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ABSTRACT. We introduce the notion of the α-Haagerup approximation prop-
erty (α-HAP) for α ∈ [0, 1/2] using a one-parameter family of positive cones
studied by Araki and show that the α-HAP actually does not depend on the
choice of α. This enables us to prove the fact that the Haagerup approxima-
tion properties introduced in two ways are actually equivalent, one in terms
of the standard form and the other in terms of completely positive maps. We
also discuss the Lp-Haagerup approximation property (Lp-HAP) for a non-
commutative Lp-space associated with a von Neumann algebra for p ∈ (1, ∞)
and show the independence of the Lp-HAP on the choice of p.
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1. INTRODUCTION

This is a continuation of our previous work [38] on the Haagerup approx-
imation property (HAP) for a von Neumann algebra. The origin of the HAP is
the remarkable paper [21], where U. Haagerup proved that the reduced group
C∗-algebra of the non-amenable free group has Grothendieck’s metric approxi-
mation property. After his work, M. Choda [10] showed that a discrete group
has the HAP if and only if its group von Neumann algebra has a certain von
Neumann algebraic approximation property with respect to the natural faithful
normal tracial state. Furthermore, P. Jolissaint [25] studied the HAP in the frame-
work of finite von Neumann algebras. In particular, it was proved that it does
not depend on the choice of a faithful normal tracial state.

In the last few years, the Haagerup type approximation property for the
quantum groups with respect to the Haar states was actively investigated by
many researchers (e.g. [5], [6], [14], [15], [34], [35]). The point here is that the



260 RUI OKAYASU AND REIJI TOMATSU

Haar state on a quantum group is not necessarily tracial, and so to fully under-
stand the HAP for quantum groups, we need to characterize this property in the
framework of arbitrary von Neumann algebras.

In the former work [38], we introduce the notion of the HAP for arbitrary
von Neumann algebras in terms of the standard form. Namely, the HAP means
the existence of contractive completely positive compact operators on the stan-
dard Hilbert space which are approximating the identity. In [9], M. Caspers and
A. Skalski independently introduce the notion of the HAP based on the existence
of completely positive maps approximating the identity with respect to a given
faithful normal semifinite weight such that the associated implementing opera-
tors on the GNS Hilbert space are compact.

Now one may wonder whether these two approaches are different or not.
Actually, by combining several results in [9] and [38], it is possible to show that
these two formulations are equivalent. (See [8], and Remark 5.8 of [38] for details.)
This proof, however, relies on the permanence results of the HAP for a core von
Neumann algebra. One of our purposes in the present paper is to give a simple
and direct proof for the above mentioned question.

Our strategy is to use the positive cones due to H. Araki. He introduced in
[2] a one-parameter family of positive cones Pα with a parameter α in the interval
[0, 1/2] that is associated with a von Neumann algebra admitting a cyclic and
separating vector. This family is “interpolating” the three distinguished cones
P0, P1/4 and P1/2, which are also denoted by P], P\ and P[ in the literature [42].
Among them, the positive cone P\ at the middle point plays remarkable roles
in the theory of the standard representation [2], [11], [19]. See [2], [29], [30] for
comprehensive studies of that family.

In view of the positive cones Pα, on the one hand, our definition of the
HAP is, of course, related with P\. On the other hand, the associated L2-GNS
implementing operators in the definition due to Caspers and Skalski are, in fact,
“completely positive” with respect to P]. Motivated by these facts, we will intro-
duce the notion of the “interpolated” HAP called α-HAP and prove the following
result (Theorem 3.11):

THEOREM A. A von Neumann algebra M has the α-HAP for some α ∈ [0, 1/2]
if and only if M has the α-HAP for all α ∈ [0, 1/2].

As a consequence, it gives a direct proof that two definitions of the HAP
introduced in [9], [38] are equivalent.

In the second part of the present paper, we discuss the Haagerup approxi-
mation property for non-commutative Lp-spaces (1 < p < ∞) [3], [20], [23], [24],
[31], [43], [44]. One can introduce the natural notion of the complete positivity
of operators on Lp(M), and hence we will define the HAP called the Lp-HAP
when there exists a net of completely positive compact operators approximat-
ing to the identity on Lp(M). Since L2(M) is the standard form of M, it follows
from the definition that a von Neumann algebra M has the HAP if and only if M



HAP AND POSITIVE CONES 261

has the L2-HAP. Furthermore, by using the complex interpolation method due to
A.P. Calderón [7], we can show the following result (Theorem 4.12):

THEOREM B. Let M be a von Neumann algebra. Then the following statements
are equivalent:

(i) M has the HAP;
(ii) M has the Lp-HAP for all 1 < p < ∞;

(iii) M has the Lp-HAP for some 1 < p < ∞.

We remark that a von Neumann algebra M has the completely positive ap-
proximation property (CPAP) if and only if Lp(M) has the CPAP for some/all
1 6 p < ∞. In the case where p = 1, this is proved by E.G. Effros and E.C. Lance
in [16]. In general, this is due to M. Junge, Z.-J. Ruan and Q. Xu in [27]. Therefore
Theorem B is the HAP version of this result.

2. PRELIMINARIES

We first fix the notation and recall several facts studied in [38]. Let M be
a von Neumann algebra. We denote by Msa and M+, the set of all self-adjoint
elements and all positive elements in M, respectively. We also denote by M∗ and
M+
∗ , the space of all normal linear functionals and all positive normal linear func-

tionals on M, respectively. The set of faithful normal semifinite (f.n.s.) weights is
denoted by W(M). Recall the definition of a standard form of a von Neumann
algebra.

DEFINITION 2.1 ([19], Definition 2.1). Let (M, H, J, P) be a quadruple, where
M denotes a von Neumann algebra, H a Hilbert space on which M acts, J a
conjugate-linear isometry on H with J2 = 1H , and P ⊂ H a closed convex cone
which is self-dual, i.e., P = P◦, where P◦ := {ξ ∈ H : 〈ξ, η〉 > 0 for η ∈ P}. Then
(M, H, J, P) is called a standard form if the following conditions are satisfied:

(i) JMJ = M′;
(ii) Jξ = ξ for any ξ ∈ P;

(iii) aJaJP ⊂ P for any a ∈ M;
(iv) JcJ = c∗ for any c ∈ Z(M) := M ∩M′.

REMARK 2.2. In [1], Ando and Haagerup proved that the condition (iv) in
the above definition can be removed.

We explain how each f.n.s. weight ϕ gives a standard form. We refer readers
to the book of Takesaki [42] for details. Let M be a von Neumann algebra with
ϕ ∈W(M). We write

nϕ := {x ∈ M : ϕ(x∗x) < ∞}.
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Then Hϕ is the completion of nϕ with respect to the norm

‖x‖ϕ := ϕ(x∗x)1/2 for x ∈ nϕ.

We write the canonical injection Λϕ : nϕ → Hϕ.
Then

Aϕ := Λϕ(nϕ ∩ n∗ϕ)
is an achieved left Hilbert algebra with the multiplication

Λϕ(x) ·Λϕ(y) := Λϕ(xy) for x, y ∈ nϕ ∩ n∗ϕ
and the involution

Λϕ(x)] := Λϕ(x∗) for x ∈ nϕ ∩ n∗ϕ.

Let πϕ be the corresponding representation of M on Hϕ. We always identify M
with πϕ(M).

We denote by Sϕ the closure of the conjugate-linear operator ξ 7→ ξ] on Hϕ,
which has the polar decomposition

Sϕ = Jϕ∆1/2
ϕ ,

where Jϕ is the modular conjugation and ∆ϕ is the modular operator. Then the
Tomita algebra Tϕ consists of the elements ξ ∈ Hϕ for which ξ ∈ D(∆α

ϕ) and
∆αξ ∈ Aϕ for all α ∈ C. The modular automorphism group (σ

ϕ
t )t∈R is given by

σ
ϕ
t (x) := ∆it

ϕx∆−it
ϕ for x ∈ M.

We denote the centralizer of ϕ by

Mϕ := {x ∈ M : σ
ϕ
t (x) = x for t ∈ R}.

Note that a self-dual positive cone

P\
ϕ := {ξ(Jϕξ) : ξ ∈ Aϕ} ⊂ Hϕ.

is given by the closure of the set of Λϕ(xσ
ϕ
i/2(x)∗), where x ∈ Aϕ is entire with

respect to σϕ. Therefore the quadruple (M, Hϕ, Jϕ, P\
ϕ) is a standard form. Thanks

to Theorem 2.3 of [19], a standard form is, in fact, unique up to a spatial isomor-
phism, and so it is independent to the choice of an f.n.s. weight ϕ.

Let us consider the n× n matrix algebra Mm and the normalized trace trn.
The algebra Mm becomes a Hilbert space with the inner product 〈x, y〉 := trn(y∗x)
for x, y ∈ Mm. We write the canonical involution Jtrn : x 7→ x∗ for x ∈ Mm.
Then the quadruple (Mm,Mm, Jtrn ,M+

m) is a standard form. In the following, for
a Hilbert space H, Mm(H) denotes the tensor product Hilbert space H ⊗Mm.

DEFINITION 2.3 ([37], Definition 2.2). Let (M, H, J, P) be a standard form
and n ∈ N. A matrix [ξi,j] ∈Mm(H) is said to be positive if

n

∑
i,j=1

xi Jxj Jξi,j ∈ P for all x1, . . . , xn ∈ M.
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We denote by P(n) the set of all positive matrices [ξi,j] in Mm(H).

Notice that for n = 1, we have ξ ∈ H is positive if and only if ξ ∈ P.

PROPOSITION 2.4 ([37], Proposition 2.4; [40], Lemma 1.1). Let (M, H, J, P) be
a standard form and n ∈ N. Then (Mm(M),Mm(H), J ⊗ Jtrn , P(n)) is a standard form.

Next, we will introduce the complete positivity of a bounded operator be-
tween standard Hilbert spaces.

DEFINITION 2.5. Let (M1, H1, J1, P1) and (M2, H2, J2, P2) be two standard
forms. We will say that a bounded linear (or conjugate-linear) operator T : H1 →
H2 is completely positive if (T ⊗ 1Mm)P(n)

1 ⊂ P(n)
2 for all n ∈ N.

DEFINITION 2.6 ([38], Definition 2.7). A W∗-algebra M has the Haagerup
approximation property (HAP) if there exists a standard form (M, H, J, P) and a net
of contractive completely positive (c.c.p.) compact operators Tn on H such that
Tn → 1H in the strong topology.

Thanks to Theorem 2.3 of [19], this definition does not depend on the choice
of a standard from. We also remark that the weak convergence of a net Tn in the
above definition is sufficient. In fact, we can arrange a net Tn such that Tn → 1H
in the strong topology by taking suitable convex combinations.

Now we assume that M is σ-finite with a faithful state ϕ ∈ M+
∗ . We denote

by (Hϕ, ξϕ) the GNS Hilbert space with the cyclic and separating vector associ-
ated with (M, ϕ). If M has the HAP, then we can recover a net of c.c.p. maps on
M approximating the identity with respect to ϕ such that the associated imple-
menting operators on Hϕ are compact.

THEOREM 2.7 ([38], Theorem 4.8). Let M be a σ-finite von Neumann algebra
with a faithful state ϕ ∈ M+

∗ . Then M has the HAP if and only if there exists a net of
normal c.c.p. maps Φn on M such that:

(i) ϕ ◦Φn 6 ϕ;
(ii) Φn → idM in the point-ultraweak topology;

(iii) the operator defined below is c.c.p. compact on Hϕ and Tn → 1Hϕ in the strong
topology:

Tn(∆
1/4
ϕ xξϕ) = ∆1/4

ϕ Φn(x)ξϕ for x ∈ M.

This translation of the HAP looks similar to the following HAP introduced
by Caspers and Skalski in [9].

DEFINITION 2.8 ([9], Definition 3.1). Let M be a von Neumann algebra with
ϕ ∈ W(M). We will say that M has the Haagerup approximation property with
respect to ϕ in the sense of [9] (CS-HAPϕ) if there exists a net of normal c.p. maps
Φn on M such that:

(i) ϕ ◦Φn 6 ϕ;
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(ii) The operator Tn defined below is compact and Tn → 1Hϕ in the strong
topology:

TnΛϕ(x) := Λϕ(Φn(x)) for x ∈ nϕ.

Here are two apparent differences between Theorem 2.7 and Definition 2.8,
that is, the appearance of ∆1/4

ϕ , of course, and the assumption on the contractivity
of Φn’s. Actually, it is possible to show that the notion of the CS-HAPϕ does not
depend on the choice of ϕ ([9], Theorem 4.3). Furthermore we can take contractive
Φn’s. (See Theorem 3.17.) The proof of the weight-independence presented in [9]
relies on a crossed product technique. Here, let us present a direct proof of the
weight-independence of the CS-HAP.

LEMMA 2.9 ([9], Theorem 4.3). The CS-HAP is the weight-independent prop-
erty. Namely, let ϕ, ψ ∈ W(M). Then M has the CS-HAPϕ if and only if M has the
CS-HAPψ.

Proof. Suppose that M has the CS-HAPϕ. Let Φn and Tn be as in the state-
ment of Definition 2.8. Note that an arbitrary ψ ∈ W(M) is obtained from ϕ by
combining the following four operations:

(1) ϕ 7→ ϕ⊗ Tr, where Tr denotes the canonical tracial weight on B(`2);
(2) ϕ 7→ ϕe, where e ∈ Mϕ is a projection;
(3) ϕ 7→ ϕ ◦ α, α ∈ Aut(M);
(4) ϕ 7→ ϕh, where h is a non-singular positive operator affiliated with Mϕ and

ϕh(x) := ϕ(h1/2xh1/2) for x ∈ M+.
For the proof of this fact, see the proof of Théorème 1.2.3 in [11] or Corol-

lary 5.8 in [41]. Hence it suffices to consider each operation.
(1) Let ψ := ϕ⊗ Tr. Take an increasing net of finite rank projections pn on

`2. Then Φn ⊗ (pn · pn) does the job, where pn · pn means the map x 7→ pnxpn.
(2) Let e ∈ Mϕ be a projection. Set ψ := ϕe and Ψn := eΦn(e · e)e. Then we

have ψ ◦Ψn 6 ψ. Indeed, for x ∈ (eMe)+, we obtain

ψ(x) = ϕ(exe) > ϕ(Φn(exe)) > ϕ(eΦn(exe)e) = ψ(Ψn(x)).

Moreover for x ∈ nϕ, we have

Λϕe(Ψn(x)) = eJeJΛϕ(Φn(exe)) = eJeJTnΛϕ(exe) = eJeJTneJeJΛϕe(exe).

Since eJeJTneJeJ is compact, we are done.
(3) Let ψ := ϕ ◦ α. Regard as Hψ = Hϕ by putting Λψ = Λϕ ◦ α. Then we ob-

tain the canonical unitary implementation Uα which maps Λϕ(x) 7→ Λψ(α−1(x))
for x ∈ nϕ. Set Ψn := α−1 ◦Φn ◦ α. Then we have

ψ(x) = ϕ(α(x)) > ϕ(Φn(α(x))) = ψ(Ψn(x)) for x ∈ M+,

and

UαTnU∗αΛψ(x) = UαTnΛϕ(α(x)) = UαΛϕ(Φn(α(x))) = Λψ(Ψ(x)) for x ∈ nϕ.

Since UαTnU∗α is compact, we are done.
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(4) This case is proved in Proposition 4.2 of [9]. Let us sketch out its proof
for readers’ convenience. Let e(·) be the spectral resolution of h and put en :=
e([1/n, n]) for n ∈ N. Considering ϕhen , we may and do assume that h is bounded
and invertible by Lemma 4.1 of [9]. Put Ψn(x) := h−1/2Φn(h1/2xh1/2)h−1/2 for
x ∈ M. Then we have ϕh ◦Ψn 6 ϕh, and the associated implementing operator is
given by h−1/2Tnh1/2, which is compact.

3. HAAGERUP APPROXIMATION PROPERTY AND POSITIVE CONES

In this section, we generalize the HAP using a one-parameter family of pos-
itive cones parametrized by α ∈ [0, 1/2], which is introduced by Araki in [2]. Let
M be a von Neumann algebra and ϕ ∈W(M).

3.1. COMPLETE POSITIVITY ASSOCIATED WITH POSITIVE CONES. Recall that Aϕ

is the associated left Hilbert algebra. Let us consider the following positive cones:

P]
ϕ := {ξξ] : ξ ∈ Aϕ}, P\

ϕ := {ξ(Jϕξ) : ξ ∈ Aϕ}, P[
ϕ := {ηη[ : η ∈ A′ϕ}.

Then P]
ϕ is contained in D(∆1/2

ϕ ), the domain of ∆1/2
ϕ .

DEFINITION 3.1 (cf. Section 4 of [2]). For α ∈ [0, 1/2], we will define the
positive cone Pα

ϕ by the closure of ∆α
ϕP]

ϕ.

Then Pα
ϕ has the same properties as in Theorem 3 of [2]:

(i) Pα
ϕ is the closed convex cone invariant under ∆it

ϕ;

(ii) Pα
ϕ ⊂ D(∆1/2−2α

ϕ ) and Jϕξ = ∆1/2−2α
ϕ ξ for ξ ∈ Pα

ϕ ;
(iii) JϕPα

ϕ = Pα̂
ϕ , where α̂ := 1/2− α;

(iv) Pα̂
ϕ = {η ∈ Hϕ : 〈η, ξ〉 > 0 for ξ ∈ Pα

ϕ};
(v) Pα

ϕ = ∆α−1/4
ϕ (P1/4

ϕ ∩ D(∆α−1/4
ϕ ));

(vi) P\
ϕ = P1/4

ϕ and P[
ϕ = P1/2

ϕ .

The condition (iv) means the duality between Pα
ϕ and Pα̂

ϕ . For the modular

involution, we have Jϕξ = ∆1/2−2α
ϕ ξ for ξ ∈ Pα

ϕ . This shows that JϕPα
ϕ = Pα̂

ϕ , that
is, Jϕ induces an inversion in the middle point 1/4. (See also [36] for details.)

We set Mm(Aϕ) := Aϕ ⊗Mm and ϕn := ϕ⊗ trn. Then Mm(Aϕ) is a full left
Hilbert algebra in Mm(Hϕ). The multiplication and the involution are given by

[ξi,j] · [ηi,j] :=
n

∑
k=1

[ξi,kηk,j] and [ξi,j]
] := [ξ]j,i]i,j.

Then we have Sϕn = Sϕ ⊗ Jtr. Hence the modular operator is ∆ ϕn = ∆ϕ ⊗ idMm .
Denote by Pα

ϕn the positive cone in Mm(Hϕ) for α ∈ [0, 1/2]. We generalize the
complete positivity presented in Definition 2.5.
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DEFINITION 3.2. Let α ∈ [0, 1/2]. A bounded linear operator T on Hϕ is
said to be completely positive with respect to Pα

ϕ if (T⊗ 1Mm)Pα
ϕn ⊂ Pα

ϕn for all n ∈ N.

3.2. COMPLETELY POSITIVE OPERATORS FROM COMPLETELY POSITIVE MAPS. Let
M be a von Neumann algebra and ϕ ∈ W(M). Let C > 0 and Φ a normal c.p.
map on M such that

(3.1) ϕ ◦Φ(x) 6 Cϕ(x) for x ∈ M+.

In this subsection, we will show that Φ extends to a c.p. operator on Hϕ with
respect to Pα

ϕ for each α ∈ [0, 1/2]. We use the following result, which is folklore
among specialists. (See, for example, Lemma 4 of [2] for its proof.)

LEMMA 3.3. Let T be a positive self-adjoint operator on a Hilbert space. For 0 6
r 6 1 and ξ ∈ D(T), the domain of T, we have ‖Trξ‖2 6 ‖ξ‖2 + ‖Tξ‖2.

LEMMA 3.4. For α ∈ [0, 1/2], one has

‖∆α
ϕΛϕ(Φ(x))‖ 6 C1/2‖Φ‖1/2‖∆α

ϕΛϕ(x)‖ for x ∈ nϕ ∩ n∗ϕ.

Proof. Note that if x ∈ nϕ, then Φ(x) ∈ nϕ because

ϕ(Φ(x)∗Φ(x)) 6 ‖Φ‖ϕ(Φ(x∗x)) 6 C‖Φ‖ϕ(x∗x) < ∞.

Let x, y ∈ nϕ be entire elements with respect to σϕ. We define the entire
function F by

F(z) := 〈Λϕ(Φ(σ
ϕ
iz/2(x))), Λϕ(σ

ϕ
−iz/2(y))〉 for z ∈ C.

For any t ∈ R, we have

|F(it)|= |〈Λϕ(Φ(σ
ϕ
−t/2(x))), Λϕ(σ

ϕ
−t/2(y))〉|6‖Λϕ(Φ(σ

ϕ
−t/2(x)))‖ · ‖Λϕ(σ

ϕ
−t/2(y))‖

= ϕ(Φ(σ
ϕ
−t/2(x))∗Φ(σ

ϕ
−t/2(x)))1/2 · ‖Λϕ(y)‖6C1/2‖Φ‖1/2‖Λϕ(x)‖‖Λϕ(y)‖,

and

|F(1 + it)| = |〈∆1/2
ϕ Λϕ(Φ(σ

ϕ

(i−t)/2(x))), ∆−it/2
ϕ Λϕ(y)〉|

= |〈JϕΛϕ(Φ(σ
ϕ

(i−t)/2(x))∗), ∆−it/2
ϕ Λϕ(y)〉|

6 ‖Λϕ(Φ(σ
ϕ

(i−t)/2(x))∗)‖ · ‖Λϕ(y)‖

= ϕ(Φ(σ
ϕ

(i−t)/2(x))Φ(σ
ϕ

(i−t)/2(x))∗)1/2 · ‖Λϕ(y)‖

6 C1/2‖Φ‖1/2 ϕ(σ
ϕ

(i−t)/2(x)σϕ

(i−t)/2(x)∗)1/2 · ‖Λϕ(y)‖ by (3.1)

= C1/2‖Φ‖1/2‖Λϕ(σ
ϕ

(i−t)/2(x)∗)‖ · ‖Λϕ(y)‖

= C1/2‖Φ‖1/2‖JϕΛϕ(σ
ϕ
−t/2(x))‖ · ‖Λϕ(y)‖

= C1/2‖Φ‖1/2‖Λϕ(x)‖‖Λϕ(y)‖.
Hence the three-lines theorem implies the following inequality for 0 6 s 6 1:

|〈∆s/2
ϕ Λϕ(Φ(σ

ϕ
is/2(x))), Λϕ(y)〉| = |F(s)| 6 C1/2‖Φ‖1/2‖Λϕ(x)‖‖Λϕ(y)‖.
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By replacing x by σ
ϕ
−is/2(x), we obtain

|〈∆s/2
ϕ Λϕ(Φ(x)), Λϕ(y)〉| 6 C1/2‖Φ‖1/2‖Λϕ(σ

ϕ
−is/2(x))‖‖Λϕ(y)‖.

Since y is an arbitrary entire element of M with respect to σϕ, we have

(3.2) ‖∆s/2
ϕ Λϕ(Φ(x))‖6C1/2‖Φ‖1/2‖Λϕ(σ

ϕ
−is/2(x))‖=C1/2‖Φ‖1/2‖∆s/2

ϕ Λϕ(x)‖.

For x ∈ Aϕ, take a sequence of entire elements xn of M with respect to σϕ

such that

‖Λϕ(xn)−Λϕ(x)‖ → 0 and ‖Λϕ(x∗n)−Λϕ(x∗)‖ → 0 (n→ ∞).

Then we also have

‖∆s/2
ϕ Λϕ(xn − x)‖2 6 ‖Λϕ(xn − x)‖2 + ‖∆1/2

ϕ Λϕ(xn − x)‖2 by Lemma 3.3

= ‖Λϕ(xn − x)‖2 + ‖Λϕ(x∗n − x∗)‖2 → 0.

Since

‖Λϕ(Φ(xn))−Λϕ(Φ(x))‖2 = ‖Λϕ(Φ(xn − x))‖2

6 C‖Φ‖‖Λϕ(xn − x)‖2 → 0,

we have

(3.3) 〈∆s/2
ϕ Λϕ(Φ(xn)), Λϕ(y)〉 → 〈∆s/2

ϕ Λϕ(Φ(x)), Λϕ(y)〉 for y ∈ nϕ.

Moreover, since

‖∆s/2
ϕ Λϕ(Φ(xm))−∆s/2

ϕ Λϕ(Φ(xn))‖ 6 C1/2‖Φ‖1/2‖∆s/2
ϕ Λϕ(xm − xn)‖ by (3.2)

→ 0 (m, n→ ∞),

the sequence ∆s/2
ϕ Λϕ(Φ(xn)) is a Cauchy sequence. Thus ∆s/2

ϕ Λϕ(Φ(xn)) con-
verges to ∆s/2

ϕ Λϕ(Φ(x)) in norm by (3.3). Therefore, we have

‖∆s/2
ϕ Λϕ(Φ(x))‖ = lim

n→∞
‖∆s/2

ϕ Λϕ(Φ(xn))‖ 6 C1/2‖Φ‖1/2 lim
n→∞

‖∆s/2
ϕ Λϕ(xn)‖

= C1/2‖Φ‖1/2‖∆s/2
ϕ Λϕ(x)‖.

LEMMA 3.5. Let M be a von Neumann algebra with ϕ ∈ W(M) and Φ be a
normal c.p. map on M. Suppose ϕ ◦Φ 6 Cϕ as before. Then for α ∈ [0, 1/2], one can
define the bounded operator Tα

Φ on Hϕ with ‖Tα
Φ‖ 6 C1/2‖Φ‖1/2 by

Tα
Φ(∆

α
ϕΛϕ(x)) := ∆α

ϕΛϕ(Φ(x)) for x ∈ nϕ ∩ n∗ϕ.

It is not hard to see that Tα
Φ in the above is c.p. with respect to Pα

ϕ since
Tα

Φ ⊗ 1Mm = Tα
Φ⊗idMm

preserves Pα
ϕn .
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3.3. HAAGERUP APPROXIMATION PROPERTY ASSOCIATED WITH POSITIVE CONES.
We will introduce the “interpolated” HAP for a von Neumann algebra.

DEFINITION 3.6. Let α ∈ [0, 1/2] and M a von Neumann algebra with ϕ ∈
W(M). We will say that M has the α-Haagerup approximation property with respect
to ϕ (α-HAPϕ) if there exists a net of compact contractive operators Tn on Hϕ such
that Tn → 1Hϕ in the strong topology and each Tn is c.p. with respect to Pα

ϕ .

We will show the above approximation property is actually a weight-free
notion in what follows.

LEMMA 3.7. Let α ∈ [0, 1/2]. Then the following statements hold:
(i) Let e ∈ Mϕ be a projection. If M has the α-HAPϕ, then eMe has the α-HAPϕe ;

(ii) If there exists an increasing net of projections ei in Mϕ such that ei → 1 in the
strong topology and ei Mei has the α-HAPϕei

for all i, then M has the α-HAPϕ.

Proof. (i) We will regard Hϕe = eJϕeJϕ Hϕ, Jϕe = eJϕe and ∆ϕe = eJϕeJϕ∆ϕ as
usual. Then it is not so difficult to show that Pα

ϕe = eJϕeJϕPα
ϕ . Take a net Tn as in

Definition 3.6. Then the net eJϕeJϕTneJϕeJϕ does the job.
(ii) Let F be a finite subset of Hϕ and ε > 0. Take i such that

‖ei Jϕei Jϕξ − ξ‖ < ε

2
for all ξ ∈ F .

We identify Hϕei
with ei Jϕei JϕHϕ as usual. Then take a compact contractive oper-

ator T on Hϕei
such that it is c.p. with respect to Pα

ϕei
and satisfies

‖Tei Jϕei Jϕξ − ei Jϕei Jϕξ‖ < ε

2
for all ξ ∈ F .

Thus we have ‖Tei Jϕei Jϕξ − ξ‖ < ε for ξ ∈ F . One can show that Tei Jϕei Jϕ is a
compact contractive operator such that it is c.p. with respect to Pα

ϕ , and we are
done.

LEMMA 3.8. The approximation property introduced in Definition 3.6 does not
depend on the choice of an f.n.s. weight. Namely, let M be a von Neumann algebra and
ϕ, ψ ∈W(M). If M has the α-HAPϕ, then M has the α-HAPψ.

Proof. Similarly as in the proof of Lemma 2.9, it suffices to check that each
operation below inherits the approximation property introduced in Definition 3.6.

(1) ϕ 7→ ϕ⊗ Tr, where Tr denotes the canonical tracial weight on B(`2);
(2) ϕ 7→ ϕe, where e ∈ Mϕ is a projection;
(3) ϕ 7→ ϕ ◦ α, α ∈ Aut(M);
(4) ϕ 7→ ϕh, where h is a non-singular positive operator affiliated with Mϕ.

(1) Let N := M ⊗ B(`2) and ψ := ϕ ⊗ Tr. Take an increasing sequence
of finite rank projections en on `2 such that en → 1 in the strong topology. Then
fn := 1⊗ en belongs to Nψ and fnN fn = M⊗ enB(`2)en, which has the α-HAPψ fn

.
By Lemma 3.7(ii), N has the α-HAPψ.
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(2) This is nothing but Lemma 3.7(i).
(3). Let ψ := ϕ ◦ α. Regard as Hψ = Hϕ by putting Λψ = Λϕ ◦ α. We denote

by Uα the canonical unitary implementation, which maps Λϕ(x) to Λψ(α−1(x))
for x ∈ nϕ. Then it is direct to see that ∆ψ = Uα∆ϕU∗α , and Pα

ψ = UαPα
ϕ . We can

show M has the α-HAPψ by using Uα.
(4). Our proof requires a preparation. We will give a proof after proving

Lemma 3.10.

Let α ∈ [0, 1/2] and ϕ ∈ W(M). Recall that α̂ = 1/2− α. Note that for an
entire element x ∈ M with respect to σϕ, an operator xJϕσ

ϕ

i(α−α̂)
(x)Jϕ is c.p. with

respect to Pα
ϕ .

LEMMA 3.9. Let T be a c.p. operator with respect to Pα
ϕ and {ei}m

i=1 a partition of

unity in Mϕ. Then the operator
m
∑

i,j=1
ei Jϕej JϕTei Jϕej Jϕ is c.p. with respect to Pα

ϕ .

Proof. Let Eij be the matrix unit of Mm. Set ρ :=
m
∑

i=1
ei ⊗ E1i. Note that ρ

belongs to (M⊗Mm)ϕ⊗trm . Then the operator

ρJϕ⊗trm ρJϕ⊗trm(T ⊗ 1Mm)ρ
∗ Jϕ⊗trm ρ∗ Jϕ⊗trm

on Hϕ ⊗Mm is positive with respect to Pα
ϕ⊗trm

since so is T ⊗ 1Mm . By direct

calculation, this operator equals
m
∑

i,j=1
ei Jϕej JϕTei Jϕej Jϕ ⊗ Eii Jtrm Ejj Jtrm . Thus we

are done.

Let h ∈ Mϕ be positive and invertible. We can put Λϕh(x) := Λϕ(xh1/2)

for x ∈ nϕh = nϕ. This immediately implies that ∆ϕh = hJϕh−1 Jϕ∆ ϕ, and Pα
ϕh

=

hα Jϕhα̂ JϕPα
ϕ . Thus we have the following result.

LEMMA 3.10. Let h ∈ Mϕ be positive and invertible. If T is a c.p. operator with
respect to Pα

ϕ , then
Th := hα Jϕhα̂ JϕTh−α Jϕh−α̂ Jϕ

is c.p. with respect to Pα
ϕh

.

Resumption of Proof of Lemma 3.8. Let ψ := ϕh and e(·) the spectral resolu-
tion of h. Put en := e([1/n, n]) ∈ Mϕ for n ∈ N. Since en ∈ Mψ and en → 1 in the
strong topology, it suffices to show that en Men has the α-HAPϕhen

by Lemma 3.7.
Thus we may and do assume that h is bounded and invertible.

Let us identify Hψ = Hϕ by putting Λψ(x) := Λϕ(xh1/2) for x ∈ nϕ as
usual, where we should note that nϕ = nψ. Then we have ∆ψ = hJϕh−1 Jϕ∆ϕ and
Pα

ψ = hα Jϕhα̂ JϕPα
ϕ as well.

Let F be a finite subset of Hϕ and ε > 0. Take δ > 0 so that 1 − (1 +

δ)−1/2 < ε/2. Let {ei}m
i=1 be spectral projections of h such that

m
∑

i=1
ei = 1 and
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hei 6 λiei 6 (1 + δ)hei for some λi > 0. Note that ei belongs to Mϕ ∩Mϕh . For a
c.p. operator T with respect to Pα

ϕ , we put

Th,δ :=
m

∑
i,j=1

ei Jϕej JϕThei Jϕej Jϕ =
m

∑
i,j=1

hαei Jϕhα̂ej JϕTh−αei Jϕh−α̂ej Jϕ,

which is c.p. with respect to Pα
ϕh

by Lemma 3.9 and Lemma 3.10. Since {ei Jϕej Jϕ}i,j
is a partition of unity, the norm of Th,δ equals the maximum of

‖hαei Jϕhα̂ej JϕTh−αei Jϕh−α̂ej Jϕ‖.
Since we have

‖hαei Jϕhα̂ej JϕTh−αei Jϕh−α̂ej Jϕ‖ 6 ‖hαei‖‖hα̂ej‖‖T‖‖h−αei‖‖h−α̂ej‖

6 λα
i λα̂

j ((1 + ε)λ−1
i )α((1 + ε)λ−1

j )α̂‖T‖

= (1 + δ)1/2,

we get ‖Th,δ‖ 6 (1 + δ)1/2.
Since M has the α-HAPϕ, we can find a c.c.p. compact operator T with re-

spect to Pα
ϕ such that ‖Th,δξ − ξ‖ < ε/2 for all ξ ∈ F . Then T̃ := (1 + δ)−1/2Th,δ

is a c.c.p. operator with respect to Pα
ϕh

, which satisfies ‖T̃ξ − ξ‖ < ε for all ξ ∈ F .
Thus we are done.

Therefore, the α-HAPϕ does not depend on a choice of ϕ ∈ W(M). So, we
will simply say α-HAP for α-HAPϕ.

Now we are ready to introduce the main theorem in this section.

THEOREM 3.11. Let M be a von Neumann algebra. Then the following statements
are equivalent:

(i) M has the HAP, i.e., the 1/4-HAP;
(ii) M has the 0-HAP;

(iii) M has the α-HAP for any α ∈ [0, 1/2];
(iv) M has the α-HAP for some α ∈ [0, 1/2].
(v) M has the CS-HAP;

We will prove the above theorem in several steps.

Proof of (i)⇒(ii) in Theorem 3.11. Suppose that M has the 1/4-HAP. Thanks
to Lemma 3.7, we may and do assume that M is σ-finite. Let ϕ ∈ M+

∗ be a faithful
state. By Theorem 2.7, we can take a net of normal c.c.p. maps Φn on M with
ϕ ◦ Φn 6 ϕ such that the following implementing operator Tn is compact and
Tn → 1Hϕ in the strong topology:

Tn(∆
1/4
ϕ xξϕ) = ∆1/4

ϕ Φn(x)ξϕ for x ∈ M.

Let T0
Φn

be the closure of ∆−1/4
ϕ Tn∆1/4

ϕ as in Lemma 3.5. Recall that T0
Φn

satisfies

T0
Φn
(xξϕ) = Φn(x)ξϕ for x ∈ M.
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However, the compactness of T0
Φn

is not clear. Thus we will perturb Φn by aver-
aging σϕ. We put

gβ(t) :=

√
β

π
exp(−βt2) for β > 0 and t ∈ R.

Then set

σ
ϕ
gβ
(x) :=

∫
R

gβ(t)σ
ϕ
t (x)dt for x∈M, and Uβ :=

∫
R

gβ(t)∆it
ϕ dt= ĝβ(− log ∆ϕ),

where
ĝβ(t) :=

∫
R

gβ(s)e−ist ds = exp(−t2/(4β)) for t ∈ R.

Then Uβ → 1 in the strong topology as β→ ∞.
For β, γ > 0, we define

Φn,β,γ(x) := (σ
ϕ
gβ
◦Φn ◦ σ

ϕ
gγ)(x) for x ∈ M.

Since
∫
R

gγ(t)dt = 1 and gγ > 0, the map Φn,β,γ is normal c.c.p. such that

ϕ ◦Φn,β,γ 6 ϕ. By Lemma 3.5, we obtain the associated operator T0
Φn,β,γ

, which is
given by

T0
Φn,β,γ

(xξϕ) = Φn,β,γ(x)ξϕ for x ∈ M.

Moreover, we have T0
Φn,β,γ

= UβT0
Φn

Uγ = Uβ∆−1/4
ϕ Tn∆1/4

ϕ Uγ. Hence T0
Φn,β,γ

is

compact, because e−t/4 ĝβ(t) and et/4 ĝγ(t) are bounded functions on R. Thus we
have shown that (T0

Φn,β,γ
)(n,β,γ) is a net of contractive compact operators.

It is trivial that T0
Φn,β,γ

→ 1Hϕ in the weak topology, because Uβ, Uγ → 1Hϕ

as β, γ→ ∞ and Tn → 1Hϕ as n→ ∞ in the strong topology.

In order to prove Theorem 3.11 (ii)⇒(iii), we need a few lemmas. In what
follows, let M be a von Neumann algebra with ϕ ∈W(M).

LEMMA 3.12. Let α ∈ [0, 1/2]. Then M has the α-HAPϕ if and only if M has the
α̂-HAPϕ.

Proof. It immediately follows from the fact that T is c.p. with respect to Pα
ϕ

if and only if JϕTJϕ is c.p. with respect to Pα̂
ϕ .

LEMMA 3.13. Let (Ut)t∈R be a one-parameter unitary group and T be a compact
operator on a Hilbert space H. If a sequence (ξn) in H converges to 0 weakly, then
(TUtξn) converges to 0 in norm, compact uniformly for t ∈ R.

Proof. Since T is compact, the map R 3 t 7→ TUt ∈ B(H) is norm continu-
ous. In particular, for any R > 0, the set {TUt : t ∈ [−R, R]} is norm compact.
Since (ξn) converges weakly, it is uniformly norm bounded. Thus the statement
holds by using a covering of {TUt : t ∈ [−R, R]} by small balls.
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LEMMA 3.14. Let α ∈ [0, 1/4] and β ∈ [α, α̂]. Then Pα
ϕ ⊂ D(∆

β−α
ϕ ) and Pβ

ϕ =

∆
β−α
ϕ Pα

ϕ .

Proof. Since Pα
ϕ ⊂ D(∆1/2−2α

ϕ ) and 0 6 β− α 6 1/2− 2α, it turns out that

Pα
ϕ ⊂ D(∆

β−α
ϕ ). Let ξ ∈ Pα

ϕ and take a sequence ξn ∈ P]
ϕ such that ∆α

ϕξn → ξ.
Then we have

‖∆β
ϕ(ξm−ξn)‖2=‖∆β−α

ϕ ∆α
ϕ(ξm − ξn)‖2

6‖∆0
ϕ ·∆α

ϕ(ξm−ξn)‖2+‖∆1/2−2α
ϕ ·∆α

ϕ(ξm−ξn)‖2 by Lemma 3.3

=‖∆α
ϕ(ξm − ξn)‖2 + ‖Jϕ∆α

ϕSϕ(ξm − ξn)‖2

=2‖∆α
ϕ(ξm − ξn)‖2 → 0.

Hence ∆
β
ϕξn converges to a vector η which belongs to Pβ

ϕ . Since ∆
β−α
ϕ (∆α

ϕξn) =

∆
β
ϕξn → η and ∆

β−α
ϕ is closed, ∆

β−α
ϕ ξ = η ∈ Pβ

ϕ . Hence Pβ
ϕ ⊃ ∆

β−α
ϕ Pα

ϕ . The

converse inclusion is obvious since ∆
β
ϕP]

ϕ = ∆
β−α
ϕ (∆α

ϕP]
ϕ).

Note that the real subspace Rα
ϕ := Pα

ϕ − Pα
ϕ in Hϕ is closed and the mapping

Sα
ϕ : Rα

ϕ + iRα
ϕ 3 ξ + iη 7→ ξ − iη ∈ Rα

ϕ + iRα
ϕ

is a conjugate-linear closed operator which has the polar decomposition

Sα
ϕ = Jϕ∆1/2−2α

ϕ .

(See Poposition 2.4 of [29] in the case where M is σ-finite.)

LEMMA 3.15. Let α ∈ [0, 1/4] and T ∈ B(Hϕ) be a c.p. operator with respect to
Pα

ϕ . Let β ∈ [α, α̂]. Then the following statements hold:

(i) Then the operator ∆
β−α
ϕ T∆

α−β
ϕ extends to the bounded operator on Hϕ, which is

denoted by Tβ in what follows, so that ‖Tβ‖ 6 ‖T‖. Also, Tβ is a c.p. operator with
respect to Pβ

ϕ .
(ii) If a bounded net of c.p. operators Tn with respect to Pα

ϕ weakly converges to 1Hϕ ,

then so does the net Tβ
n .

(iii) If T in (i) is non-zero compact, then so is Tβ.

Proof. (i) Let ζ ∈ P]
ϕ and η := ∆

β
ϕζ which belongs to Pβ

ϕ . We put ξ :=

T∆
α−β
ϕ η. Since ∆

α−β
ϕ η = ∆α

ϕζ ∈ Pα
ϕ and T is c.p. with respect to Pα

ϕ , we obtain

ξ ∈ Pα
ϕ . By Lemma 3.14, we know that ∆

β−α
ϕ ξ ∈ Pβ

ϕ . Thus ∆
β−α
ϕ T∆

α−β
ϕ maps ∆

β
ϕP]

ϕ

into Pβ
ϕ .

Hence the complete positivity with respect to Pβ
ϕ immediately follows when

we prove the norm boundedness of that map. The proof given below is quite
similar to the one of Lemma 3.4. Recall the associated Tomita algebra Tϕ. Let
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ξ, η ∈ Tϕ. We define the entire function F by

F(z) := 〈T∆−z
ϕ ξ, ∆z

ϕη〉 for z ∈ C.

For any t ∈ R, we have

|F(it)| = |〈T∆−it
ϕ ξ, ∆−it

ϕ η〉| 6 ‖T‖‖ξ‖‖η‖.

Note that

∆
−(α̂−α+it)
ϕ ξ = ∆α

ϕ∆
−(α̂+it)
ϕ ξ = ∆α

ϕξ1 + i∆α
ϕξ2 ∈ Rα

ϕ + iRα
ϕ,

where ξ1, ξ2 ∈ Rα
ϕ satisfies ∆

−(α̂+it)
ϕ ξ = ξ1 + iξ2. Note that ξ1 and ξ2 also belong

to Tϕ. Since T is c.p. with respect to Pα
ϕ , we see that TRα

ϕ ⊂ Rα
ϕ. Then we have

∆α̂−α
ϕ T∆

−(α̂−α+it)
ϕ ξ = ∆1/2−2α

ϕ (T∆α
ϕξ1 + iT∆α

ϕξ2) = Jϕ(T∆α
ϕξ1 − iT∆α

ϕξ2)

= JϕTSα
ϕ(∆

α
ϕξ1 + i∆α

ϕξ2)

= JϕTJϕ∆1/2−2α
ϕ ∆

−(α̂−α+it)
ϕ ξ = JϕTJϕ∆−it

ϕ ξ.

In particular, ∆α̂−α
ϕ T∆

−(α̂−α)
ϕ is norm bounded, and its closure is JϕTJϕ. Hence

|F(α̂− α + it)| = |〈T∆
−(α̂−α+it)
ϕ ξ, ∆α̂−α−it

ϕ η〉|

= |〈JϕTJϕ∆−it
ϕ ξ, ∆it

ϕη〉| 6 ‖T‖‖ξ‖‖η‖.

Applying the three-lines theorem to F(z) at z = β− α ∈ [0, α̂− α], we obtain

(3.4) |〈∆β−α
ϕ T∆

α−β
ϕ ξ, η〉| = |F(β− α)| 6 ‖T‖‖ξ‖‖η‖.

This implies

‖(∆β−α
ϕ T∆

α−β
ϕ )ξ‖ 6 ‖T‖‖ξ‖ for all ξ ∈ Tϕ.

Therefore ∆
β−α
ϕ T∆

α−β
ϕ extends to a bounded operator, which we denote by Tβ, on

Hϕ such that ‖Tβ‖ 6 ‖T‖.
(ii) By (i), we have ‖Tβ

n ‖ 6 ‖Tn‖, and thus the net (Tβ
n )n is also bounded.

Hence the statement follows from the following equality for all ξ, η ∈ Tϕ:

|〈(Tβ
n − 1Hϕ)ξ, η〉| = |〈(Tn − 1Hϕ)∆

α−β
ϕ ξ, ∆

β−α
ϕ η〉|.

(iii) Suppose that T is compact. Let ηn be a sequence in Hϕ with ηn → 0
weakly. Take ξn ∈ Tϕ such that ‖ξn − ηn‖ < 1/n for n ∈ N. It suffices to check
that ‖Tβξn‖ → 0. Since the sequence ξn is weakly converging, there exists D > 0
such that

(3.5) ‖ξn‖ 6 D for all n ∈ N.

Let η ∈ Tϕ. For each n ∈ N, we define the entire function Fn by

Fn(z) := exp(z2)〈T∆−z
ϕ ξn, ∆z

ϕη〉.
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Let ε > 0. Take t0 > 0 such that

(3.6) e−t2
6

ε

D‖T‖ for |t| > t0.

We let I := [−t0, t0]. Since T is compact, there exists n0 ∈ N such that

(3.7) ‖T∆−it
ϕ ξn‖ 6 ε and ‖JϕTJϕ∆−it

ϕ ξn‖ 6 ε for n > n0 and t ∈ I.

Then for n > n0 we have

|Fn(it)| = e−t2 |〈T∆−it
ϕ ξn, ∆−it

ϕ η〉| 6 e−t2‖T∆−it
ϕ ξn‖‖η‖.

Hence if t 6∈ I, then

|Fn(it)| 6 e−t2‖T‖‖ξn‖‖η‖

6 e−t2
D‖T‖‖η‖ by (3.5)

6 ε‖η‖ by (3.6),

and if t ∈ I, then

|Fn(it)| 6 ‖T∆−it
ϕ ξn‖‖η‖

6 ε‖η‖ by (3.7).

Similarly, by using the fact that the closure of ∆α̂−α
ϕ T∆

−(α̂−α)
ϕ is JϕTJϕ, we obtain

|Fn(α̂− α + it)| 6 ε‖η‖ for n > n0 and t ∈ R.

Therefore the three-lines theorem implies

e(β−α)2 |〈Tβξn, η〉| = |Fn(β− α)| 6 ε‖η‖ for n > n0.

Hence we have ‖Tβξn‖ 6 ε for n > n0. Therefore Tβ is compact.

LEMMA 3.16. Let M be a von Neumann algebra and α ∈ [0, 1/4]. If M has the
α-HAP, then M also has the β-HAP for all β ∈ [α, α̂].

Proof. Take a net of c.c.p. compact operators Tn with respect to Pα
ϕ as before.

By Lemma 3.15, we obtain a net of c.c.p. compact operators Tβ
n with respect to Pβ

ϕ

such that Tβ
n is converging to 1Hϕ in the weak topology. Thus we are done.

Now we resume to prove Theorem 3.11.

Proof of (ii)⇒(iii) in Theorem 3.11. It follows from Lemma 3.16.

Proof of (iii)⇒(iv) in Theorem 3.11. This is a trivial implication.

Proof of (iv)⇒(i) in Theorem 3.11. Suppose that M has the α-HAP for some
α ∈ [0, 1/2]. By Lemma 3.12, we may and do assume that α ∈ [0, 1/4]. By
Lemma 3.16, M has the 1/4-HAP.

Therefore we prove the conditions from (i) to (iv) are equivalent. Finally we
check the condition (v) and the others are equivalent.
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Proof of (i)⇒(v) in Theorem 3.11. It also follows from the proof of (i)⇒(ii).

Proof of (v)⇒(i) in Theorem 3.11. We may assume that M is σ-finite by Lem-
ma 3.7 and Proposition 3.5 of [38]. Let ϕ ∈ M+

∗ be a faithful state. For every
finite subset F ⊂ M, we denote by MF the von Neumann subalgebra generated
by 1 and

{σϕ
t (x) : x ∈ F, t ∈ Q}.

Then MF is a separable σϕ-invariant and contains F. By Theorem IX.4.2 of [42],
there exists a normal conditional expectation EF of M onto MF such that ϕ ◦ EF =
ϕ. As in the proof of Theorem 3.6 of [38], the projection EF on Hϕ defined below
is a c.c.p. operator:

EF(xξϕ) = EF(x)ξϕ for x ∈ M.

It is easy to see that MF has the CS-HAP. It also can be checked that if MF has the
HAP for every F, then M has the HAP. Hence we can further assume that M is
separable.

Since M has the CS-HAP, there exists a sequence of normal c.p. maps Φn
with ϕ ◦ Φn 6 ϕ such that the following implementing operator T0

n is compact
and T0

n → 1Hϕ strongly:

T0
n(xξϕ) := Φn(x)ξϕ for x ∈ M.

In particular, T0
n is a c.p. operator with respect to P]

ϕ. By the principle of uniform
boundedness, the sequence (T0

n) is uniformly norm-bounded. By Lemma 3.15,
we have a uniformly norm-bounded sequence of compact operators Tn such that
each Tn is c.p. with respect to P1/4

ϕ and Tn weakly converges to 1Hϕ . By a con-
vexity argument, we may assume that Tn → 1Hϕ strongly. It turns out from
Theorem 4.9 of [38] that M has the HAP.

Therefore we have finished proving Theorem 3.11. We will close this section
with the following result that is the contractive map version of Definition 2.8.

THEOREM 3.17. Let M be a von Neumann algebra. Then the following statements
are equivalent:

(i) M has the HAP.
(ii) For any ϕ ∈W(M), there exists a net of normal c.c.p. maps Φn on M such that:

(a) ϕ ◦Φn 6 ϕ;
(b) Φn → idM in the point-ultraweak topology;
(c) for all α ∈ [0, 1/2], the associated c.c.p. operators Tα

n on Hϕ defined below
are compact and Tα

n → 1Hϕ in the strong topology:

Tα
n ∆α

ϕΛϕ(x) = ∆α
ϕΛϕ(Φn(x)) for all x ∈ nϕ.

(iii) For some ϕ ∈ W(M) and some α ∈ [0, 1/2], there exists a net of normal c.c.p.
maps Φn on M such that:

(a) ϕ ◦Φn 6 ϕ;
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(b) Φn → idM in the point-ultraweak topology;
(c) the associated c.c.p. operators Tα

n on Hϕ defined below are compact and
Tα

n → 1Hϕ in the strong topology:

Tα
n ∆α

ϕΛϕ(x) = ∆α
ϕΛϕ(Φn(x)) for all x ∈ nϕ.

First, we will show that the second statement does not depend on the choice
of ϕ. So let us denote here the approximation property therein by “approxima-
tion property (α, ϕ)”; afterwards we will simply denote it by “approximation
property (α)”.

LEMMA 3.18. The approximation property (α, ϕ) does not depend on the choice of
ϕ ∈W(M).

Proof. Suppose that M has the approximation property (α, ϕ). It suffices to
show that each operation listed in the proof of Lemma 2.9 inherits the property
(α, ϕ). It is relatively easy to treat the first three operations, and let us omit proofs
for them. Also, we can show that if ei is a net as in statement of Lemma 3.7(ii) and
ei Mei has the approximation property (α, ϕei ) for each i, then M has the approxi-
mation property (α, ϕ).

Thus it suffices to treat ψ := ϕh for a positive invertible element h ∈ Mϕ.
Our idea is similar to the one of the proof of Lemma 3.8.

Let ε > 0. Take δ > 0 so that 2δ/(1 + δ) < ε. Let {ei}m
i=1 be a spectral

projections of h such that
m
∑

i=1
ei = 1 and hei 6 λiei 6 (1 + δ)hei for some λi > 0.

For a normal c.c.p. map Φ on M such that ϕ ◦ Φ 6 ϕ, we let Φh(x) :=
h−1/2Φ(h1/2xh1/2)h−1/2 for x ∈ M. Then Φh is a normal c.p. map satisfying

ψ ◦ Φh 6 ψ. Next we let Φ(h,δ)(x) :=
m
∑

i,j=1
eiΦh(eixej)ej for x ∈ M. For x ∈ M+,

we have

ψ(Φ(h,δ)(x)) =
m

∑
i=1

ψ(eiΦh(eixei)) 6
m

∑
i=1

ψ(Φh(eixei)) 6
m

∑
i=1

ψ(eixei) = ψ(x).

Also, we obtain

Φ(h,δ)(1) =
m

∑
i=1

eiΦh(ei)ei =
m

∑
i=1

eih−1/2Φ(hei)h−1/2ei,

and the norm of Φ(h,δ)(1) equals the maximum of that of eih−1/2Φ(hei)h−1/2ei.
Since

‖eih−1/2Φ(hei)h−1/2ei‖ 6 ‖eih−1/2‖2‖hei‖ 6 (1 + δ)λ−1
i · λi = 1 + δ,

we have ‖Ψδ‖ 6 1 + δ.
Now let F be a finite subset in the norm unit ball of M and G a finite subset

in M∗. Let α ∈ [0, 1/2]. By the property (α, ϕ), we can take a normal c.c.p. map
Φ on M with ϕ ◦ Φ 6 ϕ such that |ω(Φ(h,δ)(x) − x)| < δ for all x ∈ F and
ω ∈ G and the implementing operator Tα of Φ with respect to Pα

ϕ is compact. Put
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Ψ(h,δ) := (1+ δ)−1Φ(h,δ) that is a normal c.c.p. map satisfying ψ ◦Ψ(h,δ) 6 ψ. Then
we have |ω(Ψ(h,δ)(x)− x)| < 2δ/(1 + δ) < ε for all x ∈ F and ω ∈ G.

By direct computation, we see that the implementing operator of Ψ(h,ε) with
respect to Pα

ϕ is equal to the following operator:

T̃ := (1 + δ)−1
m

∑
i,j=1

hαei Jϕhα̂ej JϕTh−αei Jϕh−α̂ej Jϕ.

Thus T̃ is compact, and we are done. (See also T̃ in the proof of Lemma 3.8.)

Proof of Theorem 3.17. (i)⇒(ii). Take ϕ0 ∈ W(M) such that there exists a
partition of unity {ei}i∈I of projections in Mϕ0 , the centralizer of ϕ0, such that
ψi := ϕ0ei is a faithful normal state on ei Mei for each i ∈ I. Then we have an
increasing net of projections f j in Mϕ0 with f j → 1 such that f j M f j is σ-finite
for all j. Thus we may and do assume that M is σ-finite as usual. Employing
Theorem 2.7, we obtain a net of normal c.c.p. maps Φn on M such that:

• ϕ ◦Φ 6 ϕ;
• Φn → idM in the point-ultraweak topology;
• the operator defined below is c.c.p. compact on Hϕ:

Tn(∆
1/4
ϕ xξϕ) = ∆1/4

ϕ Φn(x)ξϕ for x ∈ M.

Now recall our proof of Theorem 3.11 (i)⇒(ii). After averaging Φn by gβ(t)
and gγ(t), we obtain a normal c.c.p. map Φn,β,γ which satisfies ϕ ◦Φn,β,γ 6 ϕ and
Φn,β,γ → idM in the point-ultraweak topology. For α ∈ [0, 1/2], we define the
following operator:

Tα
n,β,γ∆α

ϕΛϕ(x) := ∆α
ϕΛϕ(Φn,β,γ(x)) for x ∈ nϕ.

Then we can show the compactness of Tα
n,β,γ in a similar way to the proof of

Theorem 3.11 (i)⇒(ii), and we are done.
(ii)⇒(iii). This implication is trivial.
(iii)⇒(i). By our assumption, we have a net of c.c.p. compact operators

Tα
n with respect to some Pα

ϕ such that Tα
n → 1 in the strong operator topology.

Namely M has the α-HAP, and thus M has the HAP by Theorem 3.11.

4. HAAGERUP APPROXIMATION PROPERTY AND NON-COMMUTATIVE Lp-SPACES

In this section, we study some relations between the Haagerup approxima-
tion property and non-commutative Lp-spaces associated with a von Neumann
algebra.
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4.1. HAAGERUP’S Lp-SPACES. We begin with Haagerup’s Lp-spaces in [20]. (See
also [43].) Throughout this subsection, we fix an f.n.s. weight ϕ on a von Neu-
mann algebra M. We denote by R the crossed product M oσ R of M by the R-
action σ := σϕ. Via the natural embedding, we have the inclusion M ⊂ R. Then
R admits the canonical faithful normal semifinite trace τ and there exists the dual
action θ satisfying τ ◦ θs = e−sτ for s ∈ R. Note that M is equal to the fixed point
algebra Rθ , that is, M = {y ∈ R : θs(y) = y for s ∈ R}.

We denote by R̃ the set of all τ-measurable closed densely defined operators
affiliated with R. The set of positive elements in R̃ is denoted by R̃+. For ψ ∈ M+

∗ ,
we denote by ψ̂ its dual weight on R and by hψ the element of R̃+ satisfying
ψ̂(y) = τ(hψy) for all y ∈ R.

Then the map ψ 7→ hψ is extended to a linear bijection of M∗ onto the sub-
space

{h ∈ R̃ : θs(h) = e−sh for s ∈ R}.
Let 1 6 p < ∞. The Lp-space of M due to Haagerup is defined as follows:

Lp(M) := {a ∈ R̃ : θs(a) = e−s/pa for s ∈ R}.

Note that the spaces Lp(M) and their relations are independent of the choice of
ϕ, and thus canonically associated with a von Neumann algebra M. Denote by
Lp(M)+ the cone Lp(M) ∩ R̃+. Recall that if a ∈ R̃ with the polar decomposition
a = u|a|, then a ∈ Lp(M) if and only if |a|p ∈ L1(M). The linear functional tr on
L1(M) is defined by

tr(hψ) := ψ(1) for ψ ∈ M∗.

Then Lp(M) becomes a Banach space with the norm

‖a‖p := tr(|a|p)1/p for a ∈ Lp(M).

In particular, M∗ ' L1(M) via the isometry ψ 7→ hψ. For non-commutative Lp-
spaces, the usual Hölder inequality also holds. Namely, let q > 1 with 1/p +
1/q = 1, and we have

| tr(ab)| 6 ‖ab‖1 6 ‖a‖p‖b‖q for a ∈ Lp(M), b ∈ Lq(M).

Thus the form (a, b) 7→ tr(ab) gives a duality between Lp(M) and Lq(M). More-
over the functional tr has the “tracial” property:

tr(ab) = tr(ba) for a ∈ Lp(M), b ∈ Lq(M).

Among non-commutative Lp-spaces, L2(M) becomes a Hilbert space with the
inner product

〈a, b〉 := tr(b∗a) for a, b ∈ L2(M).

The Banach space Lp(M) has the natural M-M-bimodule structure as de-
fined below:

x · a · y := xay for x, y ∈ M, a ∈ Lp(M).
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The conjugate-linear isometric involution Jp on Lp(M) is defined by a 7→ a∗ for
a ∈ Lp(M). Then the quadruple (M, L2(M), J2, L2(M)+) is a standard form.

4.2. HAAGERUP APPROXIMATION PROPERTY FOR NON-COMMUTATIVE Lp-
SPACES. We consider the f.n.s. weight ϕ(n) := ϕ ⊗ trn on Mm(M) := M ⊗Mm.

Since σ
(n)
t := σ

ϕ(n)

t = σt ⊗ idn, we have

R(n) := Mm(M)oσ(n) R = (M oσ R)⊗Mm = Mm(R).

The canonical f.n.s. trace on R(n) is given by τ(n) = τ ⊗ trn. Moreover θ(n) :=

θ ⊗ idn is the dual action on R(n). Since R̃(n) = Mm(R̃), we have

Lp(Mm(M)) = Mm(Lp(M)) and tr(n) = tr⊗ trn.

DEFINITION 4.1. Let M and N be two von Neumann algebras with f.n.s.
weights ϕ and ψ, respectively. For 1 6 p, q 6 ∞, a bounded linear operator
T : Lp(M) → Lq(N) is completely positive if T(n) : Lp(Mm(M)) → Lq(Mm(N))

is positive for every n ∈ N, where T(n)[ai,j] = [Tai,j] for [ai,j] ∈ Lp(Mm(M)) =
Mm(Lp(M)).

In the case where M is σ-finite, the following result gives a construction of
a c.p. operator on Lp(M) from a c.p. map on M.

THEOREM 4.2 (cf. Theorem 5.1 of [22]). If Φ is a c.c.p. map on M with ϕ ◦Φ 6
Cϕ, then one obtain a c.p. operator Tp

Φ on Lp(M) with ‖Tp
Φ‖ 6 C1/p‖Φ‖1−1/p, which

is defined by

(4.1) Tp
Φ(h

1/2p
ϕ xh1/2p

ϕ ) := h1/2p
ϕ Φ(x)h1/2p

ϕ for x ∈ M.

Let M be a σ-finite von Neumann algebra with a faithful state ϕ ∈ M+
∗ .

Since

‖h1/4
ϕ xh1/4

ϕ ‖2
2 = tr(h1/4

ϕ x∗h1/2
ϕ xh1/4

ϕ ) = ‖∆1/4
ϕ xξϕ‖2 for x ∈ M,

we have the isometric isomorphism L2(M) ' Hϕ defined by h1/4
ϕ xh1/4

ϕ 7→ ∆1/4
ϕ xξϕ

for x ∈ M. Therefore under this identification, the above operator T2
Φ is nothing

but T1/4
Φ , which is given in Lemma 3.5.

DEFINITION 4.3. Let 1 < p < ∞ and M be a von Neumann algebra. We will
say that M has the Lp-Haagerup approximation property (Lp-HAP) if there exists a
net of c.c.p. compact operators Tn on Lp(M) such that Tn → 1Lp(M) in the strong
topology.

Note that a von Neumann algebra M has the HAP if and only if M has
the L2-HAP, because (M, L2(M), J2, L2(M)+) is a standard form as mentioned
previously.



280 RUI OKAYASU AND REIJI TOMATSU

4.3. KOSAKI’S Lp-SPACES. We assume that ϕ is a faithful normal state on a σ-
finite von Neumann algebra M. For each η ∈ [0, 1], M is embedded into L1(M)

by M 3 x 7→ hη
ϕxh1−η

ϕ ∈ L1(M). We define the norm ‖hη
ϕxh1−η

ϕ ‖∞,η := ‖x‖
on hη

ϕ Mh1−η
ϕ ⊂ L1(M), i.e., M ' hη

ϕ Mh1−η
ϕ . Then (hη

ϕ Mh1−η
ϕ , L1(M)) becomes a

pair of compatible Banach spaces in the sense of A.P. Calderón [7]. For 1 < p <
∞, Kosaki’s Lp-space Lp(M; ϕ)η is defined as the complex interpolation space

Cθ(h
η
ϕ Mh1−η

ϕ , L1(M)) equipped with the complex interpolation norm ‖ · ‖p,η :=
‖ · ‖Cθ

, where θ = 1/p. In particular, Lp(M; ϕ)0, Lp(M; ϕ)1 and Lp(M; ϕ)1/2 are
called the left, the right and the symmetric Lp-spaces, respectively. Note that the
symmetric Lp-space Lp(M; ϕ)1/2 is exactly the Lp-space studied in [44].

From now on, we assume that η = 1/2, and we will use the notation
Lp(M; ϕ) for the symmetric Lp-space Lp(M; ϕ)1/2.

Note that Lp(M; ϕ) is exactly h1/2q
ϕ Lp(M)h1/2q

ϕ , where 1/p + 1/q = 1, and

‖h1/2q
ϕ ah1/2q

ϕ ‖p,1/2 = ‖a‖p for a ∈ Lp(M).

Namely, we have Lp(M; ϕ) = h1/2q
ϕ Lp(M)h1/2q

ϕ ' Lp(M). Furthermore, we have

h1/2
ϕ Mh1/2

ϕ ⊂ Lp(M; ϕ) ⊂ L1(M),

and h1/2
ϕ Mh1/2

ϕ is dense in Lp(M; ϕ).
Let Φ be a c.p. map on M with ϕ ◦ Φ 6 ϕ. Note that T2

Φ in Theorem 4.2
is equal to T1/4

Φ in Lemma 3.5 under the identification L2(M; ϕ) = Hϕ. By the
reiteration theorem for the complex interpolation method in [4], [7], we have

Lp(M; ϕ) = C2/p(h1/2
ϕ Mh1/2

ϕ , L2(M; ϕ)) for 2 < p < ∞, and(4.2)

Lp(M; ϕ) = C2/p−1(L2(M; ϕ), L1(M)) for 1 < p < 2.(4.3)

(See also Section 4 of [31].) Thanks to [13], if T2
Φ = T1/4

Φ is compact on L2(M; ϕ) =

Hϕ, then Tp
Φ is also compact on Lp(M; ϕ) for 1 < p < ∞.

4.4. THE EQUIVALENCE BETWEEN THE HAP AND THE Lp-HAP. We first show
that the HAP implies the Lp-HAP in the case where M is σ-finite.

THEOREM 4.4. Let M be a σ-finite von Neumann algebra with a faithful state
ϕ ∈ M+

∗ . Suppose that M has the HAP, i.e., there exists a net of normal c.c.p. maps Φn
on M with ϕ ◦Φn 6 ϕ satisfying the following:

(i) Φn → idM in the point-ultraweak topology;
(ii) the associated operators T2

Φn
on L2(M) defined below are compact and T2

Φn
→

1L2(M) in the strong topology:

T2
Φn
(h1/4

ϕ xh1/4
ϕ ) = h1/4

ϕ Φn(x)h1/4
ϕ for x ∈ M.

Then Tp
Φn
→ 1Lp(M) in the strong topology on Lp(M) for 1 < p < ∞. In

particular, M has the Lp-HAP for all 1 < p < ∞.
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Proof. We will freely use notations and results in [31]. First we consider the
case where p > 2. By (4.2) we have

Lp(M; ϕ) = Cθ(h1/2
ϕ Mh1/2

ϕ , L2(M; ϕ)) with θ :=
2
p

.

Let a ∈ Lp(M; ϕ) with ‖a‖Lp(M;ϕ) = ‖a‖Cθ
6 1 and 0 < ε < 1. By the definition

of the interpolation norm, there exists f ∈ F(h1/2
ϕ Mh1/2

ϕ , L2(M; ϕ)) such that a =
f (θ) and ||| f |||F 6 1 + ε/3. By Lemma 4.2.3 of [4] (or Lemma 1.3 of [31]), there
exists g ∈ F0(h1/2

ϕ Mh1/2
ϕ , L2(M; ϕ)) such that ||| f − g|||F 6 ε/3 and g(z) is of the

form

g(z) = exp(λz2)
K

∑
k=1

exp(λkz)h1/2
ϕ xkh1/2

ϕ ,

where λ > 0, K ∈ N, λ1, . . . , λK ∈ R and x1, . . . , xK ∈ M. Then

‖ f (θ)− g(θ)‖θ 6 ||| f − g|||F 6
ε

3
.

Since
lim

t→±∞
‖g(1 + it)‖L2(M;ϕ) = 0,

the subset {g(1 + it) : t ∈ R} of L2(M; ϕ) is compact in norm. Hence there exists
n0 ∈ N such that

‖T2
Φn

g(1 + it)− g(1 + it)‖L2(M;ϕ) 6
( ε

41−θ3

)1/θ
for n > n0 and t ∈ R.

Moreover,

‖Φn(g(it))−g(it)‖6‖Φn−idM‖‖g(it)‖62|||g|||F 62
(
||| f |||F+

ε

3

)
62
(

1+2
ε

3

)
<4.

Hence by Lemma 4.3.2 of [4] (or Lemma A.1 of [31]), we have

‖Tp
Φn

g(θ)− g(θ)‖θ 6
( ∫
R

‖Φn(g(it))− g(it)‖P0(θ, t)
dt

1− θ

)1−θ

×
( ∫
R

‖T2
Φn

g(1 + it)− g(1 + it)‖L2(M;ϕ)P1(θ, t)
dt
θ

)θ

6 41−θ · ε

41−θ3
=

ε

3
.

Therefore since Tp
Φn

are contractive on Lp(M; ϕ), we have

‖Tp
Φn

f (θ)− f (θ)‖θ 6‖T
p
Φn

f (θ)−Tp
Φn

g(θ)‖θ+‖T
p
Φn

g(θ)−g(θ)‖θ+‖g(θ)− f (θ)‖θ<ε.

Hence Tp
Φn
→ 1Lp(M;ϕ) in the strong topology.

In the case where 1 < p < 2, the same argument also works.

We continue further investigation of the Lp-HAP.

LEMMA 4.5. Let 1 < p, q < ∞ with 1/p + 1/q = 1. Then M has the Lp-HAP
if and only if M has the Lq-HAP.
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Proof. Suppose that M has the Lp-HAP, i.e., there exists a net of c.c.p. com-
pact operators Tn on Lp(M) such that Tn → 1Lp(M) in the strong topology. Then
we consider the transpose operators tTn on Lq(M), which are defined by

tr(tTn(b)a) = tr(bTn(a)) for a ∈ Lp(M), b ∈ Lq(M).

It is easy to check that tTn is c.c.p. compact and tTn → 1Lq(M) in the weak topology.
By taking suitable convex combinations, we have a net of c.c.p. compact operators
T̃n on Lq(M) such that T̃n → 1Lq(M) in the strong topology. Hence M has the Lq-
HAP.

We will use the following results.

LEMMA 4.6 (cf. Theorem 1.7 of [18]). Let 1 6 p < ∞ and M be a σ-finite von
Neumann algebra with non-singular h0 ∈ L1(M)+. Then the embedding Θ

p
h0

: M 3
x 7→ h1/2p

0 xh1/2p
0 ∈ Lp(M), induces an order isomorphism between {x ∈ Msa : −c1 6

x 6 c1} and Kp
h0

:= {h ∈ Lp(M)sa : −ch1/p
0 6 a 6 ch1/p

0 } for each c > 0. Moreover
Θ

p
ξ0

is σ(M, M∗)-σ(Lp(M), Lq(M)) continuous.

LEMMA 4.7 ([32], Theorem 4.2). For 1 6 p, q < ∞, the map

Lp(M)+ 3 a 7→ ap/q ∈ Lq(M)+

is a homeomorphism with respect to the norm topologies.

In [33], it was proved that Furuta’s inequality [17] remains valid for τ-
measurable operators. In particular, the Löwner–Heinz inequality holds for τ-
measurable operators.

LEMMA 4.8. If τ-measurable positive self-adjoint operators a and b satisfy a 6 b,
then ar 6 br for 0 < r < 1.

The following lemma can be proved similarly as in the proof of Lemma 4.2
in [38].

LEMMA 4.9. Let 1 6 p, q 6 ∞ with 1/p + 1/q = 1. If a ∈ Lp(M)+, then
(i) the functional fa : Lq(M)→ C = Lq(C), b 7→ tr(ba) is a c.p. operator;
(i) the operator ga : C = Lp(C)→ Lp(M), z 7→ za is a c.p. operator.

In the case where p = 2, the following lemma is also proved in Lemma 4.3
of [38]. We give a proof for reader’s convenience.

LEMMA 4.10. Let 1 < p < ∞ and M be a σ-finite von Neumann algebra with
a faithful state ϕ ∈ M+

∗ . If M has the Lp-HAP, then there exists a net of c.c.p.
compact operators Tn on Lp(M) such that Tn → 1Lp(M) in the strong topology, and

(Tnh1/p
ϕ )p/2 ∈ L2(M)+ is cyclic and separating for all n.

Proof. Since M has the Lp-HAP, there exists a net of c.c.p. compact operators
Tn on Lp(M) such that Tn → 1Lp(M) in the strong topology. Set a1/p

n := Tnh1/p
ϕ ∈
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Lp(M)+. Then an∈L1(M)+. Take ϕn∈M+
∗ such that an =hϕn ∈L1(M)+. If we set

ψn := ϕn + (ϕn − ϕ)− ∈ M+
∗ ,

then hn := hψn > hϕ. By Lemma 4.8, we obtain h1/2
n > h1/2

ϕ . It follows from
Lemma 4.3 of [12] that h1/2

n ∈ L2(M)+ is cyclic and separating. Now we define a
compact operator T′n on Lp(M) by

T′na := Tna + tr(ah1/q
ϕ )(h1/p

n − a1/p
n ) for a ∈ Lp(M).

Since h1/p
n > a1/p

n by Lemma 4.8, each T′n is a c.p. operator, because of Lemma 4.9.
Note that

T′nh1/p
ϕ = Tnh1/p

ϕ + tr(hϕ)(h
1/p
n − a1/p

n ) = h1/p
n .

Since a1/p
n = Tnh1/p

ϕ → h1/p
ϕ in norm, we have an = hϕn → hϕ in norm by

Lemma 4.7. Since

‖hn − an‖1 = ‖ψn − ϕn‖ 6 ‖ϕn − ϕ‖ = ‖hϕn − hϕ‖1 → 0,

we obtain ‖h1/p
n − a1/p

n ‖p → 0 by Lemma 4.7. Therefore ‖T′na− a‖p → 0 for any

a ∈ Lp(M). Since ‖T′n − Tn‖ 6 ‖h1/p
n − a1/p

n ‖p → 0, we get ‖T′n‖ → 1. Then
operators T̃n := ‖T′n‖−1T′n give a desired net.

If M is σ-finite and the Lp-HAP for some 1 < p < ∞, then we can recover
a net of normal c.c.p. maps on M approximating to the identity such that the
associated implementing operators on Lp(M) are compact. In the case where
p = 2, this is nothing but Theorem 4.8 of [38] (or Theorem 3.17).

THEOREM 4.11. Let 1 < p < ∞ and M a σ-finite von Neumann algebra with a
faithful state ϕ ∈ M+

∗ . If M has the Lp-HAP, then there exists a net of normal c.c.p.
map Φn on M with ϕ ◦Φn 6 ϕ satisfying the following:

(i) Φn → idM in the point-ultraweak topology;
(ii)the associated c.c.p. operator Tp

Φn
on Lp(M) defined below are compact and Tp

Φn
→

1Lp(M) in the strong topology:

Tp
Φn
(h1/2p

ϕ xh1/2p
ϕ ) = h1/2p

ϕ Φn(x)h1/2p
ϕ for x ∈ M.

Proof. The case where p = 2 is nothing but Theorem 4.8 of [38]. Let p 6= 2.
Take q > 1 such that 1/p + 1/q = 1. By Lemma 4.10, there exists a net of c.c.p.
compact operators Tn on Lp(M) such that Tn → 1Lp(M) in the strong topology,

and h1/2
n := (Tnh1/p

ϕ )p/2 is cyclic and separating on L2(M) for all n.
Let Θ

p
hϕ

and Θ
p
hn

be the maps given in Lemma 4.6. For each x ∈ Msa, take
c > 0 such that −c1 6 x 6 c1. Then

−ch1/p
ϕ 6 h1/2p

ϕ xh1/2p
ϕ 6 ch1/p

ϕ .

Since Tn is positive, we have

−ch1/p
n 6 Tn(h

1/2p
ϕ xh1/2p

ϕ ) 6 ch1/p
n .
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From Lemma 4.6, the operator (Θ
p
hn
)−1(Tn(h

1/2p
ϕ xh1/2p

ϕ )) in M is well-defined.
Hence we can define a linear map Φn on M by

Φn := (Θ
p
hn
)−1 ◦ Tn ◦Θ

p
hϕ

.

In other words,

Tn(h
1/2p
ϕ xh1/2p

ϕ ) = h1/2p
n Φn(x)h1/2p

n for x ∈ M.

One can easily check that Φn is a normal u.c.p. map.
Step 1. We will show that Φn → idM in the point-ultraweak topology.
Since h1/2

ϕ Mh1/2
ϕ is dense in L1(M), it suffices to show that

tr(Φn(x)h1/2
ϕ yh1/2

ϕ )→ tr(xh1/2
ϕ yh1/2

ϕ ) for x, y ∈ M.

Moreover, thanks to Lemma 4.7, we have ‖h1/2p
n − h1/2p

ϕ ‖p → 0. Therefore it
suffices to check that

tr(Φn(x)h1/2p
n h1/2q

ϕ yh1/2q
ϕ h1/2p

n )→ tr(xh1/2
ϕ yh1/2

ϕ ) for x, y ∈ M.

However

|tr(Φn(x)h1/2p
n h1/2q

ϕ yh1/2q
ϕ h1/2p

n )− tr(xh1/2
ϕ yh1/2

ϕ )|

= |tr((h1/2p
n Φn(x)h1/2p

n − h1/2p
ϕ xh1/2p

ϕ ) · h1/2q
ϕ yh1/2q

ϕ )|

= |tr((Tn − 1Lp(M))(h
1/2p
ϕ xh1/2p

ϕ ) · h1/2q
ϕ yh1/2q

ϕ )|

6 ‖(Tn − 1Lp(M))(h
1/2p
ϕ xh1/2p

ϕ )‖p‖h1/2q
ϕ yh1/2q

ϕ ‖q → 0.

Step 2. We will make a small perturbation of Φn.
By Lemma 4.7, we have ‖hn− hϕ‖1 → 0, i.e., ‖ϕn− ϕ‖ → 0, where ϕn ∈ M+

∗
is the unique element with hn = hϕn . By a similar argument as in the proof of
Theorem 4.8 of [38], one can obtain normal c.c.p. maps Φ̃n on M with Φ̃n → idM
in the point-ultraweak topology, and c.c.p. compact operators T̃n on Lp(M) with
T̃n → 1Lp(M) in the strong topology such that ϕ ◦ Φ̃n 6 ϕ and

T̃n(h
1/2p
ϕ xh1/2p

ϕ ) = h1/2p
ϕ Φ̃n(x)h1/2p

ϕ for x ∈ M.

Moreover operators T̃n are nothing but Tp
Φ̃n

.

Recall that M has the completely positive approximation property (CPAP)
if and only if Lp(M) has the CPAP for some/all 1 6 p < ∞. This result is proved
in Theorem 3.2 of [27]. The following is the HAP version of this fact.

THEOREM 4.12. Let M be a von Neumann algebra. Then the following are equiv-
alent:

(i) M has the HAP;
(ii) M has the Lp-HAP for all 1 < p < ∞;

(iii) M has the Lp-HAP for some 1 < p < ∞.
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Proof. We first reduce the case where M is σ-finite by the following elemen-
tary fact similarly as in the proof of Theorem 3.2 in [27]. Take an f.n.s. weight ϕ on
M and an increasing net of projection en in M with en → 1M in the strong topol-
ogy such that σ

ϕ
t (en) = en for all t ∈ R and en Men is σ-finite for all n. Then we

can identify Lp(en Men) with a subspace of Lp(M) and there exists a completely
positive projection from Lp(M) onto Lp(en Men) via a 7→ enaen. Moreover the
union of these subspaces is norm dense in Lp(M). Therefore it suffices to prove
the theorem in the case where M is σ-finite.

(i)⇒(ii) It is nothing but Theorem 4.4.
(ii)⇒(iii) It is trivial.
(iii)⇒(i) Suppose that M has the Lp-HAP for some 1 < p < ∞. We may

and do assume that p < 2 by Lemma 4.5. Let ϕ ∈ M∗ be a faithful state. By
Theorem 4.11, there exists a net of normal c.c.p. maps Φn on M with ϕ ◦Φn 6 ϕ
such that Φn → idM in the point-ultraweak topology and a net of the associ-
ated compact operators Tp

Φn
converges to 1Lp(M) in the strong topology. By the

reiteration theorem for the complex interpolation method, we have L2(M; ϕ) =

Cθ(h
1/2
ϕ Mh1/2

ϕ , Lp(M; ϕ)) for some 0 < θ < 1. By [13], the operators T2
Φn

are also
compact. Moreover, by the same argument as in the proof of Theorem 4.4, we
have T2

Φn
→ 1L2(M) in the strong topology.

REMARK 4.13. In the proof of Theorem 3.2 in [27], it is shown that c.p. op-
erators on Lp(M) give c.p. maps on M by using the result of L.M. Schmitt in [39].
See Theorem 3.1 of [27] for more details. However our approach is much different
and based on the technique of A.M. Torpe in [45].
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