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ABSTRACT. We give a complete classification of the ideals of the core of the
C∗-algebras associated with self-similar maps under a certain condition. Any
ideal is completely determined by the intersection with the coefficient algebra
C(K) of the self-similar set K. The corresponding closed subset of K is de-
scribed by the singularity structure of the self-similar map. In particular the
core is simple if and only if the self-similar map has no branch point. A matrix
representation of the core is essentially used to prove the classification.
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INTRODUCTION

A self-similar map on a compact metric space K is a family of proper con-

tractions γ = (γ1, . . . , γN) on K such that K =
N⋃

i=1
γi(K). In our former work

Kajiwara–Watatani [11], we introduced C∗-algebras associated with self-similar
maps on compact metric spaces as Cuntz–Pimsner algebras using certain C∗-
correspondences and showed that the associated C∗-algebras are simple and
purely infinite. A related study on C∗-algebras associated with iterated function
systems is done by Castro [2]. A generalization to Mauldin–Williams graphs is
given by Ionescu–Watatani [6].

The fixed point subalgebra of the gauge action of the C∗-algebras is called
the core.

In this paper we give a complete classification of the ideals of the core of the
C∗-algebras associated with self-similar maps by the singularity structure of the
self-similar maps. In particular the core is simple if and only if the self-similar
map has no branch point. A matrix representation of the n-th core is essentially
used to prove the classification. We represent the n-th core by certain degenerate
subalgebras of the matrix valued functions. These subalgebras are described by a
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family of equations in terms of branch points, branch values and branch indices.
One of the key points is the analysis of the core of the Cuntz–Pimsner algebra by
Pimsner [13]. The core is the inductive limit of the subalgebras which are globally
represented in the algebra of adjointable operators on the n-times tensor product
of the original Hilbert bimodule.

In [9], the authors classified traces on the cores of the C∗-algebras associated
with self-similar maps. We needed a lemma on the extension of traces on a sub-
algebra and an ideal to their sum following after Exel and Laca [3]. We could do
complete analysis of point measures using the lemma. We also applied the Rieffel
correspondence of traces between Morita equivalent C∗-algebras.

In this paper, we also need the Rieffel correspondence of ideals between
Morita equivalent C∗-algebras to examine the ideals of the core. Let B be a C∗-
algebra, A a subalgebra of B, and L an ideal of B.

In general, it is difficult to describe the ideals I of A + L in terms of A and
L independently. We construct an isometric ∗-homomorphism from the n-th core
F (n) to a matrix algebra over C(K). We call it the matrix representation of the n-th
core. We use a matrix representation over C(K) of the n-th core and its description
by the singularity structure of branch points to overcome the difficulty above.

As a consequence, we have an AF-embedding of the core. But this fact is
not used in the paper. Here the finiteness of the branch values and continuity of
any element of F (n) ⊂ C(K, MNn) are crucially used to analyze the ideal struc-
ture. We shall show that any ideal I of the core is completely determined by the
closed subset of the self-similar set which corresponds to the ideal C(K) ∩ I. We
list all closed subsets of K which appear in this way explicitly to complete the
classification of ideals of the core.

The content of the paper is as follows:
In Section 2, we present some notations for self-similar maps and basic re-

sults for C∗-correspondences associated with self-similar maps.
In Section 3, we give a matrix representation of the n-th core. Firstly we

describe the compact algebras of C∗-correspondences associated with self-similar
maps by certain subalgebras of the matrix valued functions. These subalgebras
are determined by a family of equations in terms of branch points, branch values
and branch indices. Secondly we describe their sums also by matrix representa-
tions globally.

In Section 4, we give a complete classification of the ideals of the core. We
list all primitive ideals. We need to construct the traces on the core to prove the
classification. We use a method which is different from the way we did in [11].
We also show that the GNS representations of discrete extreme traces generate
type In factors. In fact we compute the quotient of the core by the primitive ideals
which correspond to the extreme discrete traces.
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1. SELF-SIMILAR MAPS AND C∗-CORRESPONDENCES

Let (Ω, d) be a (separable) complete metric space. A map f : Ω → Ω is
called a proper contraction if there exist constants c and c′ with 0 < c′ 6 c < 1 such
that 0 < c′d(x, y) 6 d( f (x), f (y)) 6 cd(x, y) for any x, y ∈ Ω.

We consider a family γ = (γ1, . . . , γN) of N proper contractions on Ω. We
always assume that N > 2. Then there exists a unique non-empty compact space

K ⊂ Ω which is self-similar in the sense that K =
N⋃

i=1
γi(K). See Falconer [4] and

Kigami [12] for more on fractal sets.
In this note we usually forget an ambient space Ω as in [9] and start with

the following: Let (K, d) be a compact metric set and γ = (γ1, . . . , γN) be a family
of N proper contractions on K. We say that γ is a self-similar map on K if K =
N⋃

i=1
γi(K). Throughout the paper we assume that γ is a self-similar map on K.

DEFINITION 1.1. We say that γ satisfies the open set condition if there exists
a non-empty open subset V of K such that γj(V) ∩ γk(V) = φ for j 6= k and
N⋃

i=1
γi(V) ⊂ V. Then V is an open dense subset of K. See the book [4] by Falconer,

for example.

Let Σ = {1, . . . , N}. For k > 1, we put Σk = {1, . . . , N}k.
For a self-similar map γ on a compact metric space K, we introduce the

following subsets of K:

Bγ ={b ∈ K : b = γi(a) = γj(a), for some a ∈ K and i 6= j},
Cγ = {a ∈ K : γi(a) = γj(a), for some a ∈ K and i 6= j}

= {a ∈ K : γj(a)∈Bγ for some j}

Pγ = {a ∈ K : ∃k > 1, ∃(j1, . . . , jk) ∈ Σk such that γj1 ◦ · · · ◦ γjk (a) ∈ Bγ},

Ob,k = {γj1 ◦ · · · ◦ γjk (b) : (j1, . . . , jk) ∈ Σk} (k > 0),

Ob =
∞⋃

k=0

Ob,k, where Ob,0 = {b},

Orb =
⋃

b∈Bγ

Ob.

We call Bγ the branch set of γ, Cγ the branch value set of γ and Pγ the
postcritical set of γ. We call Ob,k the set of k-th γ orbits of b, and Ob the set of γ
orbits of b.

In general we define the branch index at (γj(y), y) by eγ(γj(y), y) = #{i ∈
Σ|γj(y) = γi(y)}.

Throughout the paper, we assume that a self-similar map γ on K satisfies
the following Assumption B.



228 TSUYOSHI KAJIWARA AND YASUO WATATANI

ASSUMPTION B. (i) There exists a continuous map h from K to K which
satisfies h(γj(y)) = y (y ∈ K) for each j.

(ii) The set Bγ is a finite set.
(iii) Bγ ∩ Pγ = ∅.

If (ii) is replaced by the stronger condition
(ii’) The set Bγ and Pγ are finite sets,

then it is exactly Assumption A in [11]. If we assume that the γ satisfies Assump-
tion A, then γ satisfies the open set condition automatically as in [11].

Many important examples satisfy Assumption B above. If we assume that
γ satisfies Assumption B, then we see that K does not have any isolated points
and K is not countable.

Since Bγ is finite, Cγ is also finite. We put Bγ ={b1, . . . , br}, Cγ ={c1, . . . , cs}.
We note that c ∈ Cγ means that there exist 1 6 j 6= j

′
6 N such that γj(c) =

γj ′ (c). If we put b = γj(c) = γj ′ (c), then b ∈ Bγ. Therefore Bγ is the set of b ∈ K
such that h is not locally homeomorphism at b, that is, Bγ is the set of the branch
points of h in the usual sense.

For fixed b ∈ Bγ, we denote by eb the number of j such that b = γj(h(b)).
Put c = h(b). Then eb is exactly the branch index at (b, h(b)) = (γj(c), c) and
eb = eγ(γj(c), c). Therefore b is a branch point if and only if eb > 2.

We label these indices j so that

{j ∈ Σ : b = γj(h(b))} = {j(b, 1), j(b, 2), . . . , j(b, eb)}

satisfying j(b, 1) < j(b, 2) < · · · < j(b, eb). We shall use these data as an expres-
sion of the singularity of self-similar maps to analyze the core.

EXAMPLE 1.2 (tent map). Let K = [0, 1], γ1(y) = (1/2)y and γ2(y) = 1−
(1/2)y. Then a family γ = (γ1, γ2) of proper contractions is a self-similar map.
We note that Bγ = {1/2}, Cγ = {1} and Pγ = {0, 1}. The continuous map h
defined by

h(x) =

{
2x 0 6 x 6 1

2 ,
−2x + 2 1

2 6 x 6 1,

satisfies Assumption B(i). The map h is the ordinary tent map on [0, 1], and
(γ1, γ2) is the pair of inverse branches of the tent map h. We note that Bγ =
{1/2}, Cγ = {1} and Pγ = {0, 1}. We see that h(1/2) = 1, h(1) = 0, h(0) = 0.
Hence a self-similar map γ = (γ1, γ2) satisfies Assumption B above.

EXAMPLE 1.3 ([9], (Sierpinski gasket)). Let P = (1/2,
√

3/2), Q = (0, 0),
R = (1, 0), S = (1/4,

√
3/4), T = (1/2, 0) and U = (3/4,

√
3/4). Let γ̃1, γ̃2 and

γ̃3 be contractions on the regular triangle T on R2 with three vertices P, Q and R
such that

γ̃1(x, y) =
( x

2
+

1
4

,
1
2

y
)

, γ̃2(x, y) =
( x

2
,

y
2

)
, γ̃3(x, y) =

( x
2
+

1
2

,
y
2

)
.
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We denote by αθ a rotation by angle θ. We put γ1 = γ̃1, γ2 = α−2π/3 ◦ γ̃2, γ3 =
α2π/3 ◦ γ̃3. Then γ1(∆PQR) = ∆PSU, γ2(∆PQR) = ∆TSQ and γ3(∆PQR) =
∆TRU, where ∆ABC denotes the regular triangle whose vertices are A, B and

C. Put K =
∞⋂

n=1

⋂
(j1,...,jn)∈Σn

(γj1 ◦ · · · ◦ γjn)(T). Then γ is a self-similar map on K

satisfying Assumption B, and K is the Sierpinski gasket. Bγ = {S, T, U}, Cγ =
Pγ = {P, Q, R} and h is given by

h(x, y) =


γ−1

1 (x, y) (x, y) ∈ ∆PSU ∩ K,
γ−1

2 (x, y) (x, y) ∈ ∆TSQ ∩ K,
γ−1

3 (x, y) (x, y) ∈ ∆TRU ∩ K.

As in [9], we shall construct a C∗-correspondence (or Hilbert C∗-bimodule)
for the self-similar map γ = (γ1, . . . , γN). Let A = C(K), and Cγ = {(γj(y), y) :
j ∈ Σ, y ∈ K}. We put Xγ = C(Cγ). We define left and right A-module actions
and an A-valued inner product on Xγ as follows:

(a · f · b)(γj(y), y) = a(γj(y)) f (γj(y), y)b(y) y ∈ K, j = 1, . . . , N

( f |g)A(y) =
N

∑
j=1

f (γj(y), y)g(γj(y), y),

where f , g ∈ Xγ and a, b ∈ A. We denote by K(Xγ) the set of compact oper-
ators on Xγ, and by L(Xγ) the set of adjointable operators on Xγ and by φ the
∗-homomorphism from A to L(Xγ) given by φ(a) f = a · f . Recall that the algebra
of compact operators K(Xγ) is the C∗-algebra generated by the rank one operators
{θx,y : x, y ∈ Xγ}, where θx,y(z) = x(y|z)A for z ∈ X. When we do stress the role
of X, we write θx,y = θX

x,y. We put JX = φ−1(K(Xγ)). Then JX is an ideal of A.

LEMMA 1.4 (Kajiwara–Watatani [9]). Let γ = (γ1, . . . , γN) be a self-similar
map on a compact set K. Then Xγ is an A-A correspondence and full as a right Hilbert
module. Moreover JX remembers the branch set Bγ so that JX = { f ∈ A : f (b) =
0 for each b ∈ Bγ}.

We denote by Oγ the Cuntz–Pimsner C∗-algebra ([13]) associated with the
C∗-correspondence Xγ and call it the Cuntz–Pimsner algebra Oγ associated with
a self-similar map γ. Recall that the Cuntz–Pimsner algebra Oγ is the universal
C∗-algebra generated by i(a) with a ∈ A and Sξ with ξ ∈ Xγ satisfying that
i(a)Sξ = Sφ(a)ξ , Sξ i(a) = Sξa, S∗ξ Sη = i((ξ|η)A) for a ∈ A, ξ, η ∈ Xγ and i(a) =

(iK ◦ φ)(a) for a ∈ JX , where iK : K(Xγ) → Oγ is the homomorphism defined by
iK(θξ,η) = Sξ S∗η [7]. We usually identify i(a) with a in A. We also identify Sξ with
ξ ∈ X and simply write ξ instead of Sξ . There exists an action β : R → Aut Oγ

defined by βt(Sξ) = eitSξ for ξ ∈ Xγ and βt(a) = a for a ∈ A, which is called the
gauge action.
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THEOREM 1.5 ([9]). Let γ be a self-similar map on a compact metric space K. If
(K, γ) satisfies the open set condition, then the associated Cuntz–Pimsner algebra Oγ is
simple and purely infinite.

Let X⊗n
γ be the n-times inner tensor product of Xγ and φn denotes the left

module action of A on X⊗n
γ . Put

F (n) = A⊗ I +K(Xγ)⊗ I +K(X⊗2
γ )⊗ I + · · ·+K(X⊗n

γ ) ⊂ L(X⊗n
γ ).

We embed F (n) into F (n+1) by T 7→ T ⊗ I for T ∈ F (n). Put F (∞) =
∞⋃

n=0
F (n). It

is important to recall that Pimsner [13] shows that we can identify F (n) with the
C∗-subalgebra of Oγ generated by A and SxS∗y for x, y ∈ X⊗k, k = 1, . . . , n under
identifying SxS∗y with θx,y, and the inductive limit algebra F (∞) is isomorphic to
the fixed point subalgebraOT

γ ofOγ under the gauge action and is called the core.
We shall identify the OT

γ with F (∞).

2. MATRIX REPRESENTATION OF THE n-TH CORES

If a self-similar map γ = (γ1, . . . , γN) has a branch point, then the Hilbert
module Xγ is not a finitely generated projective module and K(Xγ) 6= L(Xγ).
But if the self-similar map γ satisfies Assumption B, then Xγ is near to a finitely
generated projective module in the following sense: The compact algebra K(Xγ)
is equal to the set K0(Xγ) of finite sums of rank one operators θx,y. Moreover
K(Xγ) is realized as a subalgebra of the full matrix algebra MN(A) over A =
C(K) consisting of matrix valued functions f on K such that their scalar matrices
f (c) live in certain restricted subalgebras for each c in the finite set Cγ and live in
the full matrix algebra MN(C) for other c /∈ Cγ. We can describe the restricted
subalgebras in terms of the singularity structure of the self-similar map γ, i.e.,
branch set, branch value set and branch indices. Let Yγ := AN be a free module
over A = C(K). Then L(Yγ) is isomorphic to MN(A). Therefore it is natural
to realize the bi-module Xγ as a submodule Zγ of Yγ := AN in terms of the
singularity structure of the self-similar map γ.

More precisely, we shall start with defining left and right A-module actions
and an A-inner product on Yγ as follows:

(a · f · b)i(y) = a(γi(y)) fi(y)b(y), ( f |g)A(y) =
N

∑
i=1

fi(y)gi(y),

where f = ( f1, . . . , fN), g = (g1, . . . , gN) ∈ Yγ and a, b ∈ A. Then Yγ is clearly an
A-A correspondence and Yγ is a finitely generated projective right module over
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A. We define

Zγ :={ f = ( f1, . . . , fN) ∈ AN :

for any c ∈ Cγ, b ∈ Bγ with h(b) = c, f j(b,k)(c) = f j(b,k′)(c) 1 6 k, k′ 6 eb},

that is, the i-th component fi(c) of the vector ( f1(c), . . . , fN(c)) ∈ CN is equal to
the i′-th component fi′(c) of it for any i, i′ in the same index subset

{j ∈ Σ : b = γj(c)} = {j(b, 1), j(b, 2), . . . , j(b, eb)}

for each b ∈ Bγ.
Thus the bimodule Zγ is described by the singularity structure of the self-

similar map γ directly.
It is clear that Zγ is a closed subspace of Yγ. Moreover Zγ is invariant under

left and right actions of A. In fact for any f = ( f1, . . . , fN) ∈ Zγ and a, a′ ∈ A,

(a f a′)j(b,k)(c) = a(γj(b,k)(c)) f j(b,k)(c)a′(c)

= a(γj(b,k′)(c)) f j(b,k′)(c)a′(c) = (a f a′)j(b,k′)(c)

for 1 6 k, k′ 6 eb, since γj(b,k)(c) = γj(b,k′)(c). Therefore Zγ is also an A-A corre-
spondence with the A-bimodule structure and the A-valued inner product inher-
ited from Yγ.

We shall analyze Zγ by studying its fibers. We can describe the fibers in
terms of branch points.

For c ∈ K, we define the fiber Zγ(c) of Zγ on c by

Zγ(c) = { f (c) ∈ CN : f ∈ Zγ ⊂ C(K,CN)}.

Let A be a subalgebra of L(Yγ) = MN(A) = C(K, Mn(C)). For c ∈ K, we
also study the fiber A(c) of A on c by

A(c) = {T(c) ∈ MN(C) : T ∈ A ⊂ C(K, MN(C))}.

In order to get the idea and to simplify the notation, just consider the fol-
lowing local situation for example: Assume that N = 5, c ∈ Cγ and h−1(c) =
{b1, b2} ⊂ Bγ,

b1 = γ1(c) = γ2(c), b2 = γ3(c) = γ4(c) = γ5(c),

that is,

b1
γ1,γ2⇐= c

γ3,γ4,γ5=⇒ b2.

Consider the following degenerated subalgebra A of a full matrix algebra
M5(C):

A = {a = (aij) ∈ M5(C) : a1j = a2j, ai1 = ai2, a3j = a4j = a5j, ai3 = ai4 = ai5}.
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Then

A =




a a b b b
a a b b b
c c d d d
c c d d d
c c d d d

 : a, b, c, d ∈ C


is isomorphic to M2(C). Consider the subspace

W = {(x, x, y, y, y) ∈ C5 : x ∈ C, y ∈ C}

of C5. Let u1 = (1/
√

2) (1, 1, 0, 0, 0)t ∈ W and u2 = (1/
√

3) (0, 0, 1, 1, 1)t ∈ W.
Then {u1, u2} is a basis of W and {θW

ui ,uj
}i,j=1,2 is a matrix unit of A and

A =
{ 2

∑
i,j=1

aijθ
W
ui ,uj

: aij ∈ C
}
= L(W).

Then the argument above shows the following:

LEMMA 2.1. Let γ be a self-similar map on a compact metric space K. Then
for c ∈ K, wc := dim(Zγ(c)) is equal to the cardinality of h−1(c) without counting
multiplicity. We can take the following basis {uc

i }i=1,...,wc of Zγ(c) ⊂ CN : Rename
h−1(c) = {b1, . . . , bwc}. Then the j-th component of the vector uc

i is equal to 1/√ebi
if

j ∈ {j ∈ Σ : bi = γj(h(bi))} = {j(bi, 1), j(bi, 2), . . . , j(bi, ebi
)} and is equal to 0 if j is

otherwise.

We shall show that Xγ and Zγ are isomorphic as correspondences.

LEMMA 2.2. Let γ be a self-similar map on a compact metric space K. Then the
C∗-correspondences Xγ and Zγ are isomorphic.

Proof. Recall that A = C(K), Cγ = {(γj(y), y) : j ∈ Σ, y ∈ K} and Xγ =
C(Cγ). We define ϕ : Xγ → Zγ by

(ϕ(ξ))(y) = (ξ(γ1(y), y), . . . , ξ(γN(y), y))

for ξ ∈ Xγ = C(Cγ). Since ξ is continuous, ϕ(ξ) is continuous because of the
continuity of γi’s. It is easy to check that ϕ(ξ) is contained in Zγ.

Conversely we define ϕ : Zγ → Xγ by

(ψ( f ))(γj(y), y) = f j(y) (j = 1, . . . , N, y ∈ K),

for f = ( f1, . . . , jN) ∈ Zγ. Since f j(b,k)(h(b)) = f j(b,k′)(h(b)) for b ∈ Bγ and
1 6 k, k′ 6 eb, ϕ is well-defined. Since

(ψ ◦ ϕ)(ξ) = ξ, (ϕ ◦ ψ)( f ) = f ,

for ξ ∈ Xγ, f ∈ Zγ, and

(ϕ(ξ1)|ϕ(ξ2))A = (ξ1|ξ2)A

for ξi ∈ Xγ, the C∗-correspondences Xγ and Zγ are isomorphic.
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We shall identify Xγ with Zγ and regard it as a closed subset of Yγ = AN =

C(K,CN).
For a Hilbert A-module W, we denote by K0(W) the set of finite rank opera-

tors (i.e. finite sum of rank one operators) on W, that is,

K0(W) =
{ n

∑
i=1

θW
xi ,yi

: n ∈ N, xi, yi ∈W
}

.

We first examine the situation locally and study each fiber Zγ(c) to get the
idea, although we need to know the global behavior.

We shall show that the algebra K(Zγ) is described globally by imposing
the local identification conditions of the fiber K(Zγ(c)) on each branched val-
ues c and is represented as a subalgebra of MN(C(K)) = C(K, MN(C)). But
we need a careful analysis, because L(Zγ) is not represented as a subalgebra of
MN(C(K)) = C(K, MN(C)) globally in general.

We shall show that the algebra K(Zγ) is isomorphic to the following subal-
gebra Dγ of MN(C(K)) = C(K, MN(C)):

Dγ = {a = [aij]i,j ∈ MN(A) = C(K, MN(C)) : for c ∈ Cγ, b ∈ Bγ with h(b) = c,

aj(b,k),i(c) = aj(b,k′),i(c), 1 6 k, k′ 6 eb, 1 6 i 6 N,

ai,j(b,k)(c) = ai,j(b,k′)(c), 1 6 k, k′ 6 eb, 1 6 i 6 N}.

The algebra Dγ is a closed ∗-subalgebra of MN(A) = K(Yγ) and is de-
scribed by the identification equations on each fibers in terms of the singularity
structure of the self-similar map γ. We shall use the fact that each fiber Dγ(c)
on c ∈ K is isomorphic to the matrix algebra Mwc(C) and simple, where wc =
dim(Zγ(c)).

For each c ∈ Cγ, we take the basis {uc
i }i=1,...,wc of Zγ(c) = { f (c) : f ∈

Zγ} ⊂ CN in Lemma 2.1.
Then the following lemma is clear as in the example before Lemma 2.1.

LEMMA 2.3. The algebra Dγ is expressed as

Dγ =
{

a=[aij]ij∈MN(A) : for any c∈Cγa(c)= ∑
16i,i′6wc

λc
i,i′θ

CN

uc
i ,uc

i′
for some scalars λc

i,i′

}
.

We need an elementary fact.

LEMMA 2.4. Let f = t( f1, . . . , fN) ∈ Zγ, g = t(g1, . . . , gN) ∈ Zγ. Then the
rank one operator θ

Yγ

f ,g ∈ L(Yγ) is in Dγ and represented by the operator matrix

θ
Yγ

f ,g = [ figj]ij ∈ MN(A),

Proof. θ
Yγ

f ,g is expressed as the matrix [ figj]ij by simple calculation. Since f ,
g ∈ Zγ, the matrix is contained in Dγ as in the example before Lemma 2.1.
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We denote by K0(Zγ) the set of finite rank operators on Zγ, that is, K0(Zγ)

:=
{ n

∑
i=1

θ
Zγ
xi ,yi ∈ L(Zγ) : n ∈ N, xi, yi ∈ Zγ

}
. The set of compact operators K(Zγ) is

the norm closure ofK0(Zγ). We also consider the corresponding operators on Yγ.

LEMMA 2.5. Let K(Zγ ⊂ Yγ) ⊂ L(Yγ) be the norm closure of

K0(Zγ ⊂ Yγ) :=
{ n

∑
i=1

θ
Yγ
xi ,yi ∈ L(Yγ) : n ∈ N, xi, yi ∈ Zγ

}
.

For any T ∈ K(Zγ ⊂ Yγ), we have T(Zγ) ⊂ Zγ and the restriction map

δ : K(Zγ ⊂ Yγ) 3 T → T|Zγ ∈ K(Zγ)

is an onto ∗-isomorphism such that

δ
( n

∑
i=1

θ
Yγ
xi ,yi

)
=

n

∑
i=1

θ
Zγ
xi ,yi .

Proof. For any T =
n
∑

i=1
θ

Yγ
xi ,yi ∈ K0(Zγ ⊂ Yγ) and f ∈ Zγ, we have

T f =
n

∑
i=1

θ
Yγ
xi ,yi f =

n

∑
i=1

xi(yi| f )A ∈ Zγ.

Moreover

‖T‖ =
∥∥∥ n

∑
i=1

θ
Yγ
xi ,yi

∥∥∥ = ‖((yi|xj)A)ij‖ =
∥∥∥ n

∑
i=1

θ
Zγ
xi ,yi

∥∥∥ = ‖δ(T)‖,

by Lemma 2.1 in [7]. Hence δ is isometric on K0(Zγ ⊂ Yγ). Therefore for any
T ∈ K(Zγ ⊂ Yγ), we have T(Zγ) ⊂ Zγ and δ is isometric on K(Zγ ⊂ Yγ).
Since the calculation rules of the rank one operators are the same, δ is an onto
∗-isomorphism.

LEMMA 2.6. Let γ be a self-similar map on a compact metric space K that satisfies
Assumption B. Then K0(Xγ) = K(Xγ), K0(Zγ) = K(Zγ) and K0(Zγ ⊂ Yγ) =
K(Zγ ⊂ Yγ) = Dγ ⊂ MN(A).

Proof. Since K(Xγ), K(Zγ) and K(Zγ ⊂ Yγ) are isomorphic and corre-
sponding finite rank operators are preserved, it is enough to show that Dγ ⊂
K0(Zγ ⊂ Yγ). We take T ∈ Dγ. By Lemma 2.3, for c ∈ Cγ, T(c) has the fol-
lowing form:

T(c) = ∑
06i,i′6wc

λc
i,i′θ

CN

uc
i ,uc

i′
.

For each c ∈ Cγ, we take f c ∈ A = C(K) such that f c(c) = 1, f c(x) > 0 and the
supports of { f c}c∈Cγ

are disjoint each other. Define f c
i ∈ Zγ by f c

i (x) = f c(x)ec
i

for x ∈ K. Put
S = T − ∑

c∈Cγ

∑
06i,i′6wc

λc
i,i′θ

Yγ

f c
i , f c

i′
.
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Then S(c) = 0 for each c ∈ Cγ. Since S is obtained by subtracting finite rank
operators inK0(Zγ ⊂ Yγ) from T, it is sufficient to show that S is inK0(Zγ ⊂ Yγ).
We represent S as S = [Sij]i,j ∈ MN(A). Consider the Jordan decomposition of
Sij ∈ A = C(K) as follows:

Sij = S1
i,j − S2

i,j +
√
−1(S3

i,j − S4
i,j),

with S1
i,j, S2

i,j, S3
i,j, S4

i,j > 0 and S1
i,jS

2
i,j = 0, S3

i,jS
4
i,j = 0. Then Sp

i,j(c) = 0 for 1 6 p 6 4

and c ∈ Cγ. Each element T ∈ MNn(A) with (i, j) element Sp
i,j(> 0) and with

other elements 0 is expressed as θ(Sp
i,j)

1/2δi ,(S
p
i,j)

1/2δj
, where δi is an element in CN

with (δi)j = 1 for j = i and (δi)j = 0 for j 6= i. Since Sp
i,j(c) = 0 for any c ∈ Cγ,

(Sp
i,j)

1/2δi and (Sp
i,j)

1/2δj are in Zγ. Because

S = ∑
p

∑
i,j

θ
Yγ

(Sp
i,j)

1/2δi ,(S
p
i,j)

1/2δj
,

S is in K0(Zγ ⊂ Yγ).

Next we study the matrix representation of K(X⊗n
γ ). We consider the com-

position of self-similar maps and use the following notation of multi-index: For
i = (i1, i2, . . . , in) ∈ Σn, we put

γi = γin ◦ γin−1 ◦ · · · ◦ γi1 ,

and γn = {γi}i∈Σn . Then γi is a proper contraction, and γn is a self-similar map
on the same compact metric space K.

LEMMA 2.7. Let γ be a self-similar map on a compact metric space K that satis-
fies Assumption B. Then Cγn and Bγn are finite sets and Cγn ⊂ Cγn+1 for each n =
1, 2, 3, . . . . The set of branch points Bγn is given by

Bγn = {γj(b) : b ∈ Bγ, j ∈ Σk, 0 6 k 6 n− 1}.

Moreover, if γi(c) = γj(c) and i 6= j, then there exists unique 1 6 s 6 n such that
is 6= js and ip = jp for p 6= s.

Proof. Since γ satisfies Assumption B, Cγn and Bγn are finite sets. Let c ∈
Cγn . Then b = γi(c) = γj(c) with i = (i1, . . . , in), j = (j1, . . . , jn) ∈ Σn and
i 6= j. We put ĩ = (i, i1, . . . , in) and j̃ = (i, j1, . . . , jn) for some 1 6 i 6 N. Then
γĩ(c) = γj̃(c), ĩ, j̃ ∈ Σn+1 and ĩ 6= j̃. Hence c ∈ Cγn+1 .

Let d = γj(b) for some b ∈ Bγ and j ∈ Σk, 0 6 k 6 n − 1. We rewrite it
as d = γjn ◦ γjn−1 ◦ · · · ◦ γjn−k+1

(b). Since b ∈ Bγ, there exist c ∈ Cγ and j 6= j
′

with b = γj(c) = γj ′ (c). There exist jn−k−1, jn−k−2, . . . , j1 and a ∈ K with c =

γn−k−1 ◦ jn−k−2 ◦ · · · ◦γj1(a). We put j = (jn, jn−1, . . . , jn−k+1, j, jn−k−1, . . . , j1) and
j′ = (jn, jn−1, . . . , jn−k+1, j

′
, jn−k−1, . . . , j1). Thus d = γj(a) = γj′(a) and j 6= j′.

Hence d ∈ Bγn .
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Conversely, let d ∈ Bγn . Then d = γj(a) = γj′(a) for some a ∈ K, j, j′ ∈ Σn

with j 6= j′. Here a is uniquely determined by d, because a = hn(d). Similarly
we have γjr (a) = γj ′r

(a) = hn−r(d) with 0 6 r 6 n− 1. We write j = (jn, . . . , j1),
j′ = (j′n, . . . , j′1). We may assume that jn−k 6= j′n−k for some k, (0 6 k 6 n− 1). We
put

c = γjn−k−1
◦ · · · ◦ γj1(a) = γj′n−k−1

◦ · · · ◦ γj′1
(a).

Then c = hk+1(d) = c′. We put b = γjn−k (c)
′ = γj′n−k

(c). Then b = hk(d). It
follows that b ∈ Bγ and d = jn ◦ · · · ◦ jn−k+1(b) with b ∈ Bγ.

Suppose that there exist more than one s with is 6= js. Then there exists
b ∈ Bγ ∩ Pγ. This contradicts condition (iii) of Assumption B. Therefore there
exists a unique 1 6 s 6 n such that is 6= js and ip = jp for p 6= s.

We denote by Xγn the A-A correspondence for γn. We need to recall the
following fact in [9].

LEMMA 2.8. As A-A correspondences, X⊗n
γ and Xγn are isomorphic.

Proof. There exists a Hilbert bimodule isomorphism ϕ : X⊗n
γ → Xγn such

that

(ϕ( f1 ⊗ · · · ⊗ fn))(γi1,...,in , y)

= f1(γi1,...,in(y), γi2,...,in(y) f2(γi2,...,in(y), γi3,...,in(y)) · · · fn(γin(y), y)

for f1, . . . , fn ∈ X, y ∈ K and i = (i1, . . . , in) ∈ Σn.

For γn, we define a subset Dγn
of MNn(A) as in the case of γ. We also

consider Cγn instead of Cγ. We use the same notation eb for b ∈ Bγn with hn(b) =
c and {j(b, k) : 1 6 k 6 eb} for γn as in γ if there occur no troubles. Let

Dγn
= {[aij]ij ∈ MNn(A) : for any c ∈ Cγn , b ∈ Bγn with hn(b) = c,

aj(b,k),i(c) = aj(b,k′),i(c), ai,j(b,k)(c) = ai,j(b,k′)(c)

for all 1 6 k, k′ 6 eb, 1 6 i 6 Nn}.

We note that Dγn
is invariant under the pointwise multiplication of function

f ∈ A = C(K).

LEMMA 2.9. X⊗n
γ is isomorphic to a closed submodule Zγn of ANn

as follows:

X⊗n
γ ' Zγn = {( f1, . . . , fN) ∈ AN : for any c ∈ Cγn , b ∈ Bγ with hn(b) = c,

f j(b,k)(c) = f j(b,k′)(c), 1 6 k, k′ 6 eb}.

The proof follows from the isomorphism between X⊗n
γ and Xγn and Lem-

ma 2.2.

PROPOSITION 2.10. Let γ be a self-similar map on a compact metric space K that
satisfies Assumption B. Then K0(X⊗n

γ ) coincides with K(X⊗n
γ ) and is isomorphic to the

closed ∗-subalgebra Dγn
of MNn(A).
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The proposition follows from the isomorphism between X⊗n
γ and Xγn , Lem-

ma 2.2 and Lemma 2.6.
We shall give a matrix representation of the finite core F (n) in MNn(A). Let

δ(r) : Dγr → K(Z⊗r
γ )

be the isometric onto ∗-isomorphism defined by the restriction to Z⊗r
γ . We put

Ω(r) = (δ(r))−1 : K(Z⊗r
γ )→ Dγr

.

We consider a family (F (n))n of subalgebras of the core:

F (n) = A⊗ I +K(X)⊗ I +K(X⊗2)⊗ I + · · ·+K(X⊗n) ⊂ L(X⊗n).

We embed F (n) into F (n+1) by T 7→ T ⊗ I for T ∈ F (n). Let F (∞) =
∞⋃

n=0
F (n) be

the inductive limit algebra.
We note that F (n+1) = F (n) ⊗ I +K(X⊗n+1). Thus F (n) is a C∗-subalgebra

of F (n+1) containing unit and K(X⊗n+1) is an ideal of F (n+1). We sometimes
writeF (n+1) = F (n) +K(X⊗n+1) for short. It is difficult to describe the extension
of ideals of a subalgebra and an ideal to their sum. But in our case we can use
Pimsner’s analysis above of the core to get a matrix representation Π(n) : F (n) →
MNn(A) of the whole F (n).

We introduce a subalgebra Eγ of K(Yγ) = L(Yγ) which preserves Zγ:

Eγ := {a = [ai,j]ij ∈ MN(A) = L(Yγ) : aZγ ⊂ Zγ}.

Here we identify Eγ ⊂ L(Yγ) with the corresponding subalgebra of MN(A). The
inclusion K(Zγ ⊂ Yγ) ⊂ Eγ is identified with the inclusion Dγ ⊂ Eγ. We note
that there exist elements of Eγ which are not contained in Dγ, and there can exist
elements of L(Zγ) which do not extend to Yγ.

PROPOSITION 2.11. The restriction map δ : Eγ → L(Zγ) is an isometric algebra
homomorphism and is a ∗-homomorphism on Eγ ∩ (Eγ)∗.

Proof. For ε > 0, we put Uε(Cγ) = {x ∈ K : d(x, c) < ε for some c ∈ Cγ}.
We take an integer n0 such that 2/n0 < min

c 6=c′(c,c′∈Cγ)
d(c, c′). For each integer n >

n0, we take a function fn ∈ A such that 0 6 fn(x) 6 1 and fn(x) = 0 on U1/n(Cγ)

and fn(x) = 1 outside U2/n(Cγ).
Let T ∈ Eγ. Then for each ξ ∈ Yγ, we have ξ fn ∈ Zγ. Moreover since Cγ is

a finite set and any point in Cγ is not an isolated point, we have

lim
n→∞

‖ξ fn‖ = ‖ξ‖, and lim
n→∞

‖T(ξ fn)‖ = lim
n→∞

‖(Tξ) fn‖ = ‖Tξ‖.

Therefore ‖δ(T)‖ = ‖T‖.

For r ∈ N, we also define a closed subalgebra Eγr

Eγr
:= {a = [ai,j]ij ∈ MNr (A) = K(Y⊗r

γ ) : aZγ⊗r ⊂ Zγ⊗r}
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and identify Eγr
with the corresponding subalgebra of MNr (A) as the γ case.

We shall extend the restriction map

δ(r) : Dγr → K(Z⊗r
γ ),

to the restriction map, with the same symbol,

δ(r) : Eγr → L(Z⊗r
γ ),

which is an isometric algebra homomorphism.
We define

ε(r) = (δ(r))−1 : δ(r)(Eγr ∩ (Eγr
)∗)→ Eγr ∩ (Eγr

)∗.

For a fixed positive integer n > 0, we take an integer 0 6 r 6 n. Taking
T ∈ K(Z⊗r

γ ), T is represented in L(Z⊗n
γ ) as φ(n,r)(T) = T ⊗ In−r. The map φ(n,r)

is a representation ofK(Z⊗r
γ ) in L(Z⊗n

γ ). On the other hand, T ∈ K(Z⊗r
γ ) extends

to Y⊗r
γ , and is represented as an element Ω(r)(T) in MNr (A) = K(Y⊗r

γ ). We put
Ω(n,r)(T) = Ω(r)(T)⊗ In−r. Thus

Ω(n,r) : K(Z⊗r
γ )→ MNn(A) = L(Y⊗n

γ ).

Since Ω(n,r)(T) for T ∈ K(Z⊗r
γ ) leaves Z⊗n

γ invariant, it is an element in Eγn
.

Moreover it holds that

φ(n,r)(T) = δ(n)(Ω(n,r)(T)).

We shall explain these facts more precisely and investigate the form of Ω(n,r).
We note that if we identify Yγ with C(K,CN), then we can identify Y⊗n

γ with
C(K,CNn

). For example, for f = ( fi)i, g = (gi)i, h = (hi)i ∈ Yγ = C(K,CN), we
can regard f ⊗ g⊗ h ∈ Y⊗3

γ as an element in C(K,CN3
) by

( f ⊗ g⊗ h)(x) = ( fi1(γi2 γi3(x))gi2(γi3(x))hi3(x))(i1,i2,i3),

for x ∈ K and i = (i1, i2, i3) ∈ Σ3.
We define (αj(a))(x) = a(γj(x)) for a ∈ A, j ∈ Σ and (αj(a))(x) = a(γj(x))

for j ∈ Σs. For T ∈ MNr (A), we define αj(T) ∈ MNr (A) and αj(T) ∈ MNr (A) for
j ∈ Σs by

(αj(T))ik = αj(Tik), (αj(T))ik = αj(Tik).

Let {Ai1,...,is : (i1, . . . , is) ∈ Σs} be a family of square matrices. We denote by

diag(Ai1,...,is)(i1,...,is)∈Σs

the block diagonal matrix with diagonal elements in {Ai1,...,is : (i1, . . . , is) ∈ Σs}.
We use lexicographical order for elements in Σs. We write (i1, . . . , is) <

(j1, . . . , js) if i1 = j1, . . . , it = jt and it+1 < jt+1 for some 1 6 t 6 s− 1.
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LEMMA 2.12. The natural embedding

L(Y⊗r
γ ) 3 T 7→ T ⊗ In−r ∈ L(Y⊗n

γ )

is identified with the matrix algebra embedding

MNr (A) 3 T 7→ diag(α(in ,in−1,...,ir+1)
(T))(in ,in−1,...,ir+1)∈Σn−r .

Proof. We note that {δi1 ⊗ · · · ⊗ δir}(i1,...,ir)∈Σr constitutes a base of Ar and
{δi1 ⊗ · · · ⊗ δin}(i1,...,in)∈Σn constitutes a base of An. We write

T = [T(i1,...,ir),(j1,...,jr)]((i1,...,ir),(j1,...,jr)] ∈ MNr (A).

Then
T(δi1 ⊗ · · · ⊗ δir ) = ∑

(j1,...,jr)∈Σr
δj1 ⊗ · · · ⊗ δjr T(j1,...,jr),(i1,...,ir).

Then it follows that

(T ⊗ In−r)(δi1 ⊗ · · · ⊗ δir ⊗ δir+1 ⊗ · · · ⊗ δin)

= T(δi1 ⊗ · · · ⊗ δir )⊗ δir+1 ⊗ · · · ⊗ δin

= ∑
(j1,...,jr)∈Σr

(δj1 ⊗ · · · ⊗ δjr )T(j1,...,jr),(i1,...,ir) ⊗ δir+1 ⊗ · · · ⊗ δin

= ∑
(j1,...,jr)∈Σr

(δj1 ⊗ · · · ⊗ δjr )⊗ (δir+1 ⊗ · · · ⊗ δin)αin ◦ · · · αir+1(T(j1,...,jr),(i1,...,ir))

= diag(α(iin ,...,ir+1)
(T))(iin ,...,ir+1)∈Σn−r ,

where we have used that ( f · δi)(x) = αi( f )(x)δi(x) = (δi · αi( f ))(x) for f ∈ A.

We describe the form of

Ω(n,r) : K(Z⊗r
γ )→ L(Y⊗n

γ ) = MNn(A).

For T ∈ K(Z⊗n−1
γ ), we have

Ω(n,n−1)(T) =

α1([Ω
(n−1)(T)ij]ij) 0 · · ·

...
. . . 0

0 0 αN([Ω
(n−1)Tij]ij)


= diag(αi(Ω

(n−1)(T)))i∈Σ,

which is written by the ordinary matrix notation. Similarly for T ∈ K(Z⊗r
γ ) (0 6

r 6 n− 1), Ω(n,r)(T) is expressed as:

Ω(n,r)(T) = diag(α(in ,in−1,...,ir+1)
(Ω(r)(T)))(in ,in−1,...,ir+1)∈Σn−r ,

where we use lexicographic order for Σn−r.
Then we can check that for any T ∈ L(Yγr ), 1 6 r 6 n , if T(Zγr ) ⊂ Zγr ,

then
(T ⊗ In−r)(Zγn) ⊂ Zγn

that is, Eγr ⊗ In−r ⊂ Eγn
.
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THEOREM 2.13 (matrix representation of the n-th core). Let γ be a self-similar
map on a compact metric space K that satisfies Assumption B. Then there exists an isomet-

ric ∗-homomorphism Π(n) : F (n) → MNn(A) such that, for T =
n
∑

r=0
Tr ⊗ In−r ∈ F (n)

with Tr ∈ K(X⊗r
γ ),

Π(n)(T) =
n

∑
r=0

Ω(n,r)(Tr),

and if we identify X⊗r
γ with Z⊗r

γ , then

Ω(n,r)(θ
Zγr
x,y ) = θ

Yγr
x,y ⊗ In−r.

The image Π(n)(T) is independent of the expression of T =
n
∑

r=0
Tr ⊗ In−r ∈ F (n).

Moreover the following diagram commutes:

F (n) Π(n)
−−−−→ MNn(A)y y

F (n+1) Π(n+1)
−−−−→ MNn+1(A).

In particular the core F (∞) is represented in MN∞(A) as a C∗-subalgebra.

Proof. Consider the following commutative diagram:

(MNr (A) ⊃)Dγr T 7→T⊗In−r−−−−−−→ Eγr ∩ (Eγr
)∗(⊂ MNn(A))

Ω(r)

x yδ(n)

K(X⊗r
γ ) −−−−→

φ(n,r)
L(X⊗n

γ ) ' L(Z⊗n
γ ) .

It means that φ(n,r)(S) extends to MNn(A) ' L(Y⊗n
γ ) and φ(n,r)(S) is identified

with δ(n)(Ω(n,r)(S)) for S ∈ K(X⊗r
γ ).

Now we recall that Pimsner [13] constructed the isometric ∗-homomorphism

ϕ : F (n) → L(X⊗n
γ ) such that for T =

n
∑

r=0
Tr ⊗ In−r, Tr ∈ K(X⊗r

γ ) r = 0, . . . , n,

ϕ(T) =
n

∑
r=0

φ(n,r)(Tr).

Since the restriction map

δ(n) : Eγr ∩ (Eγr
)∗ → L(Z⊗n

γ ) ' L(X⊗n
γ ),

is also an isometric ∗-homomorphism, the composition of ϕ with the inverse
ε(n) := (δ(n))−1 on the image of δ(n) gives the desired isometric ∗-homomorphism
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Π(n) : F (n) → MNn(A). Hence we have

Π(n)
( n

∑
r=0

Tr ⊗ I
)
= ε(n)

( n

∑
r=0

φ(n,r)(Tr)
)
=

n

∑
r=0

ε(n)(φ(n,r)(Tr)) =
n

∑
r=0

Ω(n,r)(Tr).

Therefore the rest is clear.

3. CLASSIFICATION OF IDEALS

We recall the Rieffel correspondence on ideals of Morita equivalent C∗-
algebras in Rieffel [16], Zettl [17] and Raeburn and Williams [15], which plays
an important role in our analysis of the ideal structure of the core. Let A and B
be C∗-algebras. Suppose that B and A are Morita equivalent by an equivalence
bimodule X = BXA. Then B and A have the same ideal structure. Let Ideal(A)
(respectively Ideal(B)) be the set of ideals of A (respectively B). Then there ex-
ists a lattice isomorphism between Ideal(A) and Ideal(B). The correspondence
is given by ϕ : Ideal(A) → Ideal(B) and ψ : Ideal(B) → Ideal(A) as follows:
Let J ∈ Ideal(A) be an ideal of A. Then the corresponding ideal I = ϕ(J) of B is
given by

I = ϕ(J) = span{B(x1a1|x2a2) : x1, x2 ∈ X, a1, a2 ∈ J}
= span{B(x1a|x2) : x1, x2 ∈ X, a ∈ J}.

Let I ∈ Ideal(B) be an ideal of B. Then the corresponding ideal J = ψ(I) of A is
given by

J = ψ(I) = span{(b1x1|b2x2)A : x1, x2 ∈ X, b1, b2 ∈ I}
= span{(x1|bx2)A : x1, x2 ∈ X, b ∈ I}.

Here, we have

XJ := span{xa : x ∈ X, a ∈ J} = {y ∈ X : (x|y)A ∈ J for any x ∈ X}
= {y ∈ X : (y|y)A ∈ J}.

Moreover we have

ϕ(J) = {b ∈ B : (x|by)A ∈ J for any x, y ∈ X}, and

ψ(I) = {a ∈ A :B (xa|y) ∈ J for any x, y ∈ X}.
In fact, it is trivial that ϕ(J) ⊂ {b ∈ B : (x|by)A ∈ J for any x, y ∈ X}. Conversely
assume that b ∈ B satisfies that (x|by)A ∈ J for any x, y ∈ X. Therefore by ∈ XJ
for any y ∈ X. Since B(X|X) spans a dense ∗-ideal L of B, the set of positive
elements of L of norm strictly less than 1 is an approximate unit of B. Therefore b
is uniformly approximated by an element of the form

b ∑
i

B(xi|yi) = ∑
i

B(bxi|yi) ∈ ϕ(J),
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and bxi ∈ XJ . Therefore b is also in ϕ(J). The rest is similarly proved.
For any ideal I of the core F (∞), we shall associate a family (FI

n)n of closed
subsets of K using the above Rieffel correspondence.

Recall that the bimodule X⊗n
γ gives a Morita equivalence between K(X⊗n

γ )

and A = C(K). Let I be an ideal of F (∞). Then In := I ∩ K(X⊗n
γ ) is an ideal of

K(X⊗n
γ ). Let Jn = ψ(In) be the corresponding ideal of A = C(K) by the Rieffel

correspondence. Let FI
n be the corresponding closed subset of K, that is,

FI
n = {x ∈ K : a(x) = 0 for any a ∈ Jn},

Jn = {a ∈ A = C(K) : a(x) = 0 for any x ∈ FI
n}.

By the discussion above, we have the following:

LEMMA 3.1. Let γ be a self-similar map satisfying Assumption B. Let I be an ideal
of the core F (∞). Then

(i) FI
n = {x ∈ K : (η1|Tη2)A(x) = 0 for each η1, η2 ∈ X⊗n

γ , T ∈ I ∩K(X⊗n
γ )}.

(ii) In = I ∩ K(X⊗n
γ ) = {T ∈ K(X⊗n

γ ) : (η1|Tη2)A(y) = 0 for each y ∈
Fn

I , η1, η2 ∈ X⊗n
γ }.

In particular, consider the case that n = 1 so that I1 = I ∩K(Xγ). Then
(i’) FI

1 = {x ∈ K : (η1|Tη2)A(x) = 0 for each η1, η2 ∈ Xγ, T ∈ I1 = I ∩K(Xγ)}.
(ii’) I1 = {T ∈ K(Xγ) : (η1|Tη2)A(y) = 0 for each y ∈ FI

1 , η1, η2 ∈ Xγ}.

We investigate fibers (Π(n)(K(X⊗n
γ )))(y) on y ∈ K.

COROLLARY 3.2. Let y ∈ K. If y /∈ Fn
I , then the fiber (Π(n)(I ∩ K(X⊗n

γ )))(y)
on y coincides with the full algebra (Π(n)(K(X⊗n

γ )))(y).

Proof. It is clear from the facts that (Π(n)(K(X⊗n
γ )))(y) is isomorphic to

Mwy(C) and simple, and (Π(n)(I ∩K(X⊗n
γ )))(y) is non-zero since y /∈ Fn

I .

LEMMA 3.3. Let a ∈ K. If h(a) is in FI
n+1, then a is in FI

n.

Proof. Assume that h(a) is in FI
n+1. Take an arbitrary T ∈ K(X⊗n

γ ) ∩ I. For
any ξ, ξ ′ ∈ X⊗n

γ , η, η′ ∈ Xγ, we have (T ⊗ I)θξ⊗η,ξ ′⊗η′ ∈ K(X⊗n+1
γ ) ∩ I = In+1.

Therefore for arbitrary ω, ω′ ∈ X⊗n
γ , ζ, ζ ′ ∈ Xγ, it holds that

(ω⊗ ζ|((T ⊗ I)θξ⊗η,ξ ′⊗η′)ω
′ ⊗ ζ ′)A(h(a)) = 0.

Calculating the left hand, we have

(ω⊗ ζ|(Tξ)⊗ η(ξ ′ ⊗ η′|ω′ ⊗ ζ ′)A)A(h(a))

= (ω⊗ ζ|(Tξ)⊗ η)A(h(a))(ξ ′ ⊗ η′|ω′ ⊗ ζ ′)A(h(a)).

Since we can choose ξ ′, ω′ ∈ X⊗n
γ , η′, ξ ′ ∈ Xγ with (ξ ′ ⊗ η′|ω′ ⊗ ζ ′)A(h(a)) 6= 0,

it holds that
(ω⊗ ζ|(Tξ)⊗ η)A(h(a)) = 0.
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Thus it holds that
(ζ|(ω|Tξ)Aη)A(h(a)) = 0,

for each ζ, η ∈ Xγ. Hence we have that

(ω|Tξ)A(a) = 0

for each ω, ξ ∈ X⊗n
γ . This implies that a is in FI

n.

We note that the converse of Lemma 3.3 does not hold in general.

LEMMA 3.4 ([11]). Let f ∈ A = C(K). If f |Bγ = 0, then for any T ∈ K(X⊗n
γ ),

we have that Tφn(αn( f ))⊗ I is contained in K(X⊗n+1
γ ).

Proof. Since f |Bγ = 0, we have that f ∈ JXγ . For ξ, η ∈ X⊗n
γ , we have

θ
X⊗n

γ

ξ,η φn(αn( f )) = θ
X⊗n

γ

ξ,φn(αn( f )∗)η = θ
X⊗n

γ

ξ,η· f ∗ .

Since (K(X⊗n
γ )⊗ I)∩K(X⊗n+1

γ ) = K(X⊗n
γ JXγ)⊗ I ([5]), the lemma is proved.

Even if a is not in Bγ, h(a) may be in Cγ. Therefore we need the following
careful analysis.

LEMMA 3.5. Let a be in K. We assume that a /∈ Bγ. If a is in FI
n, then h(a) is in

FI
n+1.

Proof. Let a /∈ Bγ and a ∈ FI
n. Put b = h(a). Suppose that b /∈ FI

n+1. By
changing the number of γj, we may assume a = γ1(b). Because a /∈ Bγ, a = γj(b)
if and only if j = 1. Since b /∈ FI

n+1 and FI
n+1 is closed, there exists an open neigh-

borhood U(b) of b such that U(b) ∩ FI
n+1 = ∅ and any x ∈ U(b) with x 6= b is

not in Cγ. (But b may be in Cγ.) Therefore for any x ∈ U(b), Π(n+1)(K(X⊗n+1
γ ) ∩

I)(x) 6= 0 and it coincides with the total algebra Π(n+1)(K(X⊗n+1
γ ))(x), because

it is simple. By the form of the representation Π(n+1) of K(X⊗n+1
γ ), for any

T ∈ MNn(C), the element [
T O
O O

]
is contained in

Π(n+1)(K(X⊗n+1
γ ))(b) = Π(n+1)(K(X⊗n+1

γ ) ∩ I)(b).

Moreover, if T′ ∈ C(K, MNn+1(C)) ' MNn+1(A) satisfies that

T′(b) =
[

T O
O O

]
and T′(x) is 0 for x /∈ U(b), then T′ is contained in Π(n+1)(K(Xn+1

γ ) ∩ I).
We choose and fix T 6= O with T ∈ Π(n)(K(X⊗n

γ ))(a). Since γ1 is con-
tinuous and a /∈ Bγ, there exists an open neighborhood V(a) of a such that
V(a) ⊂ γ1(U(b)), V(a) ∩ Bγ = ∅, and V(a) ∩ Cγ does not contain any element
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except for a. We take f ∈ C(K) such that f (a) = 1 and f (x) = 0 outside V(a).
We put S(x)ij = Tij f (x). Then it holds that S ∈ Π(n)(K(X⊗n

γ )). We express it
as S = Π(n)(S′), S′ ∈ K(X⊗n

γ ). By the choice of f , it holds that S′ ∈ K(X⊗n+1
γ ).

Since γ1(b) = a and γj(b) 6= a for j 6= 1, we have

Π(n+1)(S′)(b) =
[

S(a) O
O O

]
=

[
T O
O O

]
.

Moreover, since Π(n+1)(S′)(x) is 0 outside U(b), it holds that Π(n+1)(S′)
∈ Π(n+1)(K(X⊗n+1

γ )∩ I). Thus we find S′ ∈ K(X⊗n
γ )∩ I such that Π(n)(S′)(a) =

T 6= O. It implies that a /∈ FI
n. But this is a contradiction.

LEMMA 3.6. Let a and b be in K. Assume that a is in FI
0 and a /∈ Orb. If there

exists a positive integer n with hn(a) = hn(b), then b is also contained in FI
0 .

Proof. Since a /∈ Orb, hn(a) is not contained in Bγ for every positive integer
n. Therefore hn(a) ∈ FI

n for every positive integer n by Lemma 3.5. Since hn(b) =
hn(a), it holds that b ∈ FI

0 by Lemma 3.3.

LEMMA 3.7. Let γ be a self-similar map on K and a ∈ K. Then the set

C(a) := {b ∈ K : hn(b) = hn(a) for some n = 0, 1, 2, 3, . . . } =
⋃
n

⋃
j∈Σn

γj(hn(a))

is dense in K.

Proof. Since γ is a self-similar map on K, there exists a positive constant
0 < c < 1 such that for any j ∈ Σ, d(γj(x), γj(y)) 6 cd(x, y) for any x, y ∈ K.
Let M > 0 be the diameter of K. Take a ∈ K. For any ε > 0, choose n such that

Mcn < ε. We put hn(a) = d. Since γ is a self-similar map, K =
N⋃

i=1
γi(K). Iterating

the operations n-times, we have that

K =
⋃

j∈Σn

γj(K).

Then the diameter of γj(K) is less than ε. Each subset γj(K) contains b = γj(d)
and b is in C(a), because hn(b) = d. Hence for any z ∈ K and for any ε > 0, there
exists an element b ∈ C(a) such that d(b, z) < ε. Therefore C(a) is dense in K.

The above lemma also implies the following: Let γ be a self-similar map on
K. Then K does not have any isolated points. In fact, for a, b ∈ K, let b = h(a)
and a = γi(b). We shall show that b is an isolated point if and only if a is also
an isolated point. Let b be an isolated point and Ub an open neighbourhood of b
such that Ub = {b}. Then h−1(Ub) = h−1(b) is an open finite set containing a.
Hence there exists an open neighbourhood Va of a such that Va = {a}. Hence a is
an isolated point. The converse also holds. Indeed, assume that K has an isolated
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point z. Then any point in the dense set C(z) is an isolated point of K. This causes
a contradiction.

If γ has no branch points, the study on the structure of the C∗-algebra Oγ

and the core F (∞) is reduced to the Section 4.2 in [14]. In fact we have the follow-
ing:

PROPOSITION 3.8. Let γ be a self-similar map on K. Assume that γ has no branch
points. Let F (∞) be the core of the C∗-algebra Oγ associated with the self-similar map γ.
Then the core F (∞) is simple and, in fact, isomorphic to the UHF-algebra MN∞ .

Proof. Since γ has no branch point, the C∗-correspondence Zγ = Yγ = AN

by the construction of Zγ. As in Lemma 2.2, Xγ and Zγ are isomorphic. We can re-
duce to the argument in Section 4.2 in [14] to get that the core F (∞) is isomorphic
to the UHF-algebra MN∞ and simple.

EXAMPLE 3.9 (Cantor set). Let Ω = [0, 1], γ1(y) = (1/3)y and γ2(y) =
(1/3)y + (2/3). Then γ = (γ1, γ2) is a family of proper contractions. Then the

Cantor set K is the unique compact subset of Ω such that K =
N⋃

i=1
γi(K). Thus

γ = (γ1, γ2) is a self-similar map on K. Since γ has no branch point, the core
F (∞) is simple.

We shall show that if γ has a branch point, then the core F (∞) is not simple
any more. Moreover we can describe the ideal structure of the coreF (∞) explicitly
in terms of the singularity structure of branch points. In fact the ideal structure is
completely determined by the intersection with the C(K).

In general, let B be a C∗-algebra and A be a subalgebra and L be an ideal of
B. It is difficult to describe the ideals I of A+ L in terms of A and L independently.
The most simple example is the following: B = C2, L = C⊕ 0 and A = {(a, a) ∈
B : a ∈ C}. Let I = 0 ⊕ C. Then I 6= I ∩ A + I ∩ L = 0 + 0 = 0. We use a
matrix representation over C(K) of the core and its description by the singularity
structure of branch points to overcome this difficulty. Here the finiteness of the
branch values and continuity of any element of F (n) ⊂ C(K, MNn) are crucially
used to analyze the ideal structure.

We shall show that any ideal I of the core is determined by the closed sub-
set of the self-similar set which corresponds to the ideal C(K) ∩ I of C(K). We
describe all closed subsets of K which arise in this way explicitly to complete the
classification of ideals of the core.

Recall that the n-th γ-orbit of b is the following subset of K:

Ob,n = {γj1 ◦ · · · ◦ γjn(b) : (j1, . . . , jn) ∈ Σn} = h−n(b).

And Orb =
⋃

b∈Bγ

∞⋃
k=0

Ob,k, where Ob,0 = {b}.
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LEMMA 3.10. If the closed set FI
0 has an element a /∈ Orb, then FI

m = K for any
m = 0, 1, 2, 3, . . . . In particular, if FI

0 = K, then FI
m = K for any m = 0, 1, 2, 3, . . . .

Proof. Suppose that FI
0 has an element a /∈ Orb. By Lemma 3.7, C(a) :=

{b ∈ K : hn(b) = hn(a) for some n = 0, 1, 2, 3, . . . } is dense in K. By Lemma 3.6,
we have C(a) ⊂ FI

0 . Since FI
0 is closed, we have FI

0 = K.
If FI

0 = K, then F0
I has an element a /∈ Orb, because we always have that

K 6= Orb. In fact Orb is a countable set. The self-similar set K is a Baire space and
any point of K is not an isolated point, hence K is an uncountable set. Hence the
proof is completed.

PROPOSITION 3.11. If FI
0 6= K, then there exists b1, b2, . . . , bk ∈ Bγ and integers

m1, m2, . . . mk > 0 such that

FI
0 =

k⋃
i=1

Obi ,mi
,

that is, FI
0 is a finite union of finite γ-orbits of branch points.

Proof. Assume that FI
0 6= K. Then FI

0 does not contain any point outside Orb
by Lemma 3.10. Indeed, suppose that FI

0 contains infinite many finite γ-orbits of
branch points. Since Bγ is finite, there exists b ∈ Bγ such that for each n ∈ N
there exists m > n with Ob,m ⊂ FI

0 . We list such integers as (m1, m2, m3, . . . ) with

m1 < m2 < m3 < · · · . By the same proof as Lemma 3.7,
∞⋃

j=1
Orb(b, mj) is dense in

K. Hence FI
0 is equal to K. But this is a contradiction.

For an ideal I of F (∞), we denote by Ir the intersection I ∩ F (r).

LEMMA 3.12. Let I be an ideal of F (∞). If FI
0 = K, then we have that I = {0}.

Proof. Suppose that FI
0 = K. This means that I ∩ C(K) = 0. By Lemma 3.10,

we have that FI
m = K for any m = 0, 1, 2, 3, . . . . This implies that I ∩K(X⊗n

γ ) = 0.
We need to show that I ∩ F (n) = 0. We shall prove it by induction.

I ∩ F (0) = I ∩ A = I ∩ C(K) = 0.

Assume that I ∩F (n−1) = 0. But we should be careful, because we have the form
F (n) = F (n−1) +K(X⊗n

γ ). We know only that I ∩K(X⊗n
γ ) = 0. It is trivial that

I ∩ F (n) ⊃ I ∩ F (n−1) + I ∩K(X⊗n
γ ).

But the converse inclusion is not trivial in general. Our singularity situation helps
us to prove it. In fact any element in F (n) is represented by a continuous map
from K to MNn(C) through Π(n). Let T be an element of In = I ∩ F (n). We
identify T with Π(n)(T). It is enough to show that Π(n)(T) = 0. For small ε > 0,
we put

Uε = {x ∈ K : d(x, y) < ε for some y ∈ Cγn}.
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Let us take fε ∈ C(K) such that fε is 0 on Uε and 1 outside of U2ε. Define gε ∈
C(K, MNn(C)) by gε(x) = fε(x)I for x ∈ K. Then there exists Sε ∈ K(X⊗n

γ ) such
that Π(n)(Sε) = gε. Since SεT is in I ∩K(X⊗n

γ ) = 0, SεT = 0 for every ε > 0. Then
it holds that Π(n)(T)(x) = 0 for x /∈ U2ε with each ε > 0. By the continuity of
Π(n)(T) ∈ C(K, MNn(C)), Π(n)(T)(x) = 0 holds for each x ∈ K. This means that
T = 0. This completes the induction. Therefore I =

⋃
n

I ∩ F (n) = 0.

We shall construct a family

{J(b,n) : b ∈ Bγ, n = 0, 1, 2, 3, . . . }

of the model primitive ideals of the core F (∞) such that {J(b,n)} ∩ C(K) corre-
sponds to the closed subset Ob,n of K.

Let b be an element in Bγ. Put J(b,n,n) = {T ∈ F (n) : Π(n)(T)(b) = 0}. Then
Π(n)(J(b,n,n)) is an ideal of Π(n)(F (n)) and the quotient Π(n)(F (n))/Π(n)(J(b,n,n))

is isomorphic to MNn(C). Put J(b,n,m) = J(b,n,n) +K(X⊗n+1
γ ) + · · ·+K(X⊗m

γ ) for
n < m. Then J(b,n,m) is an ideal of F (m), and {J(b,n,m)}m=n+1,... is an increasing

filter. We denote by J(b,n) the norm closure of
∞⋃

m=n+1
J(b,n,m). Then J(b,n) is a closed

ideal of F (∞).
We will show that J(b,n) ∩ F (n) = J(b,n,n) and J(b,n) is primitive. It is trivial

that J(b,n) ∩ F (n) ⊃ J(b,n,n). It is unclear whether J(b,n) ∩ F (n) ⊂ J(b,n,n). We shall
show it by finding that J(b,n) is the kernel of a finite trace onF (∞). We constructed
a family of such traces on F (∞) in [11]. Recall that the kernel ker(τ) of a trace τ
on a C∗-algebra B is defined by

ker(τ) = {b ∈ B : τ(b∗b) = 0},

and ker(τ) is an ideal of B. Moreover, let πτ be the GNS-representation of τ. Then
ker(τ) = kerπτ .

For the convenience of the readers, we include a simple construction of
these traces using matrix representation of the n-th core.

As in [11], we need the following lemma for extension of traces. Let B be a
C∗-algebra and I be an ideal of B. For a linear functional ϕ on I, we denote by ϕ
the canonical extension of ϕ. We refer [1] the property of the canonical extension
of states. The following key lemma is proved in Proposition 12.5 of Exel and Laca
[3] for state case, and is modified in Kajiwara and Watatani [11] for trace case.

LEMMA 3.13 ([11]). Let A be a unital C∗-algebra. Let B be a C∗-subalgebra con-
taining the unit and I an ideal of A such that A = B + I. Let τ be a bounded trace on B,
and ϕ a bounded trace on I, and we assume the following conditions are satisfied:

(i) ϕ = τ holds on B ∩ I.
(ii) ϕ 6 τ holds on B.
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Then there exists a bounded trace on A which extends τ and ϕ. Conversely, if there
exists a bounded trace on A, its restrictions on B and I must satisfy the above (i) and (ii).

We note that Π(n)(F (n))⊂MNn(C(K))'C(K, MNn(C)), and Π(n)(F (n))(x)
' MNn(C) for x /∈ Cγ. For b ∈ Bγ, we define a tracial state τ(b,n,n) on F (n) by

τ(b,n,n)(T) =
1

Nn Tr(Π(n)(T)(b)),

where Tr is the ordinary trace on the matrix algebra MNn(C). For m > n + 1, we
define a trace ω(m) on K(X⊗m

γ ) by ω(m)(T) = 0 for each T ∈ K(X⊗m
γ ).

LEMMA 3.14. Let b∈Bγ. For T∈F (n)∩K(X⊗n+1
γ ), we have Π(n)(T)(b)=0.

Proof. From [5],F (n) ∩K(X⊗n+1
γ ) = K(X⊗n

γ )∩K(X⊗n+1
γ ). We can show the

lemma using the matrix representation of the finite core. Let b = γi(c) = γj(c)
with i 6= j. Then (i, i2, . . . , in+1)-row, and (j, i2, . . . , in+1)-row of elements of
Π(n+1)(K(X⊗n+1

γ )) are equal, and (i, i2, . . . , in+1)-column and (j, i2, . . . , in+1)-co-
lumn of elements of Π(n+1)(K(X⊗n+1

γ )) are equal for each (i2, . . . , in+1) ∈ Σn.
This shows that Π(n+1)(T)(b) = 0 for T ∈ K(X⊗n

γ ) because elements in K(X⊗n
γ )

are represented as a block diagonal matrix by Π(n+1) and any element in a diag-
onal block must be equal to an element in an off-diagonal block which is zero.

LEMMA 3.15. A tracial state τ(b,n,n) on F (n) and a family of zero traces
{ω(m)}m=n+1,... on K(X⊗m

γ ), m = n + 1, . . . give a unique tracial state τ(b,n) on F (∞)

such that τ(b,n)|F (n) = τ(b,n,n) and τ(b,n)|K(X⊗m
γ ) = ω(m) for m > n + 1.

Proof. First we consider a tracial state τ(b,n,n) onF (n) and a zero trace ω(n+1)

on K(X⊗(n+1)
γ ). Since the canonical extension ω(n+1) is the zero trace on F (n),

we have ω(n+1)(T) 6 τ(b,n,n)(T) for T ∈ F (b,n)+. By Lemma 3.14, we have
Π(n)(T)(b) = 0 for T ∈ F (n) ∩ K(X⊗n+1

γ ). Thus we have τ(b,n,n) = ω(n+1) on
F (n) ∩ K(X⊗n+1

γ ). By Lemma 3.13, there exists a tracial state extension τ(b,n,n+1)

on F (n+1) such that (τ(b,n,n+1))|F (n) = τ(b,n,n) and (τ(b,n,n+1))|K(X⊗n+1
γ ) = ω(n+1).

In a similar way, we can construct a tracial state extension τ(b,n,m) on F (m) which
satisfies that τ(b,n,m)|K(X⊗m

γ ) = ω(m) = 0 for m > n + 2 using F (m−1) ∩K(X⊗m
γ ) =

K(X⊗m−1
γ ) ∩ K(X⊗m

γ ) ([5]). Finally we define τ(b,n) on
∞⋃

i=n
F (m) by {τ(b,n,m)}∞

m=n

and extend it to the whole F (∞) =
∞⋃

m=n
F (m) to get the desired property.

LEMMA 3.16. For i > n, we have J(b,n,i) = ker(τ(b,n,i)) and J(b,n)
= ker(τ(b,n)).

Moreover we have that

J(b,n) ∩ F (n) = J(b,n,n).
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Proof. By the definition of J(b,n,i), it is clear that J(b,n,i) ⊂ ker(τ(b,n,i)). Let
T = Tn + Tn+1 + · · ·+ Ti, where Tn ∈ F (n), Tm ∈ K(X⊗m

γ ) with n + 1 6 m 6 i.
Assume that τ(b,n,i)(T∗T) = 0. Since τ(b,n,i)(T∗k Tm) = 0 for n + 1 6 m 6 i or
n + 1 6 k 6 i, it holds that τ(b,n,n)(T∗n Tn) = 0. Hence Tn ∈ J(b,n). It follows that
T ∈ J(b,n,i) := J(b,n,n) +K(X⊗n+1

γ ) + · · ·+K(X⊗i
γ ).

Since ker(τ(b,n)) is an ideal of the inductive limit algebra F (∞) = lim
n
F (n),

we have

ker(τ(b,n)) =
∞⋃

i=n
ker(τ(b,n)) ∩ F (i) =

∞⋃
i=n+1

ker(τ(b,n,i)) =
∞⋃

i=n+1

J(b,n,i) = J(b,n).

Moreover

J(b,n) ∩ F (n) = ker(τ(b,n)) ∩ F (n) = ker(τ(b,n,n)) = J(b,n,n).

LEMMA 3.17. For any b ∈ Bγ and n = 0, 1, 2, 3, . . . , J(b,n) is a primitive ideal of

F (∞) and F (∞)/J(b,n) ' MNn(C).

Proof. The quotient F (n)/J(b,n,n) is isomorphic to Π(n)(F (n))/Π(n)(J(b,n,n))

' MNn(C). Since J(b,n) ∩ F (n) = J(b,n,n),

F (n)/J(b,n)
=(F (n)+ J(b,n)

)/J(b,n)
=(F (n)/(F (n)∩ J(b,n)

)=F (n)/J(b,n,n)'MNn(C).

Then for m with n + 1 6 m, we have

F (m)/J(b,n)
=(F (n)+K(X⊗n+1

γ )+ · · ·+K(X⊗m
γ ))/J(b,n)

=F (n)/J(b,n)'MNn(C).

It follows that F (∞)/J(b,n) ' MNn(C). Therefore J(b,n) is a maximal ideal and
also a primitive ideal.

LEMMA 3.18. Let I be an ideal of F (∞). Assume that FI
0 coincides with Ob,n for

some b ∈ Bγ and some n = 0, 1, 2, . . . . Then FI
1 = Ob,n−1, FI

2 = Ob,n−2, . . . , FI
n =

Ob,0 = {b} and FI
m = ∅ for m > n. Moreover, I is equal to J(b,n).

Proof. We may assume that FI
0 = Ob,n for some n > 0. Since any point

in Ob,n = h−n(b) is not a branch point by Assumption B(iii), Ob,n−1 ⊂ FI
1 by

Lemma 3.5. Suppose that Ob,n−1 6= FI
1 . Then FI

0 contains an element which is not
in Ob,n by Lemma 3.3. This is a contradiction. Therefore Ob,n−1 = FI

1 . In a similar
way, we have that FI

2 = Ob,n−2, . . . , FI
n = Ob,0 = {b}. Therefore, by the form of

matrix representation, we have that

Π(n)(I ∩ A) = Ω(n,0)(I ∩ A) = {T ∈ Π(n)(A) : T(b) = 0},

Π(n)(I ∩K(X⊗i
γ )) = Ω(n,i)(I ∩K(X⊗i

γ ))

= {T ∈ Π(n)(K(X⊗i
γ )) : T(b) = 0}, i = 1, . . . , n.

(3.1)
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For m > n, we shall show that FI
m = ∅. On the contrary assume that

FI
m 6= ∅. Take z in FI

m. Then h−(m−n)(z) contains more than one element by
Assumption B(iii). Then h−(m−n)(z) ⊂ FI

n = {b} by Lemma 3.3. But this is a con-
tradiction. Therefore FI

m = ∅. By the Rieffel correspondence of ideals, this means
that I ∩K(X⊗m

γ ) = K(X⊗m
γ ), that is, I ⊃ K(X⊗m

γ ) for m > n.
We shall show that J(b,n,n) = (I ∩ A) + (I ∩ K(Xγ)) + · · ·+ (I ∩ K(X⊗n

γ )).
From (3.1), we have that I ∩ A ⊂ J(b,n,n), I ∩ K(X⊗i

γ ) ⊂ J(b,n,n), i = 1, . . . , n.
Therefore (I ∩ A) + (I ∩ K(Xγ)) + · · · + (I ∩ K(X⊗n

γ )) ⊂ J(b,n,n). Conversely,
take T ∈ J(b,n,n). Then we can write T = T0 + T1 + · · ·+ Tn for some T0 ∈ A and
Ti ∈ K(X⊗i

γ ), i = 1, . . . , n. Since b /∈ Cγ by Assumption B, there exists an open
neighborhood U(b) of b such that U(b) ∩ Cγ = ∅. Hence Π(n)(K(X⊗n

γ ))(x) is
the total matrix algebra MNn(C) for x ∈ U(b). We take f ∈ A = C(K) such that
f (b) = 1 and supp( f ) is contained in U(b). For S ∈ MNn(A) and f ∈ A, we write
[(S · f )p,q]p,q(x) = [Sp,q(x) f (x)]p,q. Define β ∈ End A by (β( f ))(x) = f (h(x)) for
x ∈ K. Then

(αi ◦ β( f ))(x) = f (h(γi(x))) = f (x).

We note that it holds that Π(n)(T) · f = Π(n)(Tφn(βn( f ))), and that Tiφi(βi( f )) ∈
K(X⊗i

γ ) for 1 6 i 6 n. Then we have

Π(n)(T) = Π(n)(T0) + Π(n)(T1) + · · ·+ Π(n)(Tn)

=
n

∑
i=0

Π(n)(Ti) · (1− f ) +
n

∑
i=0

Π(n)(Ti) · f .

Since (Π(n)(Ti) · (1− f ))(b) = 0, we have that Tiφi(βi(1− f )) ∈ I ∩K(X⊗i
γ ). On

the other hand, because T is in J(b,n,n),
n
∑

i=0
(Π(n)(Ti) · f )(b) =

n
∑

i=0
Π(n)(Ti)(b) = 0.

Since Π(n)(K(X⊗n
γ ))(x) is the total of matrix algebra MNn(C) for x ∈ U(b) and

supp f is contained in U(b),
n
∑

i=0
Π(n)(Ti) · f is contained in Π(n)(K(X⊗n

γ )). Thus

n
∑

i=0
Tiφi(βi( f )) ∈ I ∩ K(X⊗n

γ ). It follow that J(b,n,n) ⊂ (I ∩ A) + (I ∩ K(Xγ)) +

· · ·+ (I ∩K(X⊗n
γ )).

In general we have that

I ∩ F (n) = I ∩ (A +K(Xγ) + · · ·+K(X⊗n
γ ))

⊃ (I ∩ A) + (I ∩K(Xγ)) + · · ·+ (I ∩K(X⊗n
γ )).

Hence it holds I ∩F (n) ⊃ J(b,n,n). Since J(b,n,n) is a maximal ideal of F (n), I ∩F (n)

is equal to F (n) or J(b,n,n). Since FI
n = Ob,0 = {b}, I ∩K(X⊗n

γ ) 6= K(X⊗n
γ ). Hence

there exists an element in F (n) which does not contained in I and I ∩ F (n) is not
equal to F (n). Hence I ∩ F (n) = J(b,n,n).
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We assume m > n + 1. Since FI
m = ∅ for m > n + 1, K(X⊗m

γ ) ⊂ I. It holds
that

I ∩ F (m) = I ∩ (F (n) +K(X⊗n+1
γ ) + · · ·+K(X⊗m

γ ))

⊃ I ∩ F (n) +K(X⊗n+1
γ ) + · · ·+K(X⊗m

γ ).

On the other hand, T ∈ I ∩ F (m) is expressed as

T = T1 + T2,

where T1 ∈ F (n), T2 ∈ K(X⊗n+1
γ ) + · · ·+K(X⊗m

γ ) ⊂ I. Since T1 = T − T2 ∈ I, it
holds T1 ∈ I ∩ F (n). Therefore we have

I ∩ F (m) = I ∩ F (n) +K(X⊗n+1
γ ) + · · ·+K(X⊗m

γ )

= J(b,n,n) +K(X⊗n+1
γ ) + · · ·+K(X⊗m

γ ).

Hence we have I ∩ F (m) = J(b,n) ∩ F (m) for m > n + 1, then

I = lim
m→∞

I ∩ F (m) =
∞⋃

m=n+1

(I ∩ F (m)) =
∞⋃

m=n+1

(J(b,n) ∩ F (m))

=
∞⋃

m=n+1

J(b,n,m) = J(b,n).

LEMMA 3.19. Let I be an ideal of F (∞). Assume that FI
0 is a finite union of finite

γ-orbits of branch points, that is,

FI
0 =

⋃
b∈B′

pb⋃
j=1

Ob,r(b,j)

where B′ is a subset of Bγ, pb ∈ N and r(b, j) ∈ N with r(b, 1) < · · · < r(b, pb). Then
F (∞)/I is a finite dimensional C∗-algebra.

Proof. Put r = max
b∈B′

(r(b, pb)), and Ir = I ∩ F (r). Let B′′ = {b ∈ Bγ : Ob,r ⊂

FI
0}. Then it holds that

Π(r)(Ir) = Π(r)(I ∩ F (r)) ⊃ Π(r)(I ∩K(X⊗r
γ ))

= {T ∈ Π(r)(K(X⊗r)) : T(b) = 0 for b ∈ B′′}.

We put JB′′
r = {T ∈ F (r)|Π(r)(T)(x) = 0 for each x ∈ Cγr , Π(r)(T)(y) = 0

for each y ∈ B′′}. Then it holds that JB′′
r ⊂ Π(r)(Ir). Since Π(r)(F (r))/JB′′

r is
the quotient by an ideal whose elements vanish at finite points, Π(r)(F (r))/JB′′

r is
finite dimensional. Therefore F (r)/Ir is also finite dimensional.

Since the closed subsets FI
n corresponding to I ∩ K(X⊗n

γ ) (n > r + 1) are
empty set, we have I ∩ F (n) = Ir + K(X⊗r+1

γ ) + · · · + K(X⊗n
γ ), and we have

I = (Ir +K(X⊗r+1
γ ) + · · · ). F (r)/I = F (r)/(F (r) ∩ I) is equal to F (r)/Ir. Since
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K(X⊗n)
γ ) (n > r + 1) are contained in I, it holds that F (n)/I = (F (r) +K(X⊗r+1

γ )

+ · · ·+K(X⊗n
γ ))/I = F (r)/Ir, and F (n)/I is isomorphic to F (r)/Ir for each n >

r. From these, F (∞)/I ' F (r)/Ir is a finite dimensional C∗-algebra.

LEMMA 3.20. Let I be an ideal of F (∞). If FI
0 contains more than one finite union

of finite γ-orbits of branch points, then I is not a primitive ideal.

Proof. As in Lemma 3.19, we define an integer r and a subset B′′ of Bγ. Then
F (∞)/I ' F (r)/Ir. If FI

0 contains more than one finite γ-orbits of branch points,
Ir is not of the form {T ∈ Π(r)(T)(b) = 0 : for b ∈ Bγ}. It is shown that I is not a
primitive ideal because F (∞)/I is finite dimensional and contains more than one
simple component.

PROPOSITION 3.21. Let I be an ideal of F (∞). If F0 =
⋃

b∈B′

pb⋃
j=1

Ob,r(b,j) where

B′ is a subset of Bγ, pb ∈ N and r(b, j) ∈ N with r(b, 1) < · · · < r(b, pb), then

I =
⋂

b∈B′

pb⋂
j=1

J(b,r(b,j)).

Proof. Let I be an ideal of F (∞) with I 6= F (∞) and I 6= {0}. By Propo-
sition 3.11, the closed subset FI

0 corresponding to I consists of finite union of
finite γ-orbits of branch points. We note that each ideal of a C∗-algebra is ex-
pressed by the intersection of primitive ideals which contain the original ideal.
Let J be a primitive ideal of F (∞) which contains I. Since I|A ⊂ J|A, F J

0 is a
finite union of n-th γ-orbits of branch points which appear in FI

0 . But if F J
0 con-

tains more than one finite union of finite γ-orbits of branch points, J is not prim-

itive by Lemma 3.20. Therefore J must be of the form Jb,n. If I ⊂ Jb,n, then

(b, n) ∈ ⋃
b∈B′

pb⋃
j=1

Ob,r(b,j). It holds that

I =
⋂

b∈B′

pb⋂
j=1

J(b,r(b,j)).

By our previous paper [11], there exists a trace τ∞ on the core F (∞) corre-
sponding to the Hutchinson measure on K.

PROPOSITION 3.22. The von Neumann algebra generated by the image of the
GNS representation of the trace τ∞ corresponding to the Hutchinson measure is the
injective type II1-factor.

Proof. We denote by τ the unique trace on the fixed point algebra OT
Yγ

=

MN∞ by the gauge action. By the argument in Section 4.2 in [14] and Section 6
in [11], τ∞ is the restriction of τ to OT

Zγ
= F (∞). Since the Hutchinson measure

has no point masses, their GNS-representation spaces are the same: L2(OT
Yγ

, τ) =
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L2(OT
Zγ

, τ∞). We can see that the von Neumann algebras generated by the GNS-
representations πτ∞ and πτ coincide:

πτ∞(OT
Zγ
)′′ = πτ(OT

Zγ
)′′ = πτ(OT

Yγ
)′′.

Since πτ(OT
Yγ
)′′ = πτ(MN∞)′′ is an injective type II1-factor , we have the conclu-

sion.

The following is the main theorem of the paper, which gives a complete clas-
sification of the ideals of the core of the C∗-algebras associated with self-similar
maps.

THEOREM 3.23. Let γ = (γ1, . . . , γN) be a self-similar map on a compact set K
with N > 2. Assume that γ satisfies Assumption B. Let F (∞) be the core of the C∗-
algebras Oγ associated with a self-similar map γ. Then any ideal I of the core F (∞) is
completely determined by the intersection I ∩ C(K) with the coefficient algebra C(K) of
the self-similar set K. The set S of all corresponding closed subsets FI

0 of K, which arise
in this way, is described by the singularity structure of the self-similar map as follows:

S =
{

∅, K,
⋃

b∈B′

pb⋃
j=1

Ob,r(b,j) : B′ ⊂ Bγ, pb ∈ N, r(b, j) = 0, 1, 2, . . .
}

.

The corresponding ideals for the closed subsets ∅, K and
⋃

b∈B′

pb⋃
j=1

Ob,r(b,j) are F (∞), 0,

and
⋂

b∈B′

pb⋂
j=1

Jb,r(b,j) respectively.

COROLLARY 3.24. Let Prim(F (∞)) be the primitive ideal space, i.e. the set of
primitive ideals of the core F (∞). Then

Prim(F (∞)) = {0, J(b,n) : b ∈ Bγ, n = 0, 1, 2, . . . }.

The Jacobson topology on Prim(F (∞)) is given by the co-finite sets containing 0 and
empty set, i.e.,

{U ⊂ Prim(F (∞)) : Uc is a finite subset and does not contain 0 } ∪ {∅}.
Moreover,

(i) The zero ideal 0 is the kernel of continuous trace τ∞ and the GNS representation
of the trace generates the injective II1-factor representation.

(ii) The ideal J(b,n) is the kernel of the discrete trace τ(b,n) and the GNS representation

of the trace generates the finite factor MNn(C) which is isomorphic to F (∞)/J(b,n).

Proof. The only remaining thing to show is the description of the Jacobson

topology on Prim(F (∞)). The closure of one point set {J(b,n)} is equal to {J(b,n)}
itself, because J(b,n) is a maximal ideal. The closure of a subset S containing the
zero ideal 0 is the whole space Prim(F (∞)). Let S be a subset of Prim(F (∞))
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which does not contain the zero ideal 0. If S is a finite set, then the closure S = S.
If S is an infinite set, then there exists b ∈ Bγ such that S includes J(b,mj) for

some m1 < m2 < m3 < · · · . As in Lemma 3.11,
⋂
j

J(b,mj) = 0. Hence the closure

S = Prim(F (∞)). The rest is clear.

EXAMPLE 3.25 (Tent map). Let γ = (γ1, γ2) be a self-similar map of the tent
map on [0, 1] in Example 2.1. Then the closed subset of [0, 1] corresponding to
primitive ideals of F (∞) are as follows:

(i) [0, 1].
(ii) {(2k− 1)/2n : k = 1, . . . , 2n−1}, (n = 1, 2, . . . ).

EXAMPLE 3.26 (Sierpinski gasket). Let γ = (γ1, γ2, γ3) be a self-similar map
on the Sierpinski gasket K. Then the closed subsets of K corresponding to primi-
tive ideals of F (∞) are as follows:

(i) K.
(ii) {(γj1 ◦ · · · ◦ γjn)(P) : (j1, . . . , jn) ∈ Σn}, (P = S, T, U, and n = 0,1, . . . ).
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