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ABSTRACT. We obtain a sufficient condition for a Toeplitz operator to be in-
vertible on the Bergman space via the n-th Berezin transforms of its symbol.
For a harmonic symbol, we obtain a sufficient condition for a Toeplitz opera-
tor to be invertible on the Bergman space via only the Berezin transform of the
symbol, which is analogous to the Chang–Tolokonnikov–Nikolski conditions
on the Hardy space. For a nonnegative symbol, we prove that the Toeplitz op-
erator is invertible on the Bergman space if and only if its Berezin transform is
bounded below by a fixed positive constant on the unit disk.
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1. INTRODUCTION

Let dA denote the Lebesgue area measure on D, normalized so that the mea-
sure of the disk D is 1. The Bergman space L2

a(D) is the Hilbert space consisting of
the analytic functions on D that are square integrable with respect to the measure
dA. For ϕ ∈ L∞(D), the Toeplitz operator Tϕ and the Hankel operator Hϕ with
symbol ϕ are defined on L2

a(D) by

Tϕ f = P(ϕ f ) and Hϕ f = (I − P)(ϕ f ),

where P : L2(D, dA) → L2
a(D) is the orthogonal projection. Using the reproduc-

ing kernel

Kz(w) =
1

(1− zw)2 (z, w ∈ D),

we express the Toeplitz operator and Hankel operator to be the integral operators:

Tϕ f (z) =
∫
D

ϕ(w) f (w)Kz(w)dA(w) =
∫
D

ϕ(w) f (w)

(1− wz)2 dA(w)
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and

Hϕ f (z) =
∫
D

(ϕ(z)− ϕ(w)) f (w)Kz(w)dA(w) =
∫
D

(ϕ(z)− ϕ(w)) f (w)

(1− wz)2 dA(w)

for f in L2
a(D).

A fundamental problem is to determine when a Toeplitz operator is invert-
ible on the Bergman space. The problem has been investigated by many people
([5], [6], [7], [8]). Luecking [8] obtained a necessary and sufficient condition for
Tϕ to be invertible on L2

a(D) in the case when ϕ is nonnegative on D. Based on
Luecking’s results, Faour [5] gave a necessary condition for Tϕ to be invertible if
ϕ is a continuous function on the closed disk and satisfies that |ϕ(z1)| > |ϕ(z2)|
whenever |z1| 6 |z2|. In general, Karaev [7] obtained some sufficient conditions
on the invertibility of a linear bounded operator via the Berezin transform and
atomic decomposition. Using Karaev’s results, Gürdal and Söhret [6] gave a suf-
ficient condition on the invertibility of Toeplitz operators with bounded symbols.

On the Hardy space, the invertible Toeplitz operators are completely char-
acterized [2]. But the spectrum of a Toeplitz operator on the Hardy space is hardly
determined by the geometric and analytic properties of the symbol of the oper-
ator. In [3], using homotopy, Douglas showed that for a continuous function ϕ
on the unit circle, Tφ is invertible if the harmonic extension |ϕ̂(z)| > δ for some
positive constant δ and for all z in the unit disk, where the harmonic extension
ϕ̂(z) is defined by

ϕ̂(z) =
1

2π

2π∫
0

ϕ(eiθ)
1− |z|2
|1− ze−iθ |2

dθ

for z ∈ D. In [3] Douglas posed the following question:

QUESTION 1.1. If ϕ is in L∞(∂D) and the harmonic extension |ϕ̂(z)| > δ for
some positive constant δ and for all z in the unit disk, then is Tϕ invertible on the
Hardy space H2?

As mentioned in [4] and [18], Chang and Tolokonnikov obtained a sufficient
condition for a Toeplitz operator to be invertible on the Hardy space and showed
that if for a constant δ sufficiently close to 1,

δ 6 |ϕ̂(z)| 6 1

for all z ∈ D, then Tϕ is invertible. In fact, Tolokonnikov found that δ > 45
46 and

‖T−1
ϕ ‖ 6

√
1

46δ− 45

in [16]. Nikolski [10] proved the invertibility of a Toeplitz operator Tϕ (on H2)
with |ϕ| 6 1 and estimated

‖T−1
ϕ ‖ 6

√
1

24δ− 23
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under the condition 1 > δ > 23
24 .

Indeed, a slightly better estimation was proved by the reasoning in [10] (see
page 374 of [10]):

1 > δ >

√
4e

4e + 1
:= ∆

is already sufficient for Tϕ to be invertible on the Hardy space. It is curious to note
that this result of Nikolski follows also from a recent estimate of Hankel opera-
tors by Treil (see Theorem 1.1 and its proof in [17]). In a private communication,
Nikolski conjectured that the constant ∆ defined above is sharp for the invertibil-
ity problem of Tϕ on the Hardy space H2 since the methods from [10] and [17] are
quite different.

On the other hand, using a suitable martingale, Wolff [18] found an elegant
counterexample by constructing a function ϕ ∈ L∞(∂D) such that the harmonic
function ϕ̂ is bounded below, that is, for some positive δ,

|ϕ̂(z)| > δ

for all z in the unit disk, but the corresponding Toeplitz operator Tϕ is not invertible
on H2 .

For ϕ ∈ L∞(D), define the Berezin transform ϕ̃ to be

ϕ̃(z) = 〈Tϕkz, kz〉 =
∫
D

ϕ(w)|kz(w)|2dA(w),

where kz is the normalized Bergman reproducing kernel of L2
a(D) given by

kz(w) =
Kz(w)

‖Kz‖
=

1− |z|2
(1− zw)2 (z ∈ D).

By the change of variable formula we have

ϕ̃(z) =
∫
D

ϕ(ϕz(w))dA(w),

where ϕz is the Möbius map on the unit disk:

ϕz(w) =
z− w

1− zw
(z, w ∈ D).

In fact, the Berezin transform of a bounded operator on a reproducing
Hilbert space can be defined analogously as above. Thus the harmonic extension
ϕ̂(z) is equal to the Berezin transform of the Toeplitz operator with symbol ϕ on
the Hardy space. These lead to the following natural question on the Bergman
space L2

a(D):

QUESTION 1.2. Is Tϕ invertible on the Bergman space if the Berezin trans-
form |ϕ̃(z)| > δ for some positive constant δ and for all z in the unit disk?
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The results [9] on the spectrum of analytic Toeplitz operators on the Bergman
space give an affirmative answer to the above question for analytic symbols or co-
analytic symbols or the symbols are real harmonic functions. Using Luecking’s
result [8] on the Toeplitz operators with nonnegative symbols on the Bergman
space, we will obtain an affirmative answer to Question 1.2 in the case when
symbols are nonnegative functions on the unit disk in Section 3. Moreover, we
will show that for a nonnegative function ϕ on the unit disk, Tϕ is invertible on
the Bergman space if and only if

inf
z∈D

ϕ̃(z) > 0.

In [20], using the spectral picture theorem (see [11]) and some techniques in
[15], the authors proved that if ϕ is the harmonic function

ϕ(z) = cz + az + b (a, b, c ∈ C),

then Tϕ is invertible if and only if |ϕ(z)| > δ (∀z ∈ D) for some constant δ > 0.
Noting the harmonic function ϕ equals its Berezin transform, we obtain also an
affirmative answer to Question 1.2 in the case of ϕ(z) = cz + az + b.

On the other hand, we will show that the answer to Question 1.2 is negative
for general functions in L∞(D). That is, even if the Berezin transform

|ϕ̃(z)| > δ

for all z in D and a positive constant δ, the Toeplitz operator Tϕ may not be in-
vertible on L2

a(D), see Corollary 3.5 in the third section. However, for harmonic
functions on D, the answer to Question 1.2 is still unknown.

For a bounded harmonic function ϕ on D, we will obtain a sufficient con-
dition for the Toeplitz operator Tϕ to be invertible by means of the estimation
of the norm of Hankel operators [21]. This condition is analogous to the Chang–
Tolokonnikov result in [16] for Hardy–Toeplitz operators. Using the Berezin trans-
form ϕ̃ and n-th Berezin transform Bn ϕ, we also give a sufficient condition for Tϕ

to be an invertible operator on L2
a(D) if ϕ is a bounded function on D. The details

are contained in Theorem 4.5. Based on this theorem, one may revise Question 1.2
as follows:

QUESTION 1.3. Is Tϕ invertible on the Bergman space if |ϕ̃(z)| > δ1 and the
n-th Berezin transforms |(Bn ϕ)(z)| > δ2 for some positive constants δ1, δ2 and for
all sufficiently large integers n and all z in the unit disk?

We will construct a continuous function on the closed disk which shows
that the answer to Question 1.3 is negative in the last section.
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2. NOTATIONS AND SOME PRELIMINARIES

In this section, we present some known results that will be needed later on
and introduce some notations. First, we introduce the concept of the “n-Berezin
transform” of a Toeplitz operator on the Bergman space L2

a(D), where n is a non-
negative integer.

Let ϕ be in L∞(D). The n-Berezin transform of a Toeplitz operator Tϕ is
defined by

(Bn ϕ)(z) = (BnTϕ)(z)

= (n + 1)(1− |z|2)n+2
n

∑
j=0

(−1)j
(

n
j

) ∫
D

ϕ(w)|w|2j

|1− zw|2n+4 dA(w)

= (n + 1)
∫
D

ϕ(w)(1− |w|2)n (1− |z|2)2+n

|1− zw|2n+4 dA(w)

= (n + 1)
∫
D

ϕ(ϕz(w))(1− |w|2)ndA(w).

Note that the 0-Berezin transform is the usual Berezin transform which is intro-
duced in Section 1. Since (n + 1)(1− |w|2)ndA(w) is a probability measure that
tends to concentrate its mass at 0 when n→ ∞, (Bn ϕ)(z) is an average of ϕ satis-
fying

‖Bn ϕ‖∞ 6 ‖ϕ‖∞

for all ϕ ∈ L∞(D). For the n-Berezin transform of a function ϕ, we have the
following lemma, see [13] and [14] for example.

LEMMA 2.1 (Suárez). Suppose ϕ ∈ L∞(D) and let Bn(Tϕ) be the n-Berezin
transform of the Toeplitz operator Tϕ, then:

(i) (BnBk)(Tϕ) = (BkBn)(Tϕ) for every n, k ∈ N;
(ii) fix k > 0, then Bn(Bk(Tϕ))→ Bk(Tϕ) uniformly when n→ ∞;

(iii) TBn ϕ → Tϕ in operator norm when n→ ∞.

To study the invertibility of the Toeplitz operators, we need some basic re-
sults of pseudo-hyperbolic metric and Bergman metric, see [21]. For z and w in
the open disk D, the pseudo-hyperbolic distance ρ(z, w) between z and w is de-
fined by

ρ(z, w) = |ϕz(w)|.
For z ∈ D and 0 < r < 1, the pseudo-hyperbolic disk D(z, r) with center z and
radius r is defined by

D(z, r) = {w ∈ D : ρ(z, w) < r}.

Since ϕz(w) is the Möbius map, the pseudo-hyperbolic disk D(z, r) is also a Eu-
clidean disk. More precisely, D(z, r) is a Euclidean disk with center C and radius
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R given by:

C = 1− r2

1− r2|z|2 z, R =
1− |z|2

1− r2|z|2 r,

so the area of D(z, r) is

m(D(z, r)) =
(1− |z|2)2

(1− r2|z|2)2 r2.

Furthermore, it is easy to see that there exists a constant Cr > 0 (depending only
on r) such that

m(D(z, r)) 6 Cr(1− |z|)2.

Another important metric on the unit disk is the Bergman metric β given by

β(z, w) =
1
2

log
1 + |ϕz(w)|
1− |ϕz(w)| (z, w ∈ D).

In particular,

β(0, z) =
1
2

log
1 + |z|
1− |z| (z ∈ D).

It is easy to check that the Bergman metric is Möbius invariant:

β(ϕλ(z), ϕλ(w)) = β(z, w),

where z, w ∈ D and ϕλ is a Möbius map which is introduced in Section 1.
Now we introduce the function space BMO. For any f ∈ L2(D, dA), define

‖ f ‖BMO = sup{[|̃ f |
2
(z)− | f̃ (z)|2]1/2 : z ∈ D}.

Let BMO be the space of functions f with ‖ f ‖BMO < +∞.
Suppose that ϕ is a harmonic function on the unit disk, the following two

lemmas ([21]) are useful to get our sufficient condition for Tϕ to be invertible on
the Bergman space.

LEMMA 2.2. If ϕ is in BMO, then

|ϕ̃(z)− ϕ̃(w)| 6 2
√

2‖ϕ‖BMOβ(z, w)

for all z and w in D.

LEMMA 2.3. Let ϕ ∈ L∞(D), then there exists a constant C > 0 (independent of
the function ϕ) such that

‖Hϕ‖ 6 C‖ϕ‖BMO.

As we mentioned in Section 1, Luecking [8] obtained several necessary and
sufficient conditions on the invertibility of Toeplitz operators with nonnegative
symbols. Now we state his results as the following lemma, which will be used in
the next section.
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LEMMA 2.4 (Luecking). Let ϕ be a bounded nonnegative measurable function on
D. Then the following conditions are equivalent:

(i) the Toeplitz operator Tϕ is invertible on L2
a(D);

(ii) there exists a constant η > 0 such that∫
D

|ϕ(z) f (z)|2dA(z) > η
∫
D

| f (z)|2dA(z)

for all f ∈ L2
a(D);

(iii) there exist r > 0, δ > 0 and 0 < ε < 1 such that

m(G ∩ D(a, ε)) > δm(D(a, ε))

for all a ∈ D, where G = {z ∈ D : ϕ(z) > r} and D(a, r) is a pseudo-hyperbolic disk.
Here m denotes the area measure on the complex plane.

To end this section, let us recall an important result on the Fredholm theory
of the Bergman–Toeplitz operator. The following lemma can be found in [12],
which is analogous to Theorem 7.26 in [4].

LEMMA 2.5. Suppose ϕ ∈ C(D) and Tϕ is a Fredholm operator. Then the Fred-
holm index of Tϕ is given by

index(Tϕ) = dim Ker(Tϕ)− dim Ker(T∗ϕ) = −wind(ϕ(∂D), 0),

where wind(ϕ(∂D), 0) is the winding number of the closed curve ϕ(∂D) with respect to
the origin, which is defined by

wind((ϕ(∂D), 0) =
1

2πi

∫
ϕ(∂D)

dz
z

.

3. TOEPLITZ OPERATORS WITH NONNEGATIVE SYMBOLS VIA BEREZIN TRANSFORM

In this section, we study the invertibility of the Toeplitz operators with non-
negative symbols. First, we use Lemma 2.4 to obtain the following theorem.

THEOREM 3.1. Let ϕ be a function in L∞(D). If Tϕ is invertible, then |̃ϕ| is
invertible in L∞(D). However, this condition is not sufficient.

Proof. Let ϕ be in L∞(D). If Tϕ is invertible, then Tϕ is bounded below on
L2

a(D). Thus there exists a constant ε > 0 such that

ε‖ f ‖2 6 ‖Tϕ f ‖2 6 ‖ϕ f ‖2 = ‖|ϕ| f ‖2

for all f in L2
a(D). Using (i)⇔(ii) in Lemma 2.4, we get that the positive Toeplitz

operator T|ϕ| is invertible. Therefore, there is a constant δ > 0 such that

|̃ϕ|(z) = 〈T|ϕ|kz, kz〉 > δ〈kz, kz〉 = δ



482 XIANFENG ZHAO AND DECHAO ZHENG

for all z ∈ D. This gives that |̃ϕ| is invertible.
For the second part of the theorem, we need to construct a function ϕ ∈

L∞(D) such that |̃ϕ| is invertible in L∞(D) but the Toeplitz operator Tϕ is not
invertible. Let

ϕ(z) = z2 (z ∈ D).

Using Proposition 3.4 and the proof of Theorem 2.5 in [19], we obtain

|̃ϕ|(z) =
∫
D

|ϕ(w)| · |kz(w)|2dA(w) =
∫
D

|wkz(w)|2dA(w)

= 2(1− |z|2)2
∞

∑
n=0

(n + 1)2

2n + 4
|z|2n

= 2(1− |z|2)2
[1

4
+

|z|2
2(1− |z|2)2 +

1
2

∞

∑
n=1

|z|2n

n + 2

]
=

1
2
+

1
2
|z|4 + (1− |z|2)2

∞

∑
n=1

|z|2n

n + 2
>

1
2

for all z ∈ D. This gives that |̃ϕ| is bounded below on D. However, Lemma 2.5
tells us that Tϕ is not invertible since the Fredholm index of Tϕ is −2. This com-
pletes the proof.

Combining the above theorem and Lemma 2.4 we obtain the following re-
sult, which gives a characterization of the invertibility of the Toeplitz operators
with nonnegative symbols by their Berezin transforms.

THEOREM 3.2. Let ϕ be a nonnegative function in L∞(D). Then Tϕ is invertible
if and only if ϕ̃ is invertible in L∞(D).

Proof. If Tϕ is invertible on the Bergman space and ϕ is nonnegative, Theo-
rem 3.1 gives that ϕ̃ = |̃ϕ| is invertible in L∞(D).

Conversely, suppose ϕ̃ is invertible in L∞(D). Then there exists a constant
δ > 0 such that ϕ̃(z) > δ for all z ∈ D. Lemma 2.4 implies that we need only to
verify condition (iii). To do so, we choose r = δ

4 and define

G = {z ∈ D : ϕ(z) > r}

as (iii) in Lemma 2.4.
For each a ∈ D and ε ∈ (0, 1), we observe that

4‖ϕ‖∞

(1− |a|)2 m(G ∩ D(a, ε)) >
∫

G∩D(a,ε)

4ϕ(z)
(1− |a|)2 dA(z) >

∫
G∩D(a,ε)

ϕ(z)|ka(z)|2dA(z)

=
∫
G

ϕ(z)|ka(z)|2dA(z)−
∫

G\D(a,ε)

ϕ(z)|ka(z)|2dA(z)
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>
∫
G

ϕ(z)|ka(z)|2dA(z)−
∫

D\D(a,ε)

ϕ(z)|ka(z)|2dA(z)

>
∫
G

ϕ(z)|ka(z)|2dA(z)− ‖ϕ‖∞

∫
D\D(a,ε)

|ka(z)|2dA(z),

where the second inequality comes from

|ka(z)|2 6
4

(1− |a|)2

for each a ∈ D. Since

ϕ̃(a) =
∫
D

ϕ(z)|ka(z)|2dA(z)

=
∫
G

ϕ(z)|ka(z)|2dA(z) +
∫

D\G

ϕ(z)|ka(z)|2dA(z) > δ (a ∈ D),

we obtain
4‖ϕ‖∞

(1−|a|)2 m(G ∩ D(a, ε))>δ−
∫

D\G

ϕ(z)|ka(z)|2dA(z)−‖ϕ‖∞

∫
D\D(a,ε)

|ka(z)|2dA(z)

>δ− r
∫

D\G

|ka(z)|2dA(z)− ‖ϕ‖∞

∫
D\D(a,ε)

|ka(z)|2dA(z)

>δ− r
∫
D

|ka(z)|2dA(z)− ‖ϕ‖∞

∫
D\D(a,ε)

|ka(z)|2dA(z)

=
3δ

4
− ‖ϕ‖∞

∫
D\D(a,ε)

|ka(z)|2dA(z),

where the second inequality comes from the definition of G. Since∫
D\D(a,ε)

|ka(z)|2dA(z) = 1−
∫

D(a,ε)

|ka(z)|2dA(z) = 1−
∫

D(0,ε)

dA(z) = 1− ε2,

we can choose ε ∈ (0, 1) such that∫
D\D(a,ε)

|ka(z)|2dA(z) <
δ

4‖ϕ‖∞
,

to get
4‖ϕ‖∞

(1− |a|)2 m(G ∩ D(a, ε)) >
3δ

4
− δ

4
=

δ

2
.

Thus we obtain

m(G ∩ D(a, ε)) >
δ(1− |a|)2

8‖ϕ‖∞
>

δm(D(a, ε))

8Cε‖ϕ‖∞
,
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where the constant Cε comes from the remarks in Section 2. This completes the
proof.

From the above characterization of the invertibility of Toeplitz operators
with nonnegative symbols, one may ask: Is σ(Tϕ) equal to the essential range R(ϕ̃)
of the function ϕ̃ for each nonnegative ϕ ∈ L∞(D)? However, it is easy to see that
σ(Tϕ) is a discrete set and R(ϕ̃) is not if ϕ is a continuous radial function on D (i.e.,
ϕ(z) = ϕ(|z|) for each z ∈ D). So we have R(ϕ̃) * σ(Tϕ) for general ϕ > 0. But
it is not clear that whether R(ϕ̃) ⊃ σ(Tϕ) for ϕ > 0. These lead us to consider the
following question:

QUESTION 3.3. Is σ(Tϕ) contained in R(ϕ̃) for every nonnegative function
ϕ ∈ L∞(D)?

Indeed, we will show the answer to Question 3.3 is negative in the general
case by the following example.

PROPOSITION 3.4. Let ϕ(z) = |z|2 + a|z|+ b (z ∈ D), where a and b are real
constants. Then there exist a and b such that ϕ(z) > 0 for all z ∈ D but σ(Tϕ) *
Ran(ϕ̃).

Proof. Denote the eigenvalues of Tϕ by λn (n > 0). The standard orthonor-
mal basis {

√
n + 1zn}∞

n=0 of L2
a(D) diagonalizes both Toeplitz operators T|z|2 and

T|z|. It follows that the eigenvalues of Tϕ are given by

λn =
2n + 2
2n + 4

+ a
2n + 2
2n + 3

+ b = a + b + 1−
( a

2n + 3
+

2
2n + 4

)
(n > 0),

see Lemma 3.1 in [19] if needed. Thus σ(Tϕ) = {λn}∞
n=0.

We will show that there exist a and b such that ϕ > 0 and

(3.1) min{λn : n > 0} := λmin < inf
z∈D

ϕ̃(z).

If the above holds, then it is easy to see that (3.1) implies σ(Tϕ) * Ran(ϕ̃).
We claim that a = − 3

2 and b = 1 satisfy the above conditions. Indeed, it is
clear that

ϕ(z) = |z|2 − 3
2
|z|+ 1 =

(
|z| − 3

4

)2
+

7
16

is positive on D and

λmin = min
{

a + b + 1−
( a

2n + 3
+

2
2n + 4

)
: n > 0

}
= min

{1
2
−
( − 3

2
2n + 3

+
2

2n + 4

)
: n > 0

}
= λ2 =

13
28

.

We will prove the following inequality:

inf
z∈D

ϕ̃(z)− λmin = inf
z∈D

ϕ̃(z)− λ2 = inf
z∈D

ϕ̃(z)− 13
28

> 0.
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Notice that (4 + a)n + (2a + 6) > 0 for all n > 0. Let x = |z|2 ∈ [0, 1] and use the
expression of ϕ̃ (see Lemma 3.3 in [19]), we have

ϕ̃(z) = 2(1− x)2
[ ∞

∑
n=0

(n + 1)2

2n + 4
xn + a

∞

∑
n=0

(n + 1)2

2n + 3
xn
]
+ b

=
(1

2
+

a
6

)
x2 +

a
6

x +
(1

2
+

2
3

a + b
)
+

(1− x)2

2

∞

∑
n=1

(4 + a)n + (2a + 6)
(n + 2)(2n + 3)

xn

>
1
4

x2 − x
4
+

1
2
+

(1− x)2

4

2

∑
n=1

5n + 6
(n + 2)(2n + 3)

xn (since a = −3
2

, b = 1)

=
1

420
[60x4 − 43x3 + 11x2 − 28x + 210].

Thus we obtain

420
[

ϕ̃(z)− 13
28

]
> 60x4 − 43x3 + 11x2 − 28x + 210− 195

= 60x4 − 43x3 + 11x2 − 28x + 15 := G(x) (x ∈ [0, 1])

for all z ∈ D. Taking derivative of G(x) gives

G′(x) = 240x3 − 129x2 + 22x− 28.

Applying Sturm theorem (see Theorem 5.2 in [19]) to the polynomial G′(x), we
get that there exists a unique point x0 ∈ [0, 1] such that G′(x0) = 0. The interme-
diate value theorem guarantees that x0 ∈ (0.66, 0.67). Observe that

min
x∈[0,1]

G(x) = G(x0).

Let
H(t) = −43t3 + 22t2 − 84t + 60 (t ∈ (0.66, 0.67)).

It is easy to check that H′(t) < 0 for all t ∈ (0.66, 0.67). Since 4G−G′ = H, we get

min
x∈[0,1]

G(x) = G(x0) =
1
4

H(x0) >
1
4

H(0.67) >
3

20
,

which implies that

inf
z∈D

ϕ̃(z)− λmin = inf
z∈D

ϕ̃(z)− 13
28

>
1

420
× min

x∈[0,1]
G(x) > 0.

This completes the proof of Proposition 3.4.

A small modification of the radial function ϕ in Proposition 3.4 gives the
negative answer to Question 1.2.

COROLLARY 3.5. Let ψ(z) = ϕ(z)− λ2, where ϕ and λn are given in the above
proof. Then the Berezin transform ψ̃ is invertible in L∞(D), but the corresponding
Toeplitz operator Tψ is not invertible on the Bergman space L2

a(D).
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Proof. From the proof of the above proposition, we have

ψ(z) = |z|2 − 3
2
|z|+ 15

28
.

Thus inf
z∈D

ψ̃(z) > 0 and the eigenvalues µn of Tψ are given by µn = λn − λ2, so

that µ2 = 0 and Tψ is not invertible. This completes the proof.

4. INVERTIBILITY OF TOEPLITZ OPERATORS WITH HARMONIC SYMBOLS

In this section we deal with the Toeplitz operators with harmonic symbols.
To prove our main theorem, we need an estimation on the norm of the Han-
kel operator. In fact, the following result tells us that the positive constant C in
Lemma 2.3 can be estimated easily if the function ϕ is harmonic on D.

LEMMA 4.1. Suppose that ϕ is a bounded harmonic function on D. Then we have

‖Hϕ‖ 6 27‖ϕ‖BMO.

Proof. To estimate the norm of the Hankel operator Hϕ, we use the tech-
nique in Lemma 7.3.2 of [21]. By the definition of Hankel operator and Lemma 2.2,
we have

|Hϕ f (z)| = |Hϕ̃ f (z)| 6
∫
D

|ϕ̃(z)− ϕ̃(w)| · |Kz(w)| · | f (w)|dA(w)

6 2
√

2‖ϕ‖BMO

∫
D

β(z, w) · |Kz(w)| · | f (w)|dA(w)

for all f ∈ L2
a(D). Now we consider the following linear operator T on L2(D):

T f (z) =
∫
D

|Kz(w)|β(z, w) f (w)dA(w),

then

‖Hϕ f ‖2 6 2
√

2‖ϕ‖BMO‖T(| f |)‖2 6 2
√

2‖ϕ‖BMO‖T‖ · ‖ f ‖2

for all f ∈ L2
a(D). Thus we need to use Schur’s test to estimate the norm of the

operator T. By the properties of the Bergman metric and Lemma 7.3.2 in [21], it
suffices to determine the maximum value of the function

β(0, w)(1− |w|2)1/4

and estimate the value of the integral∫
D

(1− |w|2)−3/4

|1− zw| dA(w).
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First we consider the above function. By the definition of Bergman metric, we get

β(0, w)(1− |w|2)1/4 =
1
2
(1− |w|2)1/4log

1 + |w|
1− |w| .

Let

F(x) = (1− x2)1/4log
1 + x
1− x

(x ∈ [0, 1]).

Now we are going to estimate the maximum value of F(x) on [0, 1]. Taking de-
rivative of F(x) gives

F′(x) =
x

2(1− x2)3/4

[ 4
x
− log

1 + x
1− x

]
:=

x
2(1− x2)3/4 G(x).

Simple calculations give that G(x) is decreasing on (0, 1) and

G( 121
125 ) > 0 and lim

x→1−
G(x) < 0.

Thus there exists a unique point x0 ∈ ( 121
125 , 1) such that G(x0) = 0. By the defini-

tion of G(x) and F(x) > 0 for all x ∈ [0, 1], we obtain that x0 is the unique point
where F(x) reaches its maximum value and x0 satisfies that

log
1 + x0

1− x0
=

4
x0

.

Therefore,

sup
x∈[0,1]

F(x) = F(x0) =
4(1− x2

0)
1/4

x0
6

3
√

2
2

(since x0 > 121
125 ).

Now we turn to estimate the above integral. We use the gamma function to get∫
D

(1− |w|2)−3/4

|1− zw| dA(w)=
Γ( 1

4 )

[Γ( 1
2 )]

2

+∞

∑
n=0

[Γ(n + 1
2 )]

2

n!Γ(n + 5
4 )
|z|2n6

Γ( 1
4 )

[Γ( 1
2 )]

2

+∞

∑
n=0

[Γ(n + 1
2 )]

2

n!Γ(n + 5
4 )

=
Γ( 1

4 )

π

10

∑
n=0

[Γ(n + 1
2 )]

2

n!Γ(n + 5
4 )

+
Γ( 1

4 )

π

+∞

∑
n=11

[Γ(n + 1
2 )]

2

n!Γ(n + 5
4 )

= I+II.

Direct calculation gives that

I 6 6 +
21

100
.

For the second term, recall that the Gautschi inequality gives

n1−α 6
n!

Γ(n + α)
6 (n + 1)1−α (0 6 α 6 1)
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for all n > 1. Thus we obtain

II 6
Γ( 1

4 )

π

+∞

∑
n=11

(n + 1)3/4

n(n + 1
4 )

6
Γ( 1

4 )

π

+∞

∑
n=11

( 12
11 n)3/4

n2 (since n > 11)

=
Γ( 1

4 )

π
·
(12

11

)3/4 +∞

∑
n=11

1
n5/4 6

Γ( 1
4 )

π

(12
11

)3/4
+∞∫
10

x−5/4dx

=
Γ( 1

4 )

π
·
(12

11

)3/4
· 4

101/4 6 2 +
78

100
.

Combining I, II and the maximum value of F(x) we obtain

‖T‖ 6 3
√

2
4
× 9.

Thus we have

‖Hϕ‖ 6 2
√

2× 3
√

2
4
× 9‖ϕ‖BMO = 27‖ϕ‖BMO.

This completes the proof of Lemma 4.1.

Using Lemma 4.1 we will establish the following theorem, which is analo-
gous to the result of the invertibility of Hardy–Toeplitz operators, see [16].

THEOREM 4.2. Suppose that ϕ is a bounded harmonic function on D. If there
exists a δ ∈ (0, 1) such that

|ϕ(z)| > δ‖ϕ‖∞ >
27√
730
‖ϕ‖∞

for all z ∈ D, then Tϕ is invertible on L2
a(D) and

‖T−1
ϕ ‖ 6

1√
δ2 − 272(1− δ2)‖ϕ‖∞

.

Proof. Recall that L∞(D) ⊂ BMO and

‖ϕ‖2
BMO = sup

z∈D
[|̃ϕ|

2
(z)− |ϕ̃(z)|2].

Thus we have

‖Tϕ f ‖2 = ‖ϕ f ‖2
2 − ‖Hϕ f ‖2 > δ2‖ϕ‖2

∞‖ f ‖2 − ‖Hϕ‖2‖ f ‖2

> δ2‖ϕ‖2
∞‖ f ‖2 − 272 sup

z∈D
[|̃ϕ|

2
(z)− |ϕ̃(z)|2]‖ f ‖2 (by Lemma 4.1)

> δ2‖ϕ‖2
∞‖ f ‖2 − 272(‖ϕ‖2

∞ − δ2‖ϕ‖2
∞)‖ f ‖2 (since ϕ is harmonic)

= [δ2 − 272(1− δ2)]‖ϕ‖2
∞‖ f ‖2
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for each f ∈ L2
a(D). Since δ > 27√

730
, we see that Tϕ is bounded below and

‖Tϕ f ‖ >
√

δ2 − 272(1− δ2)‖ϕ‖∞‖ f ‖

for all f ∈ L2
a(D). Using that Tϕ = T∗ϕ, we also get

‖T∗ϕ f ‖ >
√

δ2 − 272(1− δ2)‖ϕ‖∞‖ f ‖

for all f ∈ L2
a(D). Thus Tϕ is invertible. This finishes the proof of the theorem.

The above theorem gives a sufficient condition for Tϕ to be invertible when
the symbol ϕ is a harmonic function. However, if ϕ is real and harmonic on D,
we can characterize the invertibility of Tϕ easily because the spectrum of Tϕ has
been computed explicitly by McDonald and Sundberg in Proposition 12 of [9].

THEOREM 4.3. Let ϕ be a real harmonic function in L∞(D), then Tϕ is invertible
on L2

a(D) if and only if the symbol ϕ is invertible in L∞(D).

Note that the above result tells us that if for a harmonic function ϕ the
Toeplitz operator Tϕ is self-adjoint, then 1

ϕ ∈ L∞(D) if and only if Tϕ is invertible.
Furthermore, the above theorem also holds if ϕ is a harmonic function such that
Tϕ is normal.

THEOREM 4.4. Let ϕ be a harmonic function in L∞(D). If Tϕ is a normal operator,
then Tϕ is invertible on L2

a(D) if and only if ϕ is invertible in L∞(D).

Proof. By Corollary 17 of [1], ϕ(D) lies on some line in C. Then there exist
constants a, b and a real valued function ψ such that

ϕ = aψ + b.

We need only to consider a 6= 0. Note that

0 ∈ σ(Tϕ) = σ(aTψ + b)

if and only if

− b
a
∈ σ(Tψ) = clos[ψ(D)],

which is equivalent to 0 ∈ clos[ϕ(D)]. This completes the proof.

In the rest of this section, we will use the n-Berezin transform to study the
invertibility of Bergman–Toeplitz operators with bounded symbols. The follow-
ing theorem gives us a sufficient condition for Tϕ to be invertible on the Bergman
space.

THEOREM 4.5. Let ϕ ∈ L∞(D) and C be the constant in Lemma 2.3. Then there
exists some integer N = N(ϕ) (depending only on ϕ) such that the inequalities

inf
z∈D
|ϕ̃(z)| > δ‖ϕ‖∞ and |(BN0 ϕ)(z)| > ε‖ϕ‖∞
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hold for all z ∈ D, where 1 > δ > 0, 1 > ε > C
√

1− δ2 are constants and N0 > N(ϕ)
imply that the Toeplitz operator Tϕ is invertible on L2

a(D).

Proof. Let ψn = Bn ϕ, n > 1. By Lemma 2.1, we obtain that

lim
n→∞

‖Tψn − Tϕ‖ = 0.

Thus there exists an integer N1 = N1(ϕ) > 1 such that

‖Tψn − Tϕ‖ <
α

2
for all n > N1, where α =

√
ε2 − C2(1− δ2)‖ϕ‖∞ is a fixed positive constant.

Thus, if n > N1, then
‖Tψn f − Tϕ f ‖ 6 α

2
‖ f ‖

for each f ∈ L2
a(D). Therefore, we obtain

‖Tϕ f ‖ > ‖Tψn f ‖ − α

2
‖ f ‖(4.1)

for all n > N1 and f ∈ L2
a(D).

By Lemma 2.1 again, we have

ψ̃n = B0(Bn ϕ) = Bn(B0 ϕ)→ B0 ϕ

uniformly as n→ ∞. Since

inf
z∈D
|(B0 ϕ)(z)| = inf

z∈D
|ϕ̃(z)| > δ‖ϕ‖∞,

there exists N2 = N2(ϕ) > 1 such that

|ψ̃n(z)|>|ϕ̃(z)|−
(

inf
z∈D
|ϕ̃(z)|−δ‖ϕ‖∞

)
>inf

z∈D
|ϕ̃(z)|−

(
inf
z∈D
|ϕ̃(z)|−δ‖ϕ‖∞

)
=δ‖ϕ‖∞

for all n > N2 and z ∈ D. By the definition of Berezin transform, we get

|̃ψn|
2
(z) =

∫
D

|ψn(w)|2|kz(w)|2dA(w) 6 ‖ψn‖2
∞

= ‖Bn ϕ‖2
∞ (by the definition of ψn)

6 ‖ϕ‖2
∞

for all n > 1 and z ∈ D. If n > N2, we obtain

‖Tψn f ‖2 = ‖ψn f ‖2 − ‖Hψn f ‖2 > ‖ψn f ‖2 − ‖Hψn‖2‖ f ‖2

> ‖ψn f ‖2 − C2 sup
z∈D

[|̃ψn|
2
(z)− |ψ̃n(z)|2]‖ f ‖2

2

> ‖ψn f ‖2 − C2(1− δ2)‖ϕ‖2
∞‖ f ‖2

for all f ∈ L2
a(D). The second “>” comes from Lemma 2.3.

Suppose that N0 > max{N1, N2} := N(ϕ). If ϕ satisfies the following con-
dition

|ψN0(z)| = |(BN0 ϕ)(z)| > ε‖ϕ‖∞
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for all z ∈ D, then we have

‖TψN0
f ‖2 > ‖ψN0 f ‖2 − C2(1− δ2)‖ϕ‖2

∞‖ f ‖2

> [ε2 − C2(1− δ2)]‖ϕ‖2
∞‖ f ‖2 = α2‖ f ‖2

for each f ∈ L2
a(D). Since N0 > N1, by (4.1) we get

‖Tϕ f ‖ > ‖TψN0
f ‖ − α

2
‖ f ‖ > α‖ f ‖ − α

2
‖ f ‖ = α

2
‖ f ‖

for f ∈ L2
a(D). This gives that Tϕ is bounded below, and so is T∗ϕ. This completes

the proof.

As mentioned in the introduction, we will show that there exists a func-
tion ϕ ∈ C(D) such that ϕ̃ is invertible and |Bn(ϕ)| are bounded below for all
sufficiently large n, but the corresponding Bergman–Toeplitz operator is not in-
vertible. Before doing this, we recall some important results on the n-th Berezin
transform, see Theorem 6.19 in [22].

LEMMA 4.6. If ϕ is a function in L1(D, dA), then

lim
n→∞

‖Bn(ϕ)− ϕ‖L1 = 0.

If ϕ ∈ C(D), then we have

lim
n→∞

‖Bn(ϕ)− ϕ‖∞ = 0.

Based on the above lemma, we see that if ϕ ∈ C(D) and |ϕ| is bounded
below by some positive constant δ, then the n-th Berezin transforms |Bn(ϕ)| are
bounded below for all sufficiently large n. In view of this observation we need
only to construct a continuous function ϕ with the following properties:

(i) ϕ is invertible in L∞(D);
(ii) the Berezin transform ϕ̃ is also invertible;

(iii) Tϕ is not invertible on L2
a(D).

Note that for the real valued continuous function ϕ, if ϕ is invertible in
L∞(D), then Tϕ is invertible on L2

a(D), which can be proved easily using the same
idea in Proposition 7.18 of [4]. Consequently, we need to find a complex valued
continuous function that satisfies the above three conditions.

THEOREM 4.7. Suppose that ϕ(z) = |z|2 + a|z| + b, where a, b are constants.
Then there exist a, b ∈ C\R and δ1, δ2 > 0 such that

|ϕ(z)| > δ1 and |ϕ̃(z)| > δ2

for all z ∈ D, but the Toeplitz operator Tϕ is not invertible on L2
a(D).

Proof. From the proof of Proposition 3.4, we have that the eigenvalues of Tϕ

are given by

λn =
2n + 2
2n + 4

+ a
2n + 2
2n + 3

+ b (n > 0).
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On the other hand, the Berezin transform of ϕ is given by the following formula
(see Lemma 3.3 in [19]):

ϕ̃(z) =
[
2− 1
|z|2 −

(1− |z|2)2

|z|4 log(1− |z|2)
]

+
a
2

[
3− 1
|z|2 +

(1− |z|2)2

2|z|3 log
1 + |z|
1− |z|

]
+ b (z ∈ D).

Now we take a = 2(1 + i) and b = − 34
15 −

8
5 i to show that 0 = λ1 ∈ σ(Tϕ), and

the continuous functions ϕ and ϕ̃ are both invertible in L∞(D). Indeed,

λ1 =
4
6
+

4
5

a + b = 0.

This implies that Tϕ is not invertible.
To prove that ϕ is invertible in L∞(D), we need to show that ϕ has no zeros

in D. Since

ϕ(z) =
(
|z|2 + 2|z| − 34

15

)
+ 2i

(
|z| − 4

5

)
,

we have that ϕ(z) = 0 if and only if |z| − 4
5 = 0 and

|z|2 + 2|z| − 34
15

= 0.

It is clear that the above equations have no solution. Thus ϕ is invertible.
The difficult part is to prove that the Berezin transform ϕ̃ is invertible. Un-

der the above assumption, we have

ϕ̃(z) = P(z) + iQ(z),

where

P(z) =
41
15
− 2
|z|2 +

(1− |z|2)2

2|z|3
[

log
1 + |z|
1− |z| −

2
|z| log(1− |z|2)

]
and

Q(z) =
7
5
− 1
|z|2 +

(1− |z|2)2

2|z|3 log
1 + |z|
1− |z| .

Thus ϕ̃(z) = 0 if and only if P(z) = 0 and Q(z) = 0. Letting t = |z| ∈ [0, 1], we
consider the following two functions:

F(t) = |z|4P(z) =
41
15

t4 − 2t2 +
(1− t2)2

2

[
t log

1 + t
1− t

− 2 log(1− t2)
]

(t ∈ [0, 1])

and

G(t) = |z|3Q(z) =
7
5

t3 − t +
(1− t2)2

2
log

1 + t
1− t

(t ∈ [0, 1]).

Observe that F(0) = G(0) = 0 but

ϕ̃(0) =
1
2
+

2
3

a + b = −13
30
− 4

15
i 6= 0,
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so we need only to show that the equations F(t) = 0 and G(t) = 0 do not have
any nonzero solutions.

To do so, our idea is as follows: first we prove that G(t) = 0 has only one
nonzero root t1 in (0, 1), next we show that t1 is not a root of F(t) = 0. We
consider the monotonicity of the function G. Taking derivative gives

G′(t) = 2t(1− t2)
[ 8t

5(1− t2)
− log

1 + t
1− t

]
:= 2t(1− t2)H(t) (t ∈ (0, 1)).

On the other hand, we have

H′(t) =
2(9t2 − 1)
5(1− t2)2 (t ∈ (0, 1)).

From the above computations, we have that H(t) is increasing in ( 1
3 , 1) and H(t)

is decreasing in (0, 1
3 ). Note that H(0) = 0, H( 1

3 ) =
3
5 − log 2 < 0 and lim

t→1−
H(t) =

+∞, we obtain that H(t) = 0 has only one root t0 in (0, 1). This implies that: if
t0 < t < 1, then H(t) > 0 and so G′(t) > 0; if 0 < t < t0, then H(t) < 0, so we
have G′(t) < 0.

From the arguments above, we get that G(t) is increasing if t ∈ (t0, 1) and
decreasing if t ∈ (0, t0). Observe that G(0) = 0 and G(1) = 2

5 , we have that
G(t) = 0 has exactly one solution t1 in (0, 1). To approximate t1, we evaluate
values of G(t) for some points in (0, 1) to get that G( 17

25 ) < 0 and G( 7
10 ) > 0.

Thus the intermediate value theorem tells us that t1 ∈
(

17
25 , 7

10

)
.

Now we are going to show that F(t1) 6= 0. If this is not true, we have
that F(t1) = 0. We will derive a contradiction. To do so, we need the following
function:

l(t) = F(t)− tG(t) = t2
(4

3
t2 − 1

)
− (1− t2)2 log(1− t2) (t ∈ (0, 1)).

Using F(t1) = 0 we have

l(t1) = F(t1)− t1G(t1) = 0.

Let 1− t2 = x ∈ (0, 1), the function l becomes the following

L(x) =
(1− x)(1− 4x)

3
− x2 log x (x ∈ (0, 1)).

One has L(x1) = 0, where

x1 = 1− t2
1 ∈

(
0, 1−

(17
25

)2]
⊂ (0, 0.54].

Simple calculations give us

L′(x) = −2x
[5(1− x)

6x
+ log x

]
:= −2xR(x).
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For the function R(x), we have

R′(x) =
1
x2

(
x− 5

6

)
(x ∈ (0, 1)).

Therefore R decreases on (0, 0.54]. Hence R(x) > R(0.54) > 0 on this interval,
and one gets that L decreases on (0, 0.54]. Since L(0.54) > 0, L is positive on
(0, 0.54], which contradicts the fact that x1 ∈ (0, 0.54] is a root of L(x) = 0. The
contradiction implies that t1 is not a zero of F. Thus we have ϕ̃(z) 6= 0 for any
z ∈ D. This implies that the Berezin transform ϕ̃ is also invertible in L∞(D), to
complete the proof of the theorem.

Acknowledgements. We thank the referee for providing constructive comments and
help in improving the contents of this paper. We are grateful to Professor Nikolai Nikolski
for giving many useful remarks and comments on the invertibility problem of Hardy–
Toeplitz operators. This work was partially supported by a NSFC grant (11271387) and
Chongqing Natural Sience Foundation (cstc 2013jjB0050). The second author was partially
supported by Simons Foundation grant #196300.

REFERENCES
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