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ABSTRACT. If A is a compact operator in a Banach space and some power Aq

is nuclear, we give a criterion of Zd-symmetry of its spectrum σA in terms of
vanishing of the traces TrAn for all n, n > 0, n 6= 0 mod d, sufficiently large.
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1. INTRODUCTION

In the case of matrices, or linear operators T : X → X in a finite-dimensional
space, one can check (prove) that the following conditions are equivalent:

(a) the spectrum of T is symmetric, or Z2-symmetric, i.e., λ ∈ σ(T) → −λ ∈
σ(T) and their algebraic multiplicities m(λ), m(−λ) are equal;

(b) TrTp = 0 for all odd p ∈ N.
M. Zelikin [12] observed and proved that this claim could be extended to

S1, the trace-class operators in a Hilbert space. We will show that such claims
could be made

(i) for the Zd-symmetry of a spectrum, d > 2;
(ii) in general Banach spaces (although we assume in the sequel that our Ba-

nach spaces have the approximation property).

2. TECHNICAL PRELIMINARIES

Of course, we need to make sure that Tr is well-defined if we write con-
ditions like (b). In addition, the formula for the trace, TrA = ∑

j
λj(A), should

be properly explained if we use it. We now recall a few notions and facts about
nuclear operators (see more in [5]).
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An operator A : X → Y between two Banach spaces is called nuclear if it has
the representation

(2.1) Ax =
q

∑
k=1

ak fk(x)yk, q 6 ∞

where

(2.2) ak > 0, a∗ = ∑ ak < ∞, and ‖ fk|X′‖ 6 1, ‖yk|Y‖ 6 1, ∀k.

Let N (X; Y) denote the Banach space of all nuclear operators X → Y with the
norm

(2.3) A1 = inf{a∗ : A has a representation as in (2.1), (2.2)}.

A linear functional Tr is well-defined on N (X; X) (for any Banach space X with
the approximation property) by

(2.4) TrA =
q

∑
k=1

ak fk(yk).

Of course,

‖TrA‖ 6 A1,

and ‖Tr‖ = 1.
A. Grothendieck [3] showed that for the operators (2.1), (X = Y),

if
q

∑
k=1

a2/3
k < ∞ then ∑ |λj(A)| < ∞(2.5)

where the points of the spectrum σ(A) are enumerated taking into account their
multiplicity, and

(2.6) TrA = ∑ λj(A).

The presentation (2.1) of A under the conditions (2.2) gives a factorization

(2.7) A = JF, X F−→ `2(N)
J−→ X,

where

Fx =
∞

∑
1

a1/2
k fk(x)ek, and(2.8)

Jξ =
∞

∑
1

a1/2
k ξkyk,(2.9)

with

(2.10) ‖F‖ 6 (a∗)1/2, ‖J‖ 6 (a∗)1/2.
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Moreover, the product FJ is a Hilbert–Schmidt operator, or of the Schatten
class S2 in a Hilbert space `2(N); see more in [2], [11]. Indeed,

〈FJek, em〉 = a1/2
k a1/2

m fm(yk) and(2.11)
∞

∑
k,m=1

|〈FJek, em〉|2 =
∞

∑
k,m=1

akam| fm(yk)|2 6 (a∗)2 ,(2.12)

so FJ2 6 a∗.
By Hölder inequality for Schatten classes ([2] or [11]),

BCD2/3 6 B2C2D2

so (FJ)3 ∈ S2/3 and has a representation

(FJ)3 =
∞

∑
k=1

ck〈·, fk〉hk, c > 0,

where ‖ fk‖, ‖hk‖ 6 1 and
∞

∑
k=1

c2/3
k < ∞.

Therefore, the operator

A4 = J(FJ)3F =
∞

∑
k=1

ck〈F(·), fk〉Jhk

satisfies the condition (2.5), and

(2.13)
∞

∑
j=1
|λj(Aq)| < ∞ for all q > 4,

with

(2.14) TrAq =
∞

∑
j=1

λj(Aq).

More careful geometric analysis, based on approximative characteristics of op-
erators ([7], [8]) — if we use [4], or Theorem 4.a.6, p. 227 of [5] — shows that
we can lower q in (2.13), (2.14) to 3. Indeed, (FJ)2 is in S1(`

2(N)), so there are
finite-dimensional operators Gn, Rank Gn 6 n, such that

∑
n

αn < ∞, where αn := ‖(FJ)2 − Gn‖.

Then
‖A3 − JGnF‖ 6 a∗ · αn

and by Theorem 4.a.6 of [5]

A3 is nuclear, ∑
j
|λj(A3)| 6 2a∗∑

n
αn < ∞, and TrA3 = ∑

j
λj(A3).

But this remark will not improve our Theorem 4.1 (below) in an essential way
(although it would help to say p > p∗ > 3q∗ instead of p > p∗ > 4q∗ in (4.2)).
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In a Hilbert space X = H, by Lisdkiı̆ theorem [6], for any trace-class operator
C ∈ S1,

∞

∑
j=1
|λj(C)| < ∞ and TrC =

∞

∑
j=1

λj(C).

M. Zelikin considered in Theorem 2 of [12] only Hilbert spaces, perhaps because
he worked in the context of Hilbert spaces.

3. CAUCHY–RIESZ FORMULA

Before stating our main result, let us recall from Chapter VII, Sections 3 and
4 of [1] some elements of the Riesz theory of compact operators.

If T : X → X is compact its spectrum σ(T) is discrete with 0 being the only
accumulation point, and it has the following properties:

(i) for any ρ > 0, σ(T) ∩ {z : |z| > ρ} is a finite set;
(ii) if

δ(α) =
1
2

min{|α− λ| : λ ∈ σ(T), λ 6= α}

(so δ(α) > 0 for any α ∈ C \ {0}) and

P(α) =
1

2πi

∫
|z−α|=δ(α)

(z− T)−1 dz,

then
m(α) = Rank P(α) < ∞, α ∈ C \ {0}

with
m(α) = 0 if and only if α 6∈ σ(T).

For α ∈ σ(T) \ 0, m(α) is the algebraic multiplicity of the eigenvalue α.
The operational calculus ([1], Chapter VII, Sections 3 and 4) explains that

for any ρ > 0 such that
σ(T) ∩ {|z| = ρ} = ∅,

we have

T = ∑
|α|>ρ

T(α) + S, where T(α) =
1

2πi

∫
|z−α|=δ(α)

z(z− T)−1 dz

is an operator of rank m(α) with

σ(T(α)) = {α}, and S =
1

2πi

∫
|z|=ρ

z(z− T)−1 dz.

Moreover, for any entire function F(z), (for instance, for polynomials),

(3.1) F(T) = ∑
|α|>ρ

F(T(α)) + F(S),
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where by the Cauchy–Riesz formulae,

F(T(α)) =
1

2πi

∫
|z−α|=δ(α)

F(z)(z− T)−1 dz, F(S) =
1

2πi

∫
|z|=ρ

F(z)(z− T)−1 dz.

It follows that

TrF(T(α)) = F(α) ·m(α); F(T(α)) = 0 if F(j)(α) = 0, 0 6 j 6 m(α).(3.2)

4. MAIN RESULT AND ITS PROOF

Now we are ready to prove the main result.

THEOREM 4.1. Let T be a compact operator in a Banach space X, and let some
power Tq∗ be a nuclear operator. Then σ(T) is Zd-symmetric, i.e., for any β ∈ C \ {0},

m(βωk) = m(β) for all k = 0, 1, . . . d− 1, ω = exp(i2π/d)(4.1)

if and only if

(4.2) TrTdp+r = 0, 1 6 r 6 d− 1,

for all sufficiently large p, say p > p∗ > 4q∗.

Of course, if d = 2, this is an extension of Theorem 2 in [12], to the Banach
case.

Proof. We divide the proof into two parts, one for each implication.
Part 1. (4.1)⇒ (4.2). First we notice that the assumption p > 4q∗ guarantees

that all operators Tn, n = dp + r, in (4.2) satisfy the condition (2.5). Indeed, by
the Grothendieck theorem, (2.6) holds, i.e.

TrTn =
∞

∑
j=1

λj(Tn).

The absolute convergence permits to rearrange the terms of the right sum as we
wish, to write

(4.3) TrTn = ∑ µ ·m(µ; Tn).

With
m(µ; Tn) = 0 for µ 6∈ σ(Tn)

we can “add” the terms with µ 6∈ σ(Tn) and this does not change the right side
in (4.3). For

(4.4) n = dp + r, 0 6 r 6 d− 1, define g = gcd{r, d}

so

(4.5) r = ag, d = bg, (a, b) = 1,
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and with r 6 d− 1 we have 1 6 a < b. For any µ ∈ C \ {0} take its Zb-orbit, i.e.,

(4.6) µ̃ = {µ · τ j : 0 6 j < b}, τ = ωg = exp(i2π/b).

The sum in (4.3) could be written as

(4.7) ∑
Zb−orbits

b−1

∑
j=0

µτ j ·m(µτ j; Tn)

where, in order to be sure that µ is in the orbit (4.6), it is chosen as µ = |µ|eiϑ,
0 6 ϑ < 2π/b. Now we will show that the sum in (4.7) over each orbit is equal to
zero. With the numbers defined in (4.4) put κ = exp(i2π/n) so κn = 1 and notice
that if µ = λn, we choose

(4.8) λ = |µ|1/neiϑ′ , ϑ′ =
ϑ

n
,

so that

(λωk)n = µωk(dp+r) = µωkr = µτak and(4.9)
b−1

∑
j=0

µτ jm(µτ j; Tn)
(1)
=

1
g

d−1

∑
k=0

µτakm(µτak; Tn)

(2)
=

1
g

d−1

∑
k=0

(λωk)n
n−1

∑
s=0

m(λωkκs; T)

(3)
=

1
g

n−1

∑
s=0

d−1

∑
k=0

(λωk)nm(λκs ·ωk; T)(4.10)

(4)
=

1
g

n−1

∑
s=0

m(λκs; T)µ
d−1

∑
k=0

ταk

(5)
= µ

( n−1

∑
s=0

m(λκs; T)
)( b−1

∑
j=0

τ j
)
= 0.

The steps in (4.10) are justified in the following way. (1) comes from (4.9). (2) is
just the change of order of the double summation. (3) uses in an essential way
the theorem’s assumption (4.1) that m(βωk) is independent of k. (4) is based on
the properties of the roots ω, τ, ωd = 1, τ = ωg under (4.5). Of course, in (5)
b−1

∑
j=0

τ j = 0, and {τak}d−1
k=0 runs g times over {τ j}b−1

j=0 . The implication (4.1)⇒ (4.2)

is proven.
Part 2. (4.2)⇒ (4.1) Take λ 6= 0 and as before

n = dp∗ + dp + r, 1 6 r 6 d− 1, p > 0,

and 0 < ρ < |λ| is such that

(4.11) σ(T) ∩ {z ∈ C : |z| = ρ} = ∅,
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with
λ̃ = {λωk : 0 6 k 6 d− 1}

being the Zd-orbit of λ. Now we use (3.1) for the special choice F = Fpr defined as

Fpr(z) =
( z

λ

)dp∗+dp+r
ϕ(z),

where

ϕ(z) = ∏
|α|>ρ, α∈σ(T), α 6∈λ̃

( zd − αd

λd − αd

)m(α)
= ψ(zd), and ψ is a polynomial.

Then by (3.2)

ϕ(T(α)) = 0; Fpr(T(α)) = 0, ∀α 6∈ λ̃, |α| > ρ,

but for β ∈ λ̃, i.e., β = λωk,

TrFpr(T(β)) = m(β)Fpr(β) = m(λωk)ωkr.

Therefore,

(4.12) TrFpr(T) =
d−1

∑
k=0

ωkrm(λωk) + TrFpr(S)

where

Fpr(S) =
(T

λ

)dp∗
· 1

2πi

∫
|z|=ρ

( z
λ

)dp+r
ϕ(z)(z− T)−1 dz.

Put
Φ = max{|ϕ(z)| : |z| 6 ρ}

and with (4.11)
M = max{‖R(z; T)‖ : |z| = ρ} < ∞.

Then

(4.13) Fpr(S)1 6 Ctp for any r, 1 6 r 6 d− 1,

where

C =
Φ ·M · ρ · Tdp∗1

|λ|dp∗ and(4.14)

t =
( ρ

|λ|

)d
< 1.(4.15)

Now by (4.2) and (4.12)

(4.16) 0 =
d−1

∑
k=0

ωkrm(λωk) + ξpr for any p > 1 and r, 1 6 r 6 d− 1.
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The sum
d−1

∑
k=0

does not depend on p but the remaining terms ξpr by (4.13), (4.14),

(4.15) have estimates

|ξpr| 6 Ctp so ξpr → 0 (p→ ∞).

This implies by (4.16)

(4.17)
d−1

∑
k=0

ωkrm(λωk) = 0, ∀r, 1 6 r 6 d− 1,

or

yk = m(λωk), 1 6 k 6 d− 1,

is a solution of the system

(4.18)
d−1

∑
k=1

ωkryk = −y0, 1 6 r 6 d− 1.

Its determinant is of Vandermonde type so

det{ωkr}d−1
k,r=1 6= 0,

and the identities
d−1

∑
k=0

(ωr)k = 0, ∀r, 1 6 r 6 d− 1,

show that by (4.18)

yk = y0, i.e., m(λωk) = m(ω), ∀k, 1 6 k 6 d− 1.

This proves that the multiplicity function m is constant on Zd-orbits in C \ {0},
and (4.1) is proven.

It is worth to notice that Part 2 of the proof does not use any form of the
Grothendieck or Lidskı̆i thoerems but it uses only properties of a linear function
Tr onN (X; X) and an elementary formula for TrK when K is an operator of finite
rank.
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