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ABSTRACT. Let B be a bounded self-adjoint operator and let A be a nonnega-
tive self-adjoint unbounded operator. It is shown that if BA is normal, it must
be self-adjoint and so must be AB. Commutativity is necessary and sufficient
for this result. If AB is normal, it must be self-adjoint and BA is essentially
self-adjoint. Although the two problems seem to be alike, two different and
quite interesting approaches are used to tackle them.
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INTRODUCTION

In [12], the following result (among others) was proved:

THEOREM 0.1. Let A be an unbounded self-adjoint operator and let B be a positive
(or negative) bounded operator. If AB (respectively BA) is normal, then AB (respectively
BA) is self-adjoint.

The foregoing results have applications for example to the problem of com-
mutativity up to a factor (see [4]). They also provide us with a tool for commuta-
tivity of self-adjoint operators (see the proof of Theorem 0.1 in [12]).

The “AB case” was generalized in [12] to the case of two unbounded self-
adjoint operators A and B. Later in [13] it was shown that under the same con-
ditions, the normality of BA does not imply anymore its self-adjointness. But,
there are still two cases to look at, namely: keeping B bounded, but taking A to
be positive (both self-adjoint):

(i) Does AB normal imply AB self-adjoint?
(ii) Does BA normal imply BA self-adjoint?
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These are the main questions asked in this paper. Commutativity relations
play a vital role in their consideration. Other issues that arise are the domains
and closedness of unbounded operators.

To prove the results we first assume basic notions and results on unbounded
operator theory. For basic references, see [5], [10], [20], [22] and [24]. Recall that a
densely defined unbounded operator A is: normal if it is closed and AA∗ = A∗A,
symmetric if A ⊂ A∗ and self-adjoint if A = A∗. Observe that both “symmetric”
and “normal” are weaker than “self-adjoint”, but one of the easy and nice results
is: a normal and symmetric operator must be self-adjoint. Also, remember that
the commutativity between a bounded B and an unbounded A is expressed as
BA ⊂ AB.

Before finishing the introduction, we recall some other results (needed in
the sequel) which cannot be considered as elementary.

The first is the well-known Fuglede–Putnam theorem.

THEOREM 0.2 (for a proof, see [5]). If T is a bounded operator and and N and
M are unbounded and normal, then

TN ⊂ MT =⇒ TN∗ ⊂ M∗T.

COROLLARY 0.3. If T is a bounded operator and and N and M are unbounded
and normal, then

TN = MT =⇒ TN∗ = M∗T.

The next is a generalization of the Fuglede theorem.

THEOREM 0.4 (Mortad, [12]). Let T be an unbounded self-adjoint operator with
domain D(T). If N is an unbounded normal operator such that D(N) ⊂ D(T), then

TN ⊂ N∗T =⇒ TN∗ ⊂ NT.

We also note the following.

LEMMA 0.5. If A and B are densely defined with inverse B−1 in B(H), then
(AB)∗ = B∗A∗. In particular, if U is unitary, then

(UAU)∗ = U∗(UA)∗ = U∗A∗U∗.

LEMMA 0.6. If A and B are densely defined and closed such that either A is in-
vertible or B is bounded, then AB is closed.

For other related results, see [6], [7], [8], [16] and [21].

1. MAIN RESULTS

THEOREM 1.1. Let A and B be two self-adjoint operators where only B is bounded.
Assume further that A is positive and that BA is normal. Then both BA and AB are self-
adjoint. Besides one has AB = BA.
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Proof. We may write

A(BA) = (AB)A = (BA)∗A.

Since BA is normal, (BA)∗ is normal too. Since D(BA) = D(A), Theorem 0.4
applies and yields

A(BA)∗ ⊂ BAA

or

(1.1) A2B ⊂ BA2.

Let us transform the previous into a commutativity between B and A2 (i.e.
BA2 ⊂ A2B).

Since BA and (BA)∗ are normal, Corollary 0.3 allows us to write

B(BA)∗ = B(AB) = (BA)B =⇒ B(BA) = (BA)∗B

or

(1.2) B2 A = AB2.

This tells us that both B2 A and AB2 are self-adjoint. Continuing we note
that

B2 A2 = AB2 A = A2B2

and

(1.3) B2 A4 = B2 A2 A2 = A2B2 A2 = A4B2.

To prove B commutes with A2, we first show that BA2 is normal. We have

(BA2)∗BA2 =A2BBA2

⊃A2BA2B (by inclusion (1.1))

⊃A2 A2BB (by inclusion (1.1))

=A4B2 = B2 A4.

Passing to adjoints gives

(BA2
)∗BA2

= (BA2)∗BA2 ⊂ [(BA2)∗BA2]∗ ⊂ (B2 A4)∗ = A4B2.

But A4B2 is symmetric by equation (1.3) (it is even self-adjoint). Since BA2 is
closed, (BA2

)∗BA2 is self-adjoint, and since self-adjoint operators are maximally
symmetric, we immediately obtain

(1.4) (BA2
)∗BA2

= A4B2.

Similarly, we may obtain

B2 A4 = A4B2 = A2 A2BB ⊂ A2BA2B ⊂ BA2 A2B = BA2(BA2)∗

and passing to adjoints yields
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BA2
(BA2

)∗ = BA2
(BA2)∗ ⊂ [BA2(BA2)∗]∗ ⊂ (B2 A4)∗ = A4B2.

Similar arguments as above imply that

(1.5) BA2
(BA2

)∗ = A4B2.

By equations (1.4) and (1.5), we see that BA2 is normal and hence we de-
duce as

(BA2
)∗ = (BA2)∗ = A2B

that A2B is closed, in fact normal.
Since A2B is densely defined, we may adjoint relation (1.1) to obtain

(A2B)∗ ⊃ (BA2)∗ = A2B

from which A2B is symmetric. Since we have just seen that A2B is normal, we
infer that A2B is self-adjoint. Thus, we have arrived at the basic inclusion and
commutativity relation

BA2 ⊂ BA2
= (A2B)∗ = A2B = (BA2)∗.

In particular, we then know from Theorem 10 in [3] (or [10]) and the posi-
tivity of A that B commutes with A, that is,

BA ⊂ AB (= (BA)∗).

But both BA and (BA)∗ are normal. Since normal operators are maximally nor-
mal, we obtain BA = AB.

Accordingly,
BA = AB = (BA)∗ = (AB)∗,

and this completes the proof.

Now, we turn to the case of AB normal (keeping all the other assumptions,
except BA normal, as those of Theorem 1.1). The proof is very simple if we im-
pose the very strong condition of the closedness of BA. We have the following.

COROLLARY 1.2. Let A and B be two self-adjoint operators where only B is
bounded. Assume further that A is positive, AB is normal and that BA is closed. Then
both AB and BA are self-adjoint. Besides one has AB = BA.

Proof. Since AB is normal, and B is bounded, (BA)∗ is clearly normal. Hence
so is

(BA)∗∗ = BA = BA.

By Theorem 1.1, BA is self-adjoint. Therefore,

BA = (BA)∗ = AB,

that is, AB is self-adjoint.
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One may wonder that there are so many assumptions that AB is normal
would certainly imply that BA is closed. This is not the case as seen just below.

EXAMPLE 1.3. Let A be a self-adjoint, positive and boundedly invertible
unbounded operator. Let B be its (bounded) inverse. So B too is self-adjoint. It is
then clear

AB = I and BA ⊂ I.

Hence AB is self-adjoint (hence normal!) but BA is not closed.

A natural question is: what if BA is not closed, can we still show that the
normality of AB implies its self-adjointness? As in Theorem 1.1, to show that AB
is self-adjoint, it suffices to show that BA ⊂ AB. One of the ways of obtaining this
is via BA2 ⊂ A2B which may be obtained if for instance we have an intertwining
result of the type

NA ⊂ AN∗ =⇒ N∗A ⊂ AN

where N is an unbounded normal operator playing the role of AB and A (and also
B) is self-adjoint. Such an intertwining relation is, however, not true in general
as seen in the next example (we also note that none of the existing unbounded
versions of the Fuglede–Putnam theorem, as [12], [14], [17], [18] and [23], allows
us to get this desired “inclusion”).

EXAMPLE 1.4 (cf. [14]). Define the following operators A and N by

A f (x) = (1 + |x|) f (x) and N f (x) = −i(1 + |x|) f ′(x)

(with i2 = −1) respectively on the domains

D(A) = { f ∈ L2(R) : (1 + |x|) f ∈ L2(R)}

and
D(N) = { f ∈ L2(R) : (1 + |x|) f ′ ∈ L2(R)}.

Then A is self-adjoint and positive (admitting even an everywhere defined
inverse) and N is normal. We then find that

AN∗ f (x) = NA f (x) = −i(1 + |x|)sgn(x) f (x)− i(1 + |x|)2 f ′(x)

for any f in the equal domains

D(AN∗) = D(NA) = { f ∈ L2(R) : (1 + |x|) f ∈ L2(R), (1 + |x|)2 f ′ ∈ L2(R)}

and thus
AN∗ = NA.

However

AN 6⊂ N∗A and AN 6⊃ N∗A for AN f (x) = −i(1 + |x|)2 f ′(x)

whereas
N∗A f (x) = −2isgn(x)(1 + |x|) f (x)− i(1 + |x|)2 f ′(x).
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Thus the method of proof of Theorem 1.1 could not be applied to the case
AB and the approach then had to be different. After some investigation of pos-
sible counterexamples we were able instead to establish the affirmative result as
follows.

THEOREM 1.5. Let A and B be two self-adjoint operators where only B is bounded.
Assume further that A is positive and that AB is normal. Then both BA and AB are self-
adjoint. Besides one has AB = BA.

To prove it, we need a few lemmas which are also interesting in their own
right.

LEMMA 1.6. Let A, B be self-adjoint and B ∈ B(H). If AB is densely defined,
then we have:

BA = (AB)∗.

This easily follows from

(BA)∗ = AB =⇒ (AB)∗ = (BA)∗∗ = BA.

In all the coming lemmas we assume that A and B are two self-adjoint op-
erators such that B ∈ B(H) and that AB is normal.

LEMMA 1.7. We have:
|B|A ⊂ A|B|.

Proof. We may write

B(AB) = BAB ⊂ BAB.

Since both AB and BA are normal, Theorem 0.2 yields

B(AB)∗ ⊂ (BA)∗B = (BA)∗B or merely B2 A ⊂ AB2.

Finally, by [9] (or [15]), we obtain

|B|A ⊂ A|B|.

Before giving the next lemmas, let

B = U|B| = |B|U

be the polar decomposition of the self-adjoint B, where U is unitary (cf. [20]).
Hence

B = U∗|B| = |B|U∗.
One of the major points is that U is even self-adjoint. To see this, just re-do the
proof of Theorem 12.35(b) in [20] in the case of a self-adjoint operator. Then use
the (self-adjoint!) functional calculus to get that U is self-adjoint. Another proof
may be found in [2]. Therefore, U = U∗ and U2 = I.

Let us also agree that any U which appears from now on is the U involved
in this polar decomposition of B.
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LEMMA 1.8. We have:
(AB)∗ = UABU

so that
(AB)∗U = UAB and (AB)U = U(AB)∗.

Proof. Since |B|A ⊂ A|B|, we have UBA ⊂ ABU. Hence

UBAU ⊂ AB or (AB)∗ ⊂ (UBAU)∗.

Since U is bounded, self-adjoint and invertible, we clearly have (by Lemma 0.5)

(UBAU)∗ = U(BA)∗U = UABU.

Since AB is normal, so are UABU and (AB)∗ so that

(AB)∗ ⊂ UABU =⇒ (AB)∗ = UABU

because normal operators are maximally normal.

LEMMA 1.9. Assume also that A > 0. Then A|B| is positive, self-adjoint and we
have:

|AB| = A|B|.
Proof. First, remember by Lemma 1.7 that |B|A ⊂ A|B|. Hence A|B| is pos-

itive and self-adjoint as both |B| and A are commuting and positive (see e.g. Ex-
ercise 23, page 113 of [22]). Now, by Lemma 1.8 we have

AB(AB)∗ = ABUABU = A|B|A|B| = (A|B|)2.

Since AB is normal, we have

|AB|2 = (AB)∗AB = (A|B|)2

so that (for instance by Theorem 11 of [3])

|AB| = A|B|.

LEMMA 1.10. The operator UAB is normal.

Proof. First, UAB is closed as U is invertible and AB is closed. Now,

UAB(UAB)∗ = UAB(AB)∗U

= (AB)∗U(AB)∗U (by Lemma 1.8)

= (AB)∗ABU2 (by Lemma 1.8)

= (AB)∗(AB).

On the other hand,

(UAB)∗UAB = (AB)∗U2 AB = (AB)∗AB,

establishing the normality of UAB.

LEMMA 1.11. We have:

U|AB| = |AB|U.
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Proof. Since UAB is normal, we clearly have

UAB(AB)∗U = (AB)∗AB

which entails
UAB(AB)∗ = U(AB)∗AB = (AB)∗ABU,

i.e.
U|AB|2 = |AB|2U.

Hence (by [3]), we are sure at least that U|AB| ⊂ |AB|U. Since |AB| is self-adjoint,
a similar argument to that used in the proof of Lemma 1.8 gives us

U|AB| = |AB|U.

LEMMA 1.12. Assume also that A > 0. Then B commutes with A, i.e. BA ⊂ AB.

Proof. We have by Lemmas 1.9 and 1.11

U|AB| = |AB|U ⇐⇒ UA|B| = A|B|U ⇐⇒ UA|B| = AB.

Using Lemma 1.7
U|B|A ⊂ AB or BA ⊂ AB.

We are now ready to prove Theorem 1.5.

Proof. By Lemma 1.12, BA ⊂ AB so that

(AB)∗ ⊂ AB.

Therefore, AB is self-adjoint as we already know that D(AB) = D[(AB)∗]. Fi-
nally, Lemma 1.6 gives

AB = BA.

The question of the essential self-adjointness of a product of two self-adjoint
operators is not easy. In [12], a three page counterexample was constructed to
show that if A and B are two unbounded self-adjoint operators such that B >
0, then the normality of AB does not entail its self-adjointness. Related to the
question of essential self-adjointness of products, the reader may consult [11].
Having said this, now we may rephrase the result of Theorem 1.5 as follows.

COROLLARY 1.13. Let A and B be two self-adjoint operators where only B is
bounded. Assume further that A is positive and that BA is normal. Then BA is essen-
tially self-adjoint.

Proof. Since BA is normal, so is (BA)∗ or AB. Then by Theorem 1.5, AB is
self-adjoint. By Lemma 1.6, BA = (AB)∗ so that BA is self-adjoint.

In the end, we give an answer to an open problem from [4] concerning com-
mutativity up to a factor.

PROPOSITION 1.14. Let A and B be self-adjoint operators where B is bounded.
Assume that BA ⊂ λAB 6= 0 where λ ∈ C. Then λ = 1 if A is positive.
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Proof. By Proposition 2.2 of [4], we already know that AB is normal. By
Theorem 1.5, AB is then self-adjoint. Now,

BA ⊂ λAB =⇒ 1
λ

BA ⊂ AB.

Hence

AB = (AB)∗ ⊂ 1
λ

AB.

But D(AB) = D(αAB) for any α 6= 0. Therefore,

AB =
1
λ

AB or simply λ = 1.

CONCLUSION

In this conclusion, we summarize all the related results to the problem con-
sidered in this paper. These are gathered from the present paper, [12] and [13]:

THEOREM 1.15. Let A and B be two self-adjoint operators. Set N = AB and
M = BA.

(i) If A, B ∈ B(H) (one of them is positive) and N (respectively M) is normal, then
N (respectively M) is self-adjoint. In either case, we also have AB = BA.

(ii) If only B ∈ B(H), B > 0 and N (respectively M) is normal, then N (respectively
M) is self-adjoint. Also BA ⊂ AB (respectively BA = AB).

(iii) If B ∈ B(H), A > 0 and N (respectively M) is normal, then N (respectively M)
is self-adjoint. Also BA ⊂ AB (respectively BA = AB).

(iv) If B ∈ B(H) and either A or B is positive, then M normal gives the essential
self-adjointness of M.

(v) If both A and B are unbounded and N is normal, then it is self-adjoint whenever
B > 0.

(vi) If both A and B are unbounded and N is normal, then N need not be essentially
self-adjoint even if B > 0.

(vii) If both A and B are unbounded and M is normal, then it is not necessarily self-
adjoint even when B > 0.
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