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ABSTRACT. We show that if the angle of a bounded linear operator, with
closed range and closed sum of its range and kernel, is less than π, then
its range and kernel are complementary. Applying our result we get simple
proofs of two known facts concerning eigenvalues lying in the boundary of
the numerical range. For an operator on a Hilbert space we present a suffi-
cient condition for range-kernel complementarity. Finally, we discuss some
properties of operators whose spectrum does not intersect all rays emanating
from the origin and show that such operators are surjective if and only if they
are injective.
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1. INTRODUCTION

Let X be a complex Banach space and A : X → X be a bounded linear
operator. We will denote the range of A by R(A) and the kernel of A by N(A).
Our aim in this paper is to show that a simple geometric property of the operator
A, namely that its angle (see (2.1) and (2.2) in the following section) is less than
π, implies that

(1.1) X = R(A)⊕ N(A),

provided that A has closed range and R(A) + N(A) is closed. Note that the last
hypothesis is unnecessary if X is a Hilbert space (see Theorem 3.7).

An immediate consequence of the above is that bounded accretive opera-
tors either satisfy (1.1) or at least have ascent equal to 1 (see the following section
for the definition of the ascent of an operator). This observation allows us to give
alternative proofs of two known results, the first by N. Nirschl and H. Schneider
[13], Theorem 10.10 of [3] and the second by A.M. Sinclair ([17], Proposition 3),
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concerning eigenvalues lying in the boundary of the numerical range of an oper-
ator.

We also show that if X is a strictly convex, finite dimensional Banach space
and A : X → X is a linear operator, then (1.1) holds if and only if there exists
0 6= t ∈ C such that the angle of tA is less than π.

Finally, we present two applications. The first is a sufficient condition, in-
volving the distance of the boundary of the numerical range from the origin, for
(1.1) to hold. The second exploits some properties of operators whose spectrum
does not intersect all rays emanating from the origin. In particular we show that
if X and X∗ are uniformly convex, then such operators are surjective if and only
if they are injective.

2. PRELIMINARIES

In what follows, X is a complex Banach space, ‖ · ‖ is its norm, X∗ is its dual
and 〈· , ·〉 is the duality product. Throughout we assume that X is equipped with
a semi-inner product [· , ·] satisfying [x, x] = ‖x‖2 for all x ∈ X. If X is a Hilbert
space, then we will denote the inner product of X by 〈·, ·〉.

By J : X → 2X∗ we denote the duality map of X which is defined by

J(x) = {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2 and ‖x∗‖ = ‖x‖}

for all x ∈ X. It is easy to see that J(x) is a non-empty w∗-compact subset of X∗ for
every x ∈ X. Moreover, if x, y ∈ X, then [y, x] = 〈x∗, y〉 for some x∗ ∈ J(x). Note
that this implies that if J is single-valued, as is the case if X∗ is strictly convex,
then the semi-inner product of X is unique.

Before we move on, we would like to discuss a continuity property of [· , ·],
which we will need for the proof of our main result. Recall that if Y1 and Y2 are
topological spaces and F : Y1 → 2Y2 is a multifunction, then F is called upper
semicontinuous at y ∈ Y1 if for every open subset V of Y2 containing F(y), there
exists an open neighborhood U of y such that F(U) ⊆ V ([7], Definition 1.2.3 and
Remark 1.2.4).

LEMMA 2.1. The duality map J from X equipped with the norm topology into X∗

equipped with the w∗-topology is upper semicontinuous.

Proof. It is easy to see that the graph of J from X equipped with the norm
topology into X∗ equipped with the w∗-topology is closed. That together with
the fact that J is locally compact (i.e. that for each x ∈ X there exists an open

neighborhood U of x such that J(U)
w∗

is w∗-compact) is equivalent, by Proposi-
tion 1.2.23 of [7], to J being upper semicontinuous.
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REMARK 2.2. Note that in Theorem 4.3 and Definition 4.2 of [4] it was shown
that J from the unit sphere of X equipped with the norm topology into the unit
sphere of X∗ equipped with the w∗-topology has closed graph.

Using Lemma 2.1 we can get the following continuity result for [· , ·].

PROPOSITION 2.3. Let (xn) be a sequence in X with ‖xn‖ = 1 for all n ∈ N and
x ∈ X such that xn → x. Then there exists a subsequence (xnk ) of (xn) such that

lim
k→∞

[x, xnk ] = 1.

Proof. By what we said after the definition of the duality map for each n ∈ N
there exists x∗n ∈ J(xn) such that [x, xn] = 〈x∗n, x〉. We will prove that (x∗n) has a
subsequence converging to some x∗ ∈ J(x) with respect to the w∗-topology.

Assume the contrary, i.e. that for every x∗ ∈ J(x) there exists a w∗-open
neighborhood V(x∗) of x∗ and Nx∗ ∈ N such that x∗n /∈ V(x∗) for all n > Nx∗ .
Obviously ⋃

x∗∈J(x)

V(x∗)

is an w∗-open cover of J(x) and hence, since J(x) is w∗-compact, there exists a
finite subcover

V =
K⋃

i=1

V(x∗i )

of J(x). Obviously, if N1 = max
16i6K

Nx∗i
, then x∗n /∈ V for all n > N1. Since, by

Lemma 2.1, J is upper semicontinuous from X equipped with the norm topology
into X∗ equipped with the w∗-topology, there exists an open neighborhood U of
x such that J(U) ⊆ V. But, since xn → x, there exists N2 ∈ N such that xn ∈ U
for all n > N2. So x∗n ∈ J(xn) ⊆ V for all n > N2. Combining the above we
get a contradiction and thus there exists a subsequence (x∗nk

) of (x∗n) such that

x∗nk

w∗→ x∗ ∈ J(x). So

lim
k→∞

[x, xnk ] = lim
k→∞
〈x∗nk

, x〉 = 〈x∗, x〉 = 1.

REMARK 2.4. The proof of Proposition 2.3 is based on Proposition I.2.19
of [7].

Let A : X → X be a bounded linear operator. The ascent α(A) of A is
the smallest positive integer k for which N(Ak) = N(Ak+1). If no such integer
exists, then α(A) = ∞. The descent δ(A) of A is the smallest positive integer k
for which R(Ak) = R(Ak+1). If no such integer exists, then δ(A) = ∞. Recall
(see Subsection 2.2 of [1], pp. 26–29 of [9], Chapter 13 of [10], V.6 of [18]) that the
following are equivalent:

(i) X = R(Ak)⊕ N(Ak),
(ii) α(A), δ(A) 6 k,
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(iii) there exists a bounded linear operator Ad : X → X (called the Drazin
inverse of A), satisfying

Ak+1 Ad = Ak, Ad AAd = Ad and AAd = Ad A.

If one of (i), (ii), (iii) holds, then R(Ak) is closed and α(A) = δ(A). In that
case we call the common value of α(A) and δ(A) the Drazin index of A and
denote it by i(A). We have that

R(Ak) ∩ N(Ak) = {0}

if and only if α(A) 6 k. Finally, note that for k = 1 Ad is a commuting generalized
inverse of A (the group inverse A#).

The cosine of a linear operator A : X → X with respect to [·, ·] is defined by

(2.1) cos A = inf
{ Re[Ax, x]
‖Ax‖ ‖x‖ : x /∈ N(A)

}
.

This concept was introduced by K. Gustafson in [6]. Using (2.1) one can define
the angle φ(A) of A by

(2.2) φ(A) = arccos(cos A).

The angle φ(A) of A has an obvious geometric interpretation; it measures the
maximum (real) turning effect of A. Recall that a linear operator A : X → X is
called accretive if there exists some semi-inner product [·, ·] such that Re[Ax, x] > 0
for all x ∈ X. Obviously if A is accretive, then φ(A) 6 π/2 .

Let A : X → X be a bounded linear operator. The numerical range W(A) of
A corresponding to [·, ·] is defined by

W(A) = {[Ax, x] : ‖x‖ = 1},

whereas its spatial numerical range is defined by

V(A) = {〈x∗, Ax〉 : x∗ ∈ J(x), ‖x‖ = 1}.

Recall that (see Theorems 9.4 and 9.8 of [3]) ∂ co W(A) = ∂ co V(A), where by
∂ co S we denote the boundary of the closed convex hull of a set S.

If A, B : X → X are bounded linear operators with R(A) and R(B) closed,
then R(AB) is closed if and only if N(A) + R(B) is closed (see Corollary 1 of [12]).
In particular, if A : X → X is a bounded linear operator with R(A) closed, then
R(A2) is closed if and only if N(A) + R(A) is closed.

Finally, recall that if M, N are closed subspaces of X such that M * N, then

γ(M, N) = inf
x∈M,x/∈N

dist(x, N)

dist(x, M ∩ N)

(see p. 219 of [8]). We have that γ(M, N) > 0 if and only if M + N is closed ([8],
Theorem 4.2, p. 219).
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3. MAIN RESULT

We begin with an important property of the angle φ(A).

PROPOSITION 3.1. Let A : X → X be a linear operator. If R(A)∩N(A) 6= {0},
then φ(A) = π.

Proof. The hypothesis R(A) ∩ N(A) 6= {0} implies that there exists z ∈ X
with ‖z‖ = 1, Az 6= 0 and Az ∈ N(A). It is easy to see that for each n ∈ N with
n > 2 there exists tn > 0 such that for

xn =
1
n

z− tn
Az
‖Az‖

we have that ‖xn‖ = 1. Since ‖xn‖ = 1 for all n > 2, lim
n→∞

tn = 1, and so

lim
n→∞

xn = − Az
‖Az‖ .

Thus, by Proposition 2.3, we can find a subsequence (xnk ) of (xn) such that

lim
k→∞

[Az, xnk ]

‖Az‖ = −1.

Since Az ∈ N(A),

Re[Axn, xn]

‖Axn‖
=

Re[Az, xn]

‖Az‖ for all n > 2

and so

lim
k→∞

Re[Axnk , xnk ]

‖Axnk‖
= −1,

which implies that φ(A) = π.

REMARK 3.2. (i) It is easy to see that the above remains true for a not every-
where defined linear operator.

(ii) The converse of Proposition 3.1 does not hold. To see that let A = −IX .
Then φ(A) = π and R(A) ∩ N(A) = {0}.

(iii) Proposition 3.1 tells us that φ(A) < π implies that α(A) 6 1.
(iv) By (iii) φ(Ak) < π implies that α(Ak) 6 1 and so α(A) 6 k. Note that

φ(Ak) and φ(A) are not related.
(v) If X is finite dimensional, then by Proposition 3.1 we get that φ(A) < π

implies that X = R(A)⊕ N(A) and so i(A) 6 1.
(vi) If ϕ(tA) < π for some 0 6= t ∈ C, then R(tA) ∩ N(tA) = {0}. Thus, since

R(tA) = R(A) and N(tA) = N(A), we get that R(A) ∩ N(A) = {0}.
Using Proposition 3.1 we can get the following result about accretive oper-

ators.

COROLLARY 3.3. If A is an accretive linear operator, then α(A) 6 1.
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Obviously φ(A) 6 π/2 < π and so, by Proposition 3.1, α(A) 6 1.
We can now prove our main result.

THEOREM 3.4. Let A : X → X be a bounded linear operator with closed range
such that R(A) + N(A) is closed. If φ(A) < π, then X = R(A)⊕ N(A).

Proof. Assume first that N(A) = {0}. Then φ(A) < π implies that there
exists δ > 0 such that

Re[Ax, x]
‖Ax‖ ‖x‖ > −1 + δ for all x 6= 0

and so
Re[Ax, x] + ‖Ax‖ ‖x‖ > δ‖Ax‖ ‖x‖ for all x ∈ X.

On the other hand, since R(A) is closed, there exists c > 0 such that ‖Ax‖ > c‖x‖
for all x ∈ X. Thus there exists C > 0 such that

Re[Ax, x] + ‖Ax‖‖x‖ > C‖x‖2 for all x ∈ X

and we may apply Theorem 2.14 of [5] to get that R(A) = X.
For the general case, first note that, by Proposition 3.1, φ(A) < π im-

plies that α(A) 6 1. Assume now that δ(A) > 1 and hence R(A2) $ R(A).
Then A|R(A) : R(A) → R(A) is 1-1 but not onto. Moreover, by what we said
in the Preliminaries, our assumption that R(A) + N(A) is closed implies that
R(A|R(A)) = R(A2) is closed. Hence, by the first part of the proof, we get that
φ(A|R(A)) = π. Since φ(A|R(A)) > φ(A), we get a contradiction, and so δ(A) 6 1.
Therefore X = R(A)⊕ N(A).

REMARK 3.5. (i) Theorem 2.14 of [5] used in the above proof is the Banach
space version of a result by J. Saint-Raymond in [15] where some generalized
versions of the Lax–Milgram theorem were proved, answering a question posed
by B. Ricceri in [14].

(ii) The result of Theorem 3.4 is not true if A does not have closed range. To
see that let A : l2(N) → l2(N) with A((xn)) = ((1/n) xn). Then A does not have
closed range, φ(A) < π and R(A) + N(A) 6= X.

(iii) What we said in Remark 3.2(ii) shows that X = R(A) ⊕ N(A) does not
imply that φ(A) < π.

(iv) Theorem 3.4 tells us that if A has closed range and R(A) + N(A) is closed,
then φ(A) < π implies that i(A) 6 1.

(v) By (iv) if R(Ak) and R(Ak) + N(Ak) are closed, then φ(Ak) < π implies
that i(Ak) 6 1 and so i(A) 6 k.

(vi) If A is a bounded linear operator with closed range, R(A) + N(A) is closed
and ϕ(tA) < π for some 0 6= t ∈ C, then X = R(A)⊕ N(A).

Returning to accretive operators we have the next corollary.

COROLLARY 3.6. If A is an accretive, bounded linear operator with closed range,
then X = R(A)⊕ N(A).
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Proof. Using Proposition 1 of [17] we get that if A is an accretive, bounded
linear operator with closed range, then R(A) + N(A) is closed. The result then
follows from Theorem 3.4.

We will now show that if X is a Hilbert space, then the hypothesis that
R(A) + N(A) is closed can be dropped.

THEOREM 3.7. Let X be a Hilbert space and A : X → X be a bounded linear
operator with closed range. If φ(A) < π, then X = R(A)⊕ N(A).

Proof. By Theorem 3.4 we need to prove that R(A) + N(A) is closed. If we
assume that this is not true, then, by what we said in the Preliminaries, R(A2) is
not closed and so R(A|R(A)) is not closed. Thus we can find a sequence (zn) in X
such that

‖Azn‖ = 1 and(3.1)

‖A2zn‖ 6
1
n2(3.2)

for all n ∈ N. Without loss of generality we may assume that (zn) lies in N(A)⊥.
Since R(A|N(A)⊥) = R(A), A : N(A)⊥ → X is 1-1 with closed range and so there
exists c > 0 such that ‖Azn‖ > c ‖zn‖ for all n ∈ N. Thus (zn) is bounded and so

(3.3) lim
n→∞

∥∥∥ 1
n

zn

∥∥∥ = 0

and in particular there exists n0 ∈ N such that ‖(1/n) zn‖ < 1 for all n > n0. As
in the proof of Proposition 3.1, for each n > n0 there exists tn > 0 such that for

xn =
1
n

zn − tn Azn

we have that

(3.4) ‖xn‖ = 1.

By (3.1) and (3.4) we get that

(3.5) lim
n→∞

tn = 1.

By (3.1), (3.2) and (3.5) we get that

lim
n→∞

‖Azn − n tn A2zn‖ = 1

and so

(3.6) lim
n→∞

n ‖Axn‖ = 1.

Using the Cauchy–Schwarz inequality, (3.1), (3.2) and (3.4) we get that

Re〈Axn, xn〉
‖Axn‖

6
‖(1/n) zn‖

n ‖Axn‖
− tn

n ‖Axn‖
+

tn

n2 ‖Axn‖
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for all n > n0. But, by (3.3), (3.5) and (3.6),

lim
n→∞

(‖(1/n) zn‖
n ‖Axn‖

− tn

n ‖Axn‖
+

tn

n2 ‖Axn‖

)
= −1.

Therefore φ(A) = π, which is a contradiction. Hence X = R(A)⊕ N(A).

REMARK 3.8. (i) In the proof of the previous theorem the properties of a
Hilbert space which were used are that there exists a complement of N(A) and
that 〈·, ·〉 is additive in the second variable. We do not know if the result of the
theorem holds if we assume that X is a Banach space and N(A) is complemented
in X.

(ii) If X is a Hilbert space and A is a bounded linear operator with closed range
such that ϕ(tA) < π for some 0 6= t ∈ C, then X = R(A)⊕ N(A).

We will now discuss the case of a finite dimensional X. We will show that,
under the additional assumption that X is strictly convex, we can use the angle
to characterize operators A for which X = R(A)⊕ N(A).

Recall that if X is strictly convex and x, y ∈ X with x, y 6= 0, then [x, y] =
‖x‖ ‖y‖ implies that y = λx for some λ 6= 0 ([2], Theorem 5.1).

THEOREM 3.9. Let X be a strictly convex, finite dimensional Banach space and
A : X → X be a linear operator. Then X = R(A)⊕ N(A) if and only if there exists
0 6= t ∈ C such that ϕ(tA) < π.

Proof. If ϕ(tA) < π, then, by Remark 3.2(v) and (vi) we get that X =
R(A) ⊕ N(A). For the converse we will first show that if B : X → X is a lin-
ear operator with X = R(B) ⊕ N(B) and ϕ(B) = π, then B has at least one
negative eigenvalue. Since ϕ(B) = π, there exists a sequence (zn) in X such that
zn /∈ N(B) and ‖zn‖ = 1 for all n ∈ N and

(3.7) lim
n→∞

Re[Bzn, zn]

‖Bzn‖
= −1.

Since X = R(B)⊕ N(B) for each n ∈ N there exist 0 6= xn ∈ R(B) and yn ∈ N(B)
such that zn = xn + yn. Since X is finite dimensional we get that, by passing to
subsequences denoted again by (xn) and (yn), there exist x ∈ R(B) and y ∈ N(B)
such that lim

n→∞
xn = x and lim

n→∞
yn = y. We will prove that x 6= 0. Let (ei)

m
i=1 be a

basis of R(B). Then for each 1 6 i 6 m there exists a sequence (ai
n) in C such that

xn =
m

∑
i=1

ai
nei

for all n ∈ N. Let cn = max
16i6m

|ai
n|, n ∈ N and bi

n = ai
n/cn, n ∈ N and i = 1, 2, . . . , m.

Then cn > 0 for all n ∈ N, |bi
n| 6 1 for all n ∈ N and i = 1, 2, . . . , m, and

xn = cn

m

∑
i=1

bi
nei
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for all n ∈ N. Moreover there exists 1 6 i0 6 m such that |bi0
n | = 1 for infinitely

many n’s. Obviously for each i = 1, 2, . . . , m there exists a subsequence of (bi
n),

which for simplicity we denote again by (bi
n), such that lim bi

n = bi. We have that

Re[Bzn, zn]

‖Bzn‖
=

Re[Bxn, xn + yn]

‖Bxn‖
=

Re[B(bi0
n ei0 + ∑i 6=i0 bi

nei), xn + yn]

‖B(bi0
n ei0 + ∑i 6=i0 bi

nei)‖
.

Assume that x = 0. Then ‖y‖ = 1 and, by (3.7),

(3.8)
Re[B(bi0 ei0 + ∑i 6=i0 biei), y]
‖B(bi0 ei0 + ∑i 6=i0 biei)‖

= −1.

Let w = bi0 ei0 + ∑
i 6=i0

biei 6= 0. Then, by (3.8) and the Cauchy–Schwarz inequality,

we get |[Bw, y]| = ‖Bw‖. Hence, as we mentioned above, the strict convexity of
X implies that Bw and y are linearly dependent and so 0 6= y ∈ R(B) which is a
contradiction. Therefore x 6= 0. Hence z = x+ y /∈ N(B), ‖z‖ = 1 and Re[Bz, z] =
−‖Bz‖. As before we get that Bz and z are linearly dependent and [Bz, z] is real.
Hence Bz = λz for some λ < 0 and thus B has a negative eigenvalue.

To conclude the proof take t ∈ C such that λt is not a negative real number
for all λ ∈ σ(A). Then tA has no negative eigenvalues and X = R(tA)⊕ N(tA).
Hence by the previous part of the proof ϕ(tA) < π.

REMARK 3.10. (i) If X is infinite dimensional, then X = R(A)⊕ N(A) does
not imply that there exists 0 6= t ∈ C such that ϕ(tA) < π. To see that let A be
the bilateral shift on l2(Z). Then A is unitary and σ(A) is equal to the unit circle.
Hence for any 0 6= t ∈ C

inf
‖x‖=1

Re〈(tA)x, x〉
‖(tA)x‖ = −1.

Thus φ(tA) = π for all t 6= 0.
(ii) We do not know if the result of the above theorem holds if we omit the

hypothesis that X is strictly convex.

4. APPLICATIONS

Our first application is a simple proof of a theorem of N. Nirschl and
H. Schneider [13], and Theorem 10.10 of [3].

THEOREM 4.1 (Nirschl and Schneider). Let A : X → X be a bounded linear
operator with 0 ∈ ∂ co V(A). Then α(A) 6 1.

Proof. As we already mentioned in the Preliminaries,

∂ co V(A) = ∂ co W(A).
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Since 0 ∈ ∂ co W(A), there exists some 0 6= t ∈ C such that Re λ > 0 for all
λ ∈W(tA). Thus

inf{Re[(tA)x, x] : ‖x‖ = 1} > 0

and so, by Corollary 3.3, we get that α(tA) 6 1. Since α(tA) = α(A), we have
that α(A) 6 1.

In exactly the same manner, using Corollary 3.6 instead of Corollary 3.3, and
i(tA) = i(A), we can get an alternative proof of the following result of A.M. Sin-
clair ([17], Proposition 3).

PROPOSITION 4.2 (Sinclair). Let A : X → X be a bounded linear operator with
closed range. If 0 ∈ ∂ co V(A), then i(A) 6 1.

Our next result is an application of Theorem 3.7 and presents a sufficient
condition for a bounded linear operator A with closed range to satisfy X =
R(A) ⊕ N(A). This condition involves the distance of the boundary of the nu-
merical range from the origin.

To proceed we need the following lemma.

LEMMA 4.3. Let X be a Hilbert space and A : X → X be a bounded linear operator
such that R(A) ⊥ N(A). If φ(A) > π/2, then φ(A) = φ(A|N(A)⊥).

Proof. Assume that (zn) is a sequence in X such that zn /∈ N(A), ‖zn‖ = 1
for all n ∈ N, and

lim
n→∞

Re〈Azn, zn〉
‖Azn‖

= cos A.

Then for each n ∈ N there exist xn ∈ N(A)⊥ and yn ∈ N(A) such that zn =
xn + yn. Since R(A) ⊥ N(A),

(4.1)
Re〈Azn, zn〉
‖Azn‖

=
Re〈Axn, xn〉
‖Axn‖ ‖xn‖

‖xn‖ > cos A ‖xn‖

for all n ∈ N. Passing to a subsequence we may assume that lim
n→∞

‖xn‖ = 1.

Indeed if we assume the contrary, i.e. that lim
n→∞

‖xn‖ < 1, using φ(A) > π/2, we

get cos A lim
n→∞

‖xn‖ > cos A, which contradicts (4.1). So

cos(A|N(A)⊥) 6 lim
n→∞

Re〈Axn, xn〉
‖Axn‖ ‖xn‖

= cos A.

On the other hand, by definition, cos(A|N(A)⊥) > cos A, and so cos(A|N(A)⊥) =

cos A. Hence φ(A|N(A)⊥) = φ(A).

REMARK 4.4. Lemma 4.3 does not hold if ϕ(A) 6 π/2. To see that let A be
an orthogonal projection with A 6= 0, IX . Then R(A) ⊥ N(A) and

φ(A) =
π

2
> φ(A|N(A)⊥) = 0.



THE ANGLE OF AN OPERATOR AND RANGE-KERNEL COMPLEMENTARITY 215

If A has closed range, by cA we denote the largest positive constant c such
that ‖Ax‖ > c‖x‖ for all x ∈ N(A)⊥. Our result is the following.

THEOREM 4.5. Let X be a Hilbert space, A : X → X be a bounded linear operator
with closed range such that R(A) + N(A) is closed and R(A) ∩ N(A) = {0} and let
ρA = cA · γ(R(A), N(A)). If

∂W(A) ∩ B(0, ρA) 6= ∅,

then X = R(A)⊕ N(A).

Proof. First of all note that, since R(A) is closed, cA > 0, and, since R(A) +
N(A) is closed, γ(R(A), N(A)) > 0. Thus ρA > 0. Moreover note that, since
R(A) ∩ N(A) = {0},

(4.2) γ(R(A), N(A)) = inf
0 6=x∈R(A)

dist(x, N(A))

‖x‖ .

If
0 6= λ = ρeiθ ∈ ∂W(A) ∩ B(0, ρA),

then 0 < ρ < ρA and hence if we multiply A by t = ei(π−θ) we get that

inf
‖x‖=1

Re〈(tA)x, x〉 = −ρ > −ρA.

Hence without loss of generality we may assume that

−ρA < inf
‖x‖=1

Re〈Ax, x〉 < 0 .

Let P be the orthogonal projection onto N(A)⊥. Since R(A) + N(A) is
closed, by Theorem 2.1 of [16], P|R(A) : R(A) → N(A)⊥ has closed range. More-
over, since R(A) ∩ N(A) = {0}, it is injective.

Let B : X → X with B = PA. Since P|R(A) : R(A) → N(A)⊥ is injective
we have that N(B) = N(A). Also since P|R(A) : R(A) → N(A)⊥ has closed
range, the operator B has closed range. Finally, it is obvious that R(B) ⊥ N(B).
We will show that X = R(B) ⊕ N(B). If φ(B) 6 π/2, then, by Theorem 3.4,
X = R(B)⊕ N(B).

On the other hand, if φ(B) > π/2, then, by Lemma 4.3, we get that φ(B) =
φ(B|N(B)⊥). By (4.2),

‖PAx‖ = d(Ax, N(A)) > γ(R(A), N(A))‖Ax‖ for all x ∈ X.

Thus ‖PAx‖ > ρA‖x‖ for all x ∈ N(A)⊥. Take x ∈ N(B)⊥ = N(A)⊥ such that
‖x‖ = 1 and Re〈Bx, x〉 < 0. Then using the above we get that

Re〈Bx, x〉
‖Bx‖ =

Re〈Ax, x〉
‖PAx‖ >

Re〈Ax, x〉
ρA

>
inf‖y‖=1 Re〈Ay, y〉

ρA
> −1.

Hence
φ(B) = φ(B|N(B)⊥) < π.
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Using Theorem 3.4 we get that X = R(B) ⊕ N(B). To conclude the proof note
that the operator

U =

(
(P|R(A))

−1 0
0 I

)
,

with respect to the decomposition X = R(B)⊕ N(B), is one-to-one and onto X.
Thus

X = R(A)⊕ N(A).

We will now deal with operators whose spectrum does not intersect all rays
emanating from the origin. Note that we will use again Lemma 4.3. By a ray
emanating from the origin we mean a set of the form

Rω = {0 6= t ∈ C : arg t = ω}
for some ω ∈ [0, 2π). To proceed we need the following lemma.

LEMMA 4.6. Let X be a Hilbert space and A : X → X be a bounded linear operator
with closed range such that R(A) ⊥ N(A). If ϕ(A) = π, then

σ(A) ∩ Rπ 6= ∅.

Proof. We will show that

σ(A) ∩ Rπ = ∅

implies that ϕ(A) < π. Assume that

σ(A) ∩ Rπ = ∅.

Then A + tI is invertible for all t > 0. First suppose that N(A) = {0}. If ϕ(A) =
π, then we can find a sequence (xn) in X with ‖xn‖ = 1 for all n ∈ N such that

lim
n→∞

Re〈Axn, xn〉
‖Axn‖

= −1.

Since A has closed range there exists c > 0 such that ‖Axn‖ > c. Hence, by
passing to a subsequence if necessary, we get that

lim
n→∞

Re〈Axn, xn〉 = −t0 and lim
n→∞

‖Axn‖ = t0

for some t0 > 0. Without loss of generality we may assume that t0 = 1 (if not
take (1/t0)A instead of A). We have that

1
2
|Re〈Axn, xn〉 − 1| 6

∥∥∥Axn − xn

2

∥∥∥ 6 1
2
(‖Axn‖+ 1)

for all n ∈ N and so lim
n→∞

‖(Axn − xn)/2‖ = 1. Since X is a Hilbert space

it is uniformly convex and thus using Proposition 5.2.8(d) of [11] we get that
lim ‖Axn + xn‖ = 0 which contradicts the invertibility of A+ I. Hence ϕ(A) < π.

For the case where N(A) 6= {0}, following the same steps as above we may
show that ϕ(A|N(A)⊥) < π. Hence, using Lemma 4.3, we get that

ϕ(A) = ϕ(A|N(A)⊥) < π.
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We can now prove that if R(A) ⊥ N(A) and σ(A) ∩ Rω = ∅ for some
ω ∈ [0, 2π), then X = R(A)⊕ N(A).

THEOREM 4.7. Let X be a Hilbert space and A : X → X be a bounded linear
operator with closed range such that R(A) ⊥ N(A). If

σ(A) ∩ Rω = ∅

for some ω ∈ [0, 2π), then X = R(A)⊕ N(A).

Proof. Since
σ(A) ∩ Rω = ∅

for t = ei(π−ω) we have that σ(tA) ∩ Rπ = ∅. Hence, by Lemma 4.6, we get that
ϕ(tA) < π, which, by Theorem 3.7, implies that

X = R(tA)⊕ N(tA) = R(A)⊕ N(A).

Note that in the first part of the proof of Lemma 4.6, the crucial property of
the Hilbert space X was its uniform convexity. Hence this part may be adapted
in the case of a uniformly convex Banach space. Adding this hypothesis, we
may now prove an interesting property of operators with closed range whose
spectrum does not intersect all rays emanating from the origin: they are surjective
if and only if they are injective.

THEOREM 4.8. Assume that both X and X∗ are uniformly convex Banach spaces
and A : X → X is a bounded linear operator with closed range such that

σ(A) ∩ Rω = ∅

for some ω ∈ [0, 2π). Then A is surjective if and only if it is injective.

Proof. Assume that A is injective. Using the same arguments as those in the
first part of the proof of Lemma 4.6 and arguing as above we get that ϕ(tA) < π
for some 0 6= t ∈ C. So by Theorem 3.4 we get that X = R(A).

Conversely if A is surjective, then A∗ is injective and, since σ(A∗) = σ(A),
we get, again as above, that A∗ is surjective and so A is injective.
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