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ABSTRACT. We establish a necessary and sufficient condition for a represen-
tation of a lattice ordered semigroup to be regular, in the sense that certain
extensions are completely positive definite. This result generalizes a theorem
due to Brehmer where the lattice ordered group was taken to be Z{?. As an
immediate consequence, we prove that contractive Nica-covariant representa-
tions are regular. We also introduce an analog of commuting row contractions
on a lattice ordered group and show that such a representation is regular.
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INTRODUCTION

A contractive map of a group has a unitary dilation if and only if it is com-
pletely positive definite, in the sense that certain operator matrices are positive.
Consequently, for a semigroup P contained in a group G, a contractive represen-
tation of P has a unitary dilation if and only if it can be extended to a completely
positive definite map on G. Introduced in [6], such representations of a semi-
group are called completely positive definite. In particular, when the group is
lattice ordered, a representation is called regular if a certain natural extension to
the group is completely positive definite.

Nica [13] introduced the study of isometric representations of quasi-lattice
ordered semigroups. This generalized the notion of doubly commuting represen-
tations of semigroups with nice generators. Laca and Raeburn [10] developed the
theory, and showed there is a universal C*-algebra for isometric Nica-covariant
representations. This field has also been explored in [15].

Davidson, Fuller, and Kakariadis [6]], [8] defined and studied the contractive
Nica-covariant representation on lattice ordered semigroups. The regularity of
such representations was seen as a critical property in describing the C*-envelope
of semicrossed products. They posed a question ([6], Question 2.5.11) of whether
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regularity is automatic for Nica-covariant representations. Fuller [8] established
this for certain abelian semigroups.

This paper answers this question affirmatively by establishing a necessary
and sufficient condition for a representation of a lattice ordered semigroup to be
regular. This condition generalizes a result of Brehmer [3], where he gave a nec-
essary and sufficient condition for a representation of Z¢ to be regular. As an im-
mediate consequence of Brehmer’s condition, it is known that doubly commut-
ing representations and commuting column contractions are both regular ([17],
Proposition 1.9.2). This paper generalizes both results in the lattice ordered group
settings. We first show that a Nica-covariant representation, which is an analog
of a doubly commuting representation, is regular. We then introduce an analog
of commuting column contractions, which is shown to be regular as well.

1. PRELIMINARIES

Let G be a group. A unital semigroup P C G is called a cone. A cone P
is spanning if PP~! = G, and is positive when PN P! = {e}. A positive cone
P defines a partial order on G via x < y when x~y € P. (G, P) is called totally
ordered if G = P U P~!, in which case the partial order on G is a total order. If
any finite subset of G with a upper bound in P also has a least upper bound in
P, the pair (G, P) is called a quasi-lattice ordered group. We call this partial order
compatible with the group if for any x < y and g € G, we always have gx < gy
and xg < yg. Equivalently, the corresponding positive cone satisfies a normality
condition that gPg~! C P for any ¢ € G, and thus x < y whenever yx~! € P as
well. When P is a positive spanning cone of G whose partial order is compatible
with the group, if every two elements x, y € G have a least upper bound (denoted
by x V y) and a greatest lower bound (denoted by x A y), the pair (G, P) is called
a lattice ordered group. It is immediate that a lattice ordered group is also a quasi-
lattice ordered group.

EXAMPLE 1.1 (Examples of lattice ordered groups). (i) (Z,Zxo) is a lattice
ordered group. In fact, this partial order is also a total order. More generally, any
totally ordered group (G, P) is also a lattice ordered group.

(ii) Let (G, P;);c; be a family of lattice ordered group. Then, their direct prod-
uct (TTG;, [T P;) is also a lattice ordered group.

(iii) Let G = Cg|0, 1], the set of all continuous functions on [0, 1]. Let P be the
set of all non-negative functions in G. Then (G, P) is a lattice ordered group.

(iv) Let T be a totally ordered set. A permutation « on 7T is called order pre-
serving if forany p,q € T, p < g, we also have a(p) < a(q). Let G be the set of all
order preserving permutations, which is clearly a group under composition. Let
P={aeG:ua(t)>t, forallt € T}. Then (G, P) is a non-abelian lattice ordered
group [1].
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(v) Let F,, be the free group of n generators, and F; be the semigroup gen-
erated by the n generators. Then (F,, F,) defines a quasi-lattice ordered group
([13], Examples 2.3). However, the induced partial order is not compatible with
the group and the pair is not a lattice ordered group.

For any element ¢ € G of a lattice ordered group (G, P), g can be written
uniquely as ¢ = ¢ g~ where g, g € P,and g Ag_ =e. Infact, gy = gVe
and g = ¢~ ! Ve. Here are some important properties of a lattice ordered group:

LEMMA 1.2. Let (G, P) be a lattice order group, and a,b,c € G.
@) a(bVc) = (ab) V (ac) and (bV c)a = (ba) V (ca). A similar distributive law
holds for A.
(i) (aAb) ' =a"t Vb~ land similarly (av b))~ =a ' ADL
(iii) @ > b ifand only zfzfl <b L
(iv) a(a A b)_lb = a V' b. In particular, when a N\b = e, ab = ba = a V b.
(v)Ifa,b,c € P, thena A (bc) < (aAb)(aAc).

One may refer to [4] for a detailed discussion of this subject. Notice by
statement (iv) of Lemmal(l.2|g;,g— commute and thus g = ¢+ ¢~ ' = ¢~ 1¢,.

Fora group G, aunitalmap S : G — B(H) is called completely positive definite
ifforany ¢1,82,...,8n € G

(S(g; 'gj)1<ijcn = 0.

Here, i denotes the row index and j the column index, and we shall follow this
convention throughout this paper. A well-known result ([12]], see also Proposi-
tion 1.7.1 of [17]) stated that a completely positive definite map of G has a unitary
dilation. The converse is elementary.

THEOREM 1.3. If S : G — B(H) is a unital completely positive definite map.
Then there exists a unitary representation U : G — B(K) where H is a subspace of K,
and that Py U(g) |y = S(g). Moreover, this unitary representation can be chosen to be
minimal in the sense of IC = \/ U(g)H.
geG
When (G, P) is a lattice ordered group, we may simultaneously increase or
decrease g; so that it would sulffices to take g; € P:

LEMMA 1.4. Let S : G — B(H) be a map, then the following are equivalent:

() [S(8;'8))1<ijcn = O forany g1,82,.-.,8n € G;
(if) [S(glg] )]1<l,]<n >0forany g1,92,...,8n € G;
(iii) [S(p; " P i<ij<n = 0 forany p1,pa, ..., pn € P;
(iv) [S(p; p] )]1 <ij<n 2 0 for any p1,p2,...,pn € P.

Proof. Since G is a group, by considering g; and gi_l, it is clear that (i) and
(ii) are equivalent. Statement (i) clearly implies statement (iii), and conversely
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n
when statement (iii) holds true, for any g1,...,9n € G, take g = V/ (g;)—. Denote
i=1
pi = g - i and notice that from our choice of g, ¢ > (g;)—. Hence,

pi=g (8:)-"(gi)+ € P.
But notice that for each 7, j, pl._l pi= gi_1 g ! 88 =8; ! gj- Therefore,

[S(g g i<ijen = [S(p; i) i<ijcn = 0.
Similarly, statements (ii) and (iv) are equivalent. 1

For the convenience of computation, when (G, P) is a lattice ordered group,
S : G — B(H) is called completely positive definite when

[S(pip; Dh<ijen = 0.

For a spanning cone P C G, a contractive representation T : P — B(#) is called
completely positive definite when it can be extended to some completely positive
definite map on G. There is a well-known result due to Sz.-Nagy that every con-
traction has a unitary dilation, and therefore, every contractive representation of
Z+ is completely positive definite. Ando [2] further showed that every contrac-
tive representation of Z2 is completely positive definite. However, Parrott [14]
provided an counterexample where a contractive representations on Z3 is not
completely positive definite.

For a completely positive definite representation T on a lattice ordered semi-
group, one might wonder what its extension looks like. In a lattice ordered group
(G, P), any element g € G can be uniquely written as ¢ = g ¢~' where g+ € P
and ¢+ A g— = e. Suppose U : G — B(K) is a unitary dilation of T, we can make
the following observation:

T(g) = PyU(8)|n = PuU(g-) " U(g+)|n.

This motivates the question of whether the extension T(g) = T(g_)*T(g+) is
completely positive definite. We call a contractive representation T right regular
whenever T defined in such way is completely positive definite. There is a dual
definition that calls T left reqular (or *-regular) if T(g¢) = T(g+)T(g—)* is com-
pletely positive definite.

When (G, P) is a lattice ordered group, (G,P~!) is also a lattice ordered
group. A representation T : P — B(H) gives raise to a dual representation
T*: P~! — B(H) where T*(p~') = T(p)*. Consider g = g1 g~ = ¢~ (g3)) ",
we have

T(g) = T(g-)"T(g+) = T*(¢=")T* (g5 =T ().

Hence, T agrees with T" on G. Therefore, we obtain the following proposition.
PROPOSITION 1.5. Let (G, P) be a lattice ordered group, and T : P — B(H) be

a representation and T* defined as above. Then the following are equivalent:
(i) T is right regular.
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(if) T* is left regqular.
(iii) For any p1,...,pn € P, [T(pip]fl)} > 0 (equivalently, [T*(pip]fl)] > 0).

Due to this equivalence, we shall focus on the right regularity and call a
representation regular when it is right regular. Regular dilations were first studied
by Brehmer [3], and they were also studied in [9], [16]. A necessary and sufficient
condition for regularity for the abelian group Z‘? was proven by Brehmer ([17],
Theorem 1.9.1).

THEOREM 1.6 (Brehmer). Let Q be a set, and denote Z? to be the set of (t)wen
where t, € Zand t,, = 0 except for finitely many w. Also, for a finite set V C (2, denote
ey € Z? tobe 1 at those w € V and 0 elsewhere. If { Ty }weq is a family of commuting
contractions, we may define a contractive representation T : Z} — B(H) by

T(tw)weﬂ = H Ti‘f'
weN

Then T is right regular if and only if for any finite U C (2, the operator

Y (—=)"IT(ey)*T(ev) >0.
veu
It turns out that not all completely positive definite representations are reg-
ular.

EXAMPLE 1.7. It follows from Brehmer’s theorem that a representation T
on Z2 is regular if and only if T; = T(e;), T» = T(e2) are contractions that satisfy

I— Tl*Tl - TZ*TZ + (Tsz)*Tsz > 0.

Take T; =T, = [ 8 (1) } and notice,

1 0
[-T;T —TiTh+ (L TR) T T, = [ 0 1 ]

Brehmer’s result implies that T is not regular. However, from Ando’s theo-
rem [2], any contractive representation on Z3 has a unitary dilation and thus is
completely definite.

Isometric Nica-covariant representations on quasi-lattice ordered groups
were first introduced by Nica [13]]: an isometric representation W : G — B(H)
is Nica-covariant if for any x, y with an upper bound, W, W; WyWy* = Wivy W,’gvy.
When the order is a lattice order, this is equivalent to the property that W, W}
commute whenever s A t = e. Therefore, the notion of Nica-covariant is extended
to abelian lattice ordered groups in [6], and we shall further extend such defini-
tion to non-abelian lattice ordered groups and call a representation T : P — B(H)
Nica-covariant if T(s)T(t)* = T(t)*T(s) whenever s A t = e. For a Nica-covariant
representation T, since T(g") commutes with T(¢™)* for any ¢ € G, there is
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no difference between left and right regularity. It was observed in [6] that Nica-
covariant representations are regular in many cases.

EXAMPLE 1.8 (Examples of Nica-covariant representations). (i) On (Z,Z..),
a contractive representation T on Z only depends on T; = T(1) since T(n) = Tj'.
This representation is always Nica-covariant since for any s,t > 0, s At = 0 if
and only if one of s, is 0. A well-known result due to Sz.-Nagy shows that its
extension to Z by T(—n) = T*" is completely positive definite and thus T is
regular.

(ii) Similarly, any contractive representation of a totally ordered group (G, P)
is Nica-covariant. A theorem of Mlak [11] shows that such representations are
regular.

(iii) (Z", Z'; ), the finite Cartesian product of (Z, Z ) is a lattice ordered group.
A representation T on Z'f depends on n contractions Ty = T(1,0,...,0), T, =
7(0,1,0,...,0),..., Ty = T(0,...,0,1). Notice T is Nica-covariant if and only
if T;, Tj x-commute whenever i # j. Hence Nica-covariant representations are
equivalent to doubly commuting. It is known ([17], Section 1.9) that doubly com-
muting contractive representations are regular.

(iv) For a lattice ordered group made from a direct product of totally ordered
groups, Fuller [8] showed that their contractive Nica-covariant representations
are regular.

A question posed in Question 2.5.11 of [6] asks whether contractive Nica-
covariant representations on abelian lattice ordered groups are regular in general.
For example, for G = Cg[0,1] and P equal to the set of non-negative continuous
functions, there are no known results on whether contractive Nica-covariant rep-
resentations are regular on such semigroup. Little is known for the non-abelian
lattice ordered groups as well. In this paper, we establish that all Nica-covariant
representations of lattice ordered semigroups are regular.

Let (G, P) be a lattice ordered group, not necessarily abelian. Recall that the
regularity conditions require a matrix involving entries in the form of T(pg ') to
be positive, where p,q € P. We start by investigating this quantity of pg~!.

LEMMA 1.9. Let p,q € P. Then,

(pg )y =plpAg)™ and (pg~ ") =q(prg) "

Proof. By property (i) and (ii) in Lemma(T.2}
(Pa D) =(pg ' Ve)=platvp ) =p(prg "
Similarly, (pg 1) =q(pAgq)~t. 1
LEMMA 1.10. Let p,q,g € P such that g A q = e. Then (pg) Nq = p Aq.
Proof. By the property (v) of Lemma|l.2} we have that

(Pe) Nga<(pAq)(ghg)=pAqg.
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On the other hand, p A g is clearly a lower bound for both p < pg and g, and
hence p A q < (pg) A gq. This proves the equality.

LEMMA 1.11. Let p,q € P. If g € P is another element where g A q = 0, then

(pgg™)— = (pa1)- and (pgq ")+ = (pg~")+8-
In particular, if 0 < g < p, then
(pg~la - =(pa™")- and (pg™'q7 )+ =(pq )48

Proof. By Lemmal[L.9 we get (pgq~")+ = pg(q A pg)~'. Apply Lemmal[L.10]

to get
(aApg)t =@ Ap)"

Now ¢ A (pAq) = e and thus g commutes with p A g by property (iv) of

Lemma([L.2} Therefore,
(pga™")+ = p8(anpg) ™t =plaAp) '8 = (pg 1)+s8-

The statement (pgg~!)— = (pq~!)_g can be proven in a similar way.
Finally, for the case where 0 < ¢ < p, it follows immediately by considering
p'=pg tandthusp =p'g.

1 1

LEMMA 1.12. If p1,p2,...,pn € Pand g1,...,8n € P be such that g; < p; for
n n n

alli =1,2,...,n. Then A\ pigl._1 < A pi. In particular, when A p; = e, we have
i=1 ' i=1

1= 1=

" 1
A pigi =e.
i=1
Proof. Ttis clear that e < p;g; 1 < p;, and thus
n 1 n
e< Apigi < Api
i=1 i=1

Therefore, the equality holds when the laterise. 1

2. ANECESSARY AND SUFFICIENT CONDITION FOR REGULARITY

When T : P — B(#H) is a representation of lattice ordered semigroup, we
denote T(g) = T(g~)*T(g"). Recall that T is regular if T is completely positive
definite. The main result is the following necessary and sufficient condition for
regularity:

THEOREM 2.1. Let (G, P) be a lattice ordered group and T : P — B(H) be a
contractive representation. Then T is reqular if and only if for any p1,...,pn € P and
g € PwheregAp; =eforalli=1,2,...,n, wehave

2.1) [T()* T(pip; HT ()] < [T(pip; H)].
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REMARK 2.2. If we denote
X = [T(pip; ")

and D = diag(T(g),T(g),...,T(g)), condition is equivalent to saying that
D*XD < X. Notice that we made no assumption on X > 0. Indeed, it follows
from the main result that condition (2.1)) is equivalent of saying the representa-
tion T is regular, which in turn implies X > 0. Therefore, when checking the
condition , we may assume X > 0.

REMARK 2.3. By setting p1 = e and picking any ¢ € P, condition
implies that T(g)*T(g) < I, and thus T must be contractive.

The following lemma is taken from Lemma 14.13 of [5].

LEMMA 2.4. If A, X, D are operators in B(H) where A > 0. Then a matrix of the
A AlZX

x*AY2 D

Condition can thus be interpreted in the following way.

form is positive if and only if D > X*X.

LEMMA 2.5. Let p1,...,pn € Pand g € PwithgANp; = eforalll <i < n.
Denote q1 = p1g,---,9n = png and qu 41 = p1,--.,q2n = Pn. Then condition is
equivalent to [T(q,'q]fl)} > 0.

Proof. Let X = [T(pipj_l)] > 0and D = diag(T(g), T(g),...,T(g)). Notice
by Lemma that

(pigp; )+ = (pip; D+s (pigpy - = (pipj ')-,
and thus T(p;gp; ") = T(pip; ') T(g)- Therefore,

[T(g:i9; )] = {D)*(X XXD} :

Lemma 2.4 implies that this matrix is positive if and only if D*XD < X, which is
condition 2.1).

We shall first show that [T (p; p]-*l)] > 0 given p; A pj = e and condition .
This will serve as a base case in the proof of the main result.

LEMMA 2.6. Let (G, P) be a lattice ordered group, and T be a representation on P
that satisfies condition . If pi N pj = eforalli # j, then [T(pipj_l)] > 0.

Proof. Let g1 = e,q20 = p; and for each 1 < m < n, recursively define
Gom-1, = Pmqx Where 1 <k < 2"=1 Since T is contractive,

[T(quj )]1<z,]<2 = {T(qqul) I = 0.
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By Lemma for each m, [T(qiqj_l)]lgi,jgzm > 0. Notice that gym—1 = py, for each
1 < m < n. Therefore, [T(pipfl)] is a corner of [T(qiq].*l)] > 0, and thus must be
positive. 1

For arbitrary choices of py,...,pn € P, the goal is to reduce it to the case
where p; A p; = e. The following lemma does the reduction.

LEMMA 2.7. Let (G, P) be a lattice ordered group. Assume T is a representation
that satisfies condition (2.1).
Assume there exists 2 < k < n such that for each ] C {1,2,...,n} with |J| > k,

A pj = e. Then let
j€]

k

g=NApj and q=pig~',..ax=pg ", and Gki1=Pirt-oe Gn =P

j=1
Then

[T(pip; N 20 if [T(qig; )] > 0.

Proof. Letus denote X = [T(q]-qi_l)] > 0 and its lower right (n —k) x (n —k)

corner to be Y. Notice first of all, when i,j € {1,2,...,k},
qq; = pig'gp; = pipy

So the upper left k x k corner of [T(qiqfl)] and the lower right (n — k) x (n — k)

corner of X are both the same as those in [T(pip]-_l)}.

Now consider i € {1,2,...,k} and j € {k+1,...,n}. It follows from the
assumption that

k
g/\p]':(/\PS)/\P]‘:e and ¢ < p.
s=1

Therefore, we can apply Lemma to get

(pig~'piH)- = (pir; - (pig”'p; D+ = (pipy g™

Now g € P, so that
T((qi9;1)+)T(8) = T((pip; D+),  T((qig;1)-) = T((pip; 1)-)-
Hence,
T(qiq; )T (g) = T(pip; ).
Similarly, fori € {k+1,...,n},j€ {1,2,...,k}, we have

T(pip; ') = T()* T(qj; ")
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Now define D = diag(l,...,I,T(g),---,T(g)) to be the block diagonal matrix
with k copies of I followed by n — k copies of T(g). Consider DXD*: it follows
immediately from the assumption that D*XD > 0. We have

T(pip;') -+ T(q:9;")T(g)

WV
o

D*[T(q:4; ")ID =

T(g)* T(qig; ") -+ | [T(@)*T(pip; )T(9)] |
It follows from previous computation that each entry in the lower left (n — k) x
k corner and upper right k x (n — k) corner is the same as those in [T(pip]fl)].

DXD* only differs from [T(pipfl)] on the lower right (n — k) x (n — k) corner. It
follows from condition that

[T()* T(pip; NT ()] < [T(pip; 1)].

Therefore, the matrix remains positive when the lower right corner in D*XD is
changed from [T(g)*T( pipj_l)T( Q)] to [T(p; pj_l)]. The resulting matrix is exactly
[T(pip]._l)], which must be positive. I

Now the main result (Theorem[2.T) can be deduced inductively:

Proof. First assume that T : P — B(H) is a representation that satisfies con-
dition (2.1), which has to be contractive. The goal is to show for any 1 elements
P1,P2,--.,Pn € P, the operator matrix [T(pipj_l)] > 0 and thus T is regular. We
proceed by induction on 7.

Forn =1, T(plpl_l) =120

For n = 2, we have,

I : T(pipy ")
p2p; ) I

Here, T(pap;') = T(p1p,')*, and they are contractions since T is contractive.
Therefore, this 2 x 2 operator matrix is positive.

Now assume that there is an N such that for any n < N, we have for any
pP1, P2, - -, Pn €P [T(pipj_l)] > 0. Consider the case when n = N:

T D1 = | 7

N
For arbitrary choices p1,...,py € P,letg = A p;, and replace p; by pig~ .
i=1

By doing so, pig~'(pjg~!) ! = pipfl, and thus they give the same matrix

~ N

[T(p,»p].*l)]. Moreover, /n\ Pz’g_l = ( A pi)g_l = e. Hence, without loss of gen-
i=1 i=1

N
erality, we may assume A p; =e.
i=1
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Let m be the smallest integer such that forall ] C {1,2,...,N} and |[J| > m,

we have A p; = e. Itisclear thatm < N — 1. Now do 1nduct10n on m:
j€]
For the base case when m = 1, we have p; A p; = e for alli # j. Lemma

tells that condition implies [T(pip]._l)] >0
Now assume [T(pl-pj_l)] > 0 whenever m < M —1 < N — 1 and consider

the case when m = M: Forasubset ] C {1,2,...,n} with [J| = M, letg = A p;
i€l

and set q; = p; g lforallj € J,and q; = p; otherwise. Lemma concluded that
[T(pip]._l)] > 0 whenever [”T(q,-qj_l)] > 0 and the sub-matrix [T(Pl‘p]'_l)]i,jgé] > 0.
Since [{1,2,...,N}\J| = N — M < N, the induction hypothesis on 7 im-
plies that [T (plp )]i,jg] > 0. Therefore, [T(pipfl)] > 0 whenever [T(qiqul)] >0,
and by droppmg from p; to q;, we may, without loss of generality, assume that

A\ pj = e. Repeat this process for all subsets ] C {1,2,...,n} where |[J]| = M
]aer{d with Lemma [1.12} we eventually reach a state when A p; = e forall ] C
{1,2,...,N}, |J| = M. But in such case, for all |J| > Mjexjxve have /\ pj = e.
Therefore, we are in a situation where m < M — 1. The result follows irom the

induction hypothesis on m.

Conversely, suppose that T is regular. Fix ¢ € Pand p1, p2, ..., px € P where
gApi =¢eforali=1,2,...,k Denote g1 = p18,92 = 128 ---,9x = pxg, and
Jk+1 = P1,Gk+2 = P2, - -, G2k = Pk It follows from regularity that [T(qiqj_l)} >0,
which is equivalent to condition by Lemma 1

As an immediate consequence of Theorem we can show that isometric
representations on any lattice ordered group must be regular.

COROLLARY 2.8. Let T : P — B(H) be an isometric representation of a lattice
ordered semigroup. Then T is reqular.

Proof. Take p1,...,pn € P and g € P with g A p; = e. It is clear that g A
(pip]-_l)i = e and therefore ¢ commutes with each (p; pj_l)i. Hence,

T(9)*T(pip; )T (g) = T() T((pip; 1)) T((pip; 1)+)T(g)
T((pip; 1)-)T(@) T()T((pip; ')+)
T((pip; 1)-)*T((pip; 1)+) = T(pip; )

Therefore, [T(g)*f(pip]fl)T(g)] = [T(pip]fl)] and condition 1) is satisfied. &

For a contractive representation T, it would suffice to dilate it to an isometric
representation. This provides an analog of Proposition 2.5.4 in [6] on non-abelian
lattice ordered groups.
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COROLLARY 2.9. Let T : P — B(H) be a contractive representation. Then
T is completely positive definite if and only if there exists an isometric representation
V . P — B(K) such that Py, V(p)|y = T(p) forall p € P. Such V can be taken to be

minimal in the sense that I = \/ V(p)H.
peP

In particular, T is reqular if and only if there exists such isometric dilation V and
in addition, Py V (p)*V(q)|y = T(p)*T(q) forall p,q € Pwithp A\ q = e.

Proof. When T : P — B(H) is completely positive definite and its extension

S to G has minimal unitary dilation U : G — B(L), let K = \ U(p)H. Itis
peP

clear that K is invariant for any U(p), p € P. Defineamap V : P — B(K) via

V(p) = PxU(p)|x, which must be isometric due to the invariance of K. V is

an isometric dilation of T that satisfies Py V(p)|y = T(p),and K = \/ V(p)H.
peP

In other words, V is a minimal isometric dilation of T. In particular, when T is
regular, forany p,g € PwithpAg=e

T(p)*T(q) = PuU(p)"U(q) | = PuPrcU(p)"U(q)|kln = PuV(p)"V(q)ln-

Conversely, when V : P — B(K) is a minimal isometric dilation of T, Corol-
lary 2.8 implies that V is regular and thus completely positive definite. There
exists a unitary dilation U : G — B(L) where PcU(p)|x = V(p). Therefore,

PyU(p)ln = PuPcU(p)ly = PuV(p)ln = T(p).

Hence, U is also a unitary dilation of T and thus T is completely positive definite.
Moreover, when Py V(p)*V(q)|y = T(p)*T(q) for all p,q € P with p A g = e, by
the regularity of V,

PyU(p)"U(q) [y = Py PcU(p) U(q)|xln = T(p)*T(q).

Therefore, T(g) = T(g-)*T(g) is completely positive definite and T is regu-
lar. 1

3. NICA-COVARIANT REPRESENTATIONS

This section answers the question of whether contractive Nica-covariant
representations are regular. It suffices to show that contractive Nica-covariant
representations on lattice ordered groups satisfy condition (2.1).

THEOREM 3.1. A contractive Nica-covariant representation on a lattice ordered
group is reqular.
Proof. Let py,...,pr € Pand g € PwithgAp; = eforalli =1,2,... k.

X = [T(pipj_l)} and D = diag(T(g),T(g),...,T(g)).- By Remark we may
assume X > 0.
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For each p;, p; € P, T(pl-pj_l) = T(pl‘])*T(pl*]) where e < pli] < Pispj
Hence, g A pli] = e and thus ¢ commutes with pli] Therefore T(g) commutes
with T( p;r]) because T is a representation and it also commutes with T(p;j)* by

the Nica-covariant condition. As a result, T(g) commutes with each entry in X,
and thus D commutes with X. Similarly, D* commutes with X as well.

By continuous functional calculus, since X > 0, we know D, D* also com-
mutes with X1/2. Hence, in such case,

D*XD = D*X'/2X'?2D = X'/?2D*DXV2 < X. n

It was shown in Proposition 2.5.10 of [6] that a contractive Nica-covariant
representation on abelian lattice ordered groups can be dilated to an isometric
Nica-covariant representation. Here, we shall extend this result to non-abelian
case.

COROLLARY 3.2. Any minimal isometric dilation V : P — B(K) of a contractive
Nica-covariant representation T : P — B(?H) is also Nica-covariant.

Proof. Let T : P — B(H) be a contractive Nica-covariant representation.
Theorem implies that T is regular, and thus by Theorem it has a minimal
unitary dilation U : G — B(L), which gives rise to a minimal isometric dilation
V:P — B(K). Here K = \ V(p)H and V(p) = PxcU(p)|x. Notice that K is

peP

invariant for U and therefore, P U(p)*U(q)|c = V(p)*V(q) for any p,q € P. In
particular, if p Ag = e, p,q € P, we have from the regularity that

T(p)"T(q) = PuU(p)"U(q)l = Pu(PcU(p)"U(q)|xc) e = PuV (p)" V(@) |n-
Now let s,t € P be such that s At = e. First, we shall prove V(s)*V(t)|y =
V(t)V(s)*|y: Since {V(p)h : p € P,h € H} is dense in I, it suffices to show for
any h,k € Hand p € P,

(V(s)" V()R V(p)k) = (V(E)V(s)"h, V(p)k).

Start from the left,

(V) V(DR V(p)k) = (V(p)"V(s)"V(E)h k) = (V(sp)* V() k)

4
— (V((sp A ) Isp)* Vsp ADV(sp AV ((sp A D)0, k)
= (V(sp A Isp)" V((sp A )T I K)
= (T((sp At) " tsp)*T((sp At)LE)h, k).

*

-1

The last equality follows from ((sp At)"!sp) A ((sp At)~'t) = e and thus,

T((sp A1) tsp) T((sp AD) 1) = PV ((sp AD)Tsp) VI((sp AD 1) |3

Since s At = ¢, Lemma implies that sp At = p A t. Notice (p A t) As <
t A's = e, and thus by property (iv) of Lemma|[I.2} s commutes with p A t. By the
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Nica-covariance of T, this also implies T(s)* commutes with T((p A t)~'t). Put
all these back to the equation:

(T((sp AH)'sp) T((sp AT ) K) = (T(s(p A )" p) T((p A1) )R, K)
= (T((p AD™'p)*T(s) T((p A1)~ 1), k)
=(T((p A" 'p)*T((p A1) )(T(s) D), k)
= {(V((p A p) V((p AT (T(s)"h), k)
= {(V((p A Ip) V((p A ) (V(s) D), k)
= (V(p)"V(H)(V(s)"h), k)
= (V(OV(s)"h, V(p)k).

Here we used the fact that Py V(p)*V(q)|x = T(p)*T(gq) whenever p A g = e.

Also, that # is invariant under V (s)*, so that T(s)*h € K is the same as V(s)*h.

)V (s)* in general, it suffices to show for

Now to show V(s)*V(t) = V(¢
every p € P, V(s)*V(£)V(p)|y = V(£)V(s)*V(p)|y. Start with the left hand side
and repeatedly use similar argument as above,

V() V(HV(p)la = V(s) Viplu = V(s Atp)~'s)

V(AP TPV AP)Ts)

V(AP TPV AP Ts) |u

VIV((sAp) ) V(s Ap) Pl = VOV () V(p)l-

V((sAtp)'tp) |y

H

"l

This finishes the proof. 1

4. ROW AND COLUMN CONTRACTIONS

A commuting n-tuple (Ty,...,T,) where each T; € B(H) is called a row
contraction if Z T;T < I. Equivalently, the operator [Ty, T»,..., Ty] € B(H", H)

is contractlve It can be naturally associated with a contractive representation
T : Z'. — B(H) that sends the i-th generator el to T;. There is a dual definition
called column contractions, when T; satisfies Z T;T; < I. Itis clear that T is a

i=1
row contraction if and only if T* is a column contraction.

As an immediate corollary to Brehmer’s theorem (Theorem , a column
contraction T is always right regular ([17], Proposition 1.9.2), and therefore a row
contraction T is always left regular. This section generalizes the notion of row
contraction to arbitrary lattice ordered groups and establishes a similar result.

DEFINITION 4.1. Let T : P — B(H) be a contractive representation of a
lattice ordered group (G, P). T is called row contractive if for any py,...,pn € P
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where p; # eand p; A p; = eforalli # j,

émemr<L

Dually, T is called column contractive if for such p;,
n
Y T(p) T(pi) < 1.
i=1

REMARK 4.2. Definition indeed generalizes the notion of commuting
row contractions: when the group is (ZQ , Zf) where (2 is countable, a represen-
tation T : Z — B(H) is uniquely determined by its value on the generators

Tw = T(ew). T is called commuting row contraction when Y. T,T,, < I. For
weN

any pi,...,pr € Z where p; A pj = Oforalli # jand p; # 0, each p; can be
seen as a function from (2 to Z with finite support. Let S; C (2 be the support
of p;, which is non-empty since p; # 0. We have 5;NS; = @ since p; A p; = 0.
Therefore, pick any w; € S; and by T contractive, T(w;)T(w;)* = T(p;)T(p:i)*.
Since S; are pairwise-disjoint, w; are distinct. Therefore, we get that

n

éﬂﬁﬁmﬁégﬂwﬁwméL

and thus T satisfies the Definition Hence, on (Z?, Z?), two definitions coin-
cides.

Our goal is to prove the following result:

THEOREM 4.3. A column contractive representation is right reqular. Therefore, a
row contractive representation is left reqular.

We shall proceed with a method similar to the proof of Theorem 2.1}

LEMMA 4.4. Let T be a column contractive representation. Let py,...,pn € P
and g1,...,8x € P where p; A\py = piNgj = giAgy =eforalll <i#i <n
and 1 < j # j < k. Moreover, assume that g; # e. Denote X = [T(pipj_l)} and
D; = diag(T(gi),-.-,T(gi)). Then,

k
Y D;XD; < X.
i=1

Proof. The statement is clearly true for all k when n = 1. Now assume it is
true for all k whenever n < N, and consider the case when n = N:

k
It is clear that when all of the p; are equal to e, X — ) D;XD;isan xn
i=1

k
matrix whose entries are all equal to I — Y T(g;)*T(g;) = 0, and thus the state-
i=1

ment is true. Otherwise, we may assume without loss of generality that p; # e.
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Let gy = eand g2 = pa,...,qn = pn. Denote Xy = [T(qiqj_l)] and let E =
diag (I, T(p1),--., T(p1)) be an x n block diagonal matrix.

Denote Y = [T (plp] )]2<i,j<n and set E; = diag(T(g;),...,T(gi)) to be a
(n—1) x (n—1) block diagonal matrix. Finally, set Ex ;1 = diag(T(p1),...,T(p1))
tobea (n —1) x (n — 1) block diagonal matrix.

From the proof of Theorem 2.1}

0 0
X = E*XoE + :
010 Y—E} YE

k+1
Now Y is a matrix of smaller size and thus by induction hypothesis, } . E/YE; <

i=1
Y. Hence,

k k

Y — Ek+1YEk+l 2 E YE; > 2 E Y Ek+1YEk+1)E
i=1 i=1

k
Also notice that E commutes with D; and therefore, if ) D; XoD; < Xo, we have
i=1

k k 0 0
D;XD; = E*( Y D;XoD; ) E + [
l; P (; i 1) 0 Y& Ef(Y—E} YE1)E:

0 0
< E* =X
S B XoE A {O Y — EltJrlYEk-s-l] X

Hence, Z D;XD; < X if Z D} XoD; < Xp. This reduction from X to Xy changes

one p; ;é e toe, and therefore by repeating this process, we eventually reach a
state where all p; =e. 1

The main result can be deduced immediately from the following proposi-
tion:

PROPOSITION 4.5. Let T be a column contractive representation on a lattice or-
dered semigroup P. Let py,...,pn € Pand g,...,8x € P where gi N p; = e and
QiNg = eforalli < 1. Assume g; # e and denote X = [T(pip]fl)] and D; =
diag(T(g;i),..., T(gi)). Then

k
) D{XD; < X
i=1
In particular, condition (2.1)) is satisfied when k = 1.
Proof. The statement is clear when n = 1. Assuming it is true for n < N,

consider the case when n = N. Let m be the smallest integer such that for all ] C
{1,2,...,N}and [J| > m, A\ p; = e. It was observed in the proof of Theorem
i€l

that m < N — 1. Proceed by induction on m:
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In the base case whenm =1, p; A p; = e for alli # j, the statement is shown
in Lemmal£.4] Assume the statementis trueform < M —1 < N —1 and consider

the case when m = M. Foreach | C {1,2,...,N} with |J| = M and /\ pj =8 #
=1

e, denote g; = p; wheni ¢ Jand q; = g;¢ ' wheni € J. Let Xg = [T (qij_l)]
and E be a block diagonal matrix whose i-th diagonal entry is I when i ¢ | and
T(g) otherwise. Denote Y = [T(qiq]-_l)]i,jgj and E; = diag(T(g;i), ..., T(g;)) with
N — M copies of T(g;). Finally, let Ex,; = diag(T(g),...,T(g)) with N — M
copies of T(g).

From the proof of Theorem 2.1} by assuming without loss of generality that
J={1,2,...,M}, we have
0 0
0 Y—E, YE]

Now Y has a smaller size and thus by induction hypothesis on 7,

X = E*XoE +

k+1

Y EfYE;<Y
i=1

and thus

k k
Y —E{ 1 YE1 > Y EfYE; > ) Ef (Y —E1YE1)E:
i=1 i=1

k
Therefore, if }° D; XoD; < X,
i=1

k k 0 0
DfXD; = E* D XoD; )E + [
1.221 ! ! <1:21 ! 1) 0 Z L Ef (Y — k+1YEk+1)
0 0
< E*XoE + |: :| = X.
0 Y—E; YEr
Hence, the statement is true for p; if it is true for q;, where A g; = e. Repeat
jel
the process until all such [J| = M has A p; = e, which reduces to a case where
j€J

m < M. This finishes the induction. Notice condition ( is clearly true when
g = ¢, and when g # ¢, it is shown by the case when m = 1. This finishes the
proof. 1

5. BREHMER’S CONDITION
Brehmer [3] established a necessary and sufficient condition for a represen-

tation on P = Z¢ to be regular (see Theorem . This section explores how
Brehmer’s result relates to condition (2.1) without invoking their equivalence to
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regularity. In particular, we show that Brehmer’s condition allows us to decom-
pose certain X = [T(p; — pj)] as a product R*R, where R is an upper triangular
matrix.

Let {Tw }wen be a family of commuting contractions, which leads to a con-
tractive representation on ZQ by sending each e, to T,,. For each U C (2, denote

Zy=Y (-1)VIT(ey)*T(ey).
vcu
For example,
Zop=1
Zygy=1- T
Zugy =Zpy —TZmT=1-TT - GTh+TGTTT

Brehmer’s theorem stated that T is regular if and only if Z;; > 0 for any finite
subset U C (2. We shall first transform Brehmer’s condition into an equivalent
form.

LEMMA 5.1. Zy = 0 for each finite subset U C (2 if and only if for any finite set
JCQandwe Q,w ¢ ],
ToZiTw < Zj.
Proof. Take any finite subset ] C Qandw € Q, w & J.

Zj-T5ZiTo= Y. (=1)IT(ey)*T(ev) + Y (~1)VFIT T (ey)* T(ey) T

vcJ 49]

= Y. (~1)VIT(ey)* T(ey)+ ) (~)VIT(ev) T(ey)
V{w}UJwgV V{w}lUJweV

=Z{wyur-

Therefore, T;,Z; T,y < Z; if and only if Z {w}U] > 0. This finishes the proof. &

A major tool is the following version of Douglas lemma [7]:

LEMMA 5.2 (Douglas). For A,B € B(H), A*A < B*B ifand only if there exists
a contraction C such that A = CB.

As an immediate consequence of Lemma T5ZiT, < Zj is satisfied if
and only if there is a contraction W, ; such that Z}/ 2Ty = W, ]Z}/ 2. Therefore,
it would suffice to find such contraction W, ; for each finite subset ] C (2 and
w € O, w ¢ ]. By symmetry, it would suffice to do so for each J, = {1,2,...,n}
and w,, = n + 1. Without loss of generality, we shall assume that (2 = N.

Consider P(J,) = {U C J,}, and denote py = Y. ¢; € Z. Denote X, =

ield
[T(py — pv)] where U is the row index and V is the column index.
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LEMMA 5.3. Assume Zj > 0 for all | C ;. Then for a fixed F C [, we have
Y TZpyTu =1

UCF
Proof. We first notice that by definition, Z; = Y (—1)IYIT};Ty;. Therefore,
ucj
Y TiZeuTu= Y. Y (—D)VITiuyTuoy.
Ucr UCFVCF\U

For a fixed set W C F, consider the coefficient of T}, Ty in the double summation.
It appears in the expansion of every T};Zp\ ; Ty, where U C W, and its coefficient

in the expansion of such term is equal to (—1)/"W\Ul. Therefore, the coefficient of
Ty Tw is equal to

Y (-l = Z<|W|)( 1)

ucw i=0
This evaluates to 0 when |[W| > 0 and 1 when |W| = 0, in which case, W = @
and Tw =1. 1

Now can now decompose X, = R}, R, explicitly.

PROPOSITION 5.4. Assuming Z; > 0 forall | C J,. Deﬁne a block matrix R,,,
whose rows and columns are indexed by P(J,), by R,(U, V) = Z}
V C U and 0 otherwise. Then X, = R} R,.

Proof. Fix U,V C ]y, the (U, V)-entry in X, is T(py — py) = Ty Tuv-
Now the (U, V)-entry in R};;R, is equal to

Y Ru(W,U)* Ry (W, V).
WCTn

It follows from the definition that R,, (W, U)*R,(W,V) = Ounless U,V C W, and
thus UU V C W. Hence,

Y., ReWU)'R(W,V)= Y TpyuZwlwv
WeP(Jn) UuvVew

J \uTu\v whenever

= Y TowTwwon ZnwTw wov) Twvu
Uuvcw

= T{;\u( Z TIT\/\(UUV)ZL:\WTW\(UUV))TW\U'
UUVCW
If we denote F = J,\(UU V) and W = W\(UU V), since UUV C W, we have
Jon\W = F\W'. Hence the summation becomes

Y. TuovZpwImuov) = Yo TwZew Twr,
Uuvcw W/'CF

which by Lemma|5.3]is equal to I. Therefore, the (U, V)-entry in R};R, is equal to

V\UTW\U and Xn = R*Rn 1
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REMARK 5.5. If we order the subsets of |, by cardinality and put larger sets
first, then since R, (U, V) # 0 only when V C U, R, becomes a lower triangular
matrix. In particular, the row of @ contains exactly one non-zero entry, which is
7,/ at (0,9).

EXAMPLE 5.6. Let us consider the case when n = 2, and ], has 4 subsets
{1,2}, {2}, {1}, @. Under this ordering,

I T, T, Th
T I TT, T
T, T
TiTy T T

Xn:

Proposition[5.4]gives that

I T1 T TT

0z’ 0 z/’T
1/2 1/2

o o0 zV* zZ)’1y

0o 0 0 Zip

R, =

satisfies R} R, = Xj.

We can now prove Brehmer’s condition from condition (2.1) without invok-
ing their equivalence to regularity.

PROPOSITION 5.7. In the case of T : 7 — B(H), condition (2.1) implies the
Brehmer’s condition.

Proof. Without loss of generality, we may assume (2 = N. We shall proceed
by induction on the size of ] C N.

For |J| =1 (i.e. ] = {w}), condition (2.1) implies T is contractive. Hence,
Zy = 1-T;T, > 0. Assuming Z; > 0 for all |[J| < n, and consider the case
when |J| = n+ 1. By symmetry, it would suffice to show this for | = J, 11 =
{1,2,...,n+1}.

By Proposition Xu = R} R, where the (©,@)-entry of R, is equal to
Z}n/ 2, Let D,, be a block diagonal matrix with 2" copies of T, 1 along the diagonal.
Condition (2.1) implies that

D;X,D, = D,R;R,D;, < X, = R};Ry.
Therefore, by Lemma there exists a contraction W,, such that W,R,, = R, D,,.
By comparing the (@, @)-entry on both sides, there exists C,, such that C, Z}n/ 2=
Z}n/ zTn+1, where C,, is the (@, D)-entry of W,,, which must be contractive as well.
Hence, by Lemmal5.T]and
Zpn =21, — Ty1Z5,Tyi1 2 0.

This finishes the proof. 1
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6. COVARIANT REPRESENTATIONS

The semicrossed products of a dynamical system by Nica-covariant repre-
sentations were discussed in [6], [8]], where its regularity is seen as a key to many
results. Our result on the regularity of Nica-covariant representations (Theo-
rem [3.1]and Corollary [3.2) allows us to generalize some of the results to arbitrary
lattice ordered abelian groups.

DEFINITION 6.1. A C*-dynamical system is a triple (A, a, P) where
(i) Ais a C*-algebra;
(i) « : P — End(A) maps each p € P to a *-endomorphism on A4;
(iii) P is a spanning cone of some group G.

DEFINITION 6.2. A pair (71, T) is called a covariant pair for a C*-dynamical
system if
(i) 7w : A — B(H) is a *-representation;
(ii) T : P — B(#H) is a contractive representation of P;
(iii) 7t(a)T(s) = T(s)m(as(a)) foralls € Pand a € A.
In particular, a covariant pair (7, T) is called Nica-covariant/isometric, if T
is Nica-covariant/isometric.

The main goal is to prove that Nica-covariant pairs on C*-dynamical sys-
tems can be lifted to isometric Nica-covariant pairs. This can be seen from The-
orem 4.1.2 of [6] and Corollary However, we shall present a slightly differ-
ent approach by taking the advantage of the structure of lattice ordered abelian
groups.

THEOREM 6.3. Let (A, , P) be a C*-dynamical system over a positive cone P of
a lattice ordered abelian group G. Let m : A — B(H)and T : P — B(H) form a
Nica-covariant pair (7, T) for this C*-dynamical system. If V : P — K is a minimal
isometric dilation of T, then there is an isometric Nica-covariant pair (p, V') such that for
alla € A,

Prp(a)ly = 7e(a).
Moreover, H is invariant for p(a).

Proof. Fix a minimal dilation V of T and consider any h € H, p € P, and
a € A; define

p(a)V(p)h = V(p)m(ay(a))h.

We shall first show that this is a well defined map. First of all, since V is a minimal
isometric dilation, the set {V(p)h} is dense in K. Suppose V(p)hy = V(s)h, for
some p,s € P and hy,hy € H. It suffices to show that forany t € Pand h € H,
we have

(6.1) (V(p)m(ap(a))h, V(O)h) = (V(s)7t(as(a))ha, V(E)h).
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Since A is a C*-dynamical system, it follows from the covariant condition that
T(s)*r(a) = m(as(a))T(s)*. Hence,

(V(p)re(ap(a)hn, V(E)h) =V (6)"V (p)t(ap(a))h, h)

(V{E—tA p) V(p—tAp)r(ap(a))h, h)

{

(7

T(t—tAp)"T(p—tAp)m(ay(a))hy,h)

() (p—tap)+(t—tnp) (@) T(t=tAp) T(p—tAp)h1, h)

= <7T(0ét( NT(E—tAp) T(p—tAp)hyh).
Here we used that fact that V is regular and thus
PuV(t—tAp) ' V(p—tAp)lu=T{Et—tAp)"'T(p—tAp).
Now notice that
Tt—tAp) T(p—tAp)h =PyV(t—tAp)"V(p—tAp)h =PyV(t)'V(p)h.
Similarly,
(V(s)m(as(a))hy, V()h) = (7t(at(a))T(t—t As)*T(s—t As)hy, h),

where
T(t—tNAs)*T(s —tAS)hy = Py V(£)*V(s)hy = Py V (£)*V(p)hy.

Therefore, p is well defined on the dense subset {V(p)h}.
Since V(p) is isometric and 77, & are completely contractive,

IV (p)r(ap(@)hll = l7e(ap (@)l <[] = |V (p)hl,
and thus p(a) is contractive on {V(p)h}. Hence, p(a) can be extended to a con-
tractive map on K. Moreover, forany h € Handa € A, wehavep(a)h = rt(a)h €
‘H, and thus H is invariant for p. Forany a,b € A,p € P,and h € H,

p(@)pB)V(p)h = V(p)r(apa))m(ay(b))h = V(p)r(ap(ab))h = p(ab)V (p)h.
Therefore, p is a contractive representation of A and thus a *-representation. Now
forany p,t € Pand h € H,

p(@)V(p)V()h = V(p+t)r(apre(a))h = V(p)V(t)e(ap+i(a))h
= V(p)p(ap(a))V(£)h.

Hence, (p, V) is an isometric Nica-covariant pair. 1

This lifting of contractive Nica-covariant pairs to isometric Nica-covariant
pairs has significant implications in its associated semi-crossed product. A family
of covariant pairs gives rise to a semi-crossed product algebra in the following
way [6], [8]. For a C*-dynamical system (A, «, P), let P(A, P) be the algebra of all
formal polynomials g of the form

n

=) epip,

i=1
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where p; € P and a;, € A. The multiplication on such polynomials follows the
rule that aes = esa(a) and epe; = epy. For a covariant pair (¢, T) on this dynamical
system, define a representation of P(A, P) by

(e xT) ( éepf’lpf) = éT(Pi)U(ﬂpf)-

Now let F be a family of covariant pairs on this dynamical system. We may
define a norm on P (A, S) by

Ipllz = sup{(c x T)(p): (0, T) € F},

and the semi-crossed product algebra is defined as

AxIp= P(A,S)”'”f.

In particular, A X3¢ P is determined by the Nica-covariant representations, and

A x5 P is determined by the isometric Nica-covariant representation. As an
immediate corollary from Theorems[2.T|and

COROLLARY 6.4. Fora C*-dynamical system (A, w, P), the semi-crossed product
algebra given by Nica-covariant pairs agrees with that given by isometric Nica-covariant
pairs. In other words,

A XDEP 2 A xDOiS0 P,

Acknowledgements. 1 would like to thank Professor Ken Davidson for pointing out
this area of research and giving me directions. I would also like to thank Adam Fuller and
Evgenios Kakariadis for many valuable comments.

REFERENCES

[1] M. ANDERSON, T. FEIL, Lattice Ordered Groups: An Introduction, Reidel Texts Math.
Sci., D. Reidel Publ. Co., Dordrecht 1988.

[2] T. ANDO, On a pair of commuting contractions, Acta Sci. Math. (Szeged) 24(1963), 88—
90.

[3] S. BREHMER, Uber vertauschbare Kontraktionen des Hilbertschen Raumes, Acta Sci.
Math. (Szeged) 22(1961), 106-111.

[4] M. DARNEL, Theory of Lattice-Ordered Groups, Monogr. Text. Pure Appl. Math., vol.
187, Marcel Dekker, Inc., New York 1994.

[5] K.R. DAVIDSON, Nest Algebras, Pitman Res. Notes Math. Ser., vol. 191, Longman Sci.
Tech., Harlow; John Wiley and Sons, Inc., New York 1988.

[6] K.R. DAVIDSON, A. FULLER, E.T.A. KAKARIADIS, Semicrossed products of operator
algebras by semigroups, Mem. Amer. Math. Soc., to appear.

[7] R.G. DOUGLAS, On majorization, factorization, and range inclusion of operators on
Hilbert space, Proc. Amer. Math. Soc. 17(1966), 413-415.



56 Boyu L1

[8] A. FULLER, Nonself-adjoint semicrossed products by abelian semigroups, Canad. J.
Math. 64(2013), 768-782.

[9] I. HALPERIN, Sz.-Nagy—-Brehmer dilations, Acta Sci. Math. (Szeged) 23(1962), 279-289.

[10] M. LACA, I. RAEBURN, Semigroup cross products and the Toeplitz algebras of non-
abelian groups, J. Funct. Anal. 139(1996), 415-440.

[11] W. MLAK, Unitary dilations in case of ordered groups, Ann. Polon. Math. 17(1966),
321-328.

[12] M. NEUMARK, Positive definite operator functions on a commutative group, Izv.
Akad. Nauk SSSR Ser. Mat. 7(1943), 237-244.

[13] A.NIcA, C*-algebras generate by isometries and Wiener-Hopf operators, J. Operator
Theory 27(1992), 17-52.

[14] S. PARROTT, Unitary dilations for commuting contractions, Paciffc . Math. 34(1970),
481-490.

[15] B. SOLEL, Regular dilations of representations of product systems, Proc. Roy. Irish
Acad. Sect. A 108(2008), 89-110.

[16] B. Sz.-NAGY, Bemerkungen zur vorstehenden Arbeit des Herrn S. Brehmer, Acta Sci.
Math. (Szeged) 22(1961), 112-114.

[17] B. Sz.-NAGY, C. Fo1As, Harmonic Analysis of Operators on Hilbert Space, Universitext,
Springer, New York 2010.

BOYU LI, PURE MATHEMATICS DEPARTMENT, UNIVERSITY OF WATERLOO, WA-
TERLOO, ON, CANADA N2L-3G1
E-mail address: b32li@math.uwaterloo.ca

Received July 3, 2015; revised February 4, 2016.



	INTRODUCTION
	1. PRELIMINARIES
	2. A NECESSARY AND SUFFICIENT CONDITION FOR REGULARITY
	3. NICA-COVARIANT REPRESENTATIONS
	4. ROW AND COLUMN CONTRACTIONS
	5. BREHMER'S CONDITION
	6. COVARIANT REPRESENTATIONS
	REFERENCES

