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ABSTRACT. This paper studies three natural pre-orders of increasing general-
ity on the set of all completely non-unitary partial isometries with equal defect
indices. We show that the problem of determining when one partial isometry
is less than another with respect to these pre-orders is equivalent to the exis-
tence of a bounded (or isometric) multiplier between two natural reproducing
kernel Hilbert spaces of analytic functions. For large classes of partial isome-
tries these spaces can be realized as the well-known model subspaces and de
Branges—Rovnyak spaces. This characterization is applied to investigate prop-
erties of these pre-orders and the equivalence classes they generate.
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1. INTRODUCTION

This paper explores several partial orders on various sets of equivalence
classes of partial isometries on Hilbert spaces and their relationship to the func-
tion theory problem of when there exists a multiplier from one Hilbert space of
analytic functions to another.

More specifically, for n € NU {co}, we examine the class ¥,(H) of all
bounded linear operators V on a complex separable Hilbert space H satisfying:

(i) V is a partial isometry;
(i) the defect spaces (V) := Ker(V) and ©_(V) := Ran(V)* have equal
dimension #;
(iii) there exists no proper reducing subspace M for V for which V|, is uni-
tary.

An operator satisfying this last condition is said to be completely non-unitary.
We use the notation %, when considering the set of all %,(H) for any Hilbert
space H.
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A theorem of Livsic [17] settles the unitary equivalence question for ;.
More precisely, to each V € %, there is an associated operator-valued contrac-
tive analytic function wy on ID, called the characteristic function associated with V,
such that V;,V, € 7 are unitarily equivalent if and only if wy, coincides with
wy,. This idea was expanded to contraction operators [5], [6], [19], [24].

In this paper, we explore three partial orders on #; and their possible rela-
tionships with the LivSic characteristic function. After some introductory mate-
rial, we define three relations 3, <, and <4 on 7. Each defines a pre-order (re-
flexive and transitive) and each induces an equivalence relation on %, by A ~ B
if A 2 Band B 3 A (similarly for the relations < and <¢)- In turn, these three
equivalence relations generate corresponding equivalence classes [A] of opera-
tors in %, and induce partial orders on the set of equivalence classes ¥,/ ~. The
first of these partial orders 3 was explored by Halmos and McLaughlin [13] and
the equivalence classes turn out to be trivial in the sense that A S Band B < A
if and only if A = B. Classifying the equivalence classes induced by < and <, is
more complicated and requires further discussion.

Our approach to understanding < and < is to recast the problem in terms
of the existence of multipliers between spaces of analytic functions. Using ideas
from Livsic [17] and Krein [16] (and explored further by de Branges and Rovnyak
in [5]], [6] and by Nikolskii and Vasyunin in [19]), we associate each V € #;, with a
Hilbert space 7, of vector-valued analytic functions on C\ T such that V[, (v
is unitarily equivalent to 3y, where 3y f = zf on Dom(3y) = {f € 4 : zf €
4, }. We show, for V1,V € ¥, that:

(i) V1 is unitarily equivalent to V; if and only if there is an isometric multi-
plier from 7}, onto 7%, (more precisely, there exists an operator-valued analytic
function @ on C \ T such that @7, = /7, and the operator f — @f from J7,
to J73, is isometric);

(ii) V1 < V; if and only if there is an isometric multiplier @ from 7y, into J7y,;

(iii) V1 <4 V2 if and only if there is a multiplier @ from /%, into J, (that is,
(P%Vl C %Vz)'

What makes this partial order problem interesting from a complex analysis
perspective is that under certain circumstances, depending on the Livsic function,
the partial order problem (When is A < B? When is A < B?) can be also
rephrased in terms of the existence of (isometric) multipliers from one model
space (OH?)" to another, or perhaps from one de Branges-Rovnyak .7 (b) space
to another. These are well-known and well-studied Hilbert spaces of analytic
functions on D which have many connections to operator theory [5], [6], [19], [24].

2. PARTIAL ISOMETRIES

Let B(?) denote the set of all bounded operators on a separable complex
Hilbert space H.
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DEFINITION 2.1. An operator VEB(H) is called a partial isometry if V|xep (1)1

is an isometry. The space Ker(V)" is called the initial space of V while Ran(V) is
called the final space of V. The spaces D (V) := Ker(V) and ®_ (V) := Ran(V)+
are called the defect spaces of V and the pair of numbers (n,n_), where n, and
n_ are the corresponding dimensions of (V) and ©_(V), are called the defi-
ciency indices of V.

Note that a partial isometry V with deficiency indices (0,0) is a unitary
operator. The following proposition is standard and routine to verify.

PROPOSITION 2.2. For V € B(H) the following are equivalent:
(i) V is a partial isometry;
(i) V=VvVv'y;
(iif) V* is a partial isometry;
(iv) V*V is an orthogonal projection;
(v) VV* is an orthogonal projection.

One can show that V*V is the orthogonal projection of H onto the initial
space of V while VV* is the orthogonal projection of H onto the final space of V.
Note that if V is a partial isometry, then Q1V Q> is also a partial isometry for any
unitary operators Q1, Qz on H.

When dim (#) < oo, the partial isometries V on H are better understood
(8], [14], [15]. Here we think of V € M, (C). For example, if {uy,...,u,} is an
orthonormal basis for C" then for any 1 < r < n the (column partitioned) matrix

1) [w1|uz|- - - ur[0[O] - - - [0]

is a partial isometry with initial space \/{ey, ..., e } (where e; is the jth standard
basis vectors for C" and \/ is the linear span) and final space \/{uy,...,u,}. For
any n X n unitary matrix Q

(22) Qluy[ug[ - - [u|0f0] - - - [0] Q"
is also a partial isometry.

PROPOSITION 2.3. For V € M, (C), the following are equivalent:
(i) V is a partial isometric matrix;
(i) V = Quy|uz]| - - - [ur[0]0O] - - - [0]Q*, where {uy,...,u, : 1 < r < n}isasetof
orthonormal vectors in C" and Q is a unitary matrix;
(iif) V = UP, where U is a unitary matrix and P is an orthogonal projection.

The unitary matrix U in the proposition above is not unique and is often
called a unitary extension of V. For general partial isometries V on possibly infinite
dimensional Hilbert spaces , unitary extensions in () need not always exist.
However, we know exactly when this happens [1].

PROPOSITION 2.4. A partial isometry V€ B(H) has unitary extensions in
B(H) if and only if V has equal deficiency indices.
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When dim (H) < oo, deficiency indices are always equal.

DEFINITION 2.5. A partial isometry V € B(#H) is completely non-unitary if
there is no nontrivial reducing subspace M of H (thatis, VM C M and V*M C
M) such that V| is a unitary operator on M.

It is well-known [24] that every partial isometry V can be written as V =
Vi @ V,, where Vj is unitary and V; is completely non-unitary. In finite dimen-
sions it is easy to identify the completely non-unitary partial isometries.

PROPOSITION 2.6. A partially isometric matrix V. € M, (C) is completely non-
unitary if and only if all of its eigenvalues lie in the open unit disk .

REMARK 2.7. Our launching point here is the work of Livsic [17] which
explores this same material in a slightly different way. Liv8ic considers isometric
operators V that are defined on a domain Dom(V) on a Hilbert space H such that
V is isometric on Dom(V). Here, the defect spaces are defined to be Dom(V)~+
and (V Dom(V))1. If we define

Vx ifx € Dom(V),
2.3) Vi 4 VX 1 X € om(A)L

0 ifx e Dom(V)+,
then V is a partial isometry with initial space Dom(V)~ and final space VDom (V).
Conversely, if V is a partial isometry, then V = V|Ker(v)L is an isometric operator
in the LivSic setting.

REMARK 2.8. The discussion of unitary equivalence and partial orders in
this paper focuses on partial isometries. However, using some standard theory,
all of our results have analogues expressed in terms of unbounded symmetric
linear transformations [1]. Indeed, let

z—1i
zZ) =
AG) z+1i
denote the Cayley transform, a fractional linear transformation that maps the up-

per half plane C; bijectively to D and R bijectively onto T \ {1}. Here T denotes
the unit circle in C. Notice that

_ A1+z
Bl =i

If V is a partial isometry, the operator S := B~ (V) = i(I+ V)(I-V) lisa
unbounded, closed, symmetric linear transformation with domain Dom(S) =
(I — V)Ker(V)*. Note that if 1 is an eigenvalue of V, then S = B~1(V) is not
densely defined. This poses no major technical difficulties in our analysis, but it
is something to keep in mind. See [12], [23] for references on symmetric linear
transformations which are not necessarily densely defined. We will reserve the
term symmetric operator for a densely defined symmetric linear transformation.
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Conversely, if S is a symmetric linear transformation with domain Dom(S),
then

B(S) = (S —il)(S+il)*

is an isometric operator on the domain (S + iI) Dom(S) that can be extended
to a partial isometry on all of H by extending it to be zero on the orthogonal
complement of its domain. A closed symmetric linear transformation is said to be
simple if its Cayley transform V = B(S) is completely non-unitary. This happens
if and only if S has no self-adjoint restriction to the intersection of its domain with
a proper, nontrivial invariant subspace.

Note that V has unitary extensions if and only if 37!(V) has self-adjoint
extensions. The Cayley transform shows that if V' = B(S), the deficiency sub-
spaces Ker(V) and Ran(V)* are equal to the deficiency spaces Ran(S —il)* and
Ran(S +il)*, respectively.

Let us give some examples of partial isometries that will be useful later on.

EXAMPLE 2.9. (i) The matrices Q[uj|uy] - - - |u,[0|0] - - - |0]Q* from are
all of the partial isometries on C".

(ii) Every orthogonal projection is a partial isometry. However, no orthogonal
projection is completely non-unitary.

(iii) The unilateral shift S : H> — H?, Sf = zf, on the Hardy space H? [7] is a
partial isometry with initial space H? and final space H3 := {f € H?: f(0) = 0}.
The defect spaces are D4 (S) = {0}, ©_(S) = C and thus the deficiency indices
of S are (0,1). Since the indices are not equal, S does not have unitary extensions
to H? (Proposition .

(iv) The adjoint S* of S is given by §*f = f ,ch © and it is called the backward
shift. Note that S* is a partial isometry (Proposition with initial space H}
and final space H2. The defect spaces are ®(S5*) = C and ®_(S*) = {0} and
thus the deficiency indices are (1,0). Thus the backward shift $* has no unitary
extensions to H2.

(v) The operator S* & S : H?> & H> — H? & H? is a partial isometry with
initial space H2 & H? and final space H? & H3. The defect spaces are D (S* &
S)=Ca{0}and ®_(5*@ S) = {0} & C and thus S* & S has deficiency indices
(1,1). One can show that this operator is also completely non-unitary and thus
S*®S € 11 (H?).

(vi) Consider the partial isometry S ® S* acting on H := H? @ H?. Alterna-
tively, this operator can be viewed as the operator block matrix

0
S0
(2.4) s 0
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acting on the Hilbert space
H:=6E H?.
k=0

One can verify that

Ker(S ® S*)* = Ho := P Hj,
k=0
Ran(S ® §*)* =Ker(S*®S) = H>® {0},
k>1

and that S ® S* is completely non-unitary. Thus S ® S* € ¥ (H? @ H?).

(vii) If @ is an inner function, define g = (©H?)" to be the well-known model
space. Consider the compression Sg := PgS|,,, of the shift to Kg, where Pg is
the orthogonal projection of L2 onto Kg. If @(0) = 0, one can show that

9. (So) = Ker(So) = €2, D (So) = (Ran(Se))* = C.

Furthermore, Ker(Sg)* = {f € Kg : zf € Kg} and so Sg is isometric on
Ker(Sg)*. Thus Sg is a partial isometry with defect indices (1,1). It is well-
known that the compressed shift Sg is irreducible (has no nontrivial reducing
subspaces) and thus Sg is completely non-unitary. Hence, assuming ©(0) = 0,
Se € 71(Kg). The model space Kg is a reproducing kernel Hilbert space with
kernel
- 1-ewe
1Az
To every model space there is a natural conjugation Cg defined via the radial (or
non-tangential) boundary values of f and ® by Cof = Off. One can see that Cg
is conjugate linear, isometric, and involutive. Furthermore, a calculation shows
that
©—-0(A)
z—A

The compressed shift Sg also obeys the property Sg = CgS;5Ce. This puts Sg
into a class of operators called complex symmetric operators [9], [10], [11]]. Further-
more, 5§ = S*|i,, the restriction of the backward shift to the model space Kg.

(viii) Another partial isometry on Kg closely related to Sg is created as follows.
The operator Mgf = zf is not a well defined operator on all of Kg, but it is
defined on Dom(Mg) = {f € Kg : zf € Kg}. A little thought shows that
Dom(Mg) = {f € K¢ : (Cof)(0) = 0}. Using the isometric nature of Cg and
the fact that point evaluations are continuous, we see that Dom(Mpg) is closed.
Furthermore, we know that Ran(Mg) = Mg Dom(Mg) = {f € Ke : f(0) = 0}.
Keeping with our previous notation from Remark[2.7, let Mg be the operator that
is equal to Mg on Dom(Mp) and equal to zero on Dom(Mg)~*. Observe that

Cok§ =
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Mg is a partial isometry with initial space Dom(Mg) and final space Ran(Mg).
Furthermore, the defect spaces are

D (Mg) = CCok§, D_(Mpg) = CK§,

so that Mg € ¥ (Kg). In fact, if ©@(0) = 0, then Mg = Sg. We will see in
Example 8.6|below that for any a € D, Mg = Mg,, where
®—a
O =176

Thus for any inner ®, Mg = S@@m)‘

(ix) For b € HY® := {g € H* : ||g]|l < 1}, the closed unit ball in H*, define
€ (b), the de Branges—Rovnyak space to be the reproducing kernel space corre-
sponding to the kernel

= 1Z0b e,
1—-Az
When ||b||e < 1, 5#(b) = H? with an equivalent norm. On the other extreme,
when b is an inner function, #(b) is the model space K; with the standard H?
norm [21].

The analogue of the compressed shift Sg can be generalized to the case
where b is an extreme point of the unit ball of H*, but not to the case where b
is not an extreme point. To see this, note from II-7 of [21] that S*#(b) C 7 (b).
If X = §*| (), then it was shown in II-9 of [21] that X* f = Sf — (f, S*b);b. If we
define 74 (b) = {f € 2 : f(0) = 0}, we can use the formula above for X* to get

X*Xf=X*S"f=85"f—(S"f,S"b)pb = f — (S f,S"b)b.
Since b is an extreme point, b ¢ . (b) by V-3 of [21], and it follows that (S* f, S*b),b
= 0. Thus X*|g« 50 = Sls+(0) and M, = Sls+ () is an isometry from

S* ) (b) onto 4 (b). A little thought shows that {f € J(b) : zf € H#(b)} =
$* #(b) and so M, is multiplication by the independent variable on

Dom(M,) = {f € #(b) : zf € #(b)}.

One also has
Ran(M,)* = Ck}.
Furthermore, using the fact that (S* f, $*b), = O forall f € $*.7(b) = Dom(My,),
we see that
Dom(M,)*+ = CS*P.
This means that the extension operator M} from Remark [2.7|is a partial isometry
with (1,1) deficiency indices. One can also show that M is completely non-

unitary and thus M, € #1(s(b)) whenever b is extreme. The analysis above
breaks down when b is non-extreme.
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3. ABSTRACT MODEL SPACES

In this section we put some results from [5], [6], [16], [17], [19] in a somewhat
different context and show that for V € ¥, (), n < oo, and model T for V (which
we will define momentarily) there is an associated reproducing kernel Hilbert
space of C"-valued analytic functions ., r on C \ T such that

>~

V| Ker(V)+ B\V,F’

where
3vr:Dom(3vr) — A, 3yr=zf,
Dom(3yr) = {f € #r:zf € Hyr}.

As before (Remark , 3y r is the partial isometric extension of 3y . This idea
was used in a recent paper [2], in the setting of symmetric operators, but we
outline the idea here.

Since V € ¥,,(#H), it has equal deficiency indices and we know from Propo-
sition[2.4|that V has a unitary extension U. For V € ¥, () Livsic [17] defines, for
each z € C\ T, the isometric linear transformation V, by

Vof i= (V—zD)(I=2V)7'f,  fe(I=2V)|ger(vy2-

Extend this definition to all of # by making V; equal to zero on ((I-zV) |Ker(V)L )t
This will define a partial isometry whose initial space is

Ker(V,)* = (I —zV)Ker(V)*.
We define
Ran(V — zI) := (V — zI) Ker(V)*,
the final space of V, is
Ran(V;) := V; Ker(V,)* = Ran(V,).
PROPOSITION 3.1. For each z € C \ T, we have Ran(V;) = Ran(V — zI).
Proof. Note that Ker(V;)*+ = (I —zV)Ker(V)* and so
Ran(V;) = V;Ker(V,)* = (V —zI)(I —2V) (I —2V) Ker(V)*
= (V—zl)Ker(V)* =Ran(V —zI). 1

PROPOSITION 3.2 (Liv8ic). Foreach z € C\ T and unitary extension U of V we
have

(I —zU) 'Ran(V)* = Ran(V;)™*.

Proof. Suppose f € Ran(V)!L. By the previous proposition, Ran(V;) =
Ran(V — zI) = (V — zI) Ker(V)+. Hence,

((1—zU)~"f,Ran(Vz)) = (U"(U* —2)7'f,(V —zI) Ker(V) ")
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= (f,UKer(V)") = (f,Ran(V)) = 0.

We now follow a construction in [2]. The proofs there are in the setting of
symmetric operators but they carry over to our setting. Indeed, since RanV+ is
an n-dimensional vector space, we let

j:C" = RanV+*
be any isomorphism and define
r(A):=(I-AU)1oj.
Then I : C\ T — B(C",H) is anti-analytic and, foreach A € C\ T,
I'(A):C" = Ran(V — AI)*

is invertible. We also see that I'(z)*I'(A) is invertible for z,A € D or z,A € D,,
where D, := C\ D~. Finally, as discussed in [2], the fact that V is completely
non-unitary (so that 71(V) is simple) implies

\/ Ran(I'(A)) = H.
AeC\T

For any f € H define

and let
Hyr={f:feH}
When endowed with the inner product

(F.8) 0 = (f,8)s

Jy  becomes a C"-valued Hilbert space of analytic functions on C \ T such that
the operator

f=f
is a unitary operator from H onto %, r which induces the unitary equivalence
V‘Ker(V)L = SV/F’

where the isometric linear transformation 3y - acts as multiplication by the inde-
pendent variable on .4, on the domain

Dom(gvrp) = {f € jfvlf : Zf € f%ﬁvlf}.

Note that the hypothesis that V' is completely non-unitary is needed here for the
inner product on J4; r to be meaningfully defined, see [2] for details.

DEFINITION 3.3. J4; 1 is the abstract model space for V induced by the
model I'.
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REMARK 3.4. We are not constrained by the above Livsic trick in selecting
our model I' for V. There are other methods of constructing a model [2]]. For
example, we can use Grauert’s theorem, as was used to prove a related result for
bounded operators in a paper of Cowen and Douglas [3]], to find an anti-analytic
vector-valued function

YA) == (y(AM)1, -, 7(A)n), A€C\T,
where {7(A)1,...,7(A)n} is a basis for Ran(V — AI)L. Then, if {ej};l:1 is the
standard basis for C", we can define our abstract model for V to be

(3.1) r(A):=) 7(d);®e;.
j=1

An abstract model space for J#, r is not unique. However, if J#, r and
A v are two abstract model spaces for V determined by the models I and I”,
then J4, r» = O r for some analytic matrix-valued function on C \ T. Via this
multiplier ® one can often realize, by choosing the model in a particular way,
J¢ 1 as a certain well-known space of analytic functions such as a model space,
de Branges—Rovnyak space, or a Herglotz space. We will get to this in a moment.
For now we want to keep our discussion as broad as possible.

REMARK 3.5. Since BV,p = V‘Ker(v)h gv,r is isometric on Dom(gyrp). As

discussed in Remark we need to think of /B\V/ r as a partial isometry on S r.
We can do this by extending 3y r to all of J#, r so that the extended operator
3y r on & r is a partial isometry with

I<eI‘(3V,1*)l = Dom(gvlp).

The unitary equivalence of V(. and 3v,r can be extended to a unitary equiv-
alence of V and 3y r.

The representing space
jfv’f = H
turns out to be a reproducing kernel Hilbert space with reproducing kernel
k7 (z) = I'(2)*T'(w), w,ze C\T.

This kernel is M, (C)-valued for each w,z € C\ T, is analytic in z, and anti-
analytic in w. By the term reproducing kernel we mean that for any (C"-valued)
f € and any w € C\ T we have

(f,kZ (Da)w = (f(w),a)cr VaeC.
In the above (-, -) ;¢ is the inner product in the Hilbert space . while (-, -)¢n is
the standard inner product on C".
Also note that the space ¢ has the division property in that if f € % and
f(w) = 0, then (z —w)~'f € . This means that for any w € C\ T, there is
an f € J for which f(w) # 0. From the reproducing kernel identity above, we
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see that for any w € C\ T, the span of {k7*(-)a : a € C"} is an n-dimensional
subspace of 7. Such a kernel is said to be non-degenerate.

Let us give a few examples of abstract models for some of the partial isome-
tries from Example There is a more canonical choice of model space for V.
We will see this in the next section.

EXAMPLE 3.6 (Classical model spaces). Recall the model space Ko=(0H?)*
and the operator Mg. If we understand that
Ran(Mg — AI) = (Mg — AI) Dom(Mg),
then
Ran(Mg — AI) = Ran(Mg — AI).
Standard computations show that
Ran(Mg — At =CkS, |A| <1,
Ran(Mg — A" = CCokl)y, Al >1,
where Cg is the conjugation on Kg discussed in Example

Using our trick from (3.I), we can compute the abstract model for the partial
isometry Mg by defining

) = K @1 if Al <1,
B c@k%m if [A] > 1.

Our abstract model space for Mg corresponding to I is thus

Hor ={I"f: f € Ko}

Observe that
@ .
(f,Cokl) if[A] >1,
which becomes
oy [FV i<
(Cof)(1/A) if|A] > 1.

EXAMPLE 3.7 (Vector-valued model spaces). For ann x n matrix-valued in-
ner function ® on D we can define the vector-valued model space by

,C@ - (@Hzn)L,

where H2, is the vector-valued Hardy space of D. The reproducing kernel for Kg

is the matrix

1-0(1)*0(z)
1-Az

7

KY(z) =

meaning
(f(A),a)en = <f,Kf{)a>Hén, AeD,acC" f € HA.
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There is a conjugation of sorts here, defined by
Co: Ko = Kor,  (Cof)(0) =0T (2)(+)(Z),

where 1 is component-wise Schwarz reflection and T denotes the transpose. As
before, one can show that

Ran(Mg — AI) = \/{K?ej :1<j<n}, |A/<1 and

Ran(Mg — AI) = \/{CerKO)re; : 1< j<n}, |A] > 1.

An abstract model for Mg is then

n

Y Kfej@e; if|Al <1,
r() = ]il o .
]’El C@TKl/Xe]' ® €| if |A| > 1.

For any f € Kg, we have

(X)) i<,
(2, 0T(1/A)(+f)(1/A))cn if[A] > 1.

EXAMPLE 3.8 (de Branges—Rovnyak spaces). Let b € Hj*. As discussed
previously, there is a natural conjugation C, : 5 (b) — #(b) which intertwines
My, and M; and operates on reproducing kernels by
b(z) —b(A)

z—A
Using this conjugation, Example 3.6 generalizes almost verbatim to this case. In
particular

(L) fra)en = {

Cypkb (2) =

Ran(M, — AI)* =CK}, if[A| <1,
Ran(M, — AI) = CCykb if [A] > 1,

/A
and we can define a model for the partial isometry M, via
K1 if [A] <1,
ray={agt
Coky 7 @1 if [A] > 1.
As before we get that ., = {I'*f : f € K} where
. (A) if |A] <1,
roy =W
(Cof)(A/A) if |A] > 1.

EXAMPLE 3.9 (S* @ S). Consider the operator A := S* ® Son H := H? & H?
discussed earlier in Example Since S has indices (0,1) and S* has indices
(1,0), it follows that A has indices (1,1). Moreover, one can show that A is com-
pletely non-unitary. A calculation using the fact that

Ker(A) = Ker(S*) ®Ker(S) =C® 0
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shows that
Ran(A —AI) = {0} ®Ran(S —AI) = {0} & Cc,, |A] <1 and
Ran(A — AI) = (§* — AI)Ker(S*)* = Ceyy @ {0}, |A| > 1.

In the above,
ca(z) = !
A 1—Az

is the Cauchy kernel (the reproducing kernel for H?). Thus the model becomes

() = O@cy)®1  if[A] <1,
(1 ®0)®1 if [A] > 1,

and so
L) A<,
fi(1/A) if A > 1.
EXAMPLE 3.10 (A restriction of (5* @ S)). Let

B := A‘HZG)H(% =g* @ S|H§

rAN) (i@ f2) = {

which was discussed earlier in Example Observe that Ker(B) = C(1®0) and
so Ker(B)* = Hj} & H?. Furthermore, Ran(B)* = C(0 @ z). One can check that
B € 71(H? ® H3). For |A| > 1 we have

Ran(B — AI)* = Ran(S* — AI)* @ Ran(S — A)* = Ccy/y @ {0}
When |A| < 1 we have
Ran(B — AI) = Ran(S* — AI) & §5§1(5|H3 —AI)* = {0} ® Ran(S|;p — AD)™.
A little exercise shows, still assuming |A| < 1, that
1 CA—¢C

Thus the abstract model for B on H2 @ H3 is

0099y 01 if Al <1,

R (CEE=S T

(Cl//\EBO)®1 1f|)\|>1
For f; € H? and f, € HZ, we have
ED A < 1,
AO/A) A > L

EXAMPLE 3.11 (S ® 5§*). Recall the representation of S ® S* as a block oper-
ator matrix with S* repeated on the subdiagonal acting on the Hilbert space

H =P H.

k=0

rN*(fi® f2) = {
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One can show that

Ker(S@5%) = {6M}2,, 6/ =541, and
Ran(s @ §%) = (0¥}, 51 =2
We also need to calculate Ran(S ® $* — wl)+. Forany w € C \ T:
Ran(S ® $* — wl)* = Ran((S ® §* — wl)Py)* = Ker(Py(S* @ S —wl)),

where P projects onto

Ho = P Hj = Ker(S® 5*)*.
k>1

Hence we need to determine the set of all h € H such that

-w S ho col
—w S l’ll C11
(S*®S—wlh= —w S hy| — |2l

where ¢, € C. This yields the recurrence relation Shy 1 = why + c,1, and acting
on both sides of this equation with 5* yields

hgiq = wS*h,, ke NU{0}.
It follows that a basis for Ran(S ® $* — wI)* is the set {hy(w)} where
hi(w) = (zk,wzk_l,...,wkl,O,...).

Although this is true for any w € C\ T, in the case where w € D, = C\ D™, we
instead choose

gi(w) =@ *hy(w) = ((z/@), (z/@)F1,...,1,0,...)

as a basis for Ran(S ® $* — wl)*.
A natural choice of model for S ® S* is then

Z ,Y] ® ek/

where {ey };>0 is an orthonormal basis for C* := ¢2(NU {0}), and

h;(w) ifweD,
i) = )
gi(w) ifweD,.
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4. THE LIVSIC CHARACTERISTIC FUNCTION
What is a unitary invariant for the partial isometries? We begin with a result
of Halmos and McLaughlin [13].
THEOREM 4.1. Suppose A, B € M,,(C) are partial isometric matrices with
dim (Ker(A)) = dim (Ker(B)) = 1.
Then A is unitarily equivalent to B if and only if their characteristic polynomials coincide.

This theorem breaks down when the defect index is greater than one. In-
deed, consider the following matrices:

0100 0100
0 010 0 0 0O
(1) A= 000 0] b= 0 0 01
0 0 0O 0 0 0O

From Proposition [2.3| we see that A and B are partial isometries with
dim (Ker(A)) = dim (Ker(B)) = 2.

Moreover, the characteristic polynomials of A and B are both equal to z*. How-
ever, since A and B have different Jordan forms, A is not unitarily equivalent
to B.

The replacement for Theorem 4.1 when the defect index is greater than one,
and which works for general partial isometries on infinite dimensional Hilbert
spaces, is due to Livsic [17]. Let V € ¥, and let {vy,...,v,} be an orthonor-
mal basis for Ker(V). Since the deficiency indices of V are equal, we know from
Proposition [2.4] that V has a unitary extension U (in fact many of them). Define
the following n x n matrix

42)  wy(z) =z[((U—zI) v, vi)][{((U — zI) 'Uvj,v)] !, zeD.

Livsic showed that wy is a contractive analytic M, (C)-valued function on D and
that different choices of basis {vy,...,v,} and unitary extension U will change
wy by QiwyQr, where Q1, Qy are constant unitary matrices. The function wy,
called the Livsic characteristic function, is a unitary invariant for 7.

THEOREM 4.2 (Livsic). If V1, V, € %4, then Vy and V; are unitarily equivalent if
and only if there are constant n X n unitary matrices Qq, Qo such that

4.3) wy, (z) = Qwy,(z2)Q2 Vz € D.

Two M, (C)-valued contractive analytic functions wy, wp on D are said to co-
incide if that satisfy (4.3). Livsic also showed that given any contractive, analytic,
M,,(C)-valued, function w on D with w(0) = 0, then there isa V € ¥, such that
wy = w. One can quickly check that defined an equivalence relation on such
matrix-valued functions. In other words, there is a bijection from unitary equiva-
lence classes of partial isometries with indices (1, n) onto the unitary coincidence
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equivalence classes of contractive analytic M, (C)-valued analytic functions on D
which vanish at zero.

Using the definition above to compute wy can be difficult. However, if one
reads Livsic’s paper carefully, there is an alternate way of computing wy [17].

PROPOSITION 4.3. For V. € ¥, let {g1,...,4n} be an orthonormal basis for
Ker (V) and let {hy,...hy,} be an orthonormal basis for Ran(V)*. For each z € D let
{g1(2),...,8n(2)} be a (not necessarily orthonormal) basis for Ran(V — zI)+. Then

wy (z) = z[(h}, gi(2))] ({8}, 8x(2))].
The construction above can be rephrased as follows. For any z € C\ T, let

j.: C" = Ran(V —zI)*,

be an isomorphism. Furthermore, suppose that jj is a surjective isometry and let
j=jeo:C" — Ker(V)*4,

also be a surjective isometry. The LivSic characteristic function of V is then

(4.4) wy (z) = zA(z) "' B(2),

where A(z) := jijo and B(z) := jijco-

EXAMPLE 4.4. Suppose O is a scalar-valued inner function with ©(0) = 0.
Note that

Ker(Sg) = C%, Ker(Sg)" = Dom(Mg),
Ran(Sg) = zDom(Mg), Ran(Se)* = C.

In the formula for wy in the previous proposition, we get ¢ = % andh =1.Ina
similar way we have

Ran(Sg — zI) = (w — z) Dom(Mg — zI), Ran(Sg —zI)* = Ck9.

Thus take g(z) = k2 and note that z + g(z) is anti-analytic. From here, one can
show that wy (z) = O(z).

EXAMPLE4.5. If A€ M, (C),dim (Ker(A))=1,and 0(A)={0,A1,..., Ay_1}
C D, then we know from Proposition that A € 1. Furthermore, if O is a
Blaschke product whose zeros are 0(A), then a well-known fact is that 0,(Sg) =
o(A). By Halmos-McLaughlin (Theorem[4.1), S is unitarily equivalent to A and
thuswy = 0.

EXAMPLE 4.6. For the two matrices A and B from (4.1) one can easily com-
pute unitary extensions for A and B. Using the definition of w4 and wp from (4.2)

we get
z 0 22 0
wa(z) = 02817 BT o0 2|
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From here one can show there are no unitary matrices Q1, Q2 such that w,(z) =
Qiwp(z)Qy for all z € D. Indeed, if there were, then

|zl = llwa(2)l| = lwp(2)|| = 2>, ze€D,
which is impossible.

EXAMPLE4.7. Recall the operator S*@®S from Example[3.9|where we showed
et Ker(S*®S) = C® {0}, Ker(S*®S)t = H3 @ H>.
Thus
Ran(S* @ §) = S @S, Ran(S* @ S)* = {0} @ C.
In the formula from Proposition .3 we can take ¢ = 1@ 0 and 1 = 0 @ 1. Notice
that
Ran(S* @& S —zI) = (S* = zI) & (S — zI)|ker(s+05)
= (S* —zl)\Hé ®(S—zl) = H*® (w—z)H*
If c;(w) is the standard Cauchy kernel for H? we see that
Ran(S* @S —zI)* = 0@ c..
So in Proposition 4.3 we can take g(z) = 0 ® c;. A computation yields

 lg5) _ (1800®c)
ws'os(2) =20 ey T 0@ L, 0@ e

EXAMPLE 4.8. To calculate the characteristic function of S ® S*, it is perhaps
easiest to consider the block operator representation from (2.4). In this case, given
h = (ho,hy,...) € H where i € H?, we have

0 hg 0
S* 0 hy S*ho

so that an orthonormal basis of Ker(S ® §*) is {6}, where 5}‘ = ;1. Note
that
Ker(S® $*)* = Ho := P Hy,

k=0
in which H3 = {f € H?: f(0) = 0}. Similarly
0 S ho Shy
0 S hy Shy
0

(S*®S)h = S hy| — |Shs|
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so that
Ran(S® S*)* = Ker(S* ® S) = H*P{0}
k>1

has orthonormal basis {b(*) }2° o» where {;}%2 , is the standard basis of H?, by(z)
=7k, and E](k) = bydo;-
A calculation yields
Ran(S ® S* —wl)* = {hi(w)}, he(w) = (%, @1,...,51,0,...).
Putting this together, wss (z) = zA(z) "' B(z) where
AG) = 1%, 1)) = (25,7} = 6] = I, and
)

B(z) = [(6®),h(2))] = [(1,2"1) 1oy = [2°y],
so that

5. HERGLOTZ SPACES

There is a canonical choice of abstract model space for operators from %
called a Herglotz space. A M, (C)-valued analytic function on ID is called a Her-
glotz function if

1
RG(z) := E(G(Z) +G(z)") > 0.
There is a bijective correspondence between M,,(C)-valued Herglotz functions G
on D and M,,(C)-valued contractive analytic functions b on D given by:
b Gy:=(I+b)(I—b)"' and G bg:=(G-I1)(G+1)!
Any Herglotz function on D extends to a function on C\ T by
G(1/A) :== —=G(A)*,

which ensures that G has non-negative real part on C \ T. Note that if G = G,
for a contractive analytic function b, then it follows that b can be extended to a
meromorphic function on C \ T which obeys

b(A)b(1/2)* =

Given any contractive analytic M, (C)-valued function b on D, consider the
positive matrix kernel function

Gp(2) + Gy(w)*

Ky (z) == T z,zwe C\T.
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By the abstract theory of reproducing kernel Hilbert spaces [20], it follows that
there is a reproducing kernel Hilbert space of C"-valued functions on C \ T with
reproducing kernel Ky, (z). This RKHS is denoted by .Z(b) and is called the Her-
glotz space corresponding to b.

THEOREM 5.1. Let V € ¥;,(H) with characteristic function wy = b and suppose
that I is an abstract model for V. Then there is an isometric multiplier from the abstract
model space 7 1 onto the Herglotz space £ (b). More precisely, there is an analytic
M, (C)-valued function W on C\ T such that W, r = £ (b) and

IWfllew) = Ifllg, . f€Hr

Proof. We will prove this by adapting the approach of Section 4 in [2] to
prove the following formula for the reproducing kernel k,(z) of J#, 1
A(z)A(w)* — zB(z)B(w)*w

(5.1) ko(z) = —

7

where
A(z) = jzjo and B(2):=jzj,
and the maps j,j : C" — H are as defined before formula (#.4). Namely,
j.: C" = Ran(V —zI)*,
is an isomorphism such that z — j, is anti-analytic, jj is a surjective isometry and
j = joo: C" — Ker(V)*,
is also an onto isometry.

To prove (5.I), consider the abstract model space 7 i for the model I' of
V. The reproducing kernel is

kw(z) =T (2)"T'(w).

Now for any u,v € C", if Qo denotes the projection of H onto Ker(3y r)* and
Qo denotes the projection of H onto Ran(3y 1), then

((3?kw)(z)u/V)<c" = <3}F’kwur sz>F = <kwu/ 3FQoosz>F = <3FQoosz/ kwu>F
= W[(kw(z)u, v)cn — ((Peokw)(2z)w, v)enl,

where Py, = I — Q. However, 37 also acts as multiplication by % on Ran(3r)
and so

x 1 1
((3rkw)(z)u,v)er = E<Q0kwurkzv>F = g[(kzv(z)ukaﬂ = ((Pokw) (z)u, v)crl,
where Py = I — Q. Equating these two expressions yields
ko (2) = (Pokw)(z) — zw(Pookw)(z)‘

1—-zw
Now define surjective isometries jo : C" — Ran(V)* and jo : C" — Ker(V), and
let j, = I'(z) forany z € C\ T, z # 0. Observe that if Ur : H — S r is the
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unitary transformation onto the abstract model space given by Urf(z) = I'(z)*f,
then

PO = UF]Q]SUF and kwu = Urjwu
for any u € C". It follows that
(Pokw) (2) = jzUrUrjojo UrUr juw = jzjojojw = A(2) A(w)",
and similarly
(Peokw)(2) = Jzjeojeofuw = B(2)B(w)",
so that the reproducing kernel for .7t takes the form in as claimed.
To obtain the isometric multiplier W from .74 1 onto .Z(b), we proceed as

follows. By Proposition it further follows that for z € I, A(z) is invertible
and b(z) = zA(z) !'B(z) and so

K (2) = A(z) (L)

and similarly for z,w € C\ D~, B(z), B(w) are invertible and so

)A(w)*, z,weD,

_ -1 *\—1
(e) = (o) (LM T
= () (F S B, e ol > 1

Now compare this kernel for 77 to that of Z(b),
_ Gu(2) + Gp(w)*

Ku(z) 1—zw
Using the formula
1+0b
Gy := T=p

and the fact that b(z) = zA(z) "!B(z) for z € D, we have
_ A(z) +zB(2)
Gu(z) = A(z) —zB(z)’
Inserting this expression into the formula for the kernel Ky (z) of .Z(b) yields
A(z)A(w)* — zB(z)B(w)*w
1—-zw

ze C\T.

Ku(2) = V2(A(2) +2B(2)) 7 ( ) (A()* + B(w) @) "' V2.

The preceding simplifies to
W(2)kL (z2)W(w)*, zweC\T
where
W(z) := V2(A(z) +zB(2))"!, zeC\T.
Hence W : &, r — £ (b) is an isometric multiplier of . onto .2 (b).

It follows that given any model I for the partial isometry V, we can define
a new model
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so that -
kL (z) = W(z)T(2)*T(w)W(w)* = Ky(z).

This shows that = = £(b), so that .Z(b) can be thought of as the canonical
model space for a partial isometry with characteristic function wy = b. Since
Z(b) is canonical in this sense, we will use the notation 3 for the partial isome-
try which acts as multiplication by z on its initial space in .#(b) and is unitarily
equivalent to V. It is also straightforward to check that the characteristic function
of 3yisbsothatb = wy. 1

6. THE PARTIAL ORDER OF HALMOS AND McLAUGHLIN

Halmos and McLaughlin gave the following partial order on the set of all
partial isometries, not only the ones in #;; [13]. For two partial isometries A, B,
we say that A X B if B agrees with A on the initial space of A. Since A*A is the
orthogonal projection onto its initial space, A < B if and only if

A =BA™A.
The following follows quickly from the definition of 3.

PROPOSITION 6.1. The relation = defines a partial order on the set of partial
isometries.

EXAMPLE 6.2. (i) Suppose that {uj, uy, ..., u,} is any orthonormal basis for
C". The matrices

A= [wug|--|ul0[0]---[0], B=[u|up|--|ur[ur41]0[---|0]

are partial isometric matrices and one can check that A < B.
(ii) Consider the n x n block matrix

0 0
v=luo]
where U is any r x r unitary matrix. If A is any (n —r) x (n —r) partial isometric
matrix, one can show that
0 A
=l o]
is a partial isometry. Using block multiplication of matrices one can verify the
formula
V =Vy(V*V)
and so V 3 V4. One can argue that if W is any partial isometry with V' X W then

W = Vy4 for some partial isometry A. We thank Yi Guo and Zezhong Chen for
pointing this out to us.
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(iii) Recall the operators A = S* & S on H?> @ H? and B = A| H2OH from Exam-
plesand Since Ker(B) = C & 0, Ker(B) = H2 & H3. Note that

B|Ker(B)i = A|Ke1r(B)L
and so B X A.

7. TWO OTHER PARTIAL ORDERS

Let .7, (#) denote the simple symmetric linear transformations on H with
(n,n) deficiency indices and ., denote the collection of all such operators on any
Hilbert space. Recall here that a symmetric linear transformation S is said to be
simple if its Cayley transform V = B(S) is completely non-unitary.

DEFINITION 7.1.
(i) For S € % (Hs) and T € ., (Hr) we say that S < T if there exists an
isometric map U : Hg — Hr such that U Dom(S) C Dom(T) and

US|Dom(S) = Tu‘Dom(S)'
(ii) For S € 4 (Hs) and T € ., (Hr) we say that S <, T if there exists a
bounded injective map X : Hg — Hr such that X Dom(S) C Dom(T) and
XS|D0m(S) = TX|D0m(S)'
DEFINITION 7.2.

(i) For A € #,(Ha) and B € ¥;,(3) we say that A < B if there exists an
isometric map U : 7 — 3 such that UKer(A)+ C Ker(B)* and

UA|1<er(A)L = Bu|Ker(A)i-

(ii) For A € 74(Ha) and B € 7;,(3) we say that A <, B if there exists an
injective X : J#; — 4 such that X Ker(A)+ C Ker(B)* and

XA'Ker(A)i = BX'I(er(A)L :

Given A € 7,(Ha) and B € ¥,(Hp), let S = p~1(A) and T = B~1(B),
where

1+z

B = pl) =i

Standard theory implies that S € .%,(H 1) and T € .%;,(Hp). The following two
facts are straightforward to verify.

PROPOSITION 7.3. With the above notation we have:
()AXB < SXT;
({i)A<yB <= ST

PROPOSITION 7.4. The relations < and <, are reflexive and transitive.
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Recall here that any binary relation which is reflexive and transitive is called
a pre-order ( [22], Definition 5.2.2). This proposition shows that < and < are pre-
orders on 7, the set of all completely non-unitary partial isometries with equal
deficiency indices.

DEFINITION 7.5. For A, B € ¥, we say that:
(i) A ~ Bifboth A < Band B < A;
(ii) A ~4 Bifboth A x; Band B <, A.

It is well-known that given any pre-order < on a set S, if one defines a
binary relation ~ on S x S as above, then ~ is an equivalence relation and < can
be viewed as a partial order on S/ ~ ( [22], Proposition 5.2.4). In particular we
have that:

COROLLARY 7.6. The binary relations ~ and ~; are equivalence relations on ¥y
and the pre-orders < and <4 induce partial orders on ¥/ ~ and ¥y, / ~ respectively.

At this point, one could ask what the equivalences classes generated by ~
and ~, are. In particular, one might expect that the equivalence classes of ~
to simply be unitary equivalence classes. We can show that this is the case for
a large subclass of ¥, (see Theorems and , but the proofs are nontrivial.
Before investigating the nature of these equivalence classes further, it will first
be convenient to develop a function theoretic characterization of these two par-
tial orders in terms of multipliers between the abstract model spaces or Herglotz
spaces associated with partial isometries in %;,.

8. PARTIAL ORDERS AND MULTIPLIERS

Recall the associated operator 3 4 of multiplication by the independent vari-
able on ., defined on Dom(3,) = {f € ) : zf € #,}. Also recall the
associated partial isometry 3 4 obtained by extending 3 4 by zero on Dom(34)".

THEOREM 8.1. For A, B € ¥, with associated operators 34 on ¢, and 3p on
3, the following are equivalent:
@) A <q B;
(ii) 34 <q 3B
(iii) there exists a multiplier from 7€, to 3.

Proof. Assume that A <, B. Then there is a bounded injective operator
X : Ha — Hp with XKer(A)* C Ker(B)* and XAlger(a): = BXlKer(A)L. Let
Uy : Hq — F€, be the unitary which induces the unitary equivalence between A
and 34, that is, Uy Ker(A)+ = Dom(3,4) = Ker(34)" (and hence U, Ker(A) =
Ker(34)) and such that 3,U, = U A. Define

Y oy — I3, YZUBXUZ
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and note that
YKer(3,4)" = UpXU Ker(3,4)" = UpXKer(A)+ C UgKer(B)* = Ker(3p)*.
Also note that if f € Ker(34)+ = Dom(ﬁA) then f = Upxy for some x5 €
Ker(A)=*. Moreover,
YgAf = quungquf = UBXAXf = UBBXXf
= gBuBXXf = ?)\BUBXU:Zf = EBYf

This is precisely the definition of 34 <; 3p. Thus statement (i) implies state-
ment (ii).

The proof of (ii)=-(i) is similar. Indeed, if 34 <4 3p then there is a bounded
injective operator Xy : £ — 3 with Xj Ker(34)+ C Ker(33)" such that
X131‘1|Ker(3A)L - 3BXl'Ker(SA)i' Define

Yi:Ha— Hp, Yq =U§X1UA,

and follow the computation above to show that Y; A |Ker( AL =B |Ker( AL
We now show the equivalence of statements (ii) and (iii). First we note that
foranya € Cand w € C\ T that

kfa € Ran(34 — wl)*, kBb € Ran(3p — wi)*.

This implies that
Ran(SA—wI \/ kla, Ran SB—wI \/ kBa
acCn acCn
Recall that

Ker(34)" = Dom(3,), Ker(33)" = Dom(33).
Now suppose that X : 524 — 3 is injective with

XKer(34)" C Ker(35)t and X3alker(3,4)+ = 38X |ker(3,4)L-
Then for any f € £, we have

(Xf)(2),a)cr = (Xf,Ka) = (f, X"k.'a).

Since
XRan(3,4 —wl) C Ran(33 —wl), we C\T,
we obtain
X*Ran(3p — wl)* C Ran(34 — wl)* =\ kia.
aeCr
Thus

X*kBa = k! R(z)a
for some R(z)* € M,(C), which says that

(Xf)(2),a)cr=(f, Xkl a)=(f k{'R(2)"a) y, =(f (2), R(2) “a)cn=(R(2) f (2), @) c-
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This says that
(Xf)(z) = R(z)f(z), z€C\T.

Conversely, suppose that R is a multiplier from 4 to .#3. Then, via the
closed graph theorem, Mg, multiplication by R, is an injective bounded operator
from 7 to 3. This means that if f € Ker(3/,)* = Dom(34) then Rf, and
zRf = Rzf € #p and so Rf € Dom(33) = Ker(3p)*. Thus

MgKer(34)* C Ker(33)*.

Furthermore, for f € Ker(34)" we have

(Mr34f)(z) = (R34f)(2) = R(2)zf(2) = 2R(2) f(2) = (35Rf)(2) = (35Rf)(2).

Thus 34 <q 35 1

THEOREM 8.2. For A, B € ¥, with associated operators 34 on 5, and 3p on
3, the following are equivalent:
i) A< B;
(ii) 34 < 3/
(iii) there exists an isometric multiplier from ), to 3.

The proof is the same as before but multiplication by R is an isometric mul-
tiplier.

EXAMPLE 8.3. Suppose ©1 and ©; are inner functions and consider the par-
tial isometries Mg, on Kg, and Mg, on Kg,. If @1 divides O, i.e., O 1@, is an
inner function, then Mg, < Mg, since Ko, C Kg,. The isometric U : Ko, — Kg,
can be taken to be the inclusion operator. Note that the norm on both spaces is
the same (the H% norm) and so this inclusion is indeed isometric.

EXAMPLE 8.4. The previous example can be generalized further. Suppose
that ©, is an arbitrary contractive M;-valued analytic function such that ®, =
©1P where @ is a contractive analytic M,-valued function and ©; is inner. Then
by II-6 of [21]], g, is contained isometrically in the de Branges-Rovnyak space
' (07). By Section |5} the reproducing kernel for any Herglotz space .2 (©®) on
C\ T can be expressed as

1-0(z)0(w)*
1—-zw

K9 (z)=v2(1-6(2)) 7 ( JV2(1-0(w)") = V(2K )V (w)",

where k9 (z) is the reproducing kernel for the de Branges-Rovnyak space .77 ().
It follows that multiplication by V(z) := v/2(1 — @,(z)) ! is an isometry from
A (07) into the Herglotz space £ (@;). Hence V : Ko, C #(02) — £ (0,),
the operator of multiplication by V(z), is an isometry of Kg, into .Z(©;). Re-
call that the canonical partial isometry which acts as multiplication by z on the
largest possible domain in .#’(®, ) is denoted by 3¢, (see Section, and the corre-
sponding isometric linear transformation is 3@2. By the definition of the domain
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of Dom(J\7I@1),
Dom(Mg,) = Ker(Mp, )" = {f € Ko, : zf(z) € Ko, }-

It follows that V Dom(]\//\I@1 ) C Dom(:’;\@z) and that VA7I@1 V*C 3@2 so that Mg, <
3@, Since 39, = Mp,, this also shows that 39, < 3¢, whenever O is inner, @,
is contractive and @7 < O5.

Now suppose that @ := @I where &, 0, I are all scalar-valued inner func-

tions on D. Let
® 0
A= (90

Then A is a 2 x 2 matrix-valued inner function, and note that Mj‘ has indices
(2,2), and that there is a natural unitary map W from Ky = K @ K onto K¢ =
Ko ® OKr. Namely

W(f@®g):=f+0g,
so that if we view elements of K as column vectors then W acts as multiplication
by the 1 x 2 matrix function

W(z) = (1,0(z)).
It follows that M) < Mg, where M, has indices (2,2) and Mg has indices (1,1).
EXAMPLE 8.5. Even more generally suppose that ©, ® are arbitrary contrac-
tive analytic M, (C)-valued functions on D such that © divides @, i.e., ® = OT

for some other contractive analytic M, (C)-valued function I" on D. As in the pre-
vious example the reproducing kernel for the Herglotz space £ (©) on C \ T is

_ Go(2) + Go(w)"
1—zw

K3 (z)
and using that Gg = (1 + @)(1 — ©)~1, this can be re-expressed as
I -0(z)0(w)*
M) ﬁ(l _ @(w)*)fl.

1—zw

K9(z) = v2(1-0() 7 (

Recall here from Section 5| that © is extended to a matrix function on C \ T using
the definition @(z)@(1/2z)* = I. Let
W(z) = (I-(2))" (I -0O(z)),

and observe that
K (z) — W(z)KS ()W (w)*

is equal to
Va( - a(z) 70 (L FEL Y o) (1 - o)) 1v2
— (1 - ®())10(z)(1 - T'(2) KL () (1 - T(w)) @ (w)* (I - b)),

where KI(z) is the reproducing kernel for the Herglotz space . (I") on C \ T. This
shows that the difference K& (z) — W(z)KQ (z)W(w)* is a positive M,,(C)-valued
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kernel function on C \ T, and so it follows from the general theory of reproducing
kernel Hilbert spaces that W(z) is a contractive multiplier of .#(©) into £ ()
( [20], Theorem 10.20). Theorem [8.1| now implies that 39 <; 3¢ whenever ©
divides &.

EXAMPLE 8.6. Suppose that © is a scalar inner function and a € . A theo-
rem of Crofoot [4] says that the operator

U:Ke - Ko, Uf— Y=l
e T e T 1-a0
is a unitary operator from g onto Kg,, where
O—a
1-a0°
Thus Mg = Mg, and so certainly Mg < Mg, .

O, =

EXAMPLE 8.7. Continuing the previous example, now suppose that @ is a
scalar inner function such that ©, divides ®. Then one can see (by composing the
unitary operators from the previous two examples) that Mg < Me.

EXAMPLE 8.8. For a scalar inner function ©, let o be the unique finite posi-
tive measure on T satisfying
1-|6(z)) _ r1- |z
T amE = de()-
T-6@R ) T-2P

Such a measure o is one of the Clark measures corresponding to ®. From Clark
theory [21] we know that

Ko = (1—0)%,L%(0),

where

b 120) > 0m), (@)@ = [ LL o),
T

is the Cauchy transform operator, and
It =8)Cafll = [Ifll2(0)-

It is also known that E := € T: lim ©(rl) =1} isacarrier foro. Let F C E
1
r—1-

be such that y = 0| is not the zero measure. Standard Clark theory says that u
is the Clark measure for some inner function @, meaning that
1—|o@z)P 1— |z

1-o@PF ) 7= @), zeD.
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Note that we have L?() C L?(¢) (understanding this inclusion by extend-
ing the functions in L?(u) to be zero on T \ F). Furthermore, observe that
1-0 1-0
Ko = (1-0)6,L%(0) > (1= 0) 6 L* (1) = 1—5 (1= P)6 L (1) = T—5 Ko
Thus (1 — 0)(1 — &)~ ! is a multiplier from K¢ to Kg. Furthermore, if F € Ko,
then F = (1 — ®)%, f, where f € L?(u) (and considered also to be an element of
L?(0) by defining it to be zero on T \ F). Finally,

A= = 10~ 0 I? = 1) = [ I = [ 7Py = IFI2.

The last equality says that (1 — ©)(1 — db)’l is an isometric multiplier from K¢
to ,C@.

This example is significant since it provides us with an example of two
(scalar) inner functions @ and ©® such that My < Mg, but so that @, the Livsic
function for Mg does not divide @, the Livsic function for Mg. Indeed, let

o0 - o (1)

be an atomic inner function. One can show that
2nm —
(8.1) {ce © } {2 ni+i

which is a discrete set of points in T accumulating only at = 1. Let F be a finite
subset of and construct the inner function @ as above. A little thought shows
that @ is a finite Blaschke product. From the discussion above,
1-0©
““19
is an isometric multiplier from K¢ into Kg. From this we get that M¢ < Mg. But
@ is a finite Blaschke product and @ is an inner function without zeros in ID. Thus
@ does not divide ©.
If one wanted an example in terms of compressed shifts (S, < S, but the
inner function u does not divide the inner function v) one would need to have
1(0) = v(0) = 0 which can be accomplished as follows: Let

D —a

1-ad’

where a = @(0). This makes u(0) = 0. If F is the isometric multiplier from
K, onto K¢ (via Crofoot) and G = (1 — ©)(1 — ®)~! then, using the fact that

Ko C Ky, we see that FG is an isometric multiplier from K, to K, and so S, < So.
However, u is a finite Blaschke product and cannot possibly divide v.

ez}

v =1z0,

EXAMPLE 8.9. Recall the operators A=S*®S on H>®H? and B= A‘HZG)HS'
Notice that the operator W := [ @ S is an isometry from H := H? & H? onto WH.
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Moreover,
B=WAW" =S5"@®S55" = (S* @ S)(I®SS*) = A(I®SS™).
Notice that I & SS* is the orthogonal projection of H onto WH. Thus
WAW™ = Alwy

and so, since WH is a proper invariant subspace of A, it follows that A is unitarily
equivalent to a restriction of itself to a proper invariant subspace. One can check
B < A and the associated multiplier from the abstract model space .73 to %} is

R(z) = {z if |z| <1,

1 if|z| > 1.

PROPOSITION 8.10. The ~ equivalence class, [Al,, of the partial isometry A :=
S* @ S on H? ® H? is the unique maximal element of ¥1/ ~g with respect to the partial
order <4. Moreover it is larger than every other element of 1/ ~, with respect to <.

Proof. This follows straightforwardly from Example By Example if
O, @ are contractive analytic functions on D such that © divides @, then 3¢ <4
3¢. The characteristic function of A is w4 = 0, and so any contractive analytic
function b divides ws: wyq = b-0 = 0. It follows that if V is any completely
non-unitary partial isometry with indices (1,1), that its characteristic function
wy divides wy. Hence V ~ 3y, <4 30, ~ A, and V <, A, so that [V]; <,
[A]4, where [-]; denotes ~; equivalence class, for any V' € 7;. It follows that
[A]; is maximal since if [A]; <4 [V]; for some V € ¥ then also [V]; <4 [A]4
so that [V], = [A]; since < is a partial order on %7/ ~y. [A]; is clearly the
unique maximal element since if [V], is another maximal element then [V]; <,
[A]; which implies [V]; = [A]; by maximality. 1

REMARK 8.11. Similarly one can show that for any n € N, the ~; equiv-
alence class of (S*)" @ S", or equivalently (P}_, S*) ® (B}_, S) is the unique
maximal element of ¥}, / ~, with respect to the partial order <.

By Examples[8.3|and[8.4} if ©, & are contractive analytic M, (C)-valued func-
tions on D with @ inner, and © divides @ then 39 < 3¢. It follows as in the proof
of the above proposition that the ~ equivalence class [n- A] of n- A := (S*)" & S"
is greater than that of V with respect to the partial order < on %,/ ~ for any
V € ¥, for which the characteristic function wy is inner.

For O inner, let Mg be the multiplication operator on Kg and let 3¢ :=
3 o be the abstract model realization of Mg. Also let Mg and 3¢ be the partial

isometric extensions of A7I@ and 3@. We know that Mg and 3¢ have the same
Livsic characteristic function and thus they are unitarily equivalent.
Furthermore, by Section [8} for two inner functions ® and @ we have that
Mp < My if and only if there is an isometric multiplier from g to K. Thus
we see that 39 < 3¢ (which is equivalent to the fact that there is an isometric
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multiplier from ), to 7)) if and only there is an isometric multiplier from
Ko to Kg. This relates the isometric multiplier problem in the abstract setting to
the one explored by Crofoot [4].

EXAMPLE 8.12. Consider the partial isometries Mp, which act as multi-
plication by z on their initial spaces in a model space K where B is a finite
Blaschke product. This example will show three things. First we will show that
M; 1= Mp, <4 My := Mgp, if and only if the degree of By (number of zeroes)
is greater than that of By, demonstrating that the partial order <, is somewhat
trivial when restricted to such partial isometries. Next we provide an example of
M; < M) for finite Blaschke products By, By even though By does not divide B,.
Finally we will show that there exist By, B, so that the degree of B; is less than
that of B but M; is not less than M, with respect to <. This will show that the
two partial orders < and <, are different.

Let By, By be finite Blaschke products of degree n < m and zero sets
{z1,...,zn} and {w1, ..., wp }, respectively. Then

_ p(z)
K, = {(1 %) (1 —zp2)
and similarly for Kp,. Since n < m, the function
(1—=7Z12) - (1 — Zy2)
(1—w1z) - (1 —Wpz)’

is analytic, bounded on D, and is a multiplier from Kp, into Kp,. By Theorem[8.1}
and the discussion above, we have that M; <; M».

:p € Clz]; deg(p) <n— 1},

R(z) :=

Let
2 - z—a
Bi(z) =z, Ba(2) =zy= @ # 0.
Note that
co+ 12
Kg, = {do+diz:do,d1 € C}, Kp, = { (1)—512 :co, 0] € (C}.

Thus, as just seen above, if
1
=1 m
we clearly have ¢Kp, C Kp,. In fact K, = Kp, as a bonus. Hence there is a
multiplier from Kp, to Kp,. However, there is no isometric multiplier from Kp,
to Kp, and thus My <; M but My & M. To see this, observe that since C C Kp,
we see that any multiplier ¢ from Kp, to Kp, satisfies ¢ € Kp,. Thus

__Cpt+ 1z
=
Notice that ¢; = 0 since otherwise z¢ € K,. Thus ¢ takes the form
<o
g=—"

1—az
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If ¢ is an isometric multiplier then ¢ must satisfy the identities

ol =11 =1, {(¢z,¢1)=(z1) =0.
The first identity says that

1 1
1= [ loPan = lao? | =g = laf =

_ 2
R

for some unimodular constant {. The second 1dentity says that

2
0_/|¢| zdm = /|1 az\z

Notice how the above integral is the Poisson integral of the function z (which is
certainly harmonic on the disk) and so it evaluates to a. Thus a = 0 which yields
a contradiction. Thus there there is a multiplier from Kp, to Kp, but no isometric
multiplier.

and so

9. EQUIVALENCE CLASSES

We have defined two equivalence classes ~ and ~; on 7; by declaring A ~
Bif A < Band B < A (respectively A ~; Bif A <, Band B <4 A). Can we
precisely identify these equivalence classes? In some cases we can.

THEOREM 9.1. Suppose A, B € #1 with inner Livsic functions. Then A ~ B if
and only if A is unitarily equivalent to B.

Proof. 1f A X B, then there is an isometric multiplier m 4 from Kg, to Kg,.
Likewise if B < A, then there is an isometric multiplier mp from Kg, to Kg,.
The product m := mamp is a multiplier from Kg, to itself. By a theorem of
Crofoot, m must be a constant function with unimodular constant. Furthermore,
mIC@ Vi IC@ 4t

We now claim that m4Kg, = Kg,. Letg € IC@B Thenmug = f € Ko, and
somg = mpmag = mpf € Kg,. Buttheng mimgf € Kg, andmug = f.

But then the isometric operators 34 and 3p are unitarily equivalent via

XIK@A—)’C@B, Xf:mAf

Since A and 34 are unitarily equivalent and since B and 3p are unitarily equiva-
lent, we see that A and B are unitarily equivalent.
The converse is obvious. 1

Is turns out that this result can be extended beyond n = 1 by applying the
theory of [18]], but the proof is much more involved and we will not include it
here.
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THEOREM 9.2. Suppose A, B € ¥, with inner Livsic functions. Then A ~ B if
and only if A is unitarily equivalent to B.

THEOREM 9.3. Suppose A, B € ¥4 with inner Livsic functions. Then A ~4 B if
and only if Algepayr is similar to Bl g1

Proof. Essentially the same argument as above shows that 3 4 is similar to
33 via the invertible multiplier m4, ie., Y : Ko, — Ko, Yf = maf. Moreover,
Y Dom(3,4) = Dom(33).

If Uy : Ha — Ko, (here H, is the Hilbert space on which A acts) is the
unitary operator which induces the unitary equivalence of A and 3,4 and Up :
Hp — Ko, is the unitary inducing the unitary equivalence of B and 33, one
notes that by the way in which these operators were constructed, we have

UgKer(A)t =Dom(3,), UpKer(B)* = Dom(3p).
One can verify that the operator L = UzYU, : H 4 — Hp satisfies
LKer(A)" =Ker(B)", LAlger(ayt = BLIger(a):

This shows that Alg(4)L is similar to By, (g).
As in the previous proof, the converse is obvious. 1

EXAMPLE 9.4. Let {ey,...,e,} be the standard orthonormal basis for C"
and let {uy,...,u,} be any orthonormal basis for C". By Proposition 2.3|the ma-
trices

Vi = [ea]es] - |en[0], V2= [uslus|- - [u,[0]
define partial isometries on C". Note that V] is the matrix representation of the
compressed shift Sg on Kg, where © = z".

From Example we see that the Livsic characteristic function for V; is
© while the Livsic characteristic function for V; is the finite Blaschke product ¥
whose zeros are 0 along with the non-zero eigenvalues of V, (Example f.5). So
unless ©® = ¢¥, for some ¢ € T, V; is not unitarily equivalent to V, (Theorem.
However, we can see that V; ~; V; in the following way.

Observe from that

Ker(V;)* = \VAei,...,es-1}, Ran(Vh) = \/{ez, ... en}.
Furthermore, Vlej = ej11, 1 < j < n—1. This means that if % is the ordered
basis {eq,...,e,_1} for Ker(V;)* and %, is the ordered basis {e,,...,e,} for
Ran(V1), then the matrix representation of Vi [y (y,) with respect to the pair
(%1, %) is

V1 lker(vy) L) (1,2,) = In—1-
In a similar way,

Ker(V)* \/{el, ..,ey_1}, Ran(Vp) \/{ul,...,un_l}.
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Moreover, Vze; = u;,1 < j < n—1. This means that if % is the ordered ba-
sis {eq,...,e,_1} for Ker(V,)* and %, is the ordered basis {uy,...,u,_1} for
Ran(V3), then the matrix representation of V[yg(y,)r with respect to the pair
((gl, 652) is

[Valker(vy) L) (61,42) = In—1-

Since we get the (n — 1) x (n — 1) identity matrix in both cases, we see, from basic
linear algebra, that V; |Ker(Vl) 1 is indeed similar to V> |Ker(V2) 1.
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