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ABSTRACT. We give a necessary condition for a Cowen–Douglas operator to
be similar to the backward shift operator on the Dirichlet space. A model
theorem for weighted shifts provides an eigenvector bundle structure for the
operators involved and plays a fundamental role in this geometric description.
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INTRODUCTION

Previously, partial results to the similarity problem of Cowen–Douglas op-
erators in terms of the curvatures of the corresponding eigenvector bundles were
obtained by restricting attention to the similarity to the backward shift opera-
tor on the Hardy space or the weighted Bergman spaces [5], [8]. Recall that the
importance of the backward shift operator, or the adjoint to the operator of mul-
tiplication by the independent variable, comes from the fact that it serves as a
simple model for a large class of operators [1], [2], [10]. Unlike the case for uni-
tary equivalence that was completely solved by M.J. Cowen and R.G. Douglas in
[4], the characterization for similarity is still far from being complete. Hence, a
continued investigation of the backward shift operator on various function spaces
can serve as a basis for the general solution and in the present paper, we focus
on the backward shift operator on the Dirichlet space, the remaining holomor-
phic function space of a single variable that has attracted much attention over the
years.

In comparison to the Hardy and the Bergman spaces, 1
K(z,w)

, where K(z, w)

denotes the reproducing kernel function, is no longer a polynomial in z and w
in the Dirichlet space. One can ask whether the similarity characterization in
terms of the eigenvector bundles of the operators obtained in the previous spaces
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still holds in the Dirichlet space. By invoking a model theorem that applies to
weighted shifts due to V. Müller [9], we acquire an eigenvector bundle structure
of the backward shift operator on the Dirichlet space in the exact form as in these
other spaces. This structure will then allow us to give a necessary condition for
similarity.

1. PRELIMINARIES

The Dirichlet space D consists of all analytic functions f (z) =
∞
∑

n=0
f̂ (n)zn

defined on the unit disk D of the complex plane satisfying

‖ f ‖2 =
∞

∑
n=0

(n + 1)| f̂ (n)|2 < ∞.

Just like the Hardy and weighted Bergman spaces, the Dirichlet space D is a re-
producing kernel Hilbert space and its reproducing kernel is of the form

kλ(z) = K(z, λ) =
1

λz
log

1
1− λz

= 1 +
1
2

λz +
1
3

λ
2z2 + · · · .

We can define DE , the vector-valued analogue of D taking values in a Hilbert
space E , in an obvious way. We will write Dn when E is of dimension n.

The operator of multiplication by z on D, denoted D, is a bounded linear
operator. We denote its adjoint, called the backward shift operator, by D∗ and
can define D∗E in an analogous way on the space DE . A simple but a crucial
observation that will be useful later is the following: since an orthonormal basis

for D is given by
{

zn
√

n+1

}∞

n=0
, D∗E can be viewed as the weighted backward shift

Sα(x0, x1, x2, . . .) =
(√2√

1
x1,

√
3√
2

x2,

√
4√
3

x3, . . .
)

,

for xi ∈ E , corresponding to the weight sequence α = {αn}∞
n=1 =

{√
n+1√

n

}∞

n=1
.

Moreover,
D∗kλ = λkλ,

for all λ ∈ D, so that the eigenvectors of D∗E corresponding to the eigenvalue
λ ∈ D are of the form kλe for e ∈ E .

2. MAIN RESULT

Let H be a separable Hilbert space. We assume that an operator T ∈ L(H)
satisfies the following assumptions:

(i)
∞
∑

n=1

‖Tn‖2

n+1 6 1;
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(ii)
∨

λ∈D
ker(T − λ) = H ; and

(iii) the subspaces ker(T − λ) depend analytically on the spectral parameter
λ ∈ D.

REMARK 2.1. Although assumption (i) looks technical at first sight, it can
easily be shown that certain nilpotent operators and operators with ‖T‖ < 1
are among those satisfying (i). We will see in the next section the importance of
placing this assumption in obtaining the main result.

By assumption (iii), we have for each λ ∈ D, a neighborhood Uλ of λ and
an operator-valued, bounded, analytic function Fλ ∈ H∞

H→H defined on Uλ with
ran Fλ(ω) = ker(T − ω) for ω ∈ Uλ. This analytic function Fλ has a left inverse
in L∞

H→H and it can be easily shown that dim ker(T− λ) is constant for all λ ∈ D.
Note that a Cowen–Douglas operator in Bm(D), where m is a positive integer,
satisfies assumptions (ii) and (iii) (cf. [4]). One of the main results in [4] states
that the disjoint union

ET = ä
λ∈D

ker(T − λ) = {(λ, vλ) : λ ∈ D, vλ ∈ ker(T − λ)}

is a Hermitian holomorphic vector bundle over D with the metric inherited from
H and the natural projection π, π(λ, vλ) = λ.

Since we are interested in working with the vector bundle ET for the study
of the operator T, we define a C∞ function Π defined on D, with values that are
orthogonal projections onto the fibers of ET , that is,

Π(λ) = Pker(T−λ),

for λ ∈ D. The following theorem is the main result of the paper. Here ∆ stands
for the normalized Laplacian

∆ = ∂∂ = ∂∂ =
1
4

( ∂2

∂x2 +
∂2

∂y2

)
,

and S2 is the Hilbert–Schmidt class of operators.

THEOREM 2.2. Let T ∈ L(H) satisfy assumptions (i) through (iii). Let

dim ker(T − λ) = n < ∞

for every λ ∈ D, and let Π(λ) denote the orthogonal projection onto ker(T− λ). If T is
similar to the backward shift operator D∗n on the vector-valued space Dn, that is, if there
exists a bounded, invertible operator A : Dn → H satisfying TA = AD∗n, then

∆φ(λ) >
∂Π(λ)

∂λ

2

S2
+ l(λ) for all λ ∈ D,
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for some bounded subharmonic function φ defined on D, where

l(λ) =


n[log(1−|λ|2)+|λ|2]

[log(1−|λ|2)(1−|λ|2)]2 if 0 6= λ ∈ D,

− n
2 if λ = 0.

The − 1
2 appearing in the theorem is the limit of log(1−|λ|2)+|λ|2

[log(1−|λ|2)(1−|λ|2)]2 as λ ap-

proaches 0. Taking note that − ∂Π(λ)
∂λ is the second fundamental form of the bun-

dle ET , we can see that −
 ∂Π(λ)

∂λ

2

S2
is its curvature [7]. The other term l(λ) to

the right of the inequality is the curvature for ED∗n for λ 6= 0.

3. COMPUTATION OF ET

Let us first consider the following model theorem by V. Müller [9] that gen-
eralizes and plays the role of the results by B. Sz-Nagy and C. Foias [10] and by
J. Agler [1], [2] in our previous work. Recall that the backward shift operator D∗

in the Dirichlet space DE is of the form

Sα(x1, x2, . . .) =
(√2√

1
x1,

√
3√
2

x2,

√
4√
3

x3, . . .
)

,

with the weight sequence α = {αn}∞
n=1 =

{√
n+1√

n

}∞

n=1
.

THEOREM 3.1. Let α = {αn}∞
n=1 be such that αj > αj+1 > 0 for all j > 1. Then

there exists a subspace K ⊂ DE , SαK ⊂ K, such that T is unitarily equivalent to Sα|K
if and only if

∞
∑

n=1
‖Tn‖2bn 6 1, where for n > 1, bn = α−2

n · · · α−2
1 .

Theorem 3.1 provides the grounds for having assumption (i) about T; for
D∗, we have bn = 1

n+1 . It allows us to apply Theorem 3.1 to conclude that T is
unitarily equivalent to D∗E restricted to some invariant subspace.

We therefore have the eigenspace structure of T = D∗E |K as

ker(T − λ) = {kλe : e ∈ E(λ)},

where E(λ) is the subspace

E(λ) = {e ∈ E ; kλe ∈ K}.

Note that ker(T − λ) is a holomorphic vector bundle due to assumption (iii) and
this implies that the family of subspaces E(λ) is again a holomorphic vector bun-
dle over D.

The vector-valued Dirichlet space DE can be realized as the tensor product
D ⊗ E and one can then express each fiber of ET as

ker(T − λ) =
∨
{kλ} ⊗ E(λ).
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Having this tensor product form of the eigenvector bundle, one can now repre-
sent Π(λ), the orthogonal projection onto ker(T − λ), as a tensor product of the
operators Π1(λ) and Π2(λ), which are the orthogonal projections from D onto∨{kλ} and from E onto E(λ), respectively:

Π(λ) = Π1(λ)⊗Π2(λ).

It will be shown next from the theorems stated below that the proof of the
main theorem really depends on the second part Π2(λ) of Π(λ). Note first that

rank Π1(λ) = 1,

and that
rank Π(λ) = rank Π2(λ) = n.

THEOREM 3.2. For 0 6= λ ∈ D,∂Π(λ)

∂λ

2

S2
= n

∂Π1(λ)

∂λ

2

S2
+
∂Π2(λ)

∂λ

2

S2

= − n[log(1− |λ|2) + |λ|2]
[log(1− |λ|2)(1− |λ|2)]2 +

∂Π2(λ)

∂λ

2

S2
.

Proof. For the first equality, we use the product rule, the fact that for an
orthogonal projection P, we have

P
2

S2
= rank P, and the identities

Π2(λ)
∂Π2(λ)

∂λ
= 0,

and

(I −Π2(λ))
∂Π2(λ)

∂λ
Π2(λ) =

∂Π2(λ)

∂λ
,

that follow from assumption (iii). For details on these identities, we refer the
reader to [5] or [8]. To complete the proof, it suffices to show the identity∂Π1(λ)

∂λ

2

S2
= − log(1− |λ|2) + |λ|2

[log(1− |λ|2)(1− |λ|2)]2 .

By [4], the curvature of ED∗ can be calculated via the simple formula

−∆ log ‖kλ‖2,

where kλ(z) = 1
λz

log( 1
1−λz

) for λ 6= 0, and this will prove the identity. One can
also give an alternative proof as follows:

First, the reproducing kernel property of kλ implies that

‖kλ‖2
2 = − log(1− |λ|2)

|λ|2 .

Therefore for f ∈ D,

Π1(λ) f = − |λ|2
log(1− |λ|2) f (λ)kλ.
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If we take ∂
∂λ and use the fact that ∂ f (λ)

∂λ = 0, ∂Π1(λ)
∂λ f equals

− f (λ)λ
[log(1− |λ|2)]2

([
log(1− |λ|2) + |λ|2

1− |λ|2
]
kλ + λ log(1− |λ|2)k̃λ

)
,

where

k̃λ(z) =
∂

∂λ
kλ(z) =

λz2 + z(1− λz) log(1− λz)
(1− λz)(λz)2 .

Next, since

〈 f , k̃λ〉 = f ′(λ),

for all f ∈ D,

‖k̃λ‖2
2 = ‖k̃λ‖

2
2 = − (1− |λ|2)2 log(1− |λ|2) + |λ|2 − 2|λ|4

(1− |λ|2)2|λ|4 ,

and using the reproducing property for kλ one more time results in

〈k̃λ, kλ〉 =
|λ|2λ + λ(1− |λ|2) log(1− |λ|2)

(1− |λ|2)|λ|4 .

All of the above calculations add up to help us conclude that∥∥∥[ log(1− |λ|2) + |λ|2
1− |λ|2

]
kλ + λ log(1− |λ|2)k̃λ

∥∥∥2

2

=
[log(1− |λ|2)]2 + |λ|2 log(1− |λ|2)

(1− |λ|2)2 .

Thus, ∂Π1(λ)

∂λ

2
= − log(1− |λ|2) + |λ|2

[log(1− |λ|2)(1− |λ|2)]2 ,

and since rank ∂Π1(λ)
∂λ = 1, the operator and the Hilbert–Schmidt norms of ∂Π1(λ)

∂λ
are the same.

THEOREM 3.3. For λ = 0,∂Π(λ)

∂λ

2

S2
=
∂Π2(λ)

∂λ

2

S2
.

Proof. For λ = 0, k0(z) = 1 so that
 ∂Π1(λ)

∂λ

2
= 0.

Therefore, in order to prove Theorem 2.2, it is enough to show the existence
of a bounded, subharmonic function φ defined on D such that

∆φ(λ) >
∂Π2(λ)

∂λ

2

S2
.
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4. PROOF OF THE NECESSITY

It is obvious that similar operators induce a bundle map bijection between
the corresponding eigenvector bundles. If Ψ is such a bundle map between
ET and ED∗ , then it is an analytic function of λ that linearly moves each fiber
ker(D∗n − λ) to ker(T − λ) for every λ ∈ D. It should then be of the form

Ψ(kλe) = kλ · F(λ)e,

for a bounded, analytic, operator-valued function F ∈ H∞
Cn→E whose range equals

E(λ), such that

c−1 I 6 F∗(λ)F(λ) 6 cI,

for all λ ∈ D and for all e ∈ Cn. Hence, the orthogonal projection Π2(λ) from E
onto E(λ) can be represented in terms of the operator F(λ) as

Π2(λ) = F(λ)(F∗(λ)F(λ))−1F∗(λ).

Now differentiating, we get

∂Π2(λ)

∂λ
= (I −Π2(λ))F′(λ)(F(λ)∗F(λ))−1F(λ)∗,

and therefore, ∂Π2(z)
∂z

S2
6 C

F′(z)
S2

.

We then take φ(λ) =
F(λ)

2
S2

and note that

∆φ(λ) =
F′(λ)

2
S2

to end the proof of Theorem 2.2.

5. REMARK ON THE SUFFICIENCY

Unlike in previous work, one can no longer use the theorem by S. Treil and
B.D. Wick [11] to conclude the similarity of T to D∗n from the existence of a func-
tion φ. The bounded operator that establishes the similarity between them in
other spaces was a Toeplitz operator with symbol that is related to the outer part
of the analytic projection formed from Π2(λ). However, there are issues with the
boundedness of the Toeplitz operator thus formed in the Dirichlet space setting
and the problem of whether it has dense range ([3], [6]) is still another obstacle.
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