of parabolic type, we see that ϕ
having order of contact 2 at its Denjoy–Wolff point ω is equivalent to ϕ being of
parabolic non-automorphism type.

(ii) The condition (2.4) ensuring second-order contact has an appealing inter-
pretation in terms of curvature. If ϕ is holomorphic in a neighborhood of ζ, then

Re
( 1
|ϕ′(ζ)| +

ζϕ′′(ζ)

ϕ′(ζ)|ϕ′(ζ)|

)
is the curvature of the parametric curve t → ϕ(eit) at t = arg(ζ) (see, e.g., Chap-
ter 5, Section IX of [21]). Thus the second order contact condition at ζ is saying
that the curvature of the image of the unit circle under ϕ at ζ exceeds 1, the cur-
vature of the unit circle.

2.2. ALEKSANDROV–CLARK MEASURES AND THE CLASS S(2). Kriete and Moor-
house ([18], Section 5) introduce the “sufficient-data” class S(2) consisting of an-
alytic selfmaps ϕ of D having, roughly speaking, limited contact with ∂D that
is both order-2 and C2. The rigorous definition of S(2) requires the notion of
Aleksandrov–Clark measures.

For each α ∈ ∂D,

z 7→ Re
(α + ϕ(z)

α− ϕ(z)

)
=

1− |ϕ(z)|2
|α− ϕ(z)|2 , z ∈ D,

is a positive, harmonic function; thus, there is a finite positive Borel measure µα

on ∂D, called the Aleksandrov–Clark measure of ϕ at α, such that for each z ∈ D,

Re
(α + ϕ(z)

α− ϕ(z)

)
=
∫

∂D

Pz(ξ)dµα(ξ),

where Pz(ξ) = (1− |z|2)/|ξ − z|2 is the Poisson kernel at z. A good reference for
Aleksandrov–Clark measures is [7].

Connections between the compactness of the composition operator Cϕ on
H2(D) and properties of ϕ’s Aleksandrov–Clark measures were developed by
Sarason [23], Shapiro and Sundberg [25], and Cima and Matheson [6], with Cima
and Matheson establishing that the essential norm ‖Cϕ‖e of Cϕ is given by

(2.7) ‖Cϕ‖2
e = sup{µs

α(∂D) : α ∈ ∂D},

where for each α ∈ ∂D, µs
α is the singular part of µα in its Lebesgue decomposition.

Let α ∈ ∂D. The support of µs
α is contained in the closure of the set ϕ−1({α}),

consisting of those points on the unit circle where ϕ has nontangential limit α. The
measure µs

α decomposes into a sum of a pure point measure

(2.8) µ
pp
α = ∑

ϕ(ζ)=α

1
|ϕ′(ζ)| δζ



28 PAUL S. BOURDON

and a continuous singular measure. In the preceding formula for µ
pp
α , ϕ′(ζ) is the

angular derivative of ϕ at ζ taken to be ∞ if it does not exist. Let

F(ϕ) = {ζ ∈ ∂D : ϕ has finite angular derivative at ζ}

and observe that by (2.8), if ζ ∈ F(ϕ), then µ
pp
ϕ(ζ)

is not the zero measure.
Let

E(ϕ) =
( ⋃

α∈∂D
support (µs

α)
)−

,

so that E(ϕ) is the closure of the union of the (closed) support sets of the singular
parts of the Aleksandrov–Clark measures for ϕ. We will be concerned only with
ϕ such that E(ϕ) is finite. This means, in particular, that for each α ∈ ∂D, µs

α

is a pure point measure supported on the set of those ζ ∈ ∂D such ϕ has finite
angular derivative at ζ and ϕ(ζ) = α. Thus, our assumption that E(ϕ) is finite
means F(ϕ) is finite and

E(ϕ) = F(ϕ).

If E(ϕ) is empty, then Cϕ is compact by (2.7). Note that E(ϕ) is certainly
empty if ‖ϕ‖∞ := sup{|ϕ(z)| : z ∈ D} < 1; thus, Cϕ is compact in this situation
(for an elementary proof, see p. 23 of [24]).

Kriete and Moorhouse’s sufficient-data class S(2) consists of those analytic
selfmaps ϕ of D such that:

(i) ϕ has radial limit of modulus less than 1 at almost every point of ∂D;
(ii) E(ϕ) is finite (so that E(ϕ) = F(ϕ));

(iii) for each ζ ∈ E(ϕ), ϕ has order of contact 2 at ζ;
(iv) for each ζ ∈ E(ϕ), ϕ ∈ C2(ζ) (so that ϕ has derivative data at ζ sufficient

to match its order of contact at ζ).

We remark that it is possible to show condition (ii) above implies condi-
tion (i); for instance, an argument can based on the Aleksandrov disintegration
theorem (see, e.g., Section 9.3 of [7]).

DEFINITION 2.5. Let ϕ ∈ C2(ζ) for some ζ ∈ ∂D. The second-order data of
ϕ at ζ, denoted D2(ϕ, ζ), is given by

D2(ϕ, ζ) = (ϕ(ζ), ϕ′(ζ), ϕ′′(ζ)).

Generalizing results in Section 7 of [4], Kriete and Moorhouse ([16], Corol-
lary 5.16) establish the following:

THEOREM 2.6 (Kriete–Moorhouse). Let ϕ∈S(2) with E(ϕ)={ζ1, ζ2, . . . , ζn}.
For j = 1, . . . , n, let ψj be the unique linear-fractional selfmap of D such that D2(ψj, ζ j)
= D2(ϕ, ζ j). Then

(2.9) Cϕ = Cψ1 + · · ·+ Cψn + K,

where K is a compact operator on H2(D).
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Note well that the linear-fractional maps ψj of (2.9) are necessarily non-
automorphic selfmaps ofD. One way to see this is to observe that z 7→ ϕ(ζ j)ψj(ζ jz)
and z 7→ ϕ(ζ j)ϕ(ζ jz) have the same second-order data at their common fixed
point 1. Thus, the first two terms in their right-halfplane-incarnation expansions,
aw + b + · · · , agree; moreover, Re (b) > 0 because ϕ has second-order contact
at ζ j. However, aw + b is the complete right-halfplane incarnation of the linear-
fractional map z 7→ ϕ(ζ j)ψj(ζ jz), and since Re (b) > 0, we see that ψj is not an
automorphism of D.

EXAMPLE 2.7. The mapping ϕlp of (1.1) belongs to S(2), with E(ϕlp) =
F(ϕlp) = {1,−1}. Because ϕlp is analytic on the closed unit disk, we certainly
have ϕlp ∈ C2(1) ∩ C2(−1). We have already noted that ϕlp is of parabolic non-
automorphism type with Denjoy–Wolff point 1; thus, ϕ has order of contact 2 at 1
by the remarks following the proof of Proposition 2.3. We employ Proposition 2.3
to show that ϕlp has order of contact 2 at −1:

Re
( 1
|ϕ′lp(−1)| +

−1ϕ′′lp(−1)

ϕ′lp(−1)|ϕ′lp(−1)| − 1
)
=

1
9
+

80
81
− 1 > 0.

A computation shows that ψ1(z) = (4− 3z)/(5− 4z) is a selfmap of D whose
second-order data at 1 agrees with that of ϕlp at 1 and ψ2(z) = (41z + 32)/(40z +
49) is a selfmap of D that satisfies D2(ψ2,−1) = D2(ϕlp,−1). Thus by Theo-
rem 2.6, Cϕlp and Cψ1 + Cψ2 differ by a compact operator.

2.3. SPECTRAL PRELIMINARIES. Let H be a complex Hilbert space and T : H →
H be a bounded linear operator. The spectrum σ(T) of T is given by

σ(T) = {λ ∈ C : T − λI is not invertible}.

Observe that 1 belongs to the spectrum of every composition operator — it is, in
fact, an eigenvalue because if f is a constant function, then Cϕ f = f .

The essential spectrum σe(T) of T is given by

σe(T) = {λ ∈ C : T − λI is not Fredholm}.

Recall that T : H → H is Fredholm provided T has closed range while ker(T)
and ker(T∗) are finite dimensional. Alternatively, the Fredholm operators are
those representing invertible elements in the Calkin algebra, B(H)/B0(H), where
B(H) is the collection of bounded linear operators on H and B0(H) is the ideal
of compact operators on H. Thus T ∈ B(H) is Fredholm if and only if [T] :=
T + B0(H) is invertible in the Calkin algebra.

Throughout this paper, we let [T] denote the equivalence class of T in the
Calkin algebra. Thus, e.g., we have [Cϕlp ] = [Cψ1 + Cψ2 ] = [Cψ1 ] + [Cψ2 ], where
ϕlp, ψ1, and ψ2 are given by (1.1) and (1.2), respectively.
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We let r(T) = max{|λ| : λ ∈ σ(T)} denote the spectral radius of T, and
re(T) = max{|λ| : λ ∈ σe(T)}, the essential spectral radius of T. For Hardy-
space composition operators, Cowen ([10], Theorem 2.1) proves the following:

Let ω be the Denjoy–Wolff point of ϕ. If ω ∈ D, then r(Cϕ) = 1;
otherwise, r(Cϕ) = 1/

√
ϕ′(ω).

If ω ∈ ∂D, then re(Cϕ) = r(Cϕ) (see Lemma 5.2 of [2]). If ω ∈ D, then useful
formulas for re(Cϕ) exist in case ϕ is analytic on the closed disk D− ([16] and
p. 296 of [13]) or univalent on the open disk D ([12]). For instance, if ϕ is univalent
on D, we have

re(Cϕ) = lim
k→∞

(
sup

{ 1
|(ϕ[k])′(ζ)|

: ζ ∈ ∂D
})1/(2k)

,

where (ϕ[k])′(ζ) is the angular derivative of ϕ[k] at ζ (taken to be ∞ when it
does not exist). Suppose that ϕ is linear-fractional; then the preceding essential-
spectral radius formula is easy to apply. If ϕ does not contact the boundary (so
that ‖ϕ‖∞ < 1) or if it contacts the boundary at a point that is not fixed (so that
‖ϕ[2]‖∞ < 1), then, respectively, Cϕ or C2

ϕ = Cϕ[2] is compact, and, in either case,

re(Cϕ) = 0. If ϕ fixes ζ0 ∈ ∂D, then ϕ′(ζ0) is positive, (ϕ[k])′(ζ0) = ϕ′(ζ0)
k for

every k > 1, and (ϕ[k])′(ζ) = ∞ for ζ ∈ ∂D \ {ζ0}; thus, in this case, re(Cϕ) =

1/
√

ϕ′(ζ0).
As we just noted, if ϕ is linear fractional and takes ζ ∈ ∂D to η ∈ ∂D

and η 6= ζ, then ‖ϕ[2]‖∞ < 1 and C2
ϕ is compact. We make frequent use of a

generalization of this observation. Suppose that ϕ1 and ϕ2 are linear-fractional,
non-automorphic selfmaps of D such that ϕ1(ζ1) = η1, and ϕ2(ζ2) = η2, where
ζ1, ζ2, η1, and η2 belong to ∂D; then if η2 6= ζ1, we have ‖ϕ1 ◦ ϕ2‖∞ < 1 so that
Cϕ2 Cϕ1 is compact.

We now summarize results of a number of authors characterizing the spec-
tra and essential spectra of composition operators on H2(D) whose symbols are
non-automorphic linear-fractional selfmaps of D.

THEOREM 2.8. Let ϕ be a linear-fractional selfmap of D that is not an automor-
phism of D and let ω be its Denjoy–Wolff point.

(i) Suppose ω ∈ D and ϕ does not fix a point on ∂D. Then either Cϕ or (Cϕ)2 is
compact and we have

σe(Cϕ) = {0} and σ(Cϕ) = {ϕ′(ω)n : n = 0, 1, 2, . . .} ∪ {0}.

([5], Theorem 3).
(ii) Suppose ω ∈ D and ϕ fixes a point ζ0 on ∂D. Then

σe(Cϕ) =
{

z : |z| 6 1/
√

ϕ′(ζ0)
}
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and

σ(Cϕ) =
{

z : |z| 6 1√
ϕ′(ζ0)

}
∪ {ϕ′(ω)n : n = 0, 1, 2, . . .}.

([16], Theorem A(3); [11], Proof of Theorem 5; see also Theorem 3.2 of [3].)
(iii) Suppose that ω ∈ ∂D and ϕ′(ω) < 1 (so that ϕ is of hyperbolic type). Then

σe(Cϕ) = σ(Cϕ) =
{

z : |z| 6 1√
ϕ′(ω)

}
.

(See Theorem 3(iv) of [14] and note that Cϕ is similar to Caz+(1−a) where a =

ϕ′(ω). Each point in the punctured disk {z : 0 < |z| < 1/
√

a} is an infinite
multiplicity eigenvalue of Caz+(1−a) with eigenfunctions of the form z 7→ (1− z)β,
where Re (β) > −1/2. Thus the essential spectrum and spectrum coincide.)

(iv) Suppose that ω ∈ ∂D and ϕ′(ω) = 1 (so that ϕ is of parabolic non-automorphism
type). Let a = ωϕ′′(ω), which has positive real part. Then

σe(Cϕ) = σ(Cϕ) = {e−at : t > 0} ∪ {0}.

(Corollary 6.2 of [10] applied to Cψ, where ψ(z) = ωϕ(ωz); Cψ is similar to Cϕ.)

Note that in (iv) of the preceding theorem we have equality of spectrum and
essential spectrum because every point of the spectrum is a non-isolated bound-
ary point of spectrum. See, e.g., Theorem 6.8, p. 366 of [9]. Note also we have the
following easy corollary of Theorem 2.8.

COROLLARY 2.9. Suppose that ϕ is a non-automorphic linear-fractional selfmap
of D such that ϕ fixes a point ζ on ∂D and ϕ′(ζ) > 1. Then

σe(Cϕ) =
{

z : |z| 6 1√
ϕ′(ζ)

}
.

In particular, the derivative of ϕ at its fixed point on ∂D completely determines the essen-
tial spectrum of Cϕ.

Proof. Because ϕ is a non-automorphic linear-fractional selfmap of D, it con-
tacts ∂D only at ζ and because ϕ′(ζ) > 1, ζ can not be the Denjoy–Wolff point of
ϕ. Thus, ϕ must have its Denjoy–Wolff point inside D and part (ii) of Theorem 2.8
now yields this corollary.

To illustrate Theorem 2.8, we consider the linear-fractional selfmaps ψ1 and
ψ2 given by (1.2), both of which are not automorphisms. Because ψ1(1) = 1 and
ψ′1(1) = 1, we see (d) applies. Also ψ′′1 (1) = 8. Thus σe(Cψ1) = σ(Cψ1) = [0, 1].
Note ψ2(−1) = −1 and ψ′2(−1) = 9; so by Corollary 2.9, we have σe(Cψ2) = {z :
|z| 6 1/3}. Note ψ2(4/5) = 4/5 so that the Denjoy–Wolff point of ψ2 is 4/5; also,
ψ′2(4/5) = 1/9. Thus by part (ii) of Theorem 2.8, we have

σe(Cψ2) =
{

z : |z| 6 1
3

}
and σ(Cψ2) =

{
z : |z| 6 1

3

}
∪ {1}.
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We have seen that [Cϕlp ] = [Cψ1 ] + [Cψ2 ], that is, Cϕlp and Cψ1 + Cψ2 repre-
sent the same equivalence class in the Calkin algebra. We are interested in the
essential spectrum of Cϕlp ; equivalently, the spectrum of the sum [Cψ1 ] + [Cψ2 ]

in the Calkin algebra. Because ψ1 and ψ2 are linear-fractional non-automorphic
maps fixing distinct points on the unit circle, both ψ1 ◦ψ2 and ψ2 ◦ψ1 have H∞(D)
norm less than 1; hence Cψ1◦ψ2 and Cψ2◦ψ1 are compact. Equivalently, if T1 = [Cψ1 ]
and T2 = [Cψ2 ], then T2T1 = 0 and T1T2 = 0. Thus we see that the Calkin algebra
elements T1 and T2 satisfy the following annihilation relations:

(2.10) T1T2 = T2T1 = 0.

This observation motivates the results in the next section, which will be used in
Section 4 to characterize the spectra of composition operators with symbols in
S(2). Proposition 3.3, e.g., shows that if T1 and T2 are elements of any unital
algebra over a field satisfying (2.10), then σ(T1 + T2) \ {0} = (σ(T1) ∪ σ(T2)) \
{0}; hence, applying this result in the context of the Calkin algebra, we see that
the set of nonzero points in σe(Cϕlp) = σe(Cψ1 + Cψ2) equals the set of nonzero
points in σe(Cψ1) ∪ σe(Cψ2) = [0, 1] ∪ {z : |z| 6 1/3}. Because the essential
spectrum is closed, we conclude that the essential spectrum of Cϕlp is [0, 1] ∪ {z :
|z| 6 1/3} (moreover, the essential spectrum of Cϕlp equals its spectrum; see
Section 4).

3. SPECTRA OF SUMS WHOSE SUMMANDS SATISFY CERTAIN ANNIHILATION CONDITIONS

Throughout this section, A denotes a unital algebra over a field.

LEMMA 3.1. Suppose that a1 and a2 are elements of A such that a1a2 = 0. Then

(3.1) σ(a1 + a2) ⊆ σ(a1) ∪ σ(a2).

Proof. Suppose that λ 6∈ σ(a1) ∪ σ(a2), so that both a1 − λI and a2 − λI are
invertible. Note that 0 must belong to σ(a1) ∪ σ(a2) because a1a2 = 0; thus, λ is
nonzero. Because a1a2 = 0, we have

(a1 − λI)(a2 − λI) = −λ(a1 + a2 − λI).

Thus, a1 + a2 − λI is invertible, being a product of invertible elements. We con-
clude that if λ belongs to the spectrum of a1 + a2, then λ ∈ σ(a1) ∪ σ(a2); that is,
inclusion (3.1) holds.

The preceding lemma yields, by induction, the corollary below (cf. Lem-
ma 3.5 of [26]).

COROLLARY 3.2. Let n > 2 be an integer and let a1, a2, . . . , an be elements of A
such that whenever i, j belong to {1, 2, . . . , n} and i < j,

aiaj = 0.
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Then

σ
( n

∑
k=1

ak

)
⊆
( n⋃

k=1

σ(ak)
)

.

In an earlier version of this paper, all results in this section were stated for
sums T1 + T2 + · · ·+ Tn of Hilbert-space operators, where certain pairwise prod-
ucts from the set {T1, T∗2 , T2, T∗2 , . . . , Tn, T∗n} are zero. For example, the following
proposition read as follows: If T and S are operators on the Hilbert space H such

that ST = TS = 0 and S∗T = TS∗ = 0, then σ(S+ T) \ {0} = (σ(S)∪ σ(T)) \ {0}.
Trieu Le (private communication) pointed out that the hypothesis S∗T = TS∗ = 0
is unnecessary and provided the proof of the resulting improved proposition.
This inspired the author to improve similarly all the results in the section.

PROPOSITION 3.3 (Trieu Le, private communication). Suppose that a1 and a2
are elements of A such that a1a2 = 0 and a2a1 = 0. Then

(3.2) σ(a1 + a2) \ {0} = (σ(a1) ∪ σ(a2)) \ {0}.
Proof. Because a1a2 = 0, just as Lemma 3.1, we have

(3.3) (a1 − λI)(a2 − λI) = −λ(a1 + a2 − λI).

Suppose that λ 6= 0 and λ 6∈ σ(a1 + a2). Then (3.3) shows that a1 − λI is right
invertible while (a2 − λI) is left invertible. However, since a2a1 = 0, (3.3) holds
with a1 and a2 interchanged. Thus each factor a1 − λI and a2 − λI is invertible.
Hence, we have

(σ(a1) ∪ σ(a2)) \ {0} ⊆ σ(a1 + a2) \ {0}.

The reverse inclusion holds by Lemma 3.1.

COROLLARY 3.4. Let n > 2 be an integer and let a1, a2, . . . , an be elements of A
such that whenever i, j are distinct elements in {1, 2, . . . , n},

aiaj = ajai = 0

Then

σ
( n

∑
k=1

ak

)
\ {0} =

( n⋃
k=1

σ(ak)
)
\ {0}.

Proof. Let α1 =
n−1
∑

k=1
ak and α2 = an and observe that α1 and α2 satisfy the

hypotheses of Proposition 3.3. Thus, this corollary holds by induction.

The preceding corollary improves Lemma 3.4 of [26], whose statement is
equivalent to the following: Suppose that a1, a2, . . . , an are normal elements of a
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C∗-algebra such that aiaj = ajai = 0 whenever i, j ∈ {1, . . . , n} are distinct; then

σ
( n

∑
k=1

ak

)
\ {0} =

( n⋃
k=1

σ(ak)
)
\ {0}.

LEMMA 3.5. Suppose that a1 and a2 are elements of A such that a1a2 = 0 and
a2

2 = 0. Then
σ(a1 + a2) \ {0} = σ(a1) \ {0}.

Proof. Since a2
2 = 0, σ(a2) = {0}. Because a1a2 = 0, we have

(3.4) (a1 − λI)(a2 − λI) = −λ(a1 + a2 − λI).

Assume λ 6= 0. Since σ(a2) = {0}, we see (a2 − λI) is invertible, and it follows
from (3.4) that λ ∈ σ(a1) if and only if λ ∈ σ(a1 + a2), which yields the lemma.

PROPOSITION 3.6. Suppose that a1 and a2 are elements of A such that a2
1 = 0

and a2
2 = 0. Then

(3.5) σ(a1 + a2) \ {0} = {λ : λ2 ∈ σ(a1a2)} \ {0} = {λ : λ2 ∈ σ(a2a1)} \ {0}.
Proof. A computation shows that

(3.6) (a1 + λI)(a1 + a2 − λI)(a2 + λI) = λ(a1a2 − λ2 I).

Assume that λ 6= 0 and note that because a2
1 = 0 = a2

2, both factors (a1 + λI)
and (a2 + λI) are invertible. Thus, equation (3.6) tells us that (a1 + a2 − λI) is
invertible if and only if (a1a2− λ2 I) is invertible. This observation establishes the
first equality of (3.5). To obtain the second, modify (3.6) by interchanging a1 and
a2 or apply Jacobson’s lemma, which states that for any a1, a2 ∈ A, the nonzero
elements of σ(a1a2) and σ(a2a1) must coincide.

Proposition 3.6 provides the base case of the inductive proof of the next
proposition.

PROPOSITION 3.7. Let n > 2 and let a0, a1, . . . , an−1 be elements of A satisfying

(3.7) ajak = 0 for all j, k ∈ {0, . . . , n− 1} except possibly when k = (j + 1)mod n.

Then

(3.8) σ
( n−1

∑
j=0

aj

)
\ {0} =

{
λ : λn ∈ σ

( n−1

∏
j=0

aj

)}
\ {0}.

Note that by Jacobson’s lemma, the set on the right of (3.8) may be replaced

by
{

λ : λn ∈ σ
( k+n−1

∏
j=k

ajmod n

)}
\ {0} for any k ∈ {1, 2, . . . , n− 1}.

Proof of Proposition 3.7. Proposition 3.6 gives the result when n = 2. Our
argument is inductive: fix i > 3 and assume the proposition is valid when n =
i− 1. Assume λ 6= 0.
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Suppose that the annihilation relations (3.7) hold for n = i. We then have

(a0 + λI)
( i−1

∑
j=0

aj − λI
)
= a0a1 + λ

i−1

∑
j=1

aj − λ2 I =
i−2

∑
j=0

αj − λ2 I,

where α0 = a0a1 + λa1 and for j ∈ {1, . . . , i− 2}, αj = λaj+1. Because (a0 + λI) is
invertible (a2

0 = 0), we see that

(3.9) λ ∈ σ
( i−1

∑
j=0

aj

)
if and only if λ2 ∈ σ

( i−2

∑
j=0

αj

)
.

Now observe that

αjαk = 0 for all j, k ∈ {0, . . . , i− 2} except possibly when k = (j + 1)mod (i− 1).

Thus, by our induction hypothesis,

(3.10) λ2 ∈ σ
( i−2

∑
j=0

αj

)
if and only if λ2(i−1) ∈ σ(α0 · · · αi−2).

However, by definition of αj, we have

α0 · · · αi−2 = λi−2a0a1 · · · ai−1 + λi−1a1 · · · ai−1.

Because λi−1a1 · · · ai−1 squares to 0 and (λi−2a0a1 · · · ai−1)(λ
i−1a1 · · · ai−1) = 0,

Lemma 3.5 and (3.10) combine to show that

(3.11) λ2(i−1) ∈ σ(α0 · · · αi−2) if and only if λ2(i−1) ∈ σ(λi−2a0a1 · · · ai−1).

Finally, it is easy to see that

(3.12) λ2(i−1) ∈ σ(λi−2a0a1 · · · ai−1) if and only if λi ∈ σ(a0a1 · · · ai−1).

Combining the conclusions of (3.9) through (3.12), we see

σ
( i−1

∑
j=0

aj

)
\ {0} = {λ : λi ∈ σ(a0a1 · · · ai−1)} \ {0},

which completes our inductive proof.

4. MAIN RESULTS

We apply the results of the preceding section with A equaling the Calkin
algebra B(H2(D))/B0(H2(D)) to characterize the essential spectrum of composi-
tion operators on H2(D) whose symbols belong to S(2). The complete spectrum
is easily derived once the essential spectrum is known.

Let ϕ belong to S(2), so that E(ϕ) = F(ϕ) is finite. Suppose that E(ϕ) is
empty, then Cϕ is compact [6], and thus by Theorem 3 of [5] the spectrum of Cϕ

consists of 0 together with the terms of the sequence (ϕ′(ω)k)∞
k=0, where ω is the
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Denjoy–Wolff point of ϕ (which is necessarily contained in D). Next assume that
E(ϕ) is not empty:

E(ϕ) = {ζ1, . . . , ζn}
for some positive integer n. By definition of S(2), ϕ is C2(ζ j) for j = 1, . . . , n, and
there are linear-fractional selfmaps of D, ψ1, . . . , ψn, such that

(4.1) [Cϕ] = [Cψ1 ] + · · ·+ [Cψn ],

where ψj’s second-order data agrees with ϕ’s at ζ j for j = 1, . . . , n.

4.1. PARTITIONING THE POINTS OF E(ϕ) BASED ON THEIR ORBITS UNDER ϕ. Let
j ∈ {1, . . . , n}, where, as above, n is the number of elements in E(ϕ) = F(ϕ).
Consider the iterate sequence ζ j, ϕ(ζ j), ϕ[2](ζ j), . . .. Either there is

(i) an integer k, 1 6 k 6 n such that ϕ[k](ζ j) 6∈ E(ϕ), or
(ii) ϕ[k](ζ j) ∈ E(ϕ) for all k ∈ {0, 1, 2 . . . , n}.

Suppose that (ii) holds; then because E(ϕ) has n elements, we see that there is a
least positive integer m 6 n such that ϕ[m](ζ j) = ϕ[i](ζ j), for some i satisfying 0 6

i 6 m− 1. If i = 0, then the iterate sequence (ϕ[k](ζ j))
∞
k=0 is periodic with funda-

mental period m, consisting of repetitions of the cycle {ζ j, ϕ(ζ j), . . . , ϕ[m−1](ζ j)}.
If i > 0, then (ϕ[k](ζ j))

∞
k=0 is eventually periodic with fundamental period m− i,

and from ϕ[i](ζ j) onward consists of repetitions of the cycle

{ϕ[i](ζ j), ϕ[i+1](ζ j), . . . , ϕ[m−1](ζ j)}.

OBSERVATION 4.1. Suppose that P is a cycle of ϕ of length ` that lies in E(ϕ).
If ξ ∈ P, then ϕ[`](ξ) = ξ. Moreover, for any two points ξ1 and ξ2 of P, (ϕ[`])′(ξ1) =

(ϕ[`])′(ξ2). Thus, if ` > 1, then (ϕ[`])′(ξ) > 1 at every point ξ of P; otherwise, ϕ[`]

would have more than one Denjoy–Wolff point.

Suppose that all points in E(ϕ) satisfy (i) and consider

(4.2) [Cn+1
ϕ ] = [(Cψ1 + · · ·+ Cψn)

n+1],

where ψ1, ψ2, . . . , ψn are the linear-fractional non-automorphic maps of (4.1). Ex-
panding (Cψ1 + · · ·+ Cψn)

n+1, we obtain a sum of products of the form

(4.3) Cψj1
Cψj2
· · ·Cψjn+1

,

where for i = 1, 2, . . . , n + 1, ji ∈ {1, . . . , n}. Note that the product (4.3) is a linear-
fractional composition operator with non-automorphic symbol

(4.4) ν := ψjn+1 ◦ ψjn ◦ · · · ◦ ψj1 .

Recalling that the second-order data of ψjk agrees with that of ϕ at ζ jk , we see
the only point that ν can possibly take to ∂D is ζ j1 . Since ψj1(ζ j1) = ϕ(ζ j1), we
have ν(ζ j1) = (ψjn+1 ◦ ψjn ◦ · · · ◦ ψj2)(ϕ(ζ j1)). There are two possibilities. Ei-
ther ϕ(ζ j1) = ζ j2 ∈ E(ϕ), in which case ψj2(ϕ(ζ j1)) = ϕ[2](ζ j1); or ϕ(ζ j1) 6= ζ j2 ,
in which case ψj2(ϕ(ζ j1)) lies in D and ν must have H∞(D) norm strictly less
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than 1. Suppose that the former case holds: we have ν(ζ j1) = (ψjn+1 ◦ ψjn ◦ · · · ◦
ψj3)(ϕ[2](ζ j1)). Now we repeat the preceding argument based on whether or not
ϕ[2](ζ j1) = ζ j3 . If so, ν(ζ j1) = (ϕjn+1 ◦ ψjn ◦ · · · ◦ ψj4)(ϕ[3](ζ j1)); if not, ‖ν‖∞ < 1.
Continue this process. Because we are assuming that all points in E(ϕ) fall into
category (i) above, there must be a least positive integer k, k 6 n, such that
ϕ[k](ζ j1) 6∈ E(ϕ), and since ψjk+1

(ϕ[k](ζ j1)) ∈ D, we conclude that ‖ν‖∞ < 1.
Hence Cν is compact. Applying this analysis to every summand of the expan-
sion of (Cψ1 + · · ·+ Cψn)

n+1, we see, via (4.2) that Cn+1
ϕ is compact when every

point of E(ϕ) satisfies the “iterate-out” condition (i) above. Being power compact,
the essential spectrum of Cϕ is the origin and its spectrum consists of the origin
together with the eigenvalue sequence (ϕ′(ω)k)∞

k=0, where ω ∈ D is the Denjoy–
Wolff point of ϕ. Thus we are interested in the situation where some points of
E(ϕ) satisfy condition (ii) above, so that E(ϕ) contains at least one cycle under ϕ.

Assuming that E(ϕ) does contain some cycles, we partition the points of
E(ϕ) = {ζ1, . . . , ζn}, according to (i) and (ii) above:

(a) “iterate-out points”: those ζ ∈ E(ϕ) for which (i) holds;
(b) periodic and eventually periodic points: those ζ ∈ E(ϕ) for which (ii)

holds.
We further partition the periodic and eventually periodic points of E(ϕ).

Periodic cycles are either disjoint or they coincide. Let P1, . . . , Pnc be the disjoint
cycles of ϕ lying in E(ϕ). For each j ∈ {1, 2, . . . , nc}, associate with Pj a possibly
empty set L(Pj) of “lead-in points” consisting of those points ζ satisfying (ii),
which are not in Pj, but for which ϕ[k](ζ) ∈ Pj for some k > 1. Letting A be the
(possibly empty) set of iterate-out points of E(ϕ), we may express E(ϕ) as the
following disjoint union

(4.5) E(ϕ) = A ∪
⋃

j∈{1,...,nc}
(L(Pj) ∪ Pj).

We illustrate the preceding partition with a concrete example.

EXAMPLE 4.2. Consider

(4.6) ϕ1(z) = κ(z)γ(z2),

where

κ(z) =
−z3

2− z8

and γ is the inner function

γ(z) =
(1 + i) + (3− i)z
3 + i + (1− i)z

.

The right-halfplane incarnation of γ, created via conjugation by R(z) = (1 +
z)/(1− z), is Γ(w) = 2w + i, and it follows that, e.g., γ fixes 1 and −i and maps
−1 to i. It is clear that the only points in ∂D that κ maps to the unit circle are the
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8 eighth-roots of unity. Because γ is an inner function, these roots of unity are
necessarily taken to the unit circle under ϕ1 (and are the only points of ∂D that
are mapped to ∂D under ϕ1). Because ϕ1 is analytic on the closed disk, it follows
that ϕ1 has finite angular derivative at each of the eighth roots of unity. Thus
E(ϕ1) = {ζ ∈ ∂D : |ϕ1(ζ)| = 1} = {ζ j : j = 1, . . . , 8}, where ζ j = e(j−1)πi/4 for
j = 1, 2, . . . , 8.

0.5

0

-1

-0.5

0 1

1

0.5

-0.5

-1

FIGURE: ϕ1(D) is shaded gray, with images of points in E(ϕ1)
under ϕ1 circled.

We now classify the behavior of each of the points in E(ϕ1) under iteration by ϕ1.

(•) ζ1 = 1: We have ϕ1(1) = −1 and ϕ1(−1) = 1. Thus 1 and −1 are periodic
points of ϕ1 of period 2, with corresponding cycle {1,−1}.

(•) ζ2 = eiπ/4: ϕ1(ζ2) =
√

2(7/10− (1/10)i), which is not an eighth root of
unity. Thus, the boundary orbit of ϕ1 with initial point ζ2 iterates out of E(ϕ1).

(•) ζ3 = i : Now ϕ1(i) = −1, so that ϕ
[2]
1 (i) = 1 and ϕ

[3]
1 (i) = −1. Thus i is

eventually periodic and leads into the cycle {1,−1}.
(•) ζ4 = ei3π/4: Note that ϕ1(ζ4) = ζ4 so that ζ4 is fixed by ϕ1 — it is a periodic

point with period 1.
(•) ζ5 := −1: We have already observed that −1 is periodic of period 2.
(•) ζ6 = ei5π/4: It is easy to check that the boundary orbit of ϕ1 with initial

point ζ6 iterates out of E(ϕ1).
(•) ζ7 = −i: We have ϕ1(−i) = 1, so that −i is eventually periodic, leading

into the cycle {1,−1}.
(•) ζ8 = ei7π/4: The point ζ8 is fixed by ϕ1.

Hence, in the notation of (4.5) above, we have for ϕ1 given by (4.6),

A = {eiπ/4, ei5π/4}, P1 = {1,−1}, L(P1) = {i,−i}, P2 = {e3πi/4},

L(P2) = ∅, P3 = {e7πi/4}, L(P3) = ∅.
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We now return to the general situation where E(ϕ) has n points {ζ1, . . . , ζn}
partitioned according to (4.5) and consider the corresponding partition of the
summands of the decomposition of [Cϕ] given by (4.1):

(4.7) [Cϕ] =
[

∑
{j:ζ j∈A}

Cψj

]
+
[ nc

∑
k=1

(
∑

{j:ζ j∈L(Pk)∪Pk}
Cψj

)]
.

If A is not empty, define

(4.8) T0 = ∑
{j:ζ j∈A}

Cψj ;

and for k ∈ {1, . . . , nc}, let

(4.9) Tk = ∑
{j:ζ j∈L(Pk)∪Pk}

Cψj .

Thus (4.7) may be written (assuming A 6= ∅)

(4.10) [Cϕ] = [T0] +
nc

∑
k=1

[Tk].

Our goal is to characterize the essential spectrum of Cϕ using the preceding de-
composition. Since ϕ is not an automorphism of D, 0 necessarily belongs to the
essential spectrum of Cϕ ([8], Theorem 1). Thus, as we consider the potential con-
tributions to the essential spectrum of the summands from (4.10), a contribution
of {0} is meaningless.

4.2. ITERATE-OUT POINTS CONTRIBUTE NOTHING TO THE ESSENTIAL SPECTRUM.
Assume that A 6= ∅ and that T0 and Tk are defined as in (4.8) and (4.9). Let
k ∈ {1, . . . , nc} be arbitrary. Let j1 ∈ {j : ζ j ∈ A} and j2 ∈ {j : ζ j ∈ L(Pk) ∪ Pk}
be arbitrary. Observe that Cψj1

Cψj2
is compact because ψj2 ◦ ψj1 has H∞(D) norm

less than 1. (The only point that the linear-fractional map ψj1 takes to ∂D is ζ j1
and ψj1(ζ j1) = ϕ(ζ j1) 6= ζ j2 ; otherwise, ζ j1 would be eventually periodic under
ϕ, with all its iterates belonging to E(ϕ), contradicting its membership in A.) It is
also easy to see that Cψj2

Cψj1
is compact.

Let S = T0, T =
nc
∑

k=1
Tk, and note we have just shown that a1 := [S] and

a2 := [T] satisfy the annihilation hypotheses of Proposition 3.3. Thus, we have

(4.11) σe(S + T) \ {0} = (σe(S) ∪ σe(T)) \ {0}.

We claim σe(S) = {0}. Consider the operator Sn+1 : H2(D) → H2(D). It
consists of a finite sum of products of n + 1 composition operators, with each
product having the form

(4.12) Cψi1
Cψi2
· · ·Cψin+1

,
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where for k = 1, 2, . . . , n + 1, ζik ∈ A and the integers ik, im (belonging to {j : ζ j ∈
A}) are not necessarily distinct. Note that the product (4.12) is a composition
operator with symbol

(4.13) ν0 := ψin+1 ◦ ψin ◦ · · · ◦ ψi1 .

The only point that the linear-fractional selfmap ν0 of D can possibly take to ∂D
is ζi1 . However, because ζi1 is an iterate-out point, the argument used above to
show ν defined by (4.4) satisfies ‖ν‖∞ < ∞ shows ‖ν0‖∞ < 1. Applying this
analysis to every summand of Sn+1, we see that Sn+1 is compact and

σe(S) = {0}

as claimed.
Using (4.10) and (4.11), we see that if A is not empty, then

(4.14) σe(Cϕ) \ {0} = σe(S + T) \ {0} =
(

σe

( nc

∑
k=1

Tk

))
\ {0}.

Note that σe(Cϕ) = σe

( nc
∑

k=1
Tk

)
obviously holds if A is empty.

4.3. CONTRIBUTIONS TO THE ESSENTIAL SPECTRUM FROM T1, . . . , Tk ARE INDE-
PENDENT. Now let m and q be distinct indices in {1, . . . , nc}; then L(Pm) ∪ Pm
and L(Pq) ∪ Pq are disjoint. If j ∈ {1, . . . , n} is such that ζ j ∈ L(Pm) ∪ Pm then
ψj(ζ j) ∈ L(Pm) ∪ Pm and the same is true with q replacing m. This means that
if j1, j2 ∈ {1, 2, . . . , n} are such that ζ j1 ∈ L(Pm) ∪ Pm and ζ j2 ∈ L(Pq) ∪ Pq, then
ψj1 ◦ ψj2 and ψj2 ◦ ψj1 have H∞(D) norm less than 1. It follows that [Tm][Tq] = 0
and [Tq][Tm] = 0. Thus, [T1], [T2], . . . , [Tnc ] satisfy the annihilation hypotheses of
Corollary 3.4, and hence

(4.15) σe

( nc

∑
k=1

Tk

)
\ {0} =

nc⋃
k=1

σe(Tk) \ {0}.

We now turn our attention to understanding σe(Tk), focusing first on the “cycle-
based portion” of the sum Tk, where we continue to assume that Tk is defined
by (4.9).

4.4. CHARACTERIZATION OF THE ESSENTIAL SPECTRUM OF A CYCLE-BASED SUM

∑
{j:ζ j∈Pm}

Cψj . Let m ∈ {1, . . . , nc}. Independent of whether the lead-in set L(Pm)

of Pm is empty, we characterize the essential spectrum of ∑
{j:ζ j∈Pm}

Cψj , which is a

sum of composition operators whose symbols correspond to the cycle Pm of ϕ.
Let ` be the length of the cycle Pm. Assume that ` > 1. Let {j0, . . . , j`−1} =
{j : ζ j ∈ Pm} and be such that ϕ(ζ ji ) = ζ j(i+1)mod `

for i = 0, 1, . . . , ` − 1. Let
i, k ∈ {0, . . . , `− 1} be arbitrary (not necessarily distinct). Observe that ψjk ◦ ψji
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has H∞(D) norm less than 1 unless k = (i + 1)mod ` (because the only point that
ψji maps to ∂D is ζ ji and ψji (ζ ji ) = ζ j(i+1)mod `

). Hence,

[Cψji
Cψjk

] = 0 for all i, k ∈ {0, . . . , `− 1} except when k = (i + 1)mod `.

Thus, the summands of
`−1
∑

i=0
[Cψji

] satisfy the annihilation relations of Proposi-

tion 3.7, and we may conclude that

(4.16) σe

(
∑

{j:ζ j∈Pm}
Cψj

)
\ {0} = {λ : λ` ∈ σe(Cψj0

Cψj1
· · ·Cψj`−1

)} \ {0}.

We now identify σe(Cψj0
Cψj1
· · ·Cψj`−1

). Observe that

Cψj0
Cψj1
· · ·Cψj`−1

= Cψj`−1
◦···◦ψj1

◦ψj0

and that the linear-fractional, non-automorphic symbol γ := ψj`−1
◦ · · · ◦ ψj1 ◦ ψj0

fixes the point ζ j0 ∈ ∂D. Moreover,

γ′(ζ j0) =
`−1

∏
k=0

ψ′jk (ζ jk ).

Note that because of boundary data agreement, it is easy to see that

(4.17) γ′(ζ j0) = (ϕ[`])′(ζ j0)

and ζ j0 is fixed for ϕ[`]. Recall that we are assuming that ` > 1. By Observa-
tion 4.1, γ′(ζ j0) = (ϕ[`])′(ζ j0) exceeds 1. Applying Corollary 2.9, we have

σe(Cγ) =
{

z : |z| 6 1√
γ′(ζ j0)

}
.

Thus, if the length ` of Pm exceeds one, we have established

σe

(
∑

{j:ζ j∈Pm}
Cψj

)
\{0}={λ : λ` ∈ σe(Cγ)} \ {0} ((4.16) and the definition of γ)

=
{

λ : λ` ∈
{

z : |z| 6 1√
γ′(ζ j0)

}}
\ {0}

=
{

λ : |λ| 6
( 1

γ′(ζ j0)

)1/2`}
\ {0}

=
{

λ : |λ| 6
( 1
(ϕ[`])′(ζ j0)

)1/2`}
\ {0},

where we have used (4.17) to obtain the final equality. Because the essential spec-
trum is a closed set,

σe

(
∑

{j:ζ j∈Pm}
Cψj

)
=
{

λ : |λ| 6
( 1
(ϕ[`])′(ζ j0)

)1/2`}
.
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Note that by Observation 4.1, the preceding inequality holds with ζ j0 being re-
placed by any point of Pm.

Finally, suppose that ` = 1; then Pm consists of a single element ζ j0 , which
is fixed by ϕ. We have

σe

(
∑

{j:ζ j∈Pm}
Cψj

)
= σe(Cψj0

),

and the essential spectrum of the composition operator induced by the linear-
fractional selfmap ψj0 (whose second-order boundary data at ζ j0 agrees with ϕ’s)

can be read off from Theorem 2.8. It will be either the disk {z : |z| 6 1/
√

ϕ′(ζ j0)},
in case ϕ′(ζ j0) 6= 1, or the spiral {e−at : t > 0} ∪ {0}, where a = ζ j0 ϕ′′(ζ j0), if
ϕ′(ζ j0) = 1.

4.5. THE LEAD-IN POINTS CONTRIBUTE NOTHING TO THE ESSENTIAL SPECTRUM.
Suppose that L(Pm) is not empty, containing s elements, {ζL1 , . . . , ζLs}. Call an
element ζLi of L(Pm) primitive if there is no ζLq ∈ L(Pm) such that ϕ(ζLq) = ζLi .
Because L(Pm) is finite and contains no periodic points for ϕ, it must contain at
least one primitive element. In fact, any element of L(Pm) is either primitive or
can be traced back to a primitive element of L(Pm) through selection of inverse
images under ϕ.

Let ζLi be an arbitrary primitive element of L(Pm). Let S = CψLi
and

T = ∑
{j 6=Li :ζ j∈(L(Pm)∪Pm)}

Cψj .

Observe that T is Tm (defined by (4.9)) with a single summand removed, namely
that corresponding to S. Now observe that

[S]2 = 0 and [T][S] = 0,

where [T][S] = 0 by the primitivity of ζLi . We apply Lemma 3.5 to conclude that

σe(Tm) \ {0} = σe(S + T) \ {0} = σe(T) \ {0}.

Now if L(Pm) \ {ζLi} not empty, then we repeat the argument of the preced-
ing paragraph with L(Pm) \ {ζLi} replacing L(Pm) to obtain that σe(Tm) \ {0} =
σe(T) \ {0}, where now T is Tm with two summands removed (corresponding to
two lead-in points). We may continue this process to conclude that

(4.18) σe(Tm) \ {0} = σe

(
∑

{j:ζ j∈Pm}
Cψj

)
\ {0}.

4.6. PUTTING ALL THE PIECES TOGETHER. Combining the results from Subsec-
tions 4.1 through 4.5, we have the following:
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THEOREM 4.3. Suppose that the analytic selfmap ϕ of D belongs to S(2) while
E(ϕ) = {ζ1, . . . , ζn} contains at least one periodic cycle. Let P1, P2, . . . , Pnc be the
(disjoint) periodic cycles contained in E(ϕ). Then

(4.19) σe(Cϕ) =
nc⋃

k=1

σe

(
∑

{j:ζ j∈Pk}
Cψj

)
,

where for each j ∈ {1, . . . , n}, ψj is the linear-fractional selfmap of D such that ψj and ϕ
share the same second-order data at ζ j.

Proof. Combine (4.14), (4.15), and (4.18) to obtain the equality (4.19) with
0 excluded from both sides. However, 0 belongs to the left side because ϕ is
not an automorphism ([8], Theorem 1) and 0 belongs to the right side by the
discussion of Subsection 4.4 since the essential spectra on the right will either be
disks containing 0 or a spiral containing 0. Thus (4.19) holds.

THEOREM 4.4. Suppose that the analytic selfmap ϕ of D belongs to S(2) while
E(ϕ) = {ζ1, . . . , ζn} contains at least one periodic cycle. Let P1, P2, . . . , Pnc be the
(disjoint) periodic cycles contained in E(ϕ). For each j ∈ {1, . . . , nc}, let `j be the length
of Pj and let ζsj denote some element of Pj. Define

(4.20) ρ = max
{( 1

(ϕ[`j ])′(ζsj)

)1/2`j
: j ∈ {1, . . . , nc}

}
,

and note that the value of ρ is independent of the choice of ζsj in Pj by Observation 4.1.
(i) If ϕ has Denjoy–Wolff point ω in D, then

σe(Cϕ) = {z : |z| 6 ρ}

and
σ(Cϕ) = {z : |z| 6 ρ} ∪ {ϕ′(ω)m : m = 0, . . . , N − 1},

where N is the least positive integer for which |ϕ′(w)N | 6 ρ.
(ii) If ϕ has Denjoy–Wolff point ω ∈ ∂D and ϕ′(ω) < 1, then ρ = 1/

√
ϕ′(ω) and

σ(Cϕ) = σe(Cϕ) = {z : |z| 6 ρ}.

(iii) If ϕ has Denjoy–Wolff point ω ∈ ∂D, ϕ′(ω) = 1, and j∗ ∈ {1, . . . , nc} is such
that Pj∗ = {ω} (and thus ζsj∗ = ω), then for

ρ∗ = max
{( 1

(ϕ[`j ])′(ζsj)

)1/2`j
: j ∈ {1, . . . , nc} \ {j∗}

}
and a = ωϕ′′(ω) (which necessarily has positive real part), we have

σ(Cϕ) = σe(Cϕ) = {z : |z| 6 ρ∗} ∪ {e−at : t > 0},

where we take ρ∗ = 0 if {1, . . . , nc} \ {j∗} is empty (equivalently, nc = 1).
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REMARK 4.5. The characterization of the spectrum σ in part (i), in case ϕ
is univalent or analytic on the closed disk, follows from (Corollary 19 of [12]
and Theorem A, Part 3 of [16]); however, the characterization of the essential
spectrum as the full disk {z : |z| 6 ρ} is new even in these cases. In part
(ii), in case ϕ is analytic on the closed disk, the characterization of the spec-
trum follows from Corollary 4.8 of [10] (see also the patch for p. 296, line -8
at http://www.math.iupui.edu/~ccowen/Errata.html), and it is known ([10],
Theorem 4.5) that in general the essential spectrum of Cϕ for ϕ of hyperbolic type
with Denjoy–Wolff point ω contains at least the annulus {z :

√
ϕ′(ω) 6 |z| 6

1/
√

ϕ′(ω)}. Again, the characterization of the essential spectrum as the full disk
{z : |z| 6 ρ} is new. Finally, the result of case (iii) appears completely new (ex-
cluding the situation where ϕ is itself linear fractional or, in certain cases, where it
differs from a linear-fractional composition operator by a compact operator [3]),
and, as discussed in the introduction, settles a conjecture of Cowen’s Conjecture 4
of [10].

Proof of Theorem 4.4. We rely on equation (4.19):

σe(Cϕ) =
nc⋃

k=1

σe

(
∑

{j:ζ j∈Pk}
Cψj

)
,

where for each j ∈ {1, . . . , n}, ψj is a linear-fractional selfmap of D such that ψj
and ϕ share the same second-order data at ζ j.

Case (i). Suppose that ϕ has its Denjoy–Wolff point in D; then the same is
true of ϕ[`k ] for k ∈ {1, . . . , nc}. Thus, for k ∈ {1, . . . , nc}, the derivative of ϕ[`k ] at
its fixed point ζsk , must exceed 1, and by the discussion of Subsection 4.4,

σe

(
∑

{j:ζ j∈Pk}
Cψj

)
=
{

z : |z| 6
( 1
(ϕ[`k ])′(ζsk )

)1/2`k
}

.

It follows that ρ < 1 (where ρ is defined by (4.20)). From (4.19), it follows that
σe(Cϕ) = {z : |z| 6 ρ}. Thanks to the continuity of the Fredholm index, any
spectral point outside the essential spectrum (which is necessarily in the un-
bounded component of the complement of the essential spectrum) must be an
eigenvalue of Cϕ. Work of Königs [19] shows that the nonnegative integral pow-
ers of ϕ′(ω) are the only possible eigenvalues of Cϕ; moreover, these powers are
spectral points (see, e.g. Theorem 4.1 of [10]), which completes the proof of (i).

Case (ii). Suppose that ϕ has Denjoy–Wolff point ω ∈ ∂D and ϕ′(ω) < 1.
Since the Denjoy–Wolff point ω is a periodic point of period 1, there is some
j∗ ∈ {1, . . . , nc}, such that Pj∗ = {ω}, which means `j∗ = 1, ζsj∗ = ω, and

1/
√
(ϕ[`j∗ ])′(ζsj∗ ) = 1/

√
ϕ′(ω) > 1. For all j ∈ {1, . . . , nc} \ {j∗}, we must have

(ϕ[`j ])′(ζsj) > 1; otherwise, ϕ[`j ] would have different Denjoy–Wolff points ζsj

and ω. Thus ρ = 1/
√

ϕ′(ω) as claimed. By (4.19), we have σe(Cϕ) = {z : |z| 6
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ρ} and since the spectral radius of Cϕ is 1/
√

ϕ′(ω), this completes the proof of
part (ii).

Case (iii). Suppose that ϕ has Denjoy–Wolff point ω ∈ ∂D and ϕ′(ω) = 1.
Since the Denjoy–Wolff point ω is a periodic point of period 1, there is some
j∗ ∈ {1, . . . , nc}, such that Pj∗ = {ω}, which means ζsj∗ = ω. Note that a :=
ωϕ′′(ω) has positive real part (by Remark 2.4(i) following Proposition 2.3 since ϕ
has second-order contact at ω). We have

σe

(
∑

{j:ζ j∈Pj∗}
Cψj

)
= σe(Cψsj∗

) = {0} ∪ {e−at : t > 0},

where the second equality follows from Theorem 2.8(iv) because D2(ψsj∗ , ζsj∗ ) =

D2(ϕ, ζsj∗ ). If nc = 1, we have verified that the essential spectrum of Cϕ is cor-
rectly characterized by part (iii). Suppose that nc > 1. For each k ∈ {1, . . . , nc} \
{j∗}, we have (from the discussion of Subsection 4.4)

σe

(
∑

{j:ζ j∈Pk}
Cψj

)
=
{

z : |z| 6
( 1
(ϕ[`k ])′(ζsk )

)1/2`k
}

.

Moreover, because, for every k ∈ {1, . . . , nc} \ {j∗}, the fixed point ζsk of ϕ[`k ] is
not the Denjoy–Wolff point of ϕ[`k ], we see

ρ∗ = max
{( 1

(ϕ[`j ])′(ζsj)

)1/2`j
: j ∈ {1, . . . , nc} \ {j∗}

}
is less than 1 and (4.19) may be applied to obtain the characterization of the essen-
tial spectrum described in part (iii). To see that the spectrum equals the essential
spectrum, we note that the complement of the essential spectrum has one (un-
bounded) component. The only spectral points in the unbounded component of
the essential resolvent must be isolated eigenvalues. However, Proposition 2.7
of [3] shows that no eigenvalue of Cϕ (other than possibly 1, which belongs to
the essential spectrum) can be an isolated point of the spectrum of Cϕ. Thus
σe(Cϕ) = σ(Cϕ) and the proof of part (iii) is complete.

4.7. APPLICATIONS OF THEOREM 4.4. We have already discussed how the pre-
ceding theorem applies to the composition operator Cϕlp where ϕlp(z) = (2z2 −
z− 2)/(2z2 − 3). By the discussion of Example 2.7, ϕlp belongs to S(2). The cy-
cles of ϕlp lying in E(ϕ) are P1 = {1} and P2 = {−1}. Since ϕ′(1) = 1, ϕ′′(1) = 8
and ϕ′(−1) = 9, by part (iii) of Theorem 4.4,

σ(Cϕlp)=σe(Cϕlp)=
{

z : |z|6 1√
ϕ′(−1)

}
∪{e−8t : t>0}=

{
z : |z|6 1

3

}
∪[0, 1].

Let’s consider some additional applications.
Let ϕ(z) = −z/(3− 2z2). Since {z : |ϕ(z)| = 1} = {−1, 1} and ϕ has finite

angular derivative at 1 and −1, E(ϕ) = {1,−1}. Since ϕ is analytic on the closed
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disk, we obviously have ϕ ∈ C2(1) ∩ C2(−1). Finally, it is easy to use Proposi-
tion 2.3 to see that ϕ has second order of contact at both−1 and 1. Thus ϕ ∈ S(2).
Here, E(ϕ) = {−1, 1} is a single periodic cycle and 0 is the Denjoy–Wolff point

of ϕ. Thus by part (i) of Theorem 4.4, σe(Cϕ) =
{

z : |z| < 1/ 4
√
(ϕ[2])′(1)

}
=

{z : |z| < 1/
√

5} and since the Denjoy–Wolff derivative ϕ′(0) = −1/3, we have
σ(Cϕ) = {z : |z| < 1/

√
5} ∪ {1}.

Our next example features an analytic selfmap of D that does not extend to
be analytic on a neighborhood of the closed disk D−. Let

√
· denote the principal

branch of the square-root function. Consider the selfmap ϕ of D whose right-
halfplane incarnation Φ is given by

Φ(w) = 2w + 1− 1√
w + 1

.

It is easy to check that the unit-disk incarnation of Φ is

ϕ(z) =
2
√

2(1 + z)− (1− z)
√

1− z
4
√

2− (1− z)
√

1− z
.

Here E(ϕ) = {−1, 1} and ϕ ∈ C2(−1) (in fact ϕ is analytic in a neighborhood
of −1, and it is easy to check directly that ϕ ∈ C2(1)). Using the second-order
boundary data at −1 (ϕ(−1) = −1, ϕ′(−1) = 5/2, ϕ′′(−1) = −33/8) and at 1
(ϕ(1) = 1, ϕ′(1) = 1/2 and ϕ′′(1) = 0), one can use Proposition 2.3 to see that
ϕ has second-order contact at −1 and 1. Thus ϕ ∈ S(2). The set E(ϕ) consists
of two fixed points with 1 being the Denjoy–Wolff point of ϕ. Applying Theo-
rem 4.4(ii), we have σe(Cϕ) = σ(Cϕ) = {z : |z| 6

√
2}.

Our final application of Theorem 4.4 is to the selfmap ϕ1 of Example 4.2.
As we discussed earlier, E(ϕ1) = {ζ ∈ ∂D : |ϕ1(ζ)| = 1} = {ζ j : j = 1, . . . , 8}
where ζ j = e(j−1)πi/4 for j = 1, 2, . . . , 8. Proposition 2.3 may be used to confirm
that ϕ has second-order contact at each point of E(ϕ). Because ϕ has Denjoy–
Wolff point 0 ∈ D, part (i) of Theorem 4.4 holds. The function ϕ1 has 3 periodic
cycles P1 = {1,−1}, P2 = {e3πi/4}, P3 = {e7πi/4}. We compute, (ϕ[2])′(−1) =

(ϕ[2])′(1) = 144, ϕ′(e3πi/4) = 15 and ϕ′(e7πi/4) = 15. Thus ρ = 1/
√

12 and we
conclude that σe(Cϕ1) = {z : |z| 6 1/

√
12}. Since the Denjoy–Wolff derivative of

ϕ is ϕ′(0) = 0, we have σ(Cϕ1) = {z : |z| 6 1/
√

12} ∪ {1}.

4.8. TWO OPEN QUESTIONS. Observe that the results of Theorem 4.4 are consis-
tent with “yes” answers to the following open questions concerning spectra of
composition operators on H2(D).

(•) For ϕ of hyperbolic type or of parabolic type, do the spectrum and essential
spectrum of Cϕ always coincide?

(•) Let ϕ be an non-automorphic analytic selfmap of D having its Denjoy–
Wolff point ω in D. Does the essential spectrum consist of a disk (possibly degen-
erate) of radius less than 1?
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