
J. OPERATOR THEORY
76:1(2016), 93–106

doi: 10.7900/jot.2015sep07.2078

© Copyright by THETA, 2016

COMPLETIONS OF UPPER-TRIANGULAR MATRICES TO
LEFT-FREDHOLM OPERATORS WITH NON-POSITIVE INDEX

DRAGANA S. CVETKOVIĆ-ILIĆ
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ABSTRACT. In this paper, for given operators A ∈ B(H) and B ∈ B(K),
where H, K are infinite-dimensional complex separable Hilbert spaces, we
describe the set of all C ∈ B(K,H) such that, the operator matrix MC =

[ A C
0 B
]

belongs to Φ−+(H⊕K), which means that it is a left-Fredholm operator with
non-positive index. As an application of our results, in the case when at least
one of the operators A ∈ B(H), B ∈ B(K) is compact we obtain some inter-
esting corollaries pertaining to intersections of the spectra σΦ−+

(MC) where C
runs through certain classes of operators.
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1. INTRODUCTION AND NOTATIONS

Let H,K be infinite-dimensional complex separable Hilbert spaces and let
B(H,K) denote the set of all bounded linear operators fromH to K. For simplic-
ity, we also write B(H,H) as B(H). By B−1

l (H,K), B−1
r (H,K) and B−1(H,K)

we denote the subsets consisting of all left invertible, right invertible and invert-
ible elements of B(H,K), respectively. For subspaces X and Y ofH with X ⊆ Y ,
we set codimY X = dimY/X and, if X is closed, use the symbol PX to denote
the orthogonal projection onto X . For a given operator A ∈ B(H,K), the sym-
bols N (A) and R(A) denote the null space and the range of A, respectively.
We use the standard notations n(A) = dimN (A), β(A) = codimR(A) and
d(A) = dimR(A)⊥.

If A ∈ B(H,K) is such that R(A) is closed and n(A) < ∞, then A is a
left semi-Fredholm (left-Fredholm for short) operator. If β(A) < ∞, then A is a
right semi-Fredholm (right-Fredholm for short) operator. A semi-Fredholm op-
erator is one which is left semi-Fredholm or right semi-Fredholm. An operator
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A ∈ B(H,K) is called Fredholm if it is both right semi-Fredholm and left semi-
Fredholm. The set of all Fredholm operators from the space B(H,K) is denoted
by Φ(H,K). By Φ+(H,K) (Φ−(H,K)) we denote the set of all left (right) semi-
Fredholm operators from B(H,K).

If A ∈ B(H,K) is a semi-Fredholm operator, we define the index of A by
ind(A) = n(A)− d(A). By Φ−+(H,K) we denote the class of all A ∈ Φ+(H,K)
with ind(A) 6 0 and by Φ+

−(H,K) we denote the class of all A ∈ Φ−(H,K) with
ind(A) > 0. For C ∈ B(H) let

σΦ−+
(C) = {λ ∈ C : C− λI is not in Φ−+(H)} and

σΦ+
−
(C) = {λ ∈ C : C− λI is not in Φ+

−(H)}.

In many papers some type of invertibility and regularity is considered of an
upper-triangular operator matrix

(1.1) MC =

[
A C
0 B

]
:
[
H
K

]
→
[
H
K

]
,

as well as various types of spectra of MC. A particular problem related to this is
the one of completing the partial operator matrix[

A ?
0 B

]
:
[
H
K

]
→
[
H
K

]
so as to obtain an operator MC with some prescribed property. More precisely,
for given A ∈ B(H) and B ∈ B(K), one is interested in the existence of some C ∈
B(K,H) such that MC is of a certain given type. Discussions of such completion
problems to left (right) invertible, semi-Fredholm, Fredholm, Weyl, Browder or
operators with closed range can be found in [1], [2], [4], [5], [9], [10], [14].

In this paper, for given operators A ∈ B(H) and B ∈ B(K), we describe the

set of all C ∈ B(K,H) such that, the operator matrix MC =

[
A C
0 B

]
belongs to

the set Φ−+(H⊕K). We prove that⋂
C∈B−1(K,H)

σΦ−+
(MC) =

⋂
C∈B−1

r (K,H)

σΦ−+
(MC)

and give necessary and sufficient conditions for the equality⋂
C∈B(K,H)

σΦ−+
(MC) =

⋂
C∈B−1(K,H)

σΦ−+
(MC)

to hold. We give an illustration of our result in the case when one of the operators
A ∈ B(H) or B ∈ B(K) is compact.

Notice that for given A ∈ B(H) and B ∈ B(K), the set of all C ∈ B(K,H)
such that the operator MC given by (1.1) belongs to Φ−+(H⊕K) will be denoted
by SΦ−+

(A, B).
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2. PRELIMINARIES

We begin by listing some of the results that will be made use of later in the
paper. The next is a rather useful one.

LEMMA 2.1. Let S ∈ B(L,H) and T ∈ B(K,H) be given operators. If R(S) is
non-closed andR(

[
S T

]
) is closed, then n(

[
S T

]
) = ∞.

Proof. Suppose that R(S) is non-closed, R(
[
S T

]
) is closed and that

n(
[
S T

]
) < ∞. Then

[
S T

]
is a left-Fredholm operator which implies that

there exists an operator
[

X
Y

]
: H →

[
L
K

]
such that

[
X
Y

] [
S T

]
= I + K,

for some compact operator K ∈ B(L ⊕K). Hence, XS = I + K1, for some com-
pact operator K1 ∈ B(L) which implies that S is left-Fredholm and so R(S) is
closed, which is a contradiction.

The next result, to be needed in the sequel, is proved in the paper of Fillmore
and Williams [7].

PROPOSITION 2.2. If R2 is the range of a compact operator and if R1 is a linear
subspace such that R1 +R2 = H, then R1 is a closed subspace of finite codimension
inH.

The problem of completion of the operator matrix

(2.1) M(X,Y) =

[
A C
X Y

]
:
[
H1
H2

]
→
[
H1
H2

]
to left (right) invertibility in the case when A ∈ B(H1) and C ∈ B(H2,H1) are
given, is considered in [3]. Since for our main result we need a result of this type
in the case when

(2.2) M(X,Y) =

[
A C
X Y

]
:
[
H1
H2

]
→
[
H3
H4

]
,

we give a modification of Theorem 2.1 of [3] for the operator matrix (2.2). A proof
can be found in [13].

THEOREM 2.3. Let A ∈ B(H1,H3) and C ∈ B(H2,H3) be given.
(i) If dimH4 = ∞, then there exist X ∈ B(H1,H4) and Y ∈ B(H2,H4) such that

M(X,Y) given by (2.2) is left invertible.
(ii) If dimH4 < ∞, then M(X,Y) given by (2.2) is left invertible for some opera-

tors X ∈ B(H1,H4) and Y ∈ B(H2,H4) if and only if n
([

A C
])

6 dimH4 and
R(A) +R(C) is closed.



96 DRAGANA S. CVETKOVIĆ-ILIĆ

In Theorem 1.1 of [3], using the Moore–Penrose inverse, certain necessary
and sufficient conditions for right invertibility of M(X,Y) are given. Here, we
present the analogous result where the appropriate Hilbert spaces are not as-
sumed to coincide, along with a much simpler proof, and we also describe the
set of all X ∈ B(H1,H4) and Y ∈ B(H2,H4) for which M(X,Y) given by (2.2) is
right invertible.

THEOREM 2.4. Let A ∈ B(H1,H3) and C ∈ B(H2,H3) be given operators. The
operator matrix M(X,Y) given by (2.2) is right invertible for some X ∈ B(H1,H4) and
Y ∈ B(H2,H4) if and only if R(A) +R(C) = H3 and dimH4 6 n(

[
A C

]
). The

set of all
[
X Y

]
for which M(X,Y) is right invertible is described by the following:

S(XY) =
{ [

X Y
]

: H1 ⊕H2 → H4 :(2.3) [
X Y

]
PN

([
A C

]) ∈ B−1
r (H1 ⊕H2,H4)

}
.

Proof. The right invertibility of M(X,Y) is equivalent to the existence of a
bounded linear operator [

E F
G H

]
:
[
H3
H4

]
→
[
H1
H2

]
,

such that [
A C

] [E
G

]
= I,

[
A C

] [ F
H

]
= 0,

[
X Y

] [ F
H

]
= I.(2.4)

Obviously, the existence of an operator
[

E
G

]
such that the first equation of (2.4)

is satisfied is equivalent to the fact that
[
A C

]
is right invertible i.e. R(A) +

R(C) = H3. The other two equations from (2.4) hold if and only if
[

F
H

]
: H4 →[

H1
H2

]
is a left invertible operator with range contained in N (

[
A C

]
). The ex-

istence of such an operator is equivalent to dimH4 6 n(
[
A C

]
). Now, we can

readily verify that the set of all X ∈ B(H1,H4) and Y ∈ B(H2,H4) for which
M(X,Y) is right invertible is described by (2.3).

The problem of completion to invertibility of M(X,Y) given by (2.1) was con-
sidered in [8]. The result for an operator matrix (2.2) analogous to the one ob-
tained there is the following.

THEOREM 2.5. Let A ∈ B(H1,H3) and C ∈ B(H2,H3) be given. Then M(X,Y)
is invertible for some operators X ∈ B(H1,H4) and Y ∈ B(H2,H4) if and only if
R(A) +R(C) = H3 and n

([
A C

])
= dimH4.
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The proof of this theorem can be easily obtained by tracing the proof of the
original theorem given in [8].

3. MAIN RESULTS

The problem of completion of the upper-triangular operator matrix

(3.1) MC =

[
A C
0 B

]
:
[
H
K

]
→
[
H
K

]
,

where A ∈ B(H) and B ∈ B(K) are given, to a left semi-Fredholm operator with
non-positive index (Φ−+(H⊕K)) was considered in several papers:

- In [2], Cao and Meng gave necessary and sufficient conditions for the ex-
istence of such an operator C.

- Li and Du [11] considered the same problem when C ranges through the
sets B−1

l (K,H) and B−1(K,H).
- Zhang and Wu [15] gave a much simpler proof of the problem considered

in [2] and proved that the existence of C ∈ B(K,H) such that MC ∈ Φ−+(H⊕K)
is equivalent to the existence of C ∈ B−1

l (K,H) such that MC ∈ Φ−+(H ⊕K) i.e.
they proved that ⋂

C∈B(K,H)

σΦ−+
(MC) =

⋂
C∈B−1

l (K,H)

σΦ−+
(MC).

The proof of the following theorem, in which we address the problem of
completing MC to an operator in Φ−+(H⊕K), is different from the one given in
[2], [15] and is designed so as to simultaneously provide us with a complete and
very detailed characterization of the set SΦ−+

(A, B), which will in turn allow us to

easily compute the sets
⋂

C∈T
σΦ−+

(MC), when T ∈ {B−1
r (K,H),B−1(K,H)} and

to describe more thoroughly
⋂

C∈T
σΦ−+

(MC) in some special cases.

In the sequel for given operators A ∈ B(H) and B ∈ B(K) we can suppose
that an arbitrary C ∈ B(K,H) is given by

(3.2) C =

[
C1 C2
C3 C4

]
:
[
N (B)⊥

N (B)

]
→
[
R(A)
R(A)⊥

]
.

THEOREM 3.1. Let A ∈ B(H) and B ∈ B(K). Then there exists C ∈ B(K,H)
such that MC ∈ Φ−+(H ⊕ K) if and only if A ∈ Φ+(H) and one of the following
conditions is satisfied:

(i) B ∈ Φ+(H) and ind(A) + ind(B) 6 0. In this case,

SΦ−+
(A, B) = B(K,H).

(ii)R(B) is closed and n(B) = d(A) = ∞. In this case,
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SΦ−+
(A, B) = {C ∈ B(K,H) : C is given by (3.2), C4 ∈ Φ+(N (B),R(A)⊥),

n(A) + n(C4) 6 d(B) + d(C4)}.

(iii)R(B) is non-closed and d(A) = ∞. In this case,

SΦ−+
(A, B) = {C ∈ B(K,H) : C is given by (3.2), d(C4) = ∞,

R(B∗) +R(C∗3 PR(C4)⊥
) = R(B∗), C4 ∈ Φ+(N (B),R(A)⊥)}.

Proof. If MC ∈ Φ−+(H ⊕ K) for some C ∈ B(K,H), then by Lemma 2.1 it
follows that R(A) is closed and since N (A) ⊆ N (MC), we have that n(A) < ∞.
Hence A ∈ Φ+(H). From now on, we will suppose that A ∈ Φ+(H) and we will
distinguish two cases: whenR(B) is closed and whenR(B) is not closed.

Case 1. R(B) is closed. Then MC has a matrix representation

MC =


A1 0 C1 C2
0 0 C3 C4
0 0 B1 0
0 0 0 0

 :


N (A)⊥

N (A)
N (B)⊥

N (B)

 −→

R(A)
R(A)⊥

R(B)
R(B)⊥

 ,

where A1, B1 are invertible. We can verify that R(MC) is closed if and only if
R(C4) is closed. Using

(3.3) n(MC) = n(A) + n
([

A1 C2
0 C4

])
= n(A) + n(C4),

we can conclude that n(MC) < ∞ if and only if n(C4) < ∞. Also,

(3.4) n(M∗C) = n(B∗) + n
([

C∗3 B∗1
C∗4 0

])
= n(B∗) + n(C∗4 ).

Hence,

SΦ−+
(A, B) = {C ∈ B(K,H) : C is given by (3.2), C4 ∈ Φ+(N (B),R(A)⊥),

n(A) + n(C4) 6 d(B) + d(C4)}.

Now, we will investigate when SΦ−+
(A, B) 6= ∅.

Case n(B) < ∞. Then for every C4 ∈ B(N (B),R(A)⊥) we have that C4 ∈
Φ+(N (B),R(A)⊥). If d(B) + d(A) = ∞, then by (3.4) for arbitrary C ∈ B(K,H),
we have that d(MC) = ∞. So, MC ∈ Φ−+(H⊕K) for all C ∈ B(K,H). If d(B) +
d(A) < ∞ then

n(C4) + dimR(C4) = n(B), n(C∗4 ) + dimR(C4) = d(A).

Hence by (3.3) and (3.4) we have that n(MC) 6 d(MC) is equivalent to

(3.5) n(A) + n(B) 6 d(A) + d(B) i.e. ind(A) + ind(B) 6 0.

Hence, in this case, we conclude that MC ∈ Φ−+(H⊕K) for some C ∈ B(K,H)
only if (3.5) holds. If we suppose that (3.5) holds, from the discussion above we
get that MC ∈ Φ−+(H⊕K) for all C ∈ B(K,H).
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Case n(B) = ∞. The existence of C4 ∈ B(N (B),R(A)⊥) which belongs to
Φ+(N (B),R(A)⊥) is equivalent to d(A) = ∞. So, we will henceforth suppose
that d(A) = ∞. Then there exists C4 ∈ Φ+(N (B),R(A)⊥) such that d(C4) = ∞.
For C ∈ B(K,H) given by (3.2) with such C4 it follows that MC ∈ Φ−+(H⊕K).

Case 2. R(B) is not closed. We can check that (3.3) also holds in this case.
MC has a matrix representation

MC =


A1 0 C1 C2
0 0 C3 C4
0 0 B1 0
0 0 0 0

 :


N (A)⊥

N (A)
N (B)⊥

N (B)

 −→

R(A)
R(A)⊥

R(B)
R(B)⊥

 ,

where A1 is invertible and B1 is injective with dense range. It can be checked

that R(MC) is closed if and only if M1 =

[
B∗1 C∗3
0 C∗4

]
has closed range. Using

Theorems 2.5 and 2.6 from [6], we have that there exists C3 ∈ B(N (B)⊥, R(A)⊥)
such that R(M1) is closed if and only if C4 ∈ B(N (B), R(A)⊥) has closed range
and n(C∗4 ) = ∞. Also, n(MC) < ∞ only if n(C4) < ∞. The existence of such
C4 is guaranteed if and only if d(A) = ∞. So we will henceforth suppose that
d(A) = ∞. By Lemma 2.1, if R(MC) is closed then, since R(B) is not closed, we
get that d(MC) = ∞, so n(MC) 6 d(MC).

From (3.3) and the discussion above we get that MC ∈ Φ−+(H ⊕ K) for
C ∈ B(K,H) given by (3.2) if and only if C4 ∈ Φ+(N (B),R(A)⊥), d(C4) = ∞
and C3 is such that R(M1) is closed. The existence of such C is equivalent to the
condition d(A) = ∞.

In order to describe all C3 such thatR(M1) is closed for a given C4 such that
R(C4) is closed and d(C4) = ∞, notice that M∗1 can be represented as follows:

(3.6) M∗1 =

C31 C41 0
C32 0 0
B1 0 0

 :

N (B)⊥

N (C4)
⊥

N (C4)

 −→
 R(C4)
R(C4)

⊥

R(B)⊥

 ,

where C41 is invertible. Evidently,R(M1) is closed if and only ifR(B∗1 ) +R(C∗32)
is closed. Since C32 = PR(C4)⊥

C3, the last condition is equivalent to R(B∗) +

R(C∗3 PR(C4)⊥
) being closed i.e. toR(B∗) +R(C∗3 PR(C4)⊥

) = R(B∗).

From the previous theorem, we can get the following corollary.

COROLLARY 3.2. Let A ∈ B(H) and B ∈ B(K). Then MC ∈ Φ−+(H⊕K) for
all C ∈ B(K,H) if and only if A, B ∈ Φ+(H) and ind(A) + ind(B) 6 0.

In [15], it was proved that for given A ∈ B(H) and B ∈ B(K), there
exists C ∈ B(K,H) such that MC ∈ Φ−+(H ⊕ K) if and only if there exists
C ∈ B−1

l (K,H) such that MC ∈ Φ−+(H ⊕ K). This result follows directly from
Theorem 3.1 and Theorem 2.3: notice that by Theorem 3.1, we have that an op-
erator C ∈ B(K,H) such that MC ∈ Φ−+(H ⊕ K) is given by (3.2) where some
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conditions on C4 or on C3 and C4 are supposed while C1 and C2 are arbitrary.
Since A ∈ Φ+(H), we have that dimR(A) = ∞ which implies by Theorem 2.3
that for arbitrary such C3 and C4 there always exist C1 and C2 such that C given
by (3.2) is left invertible. Hence,⋂

C∈B(K,H)

σΦ−+
(MC) =

⋂
C∈B−1

l (K,H)

σΦ−+
(MC).

In the following we prove that⋂
C∈B−1(K,H)

σΦ−+
(MC) =

⋂
C∈B−1

r (K,H)

σΦ−+
(MC).

PROPOSITION 3.3. Let A ∈ B(H) and B ∈ B(K). The following statements are
equivalent:

(i) there exists C ∈ B−1(K,H) such that MC ∈ Φ−+(H⊕K);
(ii) there exists C ∈ B−1

r (K,H) such that MC ∈ Φ−+(H⊕K).
Proof. From Theorem 3.1, we have that an arbitrary C ∈ SΦ−+

(A, B) is given
by (3.2) where some conditions on C4 or on C3 and C4 are supposed while C1
and C2 are arbitrary. If (i) or (ii) is satisfied, then A ∈ Φ+(H), so dimR(A) =
∞. Evidently in that case the conditions from Theorem 2.4 which guarantee the
completion of M(C3,C4)

to right invertibility are equivalent to the conditions from
Theorem 2.5 which guarantee the completion of M(C3,C4)

to invertibility, so we get
that the existence of C ∈ B−1(K,H) such that MC ∈ Φ−+(H⊕K) is equivalent to
the existence of C ∈ B−1

r (K,H) such that MC ∈ Φ−+(H⊕K).

In the following theorem we will consider the existence of C ∈ B−1
r (K,H)

such that MC ∈ Φ−+(H ⊕ K). As a corollary we get a description of the set
SΦ−+

(A, B) ∩ B−1
r (K,H).

THEOREM 3.4. Let A ∈ B(H) and B ∈ B(K). The following statements are
equivalent:

(i) There exists C ∈ B−1
r (K,H) such that MC ∈ Φ−+(H⊕K).

(ii) A ∈ Φ+(H) and one of the following conditions is satisfied:
(a) B ∈ Φ+(H) and ind(A) + ind(B) 6 0;
(b)R(B) is closed, n(B) = d(A) = dimR(B) = ∞;
(c) B is a non-compact operator,R(B) is non-closed and d(A) = ∞.

Proof. To consider the existence of C ∈ B−1
r (K,H) such that MC ∈ Φ−+(H⊕

K) we must suppose that SΦ−+
(A, B) 6= ∅. Hence, by Theorem 3.1 we have to

suppose that A ∈ Φ+(H) and we will consider three cases, which are the only
possible ones.

Case 1. B ∈ Φ+(H) and ind(A) + ind(B) 6 0. In this case, SΦ−+
(A, B) =

B(K,H), so evidently there exists C ∈ B−1
r (K,H) such that MC ∈ Φ−+(H⊕K).
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Case 2. R(B) is closed and n(B) = d(A) = ∞. Since A ∈ Φ+(H), we have
that dimR(A) = ∞. By Theorems 3.1 and 2.4 the existence of C ∈ B−1

r (K,H)
such that MC ∈ Φ−+(H ⊕ K) is equivalent to the existence of operators C3 ∈
B(N (B)⊥,R(A)⊥) and C4 ∈ B(N (B),R(A)⊥) such that

C4 ∈ Φ+(N (B),R(A)⊥), n(A) + n(C4) 6 d(B) + d(C4),(3.7)

R(C4) +R(C3) = R(A)⊥ and n
([

C3 C4
])

= ∞.

We will consider two cases.
1. dimN (B)⊥ = ∞. Since d(A) = ∞, there exists an infinite-dimensional

closed spaceM such thatM⊕M⊥ = R(A)⊥ and dimM⊥ = ∞. Now, there
exists a left invertible operator C4 ∈ B(N (B),R(A)⊥) such thatR(C4) =M and
n(C4) = 0. Evidently, for such C4, d(C4) = ∞. Since dimN (B)⊥ = ∞, we can
take C3 ∈ B(N (B)⊥,R(A)⊥) such that R(C3) =M⊥ and n(C3) = ∞. Now, for
such choice of C3 and C4 we have that (3.7) holds.

2. dimN (B)⊥ < ∞. Since

n
([

C3 C4
])

= n(C3) + n(C4) + dimR(C3) ∩R(C4),

we can conclude that n
([

C3 C4
])

= ∞ will be never satisfied in this case.
Case 3. R(B) is non-closed and d(A) = ∞. In this case, by Theorem 3.1(iii)

and Theorem 2.4, the existence of C∈B−1
r (K,H) such that MC belongs to Φ−+(H⊕

K) is equivalent to the existence of operators C3 ∈ B(N (B)⊥,R(A)⊥) and C4 ∈
B(N (B),R(A)⊥) such that

C4 ∈ Φ+(N (B),R(A)⊥), d(C4) = ∞, R(C4) +R(C3) = R(A)⊥,(3.8)

R(B∗) +R(C∗3 PR(C4)⊥
) = R(B∗) and n

([
C3 C4

])
= ∞.

So, we are looking for C3 and C4 which satisfy (3.8). Take C4 such that C4 ∈
Φ+(N (B),R(A)⊥) and d(C4) = ∞ and consider the question of when there ex-
ists C3 such that the last three equalities of (3.8) are satisfied. For arbitrary C3 the
operator

[
C3 C4

]
has the following matrix representation:

(3.9)
[
C3 C4

]
=

[
C31 C41 0
C32 0 0

]
:

N (B)⊥

N (C4)
⊥

N (C4)

 −→ [
R(C4)
R(C4)

⊥

]
,

where C41 is invertible and C32 = PR(C4)⊥
C3. The last two conditions from (3.8)

are equivalent to

(3.10) R(B∗) +R(C∗32) = R(B∗), n(C32) = ∞.

By Proposition 2.2, if B is a compact operator then there is no C32 ∈ B(N (B)⊥,
R(C4)

⊥) such that (3.10) is satisfied, i.e. SΦ−+
(A, B) = ∅. If B is non-compact,

then there exists an infinite-dimensional closed subspace M ⊆ R(B∗). Define
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C32 =
[

J 0
]

:
[
M⊥

M

]
−→ R(C4)

⊥, where J : M⊥ −→ R(C4)
⊥ is bijective.

Obviously, for such C32 we have that (3.10) is satisfied.
Also, the third condition from (3.8) is equivalent to

(3.11) R(C32) = R(C4)
⊥,

which is satisfied for C32 defined above. Hence, if B is non-compact there exists
C ∈ B−1

r (K,H) such that MC ∈ Φ−+(H⊕K).

REMARK 3.5. Using the previous theorem, we can describe the set

SΦ−+
(A, B) ∩ B−1

r (K,H)

as follows:
(i) If A, B ∈ Φ+(H) and ind(A) + ind(B) 6 0 then SΦ−+

(A, B) ∩ B−1
r (K,H) =

B−1
r (K,H).

(ii) If A ∈ Φ+(H),R(B) is closed, n(B) = d(A) = ∞ and dimR(B) = ∞ then

SΦ−+
(A, B) ∩ B−1

r (K,H) =
{

C ∈ B(K,H) : C is given by (3.2), (3.7) holds,[
C1 C2

]
PN

[
C3 C4

] is right invertible
}

.

(iii) If A ∈ Φ+(H), B is non-compact operator,R(B) is non-closed and d(A) =
∞, then

SΦ−+
(A, B) ∩ B−1

r (K,H) =
{

C ∈ B(K,H) : C is given by (3.2), (3.8) holds,[
C1 C2

]
PN

[
C3 C4

] is right invertible
}

.

REMARK 3.6. Notice that the condition dimR(B) = ∞ in item (b) of the
previous theorem can be replaced by the condition that B is non-compact and
also that B which satisfies the conditions from the item (a) must be non-compact.
Hence, we can conclude that⋂

C∈B−1
r (K,H)

σΦ−+
(MC) =

⋂
C∈B(K,H)

σΦ−+
(MC) ∪ {λ ∈ C : B− λ is compact}.

The last equality also follows if we apply Theorem 3.1 from [11] and Proposi-
tion 3.3.

COROLLARY 3.7. Let A ∈ B(H) and B ∈ B(K). Then⋂
C∈B(K,H)

σΦ−+
(MC) =

⋂
C∈B−1(K,H)

σΦ−+
(MC) =

⋂
C∈B−1

l (K,H)

σΦ−+
(MC)

=
⋂

C∈B−1
r (K,H)

σΦ−+
(MC)

except in the case when A ∈ Φ+(H), d(A) = ∞ and B is compact.
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Also, we can easily generalize Lemma 3.3 from [11]:

COROLLARY 3.8. If A ∈ Φ+(H), then MC /∈ Φ−+(H ⊕ K) for every C ∈
B(K,H) if and only if one of the following conditions holds:

(i) B ∈ Φ+(H) and n(A) + n(B) > d(A) + d(B);
(ii)R(B) is closed, n(B) = ∞ and d(A) < ∞;

(iii)R(B) is non-closed and d(A) < ∞.

4. A ∈ B(H) OR B ∈ B(K) IS A COMPACT OPERATOR

As an application of our results, we will show that in the special case when one
of the operators A ∈ B(H) or B ∈ B(K) is compact the sets

⋂
C∈B(K,H)

σΦ−+
(MC)

and
⋃

C∈B(K,H)
σΦ−+

(MC) can be computed very easily. Also, we can give an an-

swer to the following question which often arises in connection with completion
problems of operator matrices:

Given operators A ∈ B(H) and B ∈ B(K), is there an operator C′ ∈
B(K,H) such that

σΦ−+
(MC′) =

⋂
C∈B(K,H)

σΦ−+
(MC)?

First we will consider the case when B ∈ B(K) is a compact operator.

PROPOSITION 4.1. Let A ∈ B(H) and let B ∈ B(K) be a compact operator.
Then for every λ ∈ C, λ 6= 0:

λ ∈
⋂

C∈B(K,H)

σΦ−+
(MC)⇔ λ ∈ σΦ−+

(A) and

λ ∈
⋂

C∈B(K,H)

σΦ−+
(MC)⇔ λ ∈

⋃
C∈B(K,H)

σΦ−+
(MC).

Proof. Since B is compact, for every λ ∈ C, λ 6= 0, we have that R(B− λ)
is closed and n(B− λ) = d(B− λ) < ∞. So, by Theorem 3.1 for such λ we have
that λ ∈ ⋂

C∈B(K,H)
σΦ−+

(MC) if and only if λ ∈ σΦ−+
(A).

To prove the second equivalence, suppose that there exists λ ∈ C, λ 6= 0
such that λ ∈ ⋃

C∈B(K,H)
σΦ−+

(MC) \
⋂

C∈B(K,H)
σΦ−+

(MC). This implies that there

exists C ∈ B(K,H) such that MC − λI ∈ Φ−+(H ⊕ K) which by Theorem 3.1
implies that A− λI ∈ Φ−+(H). Since in this case SΦ−+

(A− λI, B− λI) = B(K,H),
it follows that λ /∈ ⋃

C∈B(K,H)
σΦ−+

(MC).
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For λ = 0, we have that 0 ∈ ⋂
C∈B(K,H)

σΦ−+
(MC) if and only if A /∈ Φ+(H) or

none of the conditions (ii) and (iii) from Theorem 3.1 is satisfied. Hence, we have
the following result.

PROPOSITION 4.2. Let A ∈ B(H) and let B ∈ B(K) be a compact operator.
Then ⋂

C∈B(K,H)

σΦ−+
(MC) = (σΦ−+

(A) \ {0}) ∪ T

where T = {0} if A /∈ Φ+(H) \Φ−(H), and T = ∅ otherwise.

COROLLARY 4.3. Let A ∈ B(H) and let B ∈ B(K) be a compact operator. Then⋂
C∈B−1

r (K,H)

σΦ−+
(MC) =

⋂
C∈B(K,H)

σΦ−+
(MC).

Now, we will describe all C′ ∈ B(K,H) such that

σΦ−+
(MC′) =

⋂
C∈B(K,H)

σΦ−+
(MC).

PROPOSITION 4.4. Let A ∈ B(H) and B ∈ B(K) be a compact operator.
(i) If A /∈ Φ+(H) \Φ−(H), then

σΦ−+
(MC′) =

⋂
C∈B(K,H)

σΦ−+
(MC),

for every C′ ∈ B(K,H).
(ii) If A ∈ Φ+(H) \Φ−(H) andR(B) is closed, then

σΦ−+
(MC′) =

⋂
C∈B(K,H)

σΦ−+
(MC),

for every C′ ∈ B(K,H) ∈ {C ∈ B(K,H) : C is given by (3.2), C4 ∈ Φ+(N (B),
R(A)⊥), n(A) + n(C4) 6 d(B) + d(C4)}.

(iii) If A ∈ Φ+(H) \Φ−(H) andR(B) is non-closed, then

σΦ−+
(MC′) =

⋂
C∈B(K,H)

σΦ−+
(MC).

for every C′ ∈ B(K,H) ∈ {C ∈ B(K,H) : C is given by (3.2), C4 ∈ Φ+(N (B),
R(A)⊥), d(C4) = ∞, R(B∗) +R(C∗3 PR(C4)⊥

) = R(B∗)}.

Proof. (i) If A /∈ Φ+(H) \ Φ−(H), then A /∈ Φ+(H) or A ∈ Φ−(H). In
both of these cases, by Theorem 3.1 we have that 0 ∈ σΦ−+

(MC′), for every C′ ∈
B(K,H). On the other hand, for every λ ∈ C, λ 6= 0, we have that R(B− λ) is
closed and n(B− λ) = d(B− λ) < ∞, so again by Theorem 3.1(i) we have that
λ ∈ ⋂

C∈B(K,H)
σΦ−+

(MC) if and only if λ ∈ σΦ−+
(MC′), for every C′ ∈ B(K,H).

The proof of (ii) and (iii) follows by Theorem 3.1 analogously as in the proof
of (i).
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Now, we will consider the case when A ∈ B(H) is a compact operator.

PROPOSITION 4.5. Let A ∈ B(H) be a compact operator and B ∈ B(K). Then
for every C′ ∈ B(K,H),

σΦ−+
(MC′) = σΦ−+

(B) ∪ {0}.

Proof. Since A is a compact operator, we have that A /∈ Φ+(H) so by The-
orem 3.1 it follows that 0 ∈ σΦ−+

(MC′), for every C′ ∈ B(K,H). Also, for every
λ ∈ C, λ 6= 0, we have thatR(A−λ) is closed and n(A−λ) = d(A−λ) < ∞. So,
by Theorem 3.1 for such λ and every C′ ∈ B(K,H), we have that λ ∈ σΦ−+

(MC′)

if and only if λ ∈ σΦ−+
(B).

In our opinion, the following corollaries are especially interesting.

COROLLARY 4.6. Let A ∈ B(H) be a compact operator and B ∈ B(K). Then for
every C′ ∈ B(K,H),

σΦ−+
(MC′) =

⋂
C∈B(K,H)

σΦ−+
(MC).

COROLLARY 4.7. Let A ∈ B(H) be a compact operator and B ∈ B(K). Then⋂
C∈B(K,H)

σΦ−+
(MC) =

⋂
C∈B−1

r (K,H)

σΦ−+
(MC)

=
⋃

C∈B(K,H)

σΦ−+
(MC) = σΦ−+

(B) ∪ {0}.

Notice that analogous results can be obtained if we consider a problem of
completion of an operator matrix MC to a right semi-Fredholm operator with
non-negative index (Φ+

−(H ⊕ K)) using the fact that MC ∈ Φ+
−(H ⊕ K) if and

only if M∗C ∈ Φ−+(H⊕K).
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