J. OPERATOR THEORY © Copyright by THETA, 2016
75:2(2016), 387-408
doi: 10.7900/jot.2015may17.2070

ON THE LIE IDEALS OF C*-ALGEBRAS

LEONEL ROBERT

Communicated by Kenneth R. Davidson

ABSTRACT. Various questions on Lie ideals of C*-algebras are investigated.
They fall roughly under the following topics: relation of Lie ideals to closed
two-sided ideals; Lie ideals spanned by special classes of elements such as
commutators, nilpotents, and the range of polynomials; characterization of
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INTRODUCTION

This paper deals with Lie ideals in C*-algebras. Like other investigations
on this topic ([5], [16]), we use, and take inspiration from, Herstein’s work on
the Lie ideals of semiprime rings. The abundance of semiprime ideals in a C*-
algebra—e.g., the norm-closed ideals—plus a number of C*-algebra techniques—
approximate units, polar decompositions, functional calculus—make it possible
to further develop the results of the purely algebraic setting in the C*-algebraic
setting.

The contributions in the present paper, though varied, revolve around the
following themes: the commutator equivalence of Lie ideals to two-sided ideals;
the study of Lie ideals generated by special elements such as nilpotents and pro-
jections and by the range of polynomials; the characterization of Lie ideals as
subspaces invariant by similarities. These topics have been studied before, and
this paper is a direct beneficiary of works such as [5], [6] and [14].

A selection of results in this paper follows: Let A be a C*-algebra. We show
below that the following are true:

(i) The closed two-sided ideal generated by the commutators of A is also the
C*-algebra generated by the commutators of A (Theorem|[L.3).

(if) The closure of the linear span of the square zero elements agrees with
the closure of the linear span of the commutators. If A is unital and without
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1-dimensional representations, then the linear span of the square zero elements
agrees with the linear span of the commutators (Corollary [2.3]and Theorem [4.2).

(iii) If A is unital and has no bounded traces and f is a nonconstant polynomial
in noncommuting variables with coefficients in C, then there exists N such that
every element of A is a linear combination of at most N values of f on A. If
f(C) = {0} (e.g., f(x,y) = [x,y]), then there exist C*-algebras where the least
such N can be arbitrarily large (Corollary [3.10jand ExampleB.1T).

(iv) If A is unital and either simple, or without bounded traces, or a von Neu-
mann algebra, then a subspace U of A is a Lie ideal of A if and only if (1 +
x)U(1 —x) C U for all square zero elements x in A (Corollaries [4.3]and [4.6).

1. FROM PURE ALGEBRA TO C*-ALGEBRAS

Let us fix some notation:
Throughout the paper A denotes a C*-algebra.

Let x and y be elements in A. Then [x, y| denotes the element xy — yx (the com-
mutator of x and y). Let X and Y be subsets of A. Then X + Y, XY, and [X, Y]
denote the linear spans of the elements of the form x + y, xy, and [x,y], with
x € X and y € Y, respectively. The linear span of X is denoted by span(X). The
C*-algebra and the closed two-sided ideal generated by X are denoted by C*(X)
and Id(X), respectively. (For the 2-sided ideal algebraically generated by X we
simply write AXA.) From the identity [xy, a] = [x, ya] + [y, ax], used inductively,
we deduce that

(1.1) (X", A] C [X,A]

foranyset X C Aand alln € N. We sometimes refer to this fact as the “linearizing
property of [, A]”.

A subspace L of A is called a Lie ideal if it satisfies that [L, A] C L. We will
make frequent use of the following elementary lemma:

LEMMA 1.1. Let L be a Lie ideal of A. Then A[L,L]A C L+ L2
Proof. We have [[L, L], A] C [L, L], by Jacobi’s identity. Thus,
[L,L]JA C A[L, L] +[[L, L], A] C A[L,L] + [L, L.
Multiplying by A on the left we get A[L, L]A C A[L, L]. Finally, from the identity
ally, ] = [aly, o] — [a,12]l; we deduce that A[L,L] C L + L?, as desired. &
The following theorem of Herstein is the basis of many of our arguments in
this section (it holds for semiprime rings without 2-torsion):

THEOREM 1.2 ([13], Theorem 1). Let L be a Lie ideal of A. Then [t,[t,L]] = 0
implies [t,L] = 0 forall t € A.
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Combining Herstein’s theorem and Lemma [I.1| we get the following theo-
rem:

THEOREM 1.3. The closed two-sided ideal generated by [A, A] agrees with the
C*-algebra generated by [A, A. In fact, Id([A, A]) = [A, A] + [A, A%

Proof. Let I = Id([[A, A],[A, A]]). Then [[x,y], [[x,y],A/I]] =0forallx,y €
A/I. Herstein’s theorem implies that [[x,y], A/I] = 0 forall x,y € A/I. Thatis,
[[A/I,A/I],A/I] = 0. Herstein’s theorem again implies that [A/I, A/I] = 0;i.e.,
[A, A] C I. On the other hand, I C [A, A] + [A, A]?, by Lemma So,

Id([A, A]) CIC A A]+[A A2 C C* (A A)).
Since C*([A, A]) C1d([A, A]), these inclusions must be equalities. 1

The following lemma is easily derived from the existence of approximately
central approximate units for the closed two-sided ideals of A:

LEMMA 1.4 ([16], Lemma 1, [5], Proposition 5.25). Let I be a closed two-sided
ideal of A. Then

[ILI| = [, Al =1N[A, A].

Bresar, Kissin, and Shulman show in Theorem 5.27 of [5] that [L, A] =
[Id([L, A]), A] for any Lie ideal L of A. In the theorem below we give a short
proof of this important theorem:

THEOREM 1.5. Let L be a Lie ideal of A. Then

(1) Id([L, A]) = [L, A] + [L, A]>.
(if) [1d([L, A]), A] = [L, A] = [[L, A], A].

Proof. (i) We follow a line of argument similar to the proof of Theorem
Let M = [L,A] and I = Id([M, M]). Let L and M denote the images of L and
M in A/I by the quotient map. Then [M, [M, A/I]] = 0. By Herstein’s theorem,
[M,A/I] =0;ie., [[L,A/I], A/I]. By Herstein’s theorem again, [L, A/I] = 0; i.e.,
[L,A] C I. On the other hand, I C M + M? = [L, A] + [L, A]?, by Lemma So,

Id([L, A]) C I C L, A]+[L, A]> C C*([L, A]).
Since C*([L, A]) C Id([L, A]), all these inclusions must be equalities.
(ii) By (i) and the linearizing property of [-, A] recalled in (L.I), we have that
1d([L, A), A] = [T, A+ [L, A% 4] < [[L, 4], 4].
Thus, [Id([L, A]), A] C [[L, A], A] C [L, A]. On the other hand,
[L, Al € Id([L, A]) N [A, A] € [lA([L, A]), A],
(the second inclusion by Lemma [1.4). This completes the proof. &

LEMMA 1.6. Let L be a closed Lie ideal of A such that 1d(L) = Id([L, A]) and
C A, A]. Then L = [Id(L), A].
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,AlN ( ) and
Lemma As for the opposite inclusion, we have [Id(L), A] = [Id

Prooi The inclusion L C [Id(L), A] follows from L C [A
by assumption, and [Id([L, A]), A] C L, by Theorem

The following is an improvement on Theorem [1.5(ii) obtained by the same
technique:

THEOREM 1.7. Let K and L be Lie ideals of A. Then [K, L] = [Id([K, L]), A].

Proof. Let M = [K, L]. Notice that M is again a Lie ideal (by Jacobi’s iden-
tity). We will deduce that M = [Id(M), A] from the previous lemma. We clearly
have that M C [A, A]. Let I = Id([M, A]) and let K, L, and M denote the images
of K, L, and M in the quotient by this ideal. From [1\71 A/l =0and [K,L] = Mwe
get that [[K, L], L] = 0. By Herstein’s theorem, [K L] =0;ie, M= [K,L CIIt
follows that Id(M) = Id([M, A]). By Lemma = [Id(M), A], as desired. 1

REMARK 1.8. The arguments in Theorems|[I.3} [1.5 and [I.7]rely crucially on
the fact that the closed two-ideals of a C*-algebra are semiprime. This makes it
possible to apply Herstein’s theorem in the quotient by a closed two-sided ideal.
Turning to non-closed Lie ideals, if we impose the semiprimeness of a suitable
non-closed two-sided ideal at the outset, part of those same arguments still goes
through. We may obtain in this way, for instance, the following result: If L is a Lie
ideal of A such that the two-sided ideal generated by [[L, A], [L, A]] is semiprime then (i)
A[L,AJA = [L, A] + [L, A)?, and (i) [A[L, A]A], A] = [[L, A], A]. To get (i) we pro-
ceed as in Theorem [L5(i): Setting M = [L, A] and I = A[M, M]A and applying
Herstein’s theorem in A /I in much the same way as we did in Theorem [1.5(i) we
arrive at [L, A] C I. We then have the inclusions A[L, A]A C I C [L, A] + [L, A]?,
which must in fact be equalities. To get (ii) we apply (i) and the linearizing prop-
erty of [-, A]:

[A[L, A]A, A] = [[L, A] + [L, A%, A] = [[L, A, A].

Next we discuss another variation on Theorem [1.5]for non-closed Lie ideals.
This time we make use of the Pedersen ideal. Recall that the Pedersen ideal of a
C*-algebra is the smallest dense two-sided ideal of the algebra (see 5.6 of [17]).
Given a C*-algebra B, we denote its Pedersen ideal by Ped(B).

LEMMA 1.9. Let I be a closed two-sided ideal of A. Then
[Ped(I),Ped(I)] = [Ped(I), A].

Proof. Let P = Ped(I). The subspace P? is a dense two-sided ideal of I.
Since P is the minimum such ideal, we must have that P = P2. From [P, A] =
[P?2, A] and the identity [xy,a] = [x,ya] + [y, ax] we get that [P2, A] C [P,P]. &

THEOREM 1.10. Let L be a Lie ideal of A and let P = Ped(Id([L, A])). Then

[P,P] =[L,P|=[[L, A],P].
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Furthermore, if L C P then [L, A] = [P, P).
Proof. In the course of proving Theoremwe have shown thatId([L, A]) =

Id([[L, A],[L, A]]). Therefore, the two-sided ideal A[[L, A], [L, A]]A is dense in
Id([L, A]). Since P is the smallest such ideal, P C A[[L, A], [L, A]]A. Hence,

[P, P] C [A[[L, A], [L, A])A, P] C [[L, A] + [L, A%, P C [[L, A], P] € [L, P].
But [L, P] C [P, P], by Lemmal(l.9]. Thus, the inclusions above must be equalities.
Suppose now that L C P. Then [L,P] C [L, A] C [P, A] = [P, P, the latter
equality by Lemma Since [L,P] = [P, P], these inclusions must be equali-
ties. 1

COROLLARY 1.11. Among the Lie ideals L such that [L, A] = [A, A], the Lie
ideal
[Ped(1d([A, A])), Ped(1d([4, A]))

is the smallest.
Proof. Let P = Ped(Id([A, A])). Then
[P, P], A] = [[1d([4, A]),1d([4, A])], A]
= [[1d([A, A]), A, A] = [1d([A, A]), A] = [A, A].

The second equality holds by Lemma|[T.4Jand the third and fourth by Theorem|L.5|
Thus, [P, P] is a Lie ideal satisfying that [L, A] = [A, A].

Suppose now that L is a Lie ideal such that [L, A] = [A, A]. By Theorem
[P,P] =[L,P] C L.So L contains [P,P]. &

It seems possible that under some C*-algebra regularity condition, such as
A being pure (i.e, having almost unperforated and almost divisible Cuntz semi-
group), it is the case that for every Lie ideal L there exists a two-sided—possibly
non-closed—ideal I such that [L, A] = [I, A] (in the language of [5]], L and I are
called commutator equal). At present, we do not even have an answer to the
following question:

QUESTION 1.12. Is there a C*-algebra A and a Lie ideal L of A, such that
[L, A] # [I, A] for all two-sided (possibly non-closed) ideals I of A?

We turn now to Lie ideals of [A, A]. A linear subspace U C A is called a Lie
ideal of [A, A] if [U, [A, A]] C U. Herstein’s Theorem 1.12 of [12] implies that if
A is simple and unital then a Lie ideal of [A, A] is automatically a Lie ideal of A
(this holds for simple rings without 2-torsion). In Theorem [I.15 below we show
that the simplicity assumption can be dropped for closed Lie ideals of [A, A]. The
key of the argument is again to apply a theorem of Herstein (Lemma[I.14]below)
in the quotient by a suitable closed two-sided ideal.

LEMMA 1.13. Let U be a Lie ideal of [A, A]. Let V = [U, U], W = [V, V], and
X = [W,W]. Then A[X, X]A C [U, U] + [U, U]
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Proof. (Cf. Lemma 1.7 of [12].) In the following inclusions we make use of
Jacobi’s identity and the fact that U is a Lie ideal of [A, A]:

([U,u), A] C [U, A, A]] C U,
[, uj, (A, A]] € [[U, [A, A]}, U] € [U, U],
That is, [V,A] € U and V is a Lie ideal of [A, A]. We deduce similarly that
[A,W] C V and that W and X are Lie ideals of [A, A]. Finally, since V C [A, A]

we have that [V, V] C V;ie, W C V. We deduce similarly that [X,X] C X.
Having made this preparatory remarks, we attack the lemma:

(X, X]A C A[X, X] +[[X, X], A] C A[X,X] + X C AX + X.

Hence, A[X,X]A C AX = A[W,W]. Using now that a[wy, wp] = [awy, wy] —
[a, wa]wy we get that

AW, W] C[AW]+[AWWCV+VWCV+ V2
Thus, A[X, X]A C V + V?, as desired. &

LEMMA 1.14. Let U be a Lie ideal of [A, A]. If [[U, U], A] = 0 then [U, A] = 0.

Proof. See Theorem 1.11 of [12] for the case of simple rings without 2-torsion.
See Exercise 17, page 344 of [21] for the extension to semiprime rings without 2-
torsion (e.g., C*-algebras). 1

THEOREM 1.15. A (norm) closed Lie ideal of [A, A] is a Lie ideal of A.

Proof. Let U be a closed Lie ideal of [A, A]. Consider the sets V = [U, U],
W = [V, V] and X = [W, W]. Let I = Id([X, X]). Let U denote the image of U in
A/ I by the quotient map. Define V,W,and X similarly. Then [)?, }?} = 0, which,
by Lemma implies that [X, A/I] = 0. That is, [[W,W],A/I] = 0. Again
by Lemma we get that [W, A/I] = 0. Thatis, [[V,V],A/I] = 0. Two more
applications of Lemma then yield that [U, A/I] = 0. Thatis, [U,A] C I.
Hence,

Id([U, A]) C IC (U, U]+ [U,uj? CId(u,uj).

In the second inclusion we have used Lemma Since Id([U, U]) C 1d([U, A]),
all these must be equalities. Taking commutators with A and using (L.I) we get

d([u, A]), Al = [[u, U] + [u, U], A] = [[U, U], A] C U.
Lemma on the other hand, implies that

(U, A] C1d([U, A]) N [A, A] = [Id([U, A]), A].
Hence, [U, A] C U;i.e., UisaLieideal of A. 1
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2. NILPOTENTS AND POLYNOMIALS

In this section we look at closed Lie ideals spanned by nilpotents and by the
range of polynomials.

For each natural number k > 2 let Ny denote the set of nilpotent elements
of A of order exactly k. Since the set Nj is invariant by unitary conjugation (and
by similarity), the closed subspace span(Nj) is a Lie ideal of A (see [17] and The-
orem 2.6|below).

The following lemma is surely well known:

LEMMA 2.1. Every element of Ny is a sum of k — 1 commutators for all k > 2.

Proof. Let x be a nilpotent of order at most k (i.e., in U N;). Let x = v|x| be

J<k

/2 (the Aluthge transform

the polar decomposition of x in A**. Let ¥ = |x|'/?v|x
of x). Observe that x = [v|x|!/2, |x|'/?] + X. Also,

i.vk—l(kvk—l)* — ‘x‘1/2xk—1v*(xk—2)*|x|1/2 — 0’

where we have used that |x|'/2xk~1 = 0 (since |x|'/2 € C*(x*x) and (x*x)x*1 =
0). Thus X is a nilpotent of order at most k — 1. Continuing this process induc-
tively we arrive at the desired result. 1

For each k € N let [; denote the intersection of the kernels of all repre-
sentations of A of dimension at most k. Notice that ; = Id([A, A]) and that
I 2 I, O ---. Itis not hard to show that I is the smallest closed two-sided
ideal the quotient by which is a k-subhomogeneous C*-algebra (i.e., one whose
irreducible representations are at most k-dimensional).

THEOREM 2.2. span(Ny) = [Ix_1, A] forall k > 2.

Proof. 1t is well known that Id(Ny) = I;_; (e.g., see Lemma 6.1.3 of [3]). We
must then show that span(Ny) = [Id(Ny), A]. Let I = Id([Ny, A]). Let x € Ny.
Since [x, A] C I, the quotient map sends x to the center of A/I. But the center,
being a commutative C*-algebra, cannot contain nonzero nilpotents. Thus, x € I.
This shows that N C Id([Nk, A]). On the other hand, Ni C [A, A] by Lemma[2.1]
Thus, span(Ny) = [Id(Ny), A] by Lemma 1

COROLLARY 2.3. span(N;) = [A, A].

Proof. The previous theorem implies that span(N,) = [Id([A, A]), A]. On the
other hand, [Id([A, A]), A]=[A, A], by Theorem ii) applied with L=A. 1

The following corollary is merely a restatement of Corollary[2.3]

COROLLARY 2.4. A positive bounded functional on A is a trace if and only if it
vanishes on N.

QUESTION 2.5. Is [A, A] = span(N;)? Is span(N;) a Lie ideal?
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We will return to these questions in Section [4]

Combining Corollary 2.3/and Theorem of the previous section we can
prove the following C*-algebraic version of a theorem of Amitsur for simple rings
([, Theorem 1):

THEOREM 2.6. A closed subspace U of A is a Lie ideal if and only if (14 x)U(1 —
x) C Uforall x € N.

Proof. Say U is a Lie ideal. Let u € U and x € N;. Then

1
1+x)u(l—x)=u+[x,ul+ E[x, [x,u]] € U.
Suppose now that (1 4+ x)U(1 —x) C U forall x € N,. Letu € U and
X € Np. Then

[x,u] —xux = (1+x)u(l—x)—uecl,
[x,u] + xux = —(1—x)u(1+x) +u € U.

Hence [u,x] € U. Thatis, [U,N;] C U. Passing to the span of N, and taking
closure we get from Corollary 2.3|that [U, [A, A]] C U. That is, U is a closed Lie
ideal of [A, A]. By Theorem UisaLieideal of A. 1

Let f(x1,...,xn) be a polynomial in noncommuting variables with coeffi-
cients in C. Let us denote by f(A,..., A), or f(A) for short, the range of f on A.
(If A is non-unital we assume that f has no independent term.) Since the set f(A)
is invariant by similarity, span(f(A)) is a Lie ideal. It is shown in Theorem 2.3 of
[6] that even span(f(A)) is Lie ideal.

In the sequel by a polynomial we always understand a polynomial in non-
commuting variables with coefficients in C.

Recall that for each k € N we let I; denote the intersection of the kernels
of all representations of A of dimension at most k. In the following theorem we
use the conventions [ = A and My(C) = {0}. We regard every polynomial as
an identity on My(C). By a nonconstant polynomial we mean one with positive
degree in at least one of its variables.

THEOREM 2.7. Let f be a nonconstant polynomial. Suppose that f(A) C [A, A].
Then span(f(A)) = [I, A], where k > 0 is the largest number such that f is an identity
on My (C) (such a number must exist since no polynomial is an identity on all matrix
algebras).

Proof. Let I = Id([f(A), A]). Then A/I is a subhomogeneous C*-algebra,
since it satisfies the (nontrivial) polynomial identity [f(x1,...,X5),y] (see Propo-
sition IV.1.4.6 of [4]). The range of f on A/I is both in the center of A/I and in
[A/I,A/I], as f(A) C [A, A]. But in a subhomogeneous C*-algebra the center
and the closure of the span of the commutators have zero intersection (since this

is true in every finite dimensional representation). Hence, f(A/I) = {0}; i.e.,
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f(A) C I. Thus, Id(f(A)) = I = Id([f(A), A]). By assumption, we also have
that f(A) C [A, A]. It follows that span(f(A)) = [I, A] by Lemma

Let us now show that I = [, with k > 0 as in the statement of the the-
orem. Let 7 : A — M;(C) be a representation of A with | < k. By assump-
tion, f(M;(C)) = {0}. Hence, f(A) C kerm, and so I = Id(f(A)) C kerm.
Since, by definition, I is the intersection of the kernels of all such 7, we get
that I C I;. To prove the opposite inclusion notice first that A/I must be a k-
subhomogeneous C*-algebra. For suppose that there exists an irreducible repre-
sentation 77 : A/I — M,;,(C), with m > k. Since f is an identity on A/I and 7
is onto, we get that f is an identity on M,,(C). This contradicts our choice of k.
Hence, every irreducible representation of A/I has dimension at most k;i.e., A/I
is k-subhomogeneous. Since I may be alternatively described as the smallest
closed two-sided ideal the quotient by which is k-subhomogeneous, Iy C I. 1

Let s; denote the standard polynomial in k noncommuting variables. Thatis,
se(xt, .. x0) = Y sign(o)Xg(1) "+ * X (k)
oeSk

where S; denotes the symmetric group on k elements. The Amitsur-Levitzky
theorem states that sy is a polynomial identity of minimal degree on My (C) [2].
Define 711 (x,y) = [x,y] and

7'[k+1(xl,.. .,X2k+1) = [nk(xl,.. .,sz), nk(x2k+1,. . .,x2k+1)]

for all k > 1. The following two special cases of the previous theorem are worth
remarking upon:

COROLLARY 2.8. span(oy(A)) = [Ix, A] and span(my(A)) = [A, A] for all
k>1.

Proof. Let k € N. It is well known that sy is expressible as a sum of com-
mutators in the algebra of polynomials in 2k noncommuting variables. Hence,
sok(A) C [A, A]. We can thus apply Theorem[2.7]to sy. By the Amitsur-Levitsky
theorem, sy; is a polynomial identity of My(C) but not of My ,1(C). Thus, by
Theorem span(oy(A)) = [Ix, Al.

The polynomial 7y is an identity on C but not on M, (C). (In fact, by Theo-
rem 2 of [13], if 7ty is a polynomial identity on a semiprime ring without 2-torsion
then the ring must be commutative.) Thus, by Theorem span(mi(A)) =

[AA]l. 1

Let’s now give a characterization of the polynomials whose range is con-
tained in [A, A]. Following [6], we say that two polynomials f and g (in non-
commuting variables, with coefficients in C) are cyclically equivalent if f — gisa
sum of commutators in the ring C(Xy, Xa, .. .) of polynomials in noncommuting
variables. If a polynomial is cyclically equivalent to O then its range is clearly

in [A, A]. On the other hand, if A has no bounded traces then A = [A, A] (see
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[8]) and so any polynomial has range in [A, A]. The general case is a mixture of
these two. In the following theorem we maintain the conventions that Iy = A,
My (C) = {0}, and that every polynomial is an identity on M (C).

THEOREM 2.9. Let k > 0 be the smallest number such that the closed two-sided
ideal Iy has no bounded traces (set k = oo if this is never the case). Let f be a nonconstant
polynomial.

(i) If k = oo then f(A) C [A, A] if and only if f is cyclically equivalent to 0.
(i) If k < oo then f(A) C [A, Al if and only if f is cyclically equivalent to a polyno-
mial identity on My (C).

Proof. Let us first prove the forward implications. If f is cyclically equiva-
lent to 0 then clearly f(A) C [A, A]. Suppose that k < co and that f is cyclically
equivalent to a polynomial ¢ which is an identity on My(C). Then g(A) C Ik
and Iy = [I, I, since Iy has no bounded traces. Thus, g(A) C [A, A]. But
(f —9)(A) C[A, A]. Thus, f(A) C [A, A], as desired.

Let us suppose now that f(A) C [A, A]. We will follow closely the proof of
Theorem 4.5 in [6] where the result is obtained for the range of polynomials on
matrix algebras. If the independent term of f is nonzero then1 € f(A) C [A, A].
Hence, A has no bounded traces; i.e., k = 0. Since, by convention, any polyno-
mial is an identity on My (C) we are done. Let us assume now that f has no inde-

pendent term. Let f = Z fi be the decomposition of f into multihomogeneous

polynomials. Then, by the proof of Theorem 2.3 in [6], f;(A) C span(f(A)) for
all i. This reduces the proof to the case that f is multihomogeneous. We prove the
theorem for multihomogeneous polynomials by induction on the smallest degree
of its variables. Suppose that the degree of f on x1 is 1. Then f is cyclically equiv-
alent to a polynomial of the form x1g(xp,...,x,). Hence Ag(A) C [A, A], which
in turn implies that Id(g(A)) C [A, A]. If g is 0, then f is cyclically equivalent to
0 and we are done. If g is constant and nonzero, then A = Id(g(A)) C [A, A].
Thatis, A = [A, A], k = 0, and f is an identity on M,(C); again we are done. If
¢ is nonconstant then Id(g(A)) = I for some k’ and furthermore g is an identity
on My (C) (see the proof of Theorem [2.7). From Iy C [A, A] and Lemma
deduce that Iy = [Is, I;/]. Hence, I/ has no bounded traces; i.e., k' > k. It follows
that g is an identity on M (C), and since f = x1g, so is f. This completes the first
step of the induction.

Suppose now that f(x1,...,x,) is a multithomogeneous polynomial whose
variable of smallest degree, x;, has degree d, with d > 1. Consider the polynomial

Q(x1, .o, Xn, Xpt1)

= f(xll‘ . -/xn—lzxn +xn+1) _f(xll‘ . '/xl’l—llx}’l+1) _f(xl/' "/xn)-

Then g(A) C [A, A] and the degree of g on x, is less than d. By induction, g is
cyclically equivalent to a polynomial identity on My (C) (if k < o0) or cyclically



ON THE LIE IDEALS OF C*-ALGEBRAS 397

equivalent to 0 (if k = o0). Since f(x1,...,x,) = zdl—_zg(xl, .e.,Xp, Xp), the same
holds for f. &

3. FINITE SUMS AND SUMS OF PRODUCTS

Recall the following basic fact: a dense two-sided ideal in a unital C*-algebra
must agree with the whole C*-algebra (because it would intersect the ball of ra-
dius one centered at the unit, all whose elements are invertible). It follows that
if A is unital and A = Id(X) then A = AXA. Here we exploit this fact to obtain
quantitative versions of some of the results from the previous sections.

THEOREM 3.1. Let A be unital and let L be a Lie ideal of A such that 1d([L, A]) =

A. Suppose that L is linearly spanned by a set I C A; ie., L = span(I'). Suppose
furthermore that there exists M € N such that for all | € I and z € A the commutator
1, z] is a linear combination of at most M elements of the set I'. The following are true:

(i) There exists N such that every element of A is expressible as a linear combination
of N elements of I and N products of two elements of I

(ii) There exists K such that every single commutator [x,y| in A is expressible as a
linear combination of K elements of I'.

Proof. We have shown that Id([L, A]) = Id([L,L]) in the proof of Theo-
rem [L5(i). (Indeed, after setting I = Id([[L, A], [ L, A]]), we proceeded to show
that [L, A] C I, which implies that Id([L, A]) I C Id([L L]). Clearly, these
inclusions must be equalities.) Therefore, A = Id([L,L]) = Id([I,I']). Since A is
unital, it is algebraically generated as a two-sided ideal by [I', I'|. Hence,

n
1=Y xilki, Ly,
i-1

for some x;,y; € Aand k;, [; € I'. Leta € A. Then

a =

M-

Il
—_

(ax;)[ki, Lilyi-

It suffices to show that each term of the sum on the right is a linear combination
of a fixed number of elements of I" and of products of two elements of I'. We have
the following identity (derived from the arguments in the proof of Lemmal([T.1fi)):

x[l,mly = [xyl,m] =[xy, m)l + [xm, [y, 1] = [x, [y, ]m + [x], [m, y]] = [x, [m, y]]I,

forallx,y € Aandl,m € I'. Observe that each of the terms on the right side are of
either one of the following forms: [z,1], [z,1]I', [z, [2/,1]], or [z, [Z/,1]]I', where z, 2" €
Aand [,I" € T. Recall now that, by assumption, the commutators [z, ], with
z € Aand I € I, are expressible as linear combinations of at most M elements
of I'. This implies that elements of either one of the forms mentioned before are



398 LEONEL ROBERT

linear combinations of either M or M? elements of I" or products of two elements
of I.

(ii) Let x € A. By (i), x = Z Aili + Z uim;n; for some scalars A;, p; and
i=

some I;, m;,n; € I'. Lety € A. Then

N
Ailli, y) + Z pilm, niy] + Y wilng, ym).

i=1 i=1

M™M=

[x,y] =

l
A

i

Appealing to the fact that every commutator of the form [I,z], with | € I' and
z € A is a linear combination of at most M elements of I', we deduce that the
right side is a linear combination of 3MN elements of I". I

THEOREM 3.2. Let A be unital and without 1-dimensional representations. Then
there exists N € N such that every element of A is expressible as a sum of the form

N
Z all + Z Cll Z 1/ l
i=1

Proof. The quotient A/Id([A, A]) is a commutative C*-algebra. If it were
nonzero, it would have non-trivial 1-dimensional representations. But we have
asssumed that A has no 1-dimensional representations, Thus, A = Id([A, A]).
The previous theorem is then applicable to L = [A, A]and I' = {[x,y] : x,y € A},
yielding the desired result. 1§

We can link the constant N in Theorem to a certain notion of “divisi-
bility” studied in [19]. A unital C*-algebra A is called weakly (2, N)-divisible if
there exist x1,...,xy € Ny and dy,...,dy € A such that

N
1= dixixd;
i=1

(The definition of weakly (2, N)-divisible in [19] is in terms of the Cuntz semi-
group of A but can be seen to be equivalent to this one.) A unital C*-algebra
without 1-dimensional representations must be weakly (2, N)-divisible for some
N ([19], Corollary 5.4). This fact, combined with the following proposition, gives
another proof of Theorem 3.2}

PROPOSITION 3.3. If A is unital and weakly (2, N)-divisible then every element

N N
of A is expressible as a sum of the form Y [a;, b;] + ‘Zl [ci, di] - [, d]].
=

i=1

N
Proof. Suppose that 1 = ) d7x}x;d;, with x; € N, for alli. Leta € A. Then
i=1

N
[dix}, xid;ia) + Y xid;ady x;.
=1 i=1

Mz

a= (id;‘xfxidi)- =

I
—_
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It thus suffices to show that xbx* is a product of 2 commutators for all x € Np
and b € A. Say x = v|x| is the polar decomposition of x in A**. Then xbx* =
(xb|x|Y/2) - |x|'/?v*. But both xb|x|'/? and |x|'/?v* belong to N,. (Let us prove
this for the latter: We have |x|'/2 € C*(x*x) C |x|Ax. Multipliying by v on the
left we get that v|x|!/2 € xAx. Since x is a square zero element, we deduce that
v|x|'/2, and its adjoint, are square zero elements as well.) By Lemma both
xb|x|1/? and |x|'/?v* are commutators. &

REMARK 34. If 1 € B C A and B is weakly (2, N)-divisible then so is A.
This observation can be used to find upper bounds on N for specific examples
(e.g., when B is a dimension drop C*-algebra; see Example 3.12 of [19]).

Let P C A denote the set of projections of A. Let us apply Theorem [3.1] to
span(P). To see that this is a Lie ideal, recall that the linear span of the idempo-
tents is Lie ideal and that, by a theorem of Davidson (see paragraph after Theo-
rem 4.2 of [15]), every idempotent is a linear combination of five projections. In
Davidson’s theorem, the number of projections can be reduced to four:

LEMMA 3.5. Every idempotent of A is a linear combination of four projections.

Proof. Lete € Abe anidempotent and let p € A denote its range projection.
Then e = p + x, with x € pA(1 — p). Let us show that x is a linear combination
of three projections. It suffices to assume that ||x|| < 1. For each x € pA(1 — p)
such that ||x|| < 1 let us define

LV A A(1-p)
1= ( . W) © ((1PPF)JAP (12P)A(1p* P)>'

A straightforward computation shows that g(x) is a projection and, furthermore,
that
= 0+ T ) - G,
THEOREM 3.6. Suppose that the C*-algebra A is unital and that Id([P, A]) = A.

The following are true:

(i) There exists N such that every element of A is expressible as a linear combination
of N projections and N products of two projections.

(ii) There exists K such that every commutator [x,y], with x,y € A, is expressible as
a linear combination of K projections.

Proof. Both (i) and (ii) will follow once we show that Theorem [3.1|is appli-
cable to the Lie ideal span(P) and the generating set P. It suffices to show that
a commutator of the form [p,z], with p a projection, is a linear combination of
projections with a uniform bound on the number of terms. But

X

[p,z]l = (p+pz(1-p)) — (p+ (1—p)zp),
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where p + pz(1 — p) and p + (1 — p)zp are idempotents. Each of them is a linear
combination of four projections by Lemma 1

REMARK 3.7. If B is a unital C*-subalgebra of A and Id([Pg, B]) = B, then

n
1= xilpi,qilzi,
i=1
for x;,y;,z; € B and projections p;,q; € Pp. It follows that the constants N and K
that one finds for B following the proof of Theorem 3.1]applied to L = span(Pg)
also work for the C*-algebra A. This observation can be used to obtain concrete
estimates of these constants in cases where B is rather simple.

An element of a C*-algebra is called full if it generates the C*-algebra as a
closed two-sided ideal. Recall also that a unital C*-algebra is said to have real
rank zero if its invertible selfadjoint elements are dense in the set of selfadjoint el-
ements. By Theorem V.7.3 of [9], this is equivalent to asking that every hereditary
C*-subalgebra of A has an approximate unit consisting of projections.

COROLLARY 3.8. Suppose that A is unital and either contains two full orthogonal
projections or has real rank zero and no 1-dimensional representations. Then there exist
N and K such that (i) and (ii) of the previous theorem hold for A.

Proof. Let us show in both cases that Id([P, A]) = A.
Say p is a projection such that pand 1 — p are full;ie, A = Id(p) = Id(1 —p).
Then
A=1Id(p)-1d(1—-p) = ApA(1—p)A =1d(pA(1 —p)).
On the other hand, Id(pA(1 — p)) = 1d([p, A]). Indeed,

pA(1—p) = [p, A](1 —p) C1d([p, A]),

and conversely

[P, Al = {pa(l —p) = (1 —plap:a € A} CI1d(pA(1 —p)).
(We have (1 — p)ap € Id(pA(1 — p)) since closed two-sided ideals are selfad-
joint.) Hence, A = Id(pA(1 — p)) =1d([p, A]), as desired.

Suppose now that A has real rank zero and no 1-dimensional representa-
tions, i.e., A = Id([A, A]). Since Id([A, A]) = Id(N;) (where, as before, N, de-
notes the set of nilpotents of order two), A = Id(N;). Furthermore, since A is
unital there exist x1,...,x, € N such that A = Id(xy,...,x,), for it suffices to

n
choose these elements such that Y a;x;b; is invertible for some a;,b; € A. Since A
i=1
has real rank-zero, the hereditary subalgebras x; Ax; have approximate units con-
sisting of projections for all i. Using this, we can find projections p; € x} Ax; for
i=1,...,nsuch that A = Id(p1,..., pn). We claim that p; is Murray-von Neu-
mann subeqmvalent to 1 — p; for all i. To prove this, let x; = v;|x;| be the polar de-
composition of x; in A**. Since p; € x;Ax; we have p; < vv;. On the other hand,
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x? = 0 implies that v} v; and v;0} are orthogonal projections. Hence, v;0} <1— p;.
It follows that p; = (p;v})(vip;) and (v;p;)(piv;) = vipivj < v;vf <1 —p;. This
proves the claim. We now have thatId(p;) C Id(1— p;) foralli =1,...,n. Hence,

Id(pi) = 1d(p;) - 1d(1 = p;) = 1d(p;A(1 = pi)) = 1d([pi, A]),
foralli=1,...,n.S0 A=1d(p1,...,pn) =1d([p1, A, ..., [pn, A]), as desired. 1

Next we turn to the Lie ideals generated by polynomials already investi-
gated in the previous section. As before, by a polynomial we understand a poly-
nomial in noncommuting variables with coefficients in C.

THEOREM 3.9. Let k € N. Suppose that the C*-algebra A is unital and has no
representations of dimension less than or equal to k. Let f be a nonconstant polyno-
mial such that f(A) C [A, A] and which is not a polynomial identity on My(C). The
following are true:

(i) There exists N such that each element of A is expressible as a linear combination
of N values of f on A and N products of two values of f on A.
(ii) There exists K such that each commutator [x,y| in A is expressible as a linear

combination of K values of f on A.

Proof. Both (i) and (ii) will follow from Theorem 3.1|applied to the Lie ideal
span(f(A)), with generating set f(A), once we show the hypotheses of that the-
orem are valid in this case.

Since all representations of A have dimension at least k + 1, we have A =
Ix, where I is as defined in the previous section. Also, by the proof of Theo-
rem[2.7) Id(f(A)) = Iy, where k' is the largest number such that f is an identity
on My (C). But f is not an identity on My (C), so we must have that k' < k.
Hence Id(f(A)) = A. Furthermore, as argued in the proof of Theorem
1d([£(4), A]) = 1d(f(A)). Thus, A = Id([f(4), A]).

To complete the proof, it remains to show that there is a uniform bound on
the number of terms expressing a commutator [f(7),y] as a linear combination
of elements of f(A). This is indeed true, and can be derived from the proof of
Theorem 2.3 in [6] (showing that span(f(A)) is a Lie ideal). We only sketch the

m

argument here: Say f = ) f; is the decomposition of f into a sum of multihomo-
geneous polynomials. T}lleln, as argued in the proof of Theorem 2.3 in [6], relying
on Lemma 2.2 of [6]], each evaluation f;(7) is expressible as a linear combination
of at most (d + 1)" values of f. Here d is the maximum of the degrees of f on
its variables and n the number of variables. It thus suffices to prove the desired
result for each f;, or put differently, to assume that f is multihomogeneous. If
f is a constant polynomial then [f(7),y] = 0 and the desired conclusion holds
trivially. Let us assume that f is multihomogeneous and has nonzero degree. We
can furthermore reduce ourselves to the multilinear case. For suppose that f has
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degreed > 1 on x;. Let

g1, oo X, X)) = F(X1, oo X1, X+ Xp1) —f (X1, -+, X1, Xpg1) —f (X1, -, X0).

Then the degree of g on x;, is less thand and f(x1,...,x,) = ﬁg(xl, e X, Xp)-
This reduces the proof to g. Continuing in this way, we arrive at a multilinear

polynomial. Finally, if f is multilinear then the identity
[flar, - an) yl = f(lav,yl - an) + flar, o pan) -+ fav, - an, y])

shows that there is a uniform bound on the number of terms expressing [f(a), y]
as a linear combination of values of f. 1

A theorem of Pop ([18], Theorem 1) says that if A is unital and without
bounded traces then there exists M € N such every element of A is a sum of M
commutators. Combining this with the previous theorem yields the following
corollary:

COROLLARY 3.10. Let A be unital and without bounded traces. Let f be a non-
constant polynomial. Then there exists N € N such that each element of A is expressible
as a linear combination of N values of f on A.

Proof. Since A has no bounded traces it has no finite dimensional represen-
tations. Hence Iy = A for all k € N. Furthermore, f(A) C A = [A, A] by Pop’s
theorem. Thus, by the preceding theorem, every commutator is a linear combi-
nation of K values of f. On the other hand, every element of A is a sum of M
commutators (by Pop’s theorem). So every element of A is a linear combination

of KM valuesof f. 1

In [7], BreSar and Klep reach the conclusion of the preceding corollary for
K(H) and B(H) (the compact and bounded operators on a Hilbert space) and for
certain rings obtained as tensor products.

Next we construct examples showing that if f(C) = {0} then the number
N in CorollaryB.10|can be arbitrarily large. Taking f(x,y) = [x, y] this shows that
in Pop’s theorem the number of commutators can be arbitrarily large. Taking
f(x1,...,%) = [x1,%2] + [x3,x4] - [x5, X6] this shows that the N in Theorem [3.2]
can be arbitrarily large as well.

EXAMPLE 3.11. Let f be a polynomial in # noncommuting variables such
that f(C) = {0}. Let K € N. We will construct a C*-algebra A, unital and without
bounded traces, and an element e € A not expressible as a linear combination of K
values of f. Let S? denote the 2-dimensional sphere. Let 7 € M,(C(S?)) be a rank
one non-trivial projection (i.e, one not Murray—von Neumann equivalent to a con-
stant rank one projection). Choose N > 2Kn. Let 7y = %N € Mon (C((S?)N)).
It is well know that the vector bundle associated to U?}N has non-trivial Euler
class. In particular, any N sections of the vector bundle associated to #x have a
common vanishing point.
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Let X = ]o—o[ (S?)N. Let 1x denote the unit of C(X). Let e, p, and g be projec-
i=1
tions in C(X, B(¢?(N))) defined as follows:
1ag(1X, 0,0,...),

q(x1,x2,...) = diag(0,7n(x1), 7N (x2),--.),
(xl,xz, . ) dlag(lx,in(xl) 77N(x2)/---)/

where x; € (S2)N foralli=1,2,.. .. The following facts are known (see Théoréme 6
of [10] and Section 4 of [20]):

(i) g®N*! is a properly infinite projection (i.e., ¢°N*2 is Murray-von Neu-
mann subequivalent to g®N+1),

(i) e is not Murray-von Neumann subequivalent to g*N. Thus, for any N
elements of gC(X, B(¢%(N)))e (i.e., “sections” of q) there exists x € X on which
they all vanish.

Since p = e @ g, we have that p®N*1 is also a properly infinite projection.
Let us define A = pC(X, B(¢?(N)))p. Notice first that A cannot have bounded
traces, since its unit is stably properly infinite. Let us show that e € A cannot
be approximated within a distance less than one by a linear combination of K
elements of f(A). Suppose, for the sake of contradiction, that

o~ Lnsa

Multiplying by e on the left and on the right we get

3.1) He— ZA ef (; H <1

Say a; = (aj1,...,4i,) fori = 1,...,K. Since p = e ® g, we may regard each
a;j € Aasan”“e x q” matrix:

by ey (eC(XB(B))e eC(X,B())
i = (di,ﬁ- ei,f,) < (Cetene)e scocnen)

foralli =1,...,Kand j = 1,...,n. Since N > 2nK, there exists x € X such
that ¢;;(x) = d;j(x) = 0 for all i,j. But eC(X,B(£*))e = C and f(C) = 0. So
ef (@(x))e = f(bj(x)) = 0foralli =1,...,K. Evaluating at x € X in (3.1) we
then get |le(x) — 0| < 1, which is clearly impossible.

REMARK 3.12. The previous example shows also that the existence of a unit
cannot be dropped neither in Theorem [3.2| nor in Corollary Indeed, con-
sider A = @ Ap, with Ay as in the example above. Then A has no bounded

N=1
traces (whence no 1-dimensional representations) but A # span(f(A)) for any
polynomial f in noncommuting variables such that f(C) = 0.
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4. SIMILARITY INVARIANCE AND THE SPAN OF N,

Let U C A be a linear subspace. In this section we investigate the equiva-

lence between the following two properties of U:
(i) (14+x)U(l—x) CUforallx € Ny,
(ii) U is a Lie ideal.

We have seen in Theorem [2.6] that if U is closed then (i) and (ii) are indeed
equivalent. Furthermore, the proof of (ii) = (i) in Theorem is valid for any
subspace U of A. Thus, we are interested in the implication (i) = (ii) when U is
not necessarily closed. In the closed case, the proof of (i) = (ii) in Theorem
can be split into two steps: In the first step we showed that U is a Lie ideal of
[A, A]. This was done as follows: (i) readily implies that [U, N;] C U. Then using
that [A, A] C span(Nz) (by Corollary [2.3) and that U is closed, we arrived at
[U, [A, A]] C U. In the second step we appealed to Theorem[1.15 showing that a
closed Lie ideal of [A, A] is a Lie ideal of A.

Let us first address the passage from [U, Np] C U to [U, [A, A]] C U in the
non-closed case. Let A denote the positive elements of A. Let us define

N; ={x € A:xe= fx=xforsomee, f € A; such thatef = 0}.

One readily checks that N3 C Nj. Let us show that N3 is dense in N,. Let x € N».
Observe that for each ¢ € Cy(0,1] we have ¢(|x|)¢(|x*|) = 0, since ¢(|x|) €
C*(x*x) and ¢(|x*|) € C*(xx*). Let us choose ¢y, ¢, ... € Cy(0,1], an approxi-
mate unit of Cy(0, 1] such that ¢, 1¢, = ¢ for all n. Then ¢, (|x*|)x¢p(|x|) € N5
for all n, since we can set e = ¢,.1(|x]) and f = ¢,+1(|x*|). Furthermore,
¢n(|x*])x¢pn(|x|) — x. Thus, N§ is dense in Nj.
Let us define
SNs = |J (1+x)N5(1—x).
xeN,U{0}
Notice that we still have SN5 C N>.

LEMMA 4.1. span(SN) is a Lie ideal.

Proof. It suffices to show that [A, x] C span(SN5) for all x € N§. For then,
conjugating by the algebra automorphism a — (1 +y)a(l —y), with y € Ny,
and using the invariance of SN§ under such automorphisms, we get that [A, (14
y)x(1 — x)] C span(SNY) forall x € N§ and y € N, as desired.

Let x € N3. Lete and f be positive elements such that xe = fx = xand ef =
0. Using functional calculus on ¢, let us find positive contractions ey, e1,e2,e3 €
C*(e) such that ege; = e, e1ex = ey, epe3 = e3 and xe3 = x. Similarly, let us find
positive contractions fy, f1, f2, f3 € C*(f) such that fof1 = f1, fifo = fo, ofs = f3
and fzx = x. Note that xe; = fjx = x and el-f]- =0foralli,j=0,1,2,3. Now let
a € A. Then

ax—xa=ax—ejax+ejax—xafi+xafi —xa=(l—ey)ax+[ejafy, x| —xa(l—fy).
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The term (1 — eq)ax is in N5. Indeed, 1 — e and e3 act as multiplicative units on
the left and on the right of (1 — e1)ax and (1 — ep)e3 = 0. We check similarly that
xa(l — f1) isin N§. As for [ejafi, x] (a commutator of elements in N5), we have
that

lerafi, x] = (1 +eqafr)x(1 —erafy) + (e1af1)x(erafr) — x.

The first term on the right belongs to SN3. The other two have multiplicative
units ¢y and fp on the left and on the right and thus belong to N5.

The following theorem answers Question 2.5 affirmatively when A is unital
and without 1-dimensional representations.

THEOREM 4.2. Suppose that A has no 1-dimensional representations. Then
span(SN3) = [Ped(A),Ped(A)].

If in addition A is unital, then span(N,) = [A, A|. Furthermore, in the unital case there
exists K € N such that every single commutator [x,y] in A is a sum of at most K square
zero elements.

Proof. Let P = Ped(A). Let us first show that SNS C [P, P]. By the similarity
invariance of [P, P], it suffices to show that N§ C [P, P]. Let x € N§ and lete, f €
A4 be such that xe = x = fx and ef = 0. From the description of the Pedersen
ideal in Theorem 5.6.1 of [17] we know that g(e) € P for any ¢ € Cy(0,00)
of compact support, and since xg(e) = xg(1), we deduce that x € P. Hence,
x = [x,e] € [P, A]. Since [P, A] = [P, P] by Lemmal[1.9} x € [P, P]. This shows that
span(SN5) C [P, P]. Notice now that

[span(SNS), A] — [span(Na), A] = [[4, A, A] = [4, A].

But [P, P] is the smallest Lie ideal such that [L, A] = [A, A], by Corollary
(To apply Corollary we have used that Id([A, A]) = A, since A has no 1-
dimensional representations.) Thus, [P, P] C span(SN5).

Let us now assume that A is unital. In this case P = A, so [A4,A] =
span(SN5). But span(SN5) C span(N>) C [A, A]. Thus, span(N,) = [A, A].

To deduce the existence of K we will apply Theorem to the Lie ideal
[A, A], with generating set SNS. Notice first that Id([[A, A], A]) = Id([A, A]) =
Id(A), since A has no 1-dimensional representations. It remains to show that
there is a uniform bound on the number of terms expressing a commutator of the
form [x,a], with x € SNS§ and a € A, as a linear combination of elements of SN¥.
The proof of Lemma [4.1| shows that such commutators are sums of at most five
elements of SN5. 1

For infinite von Neumann algebras, the following corollary is Theorem 2 of
[16]. (Miers also considered closed subspaces of von Neumann algebras, which
we have already dealt with in Theorem2.6})
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COROLLARY 4.3. Suppose that A is either unital and without bounded traces or a
von Neumann algebra. Then a subspace U of A is a Lie ideal if and only if (1 + x)U(1 —
x) C U forall x € Ny.

Proof. That a Lie ideal satisfies the similarity invariance of the statement
has already been shown in the proof of Theorem[2.6] So let us suppose that U is a
subspace such that (1+ x)U(1 — x) C U for all x € N,. As remarked at the start
of this section, this implies that [U, Np] C U. Let us consider first the case that A
is unital and without bounded traces. Then span(N;) = [A, A], since A is unital
and has no 1-dimensional representations (since it has no bounded traces). Thus,
U, [A, A]] C U. Furthermore, [A, A] = A, by Pop’s theorem. Hence, [U, A] C U;
i.e., U is a Lie ideal.

Suppose now that A is a von Neumann algebra. Let us show again that
span(N,) = [A, A] and that if U is a Lie ideal of [A, A] then it is a Lie ideal of A.
The latter is Lemma 3 of [16] and can be proven as follows: In a von Neumann
algebra we have A = Z(A) + [A, A], where Z(A) denotes the center of A (if A is
infinite, because A = [A, A], and if A is finite, by Theorem 3.2 of [11]); so [U, A] =
(U, [A, A]] for any subset U of A. Let us now show that span(N,) = [A, A]. The
ideal Id([A, A]) is also a von Neumann algebra. (If p is the unit of the type I
direct summand of A, then Id([A, A]) = (1 — p)A; see Section 2.2 of [22]]). Thus,
Id([A, A]) is unital and without 1-dimensional representations. Hence,

span(N;) = [Id([A, A]),1d([A, A])] 2 [[A, A, [A, A]].

From A = [A, A] + Z(A) we get that [A, A] = [[A, A], [A, A]]. Hence, span(N,) =
[AA]. 1

The passage from U being a Lie ideal of [A, A] to being a Lie ideal of A can
also be made assuming that A is unital and that [U, A] is full:

LEMMA 4.4. Suppose that A is unital. If U is a Lie ideal of [A, A] such that
Id([U, A]) = A then [A, A] C U (so U is a Lie ideal of A).

Proof. Let V = [U, U], W = [V,V], and X = [W,W]|. We have shown
in the proof of Theorem [1.15] that Id([U, A]) = 1d([X, X]). So A = Id([X, X]).
Since A is unital, the set [X, X| generates A algebraically as a two-sided ideal.
But A[X,X]A C [U, U] + [U,U]? by Lemma Hence, A = [U, U] + [U, U])%.
Then,

[A,A] = [[U, U] + [U,U)? Al = [[U,U],A] C [U,[U,A]] CU. 1

THEOREM 4.5. Suppose that A is unital and without 1-dimensional representa-
tions. Let U be a subspace of A such that 1d([U, A]) = A. If (1 + x)U(1 — x) C U for
all x € Ny then [A, A] C U.

Proof. The similarity invariance of U implies that [U, Np] C U and by The-
orem 4.2l we get that [U,[A, A]] € U. The previous lemma then shows that
[A,A]CU. 1
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COROLLARY 4.6. Let A be simple and unital. A subspace U of A is a Lie ideal if
and only if (1 4+ x)U(1 —x) C U forall x € N,.

Proof. Since A is simple we have either Id([U, A]) = 0 or Id([U, A]) = A.
If Id([U, A]) = 0 then U is a subset of the center, which by the simplicity of A is
C. If Id([U, A]) = A then by the previous theorem [A, A] C U. In either case it
follows that U is a Lie ideal of A. 1

Amitsur’s Theorem 1 of [1] (that a similarity invariant subspace of a simple
algebra must be a Lie ideal) requires the existence of a nontrivial idempotent in
the algebra. An example in [1] shows that this hypothesis cannot be dropped.
Corollary [4.6)shows, however, that for simple unital C*-algebras this assumption
is not necessary (even though they may well fail to have any nontrivial idempo-
tents).
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