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ABSTRACT. In 1955 Dye proved that two von Neumann factors not of type I2n
are isomorphic if and only if their unitary groups are isomorphic as abstract
groups. We consider an analogue for C∗-algebras and show that the topo-
logical general linear group is a classifying invariant for simple unital AH-
algebras of slow dimension growth and of real rank zero, and that the abstract
general linear group is a classifying invariant for unital Kirchberg algebras in
the UCT class.
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INTRODUCTION

Since the introduction of the Elliott invariant as a classifying invariant for
C∗-algebras, the classification program for C∗-algebras has been rapidly evolv-
ing. New invariants were introduced to enrich the program, some more general,
and other tailored to specific applications. For a large class of simple, amenable,
unital, separable C∗-algebras, Al-Rawashdeh, Booth and the first named author
showed in [1] that their unitary group forms a classifying invariant: from an iso-
morphism of the unitary group of such algebras, they deduced an isomorphism
of their Elliott invariant.

In this paper we look at the general linear group (i.e., the group of invertible
elements) of unital C∗-algebras as an invariant. For each unital C∗-algebra A we
will denote its general linear group by GL(A) and its set of idempotents by I(A)
(see Notation 1.3). Given two unital C∗-algebras A and B, and a group isomor-
phism ϕ : GL(A)→ GL(B) between their general linear groups, the formula

1− 2θϕ(e) = ϕ(1− 2e), e ∈ I(A),

induces a bijection θϕ : I(A) → I(B) between the set of idempotents of A and
B. This map is not in general an orthoisomorphism of idempotents (i.e., a bijec-
tive map which preserves orthogonality of commuting idempotents). However,
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it turns out that in many cases θϕ is essentially an orthoisomorphism. More pre-
cisely, generalising the notion of oddly decomposability given in [1] (see Defini-
tion 2.1), we show in Theorem 2.9 that there exist a partitioning of the non-trivial
elements of I(A) into two sets Io, Io, such that the map θ̃ϕ : I(A) → I(B) de-
fined by

θ̃ϕ(e) =


θϕ(e) if e ∈ Io,
1− θϕ(e) if e ∈ Io,
1 if e = 1,
0 if e = 0,

is an orthoisomorphism. Using the maps θ̃ϕ and ϕ between the idempotents and
invertibles of A and B we construct homomorphisms from K0(A) to K0(B) and
from K1(A) to K1(B) and invoke on classification to show A and B are isomor-
phic. By investigating which C∗-algebras are oddly decomposable we prove the
following two main results:

(i) Let A and B be simple, unital AH-algebras of slow dimension growth and
of real rank zero. Then A and B are isomorphic if and only if their general linear
groups are topologically isomorphic.

(ii) Let A and B be unital Kirchberg algebras in the UCT class. Then A and B
are isomorphic if and only if their general linear groups are isomorphic as abstract
groups.

In the case the algebras A and B are simple and finite dimensional we refer
to [21] by Schreier and Van der Waerden (see also [12], [15], and [22] for related
results).

1. PROPERTIES OF THE INDUCED MAP θϕ

Let A and B be two unital C∗-algebras. If ϕ : GL(A) → GL(B) is a group
homomorphism between the general linear groups of A and B, then ϕ defines a
map θ = θϕ : I(A)→ I(B) by setting

1− 2θϕ(e) = ϕ(1− 2e), e ∈ I(A).

A simple computation shows that θϕ(e) is an idempotent for each e ∈ I(A) mak-
ing θϕ well defined. If ϕ is moreover a bijection — or more generally if ϕ restricts
to a bijection of symmetries (elements whose square equals the unit) — it fol-
lows that θϕ is a bijection of idempotents. The following additional properties of
the map θ can be easily checked by adapting the arguments in [1] and [8] to the
present situation.

PROPOSITION 1.1. Let A and B be unital C∗-algebras, ϕ : GL(A) → GL(B) be
a group isomorphism and θ be the induced map between idempotents. Then

(i) θ(ueu−1) = ϕ(u)θ(e)ϕ(u)−1;



THE GENERAL LINEAR GROUP AS A COMPLETE INVARIANT FOR C∗ -ALGEBRAS 251

(ii) θ(0) = 0;
(iii) if e, f ∈ I(A) commute, then so do θ(e) and θ( f ) in I(B);
(iv) θ(e4 f ) = θ(e)4θ( f ), where 4 denotes the symmetric difference of commuting

idempotents, i.e., e4 f = e + f − 2e f .

If the center Z(B) of a unital C∗-algebra B is reduced to the scalars, and
ϕ : GL(A) → GL(B) is as above, then ϕ(−1) = −1: indeed, note that −1 is
a central element which is not 1, but its product with itself equals 1. The same
is true for ϕ(−1). As a consequence we get the following lemma, see also [1]
and [8].

LEMMA 1.2. Let A and B be unital C∗-algebras, whose center Z(B) = C1. Let
ϕ : GL(A)→ GL(B) be a group isomorphism and θ : I(A)→ I(B) be as above. Then
θ(1) = 1, and for each e ∈ I(A), θ(1− e) = 1− θ(e).

To simplify notation, let us introduce the following.

NOTATION 1.3. (i) The quadruple (A, B, ϕ, θ) will denote a pair of simple
unital C∗-algebras A and B, a group isomorphism ϕ : GL(A) → GL(B), and the
induced bijection θ : I(A)→ I(B).

(ii) Let A be a unital C∗-algebra. Denote by I(A) the set of idempotents in
A, and by I(A)̃ the set I(A)\{0, 1} of non-trivial idempotents in A. Denote by
GL(A) the general linear group of invertible elements in A.

DEFINITION 1.4. Let A be a unital C∗-algebra. We say that two idempotents
e, f ∈ I(A) are similar, denoted e ∼s f , if there exist u ∈ GL(A) such that

f = ueu−1.

The following lemma is a generalisation of Lemma 10 in [8] to simple, unital
C∗-algebras.

LEMMA 1.5. Let (A, B, ϕ, θ) be as in (1.3). Then for each fixed e ∈ I(A),

ϕ(λe + 1− e) ∈ Cθ(e) +Cθ(1− e), λ ∈ C\{0}.
Proof. Fix λ ∈ C\{0} and set x := ϕ(λe + 1− e). Since every idempotent in

B is similar to a projection (by Proposition 4.6.2 in [2]) we can choose u ∈ GL(B)
such that q = uθ(e)u−1 is a projection. For any subset S ⊆ B, let S′ denote its
relative commutant in B, and S′′ its (relative) bicommutant.

We show that uxu−1 ∈ {q}′. Since q = uθ(e)u−1 we just need to show that
xθ(e) = θ(e)x. This follows from xϕ(1− 2e) = ϕ(1− 2e)x.

We show uxu−1 ∈ {q}′′. Fix b ∈ {q}′. Since q is selfadjoint {q}′ is a C∗-
subalgebra of B and contains unitary elements ϕ(u1), . . . , ϕ(u4) that span b, for
some u1, . . . , u4 ∈ GL(A). Using ϕ(ui) ∈ {q}′ commutes with q = uθ(e)u−1

we have that u−1 ϕ(ui)u commutes with θ(e) and with ϕ(1− 2e). This implies
that ϕ−1(u−1)ui ϕ

−1(u) commutes with 1− 2e, with e and with λe + 1− e. We
now have that u−1 ϕ(ui)u commutes with x = ϕ(λe + 1 − e). Therefore ϕ(ui)
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commutes with uxu−1, and b commutes with uxu−1. Since b was an arbitrary
element in {q}′ we conclude that uxu−1 commutes with every element in {q}′,
i.e., uxu−1 ∈ {q}′′.

Since q is a projection, {q}′′ ∩ {q}′ = Cq +C(1− q), using the fact that B is
simple so the hereditary C∗-subalgebra qBq is simple and consequently has centre
Cq (similarly for 1− q). Multiplying uxu−1 on the left by u−1 and on the right by
u we see that x ∈ Cθ(e) +Cθ(1− e).

In the following we let C∗ denote the group (C\{0}, ·) of non-zero complex
numbers with multiplication as the group operation.

LEMMA 1.6. Let (A, B, ϕ, θ) be as in (1.3). Then for each fixed e ∈ I(A)̃ there
exist group homomorphisms ae, be : C∗ → C∗ such that

ϕ(λe + 1− e) = ae(λ)θ(e) + be(λ)θ(1− e), λ ∈ C\{0}.
Proof. Fix λ ∈ C\{0}. Since e ∈ I(A)̃ the elements θ(e) and θ(1− e) are

nonzero, and by Lemma 1.2 they are linearly independent. Using Lemma 1.5 we
therefore have unique coefficients a, b ∈ C such that

ϕ(λe + 1− e) = aθ(e) + bθ(1− e).

Assuming b = 0 we obtain ϕ(λe + 1− e)2 = a2θ(e) = a(aθ(e)) = aϕ(λe + 1− e).
Hence aθ(e) = ϕ(λe + 1− e) = a1 = aθ(1). Since ϕ(λe + 1− e) is invertible we
get θ(e) = θ(1), contradicting the injectivity of θ. By symmetry both a, b ∈ C\{0}.

It is easy to see that ae, be are multiplicative and unital using that the map
λ 7→ ϕ(λe+ 1− e) is multiplicative and unital. We conclude both maps are group
homomorphisms.

Since the maps ae, be are group homomorphism of C∗ we will use their (mul-
tiplicative) inverses without any further explanation. To each e ∈ I(A)̃ , we as-
sociate the pair of maps (ae, be) and the group homomorphism ce := aeb−1

e of C∗.
Moreover, we denote by ∼c the equivalence relation on I(A)̃ , given by:

e ∼c f if and only if ce = c f .

The following proposition is essentially Proposition 2.7 in [1]. The proof can
be adapted to the present situation and it is left to the reader.

PROPOSITION 1.7. Let (A, B, ϕ, θ) be as in (1.3). Then for each e ∈ I(A)̃ :
(i) If f ∈ I(A)̃ is similar to e then e ∼c f ;

(ii) ce(λ)2 6= 1, for every λ ∈ C\{−1, 0, 1};
(iii) ce = c1−e.

DEFINITION 1.8. Two or more idempotents in a C∗-algebra A are orthogonal
provided that any two of these idempotents commute and their product is equal
to zero.
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LEMMA 1.9. Let (A, B, ϕ, θ) be as in (1.3). Suppose that e, f ∈ I(A)̃ are two
orthogonal idempotents in A. Then

θ(e+ f )= θ(e)θ(1− f )+θ(1−e)θ( f ), θ(1−e− f )= θ(e)θ( f )+θ(1−e)θ(1− f ).

Proof. The proof of Lemma 2.3 in [1] does not directly generalise, so we
include a short proof: using Proposition 1.1 and Lemma 1.2 we have

θ(e + f ) = θ(e)4θ( f ) = θ(e) + θ( f )− 2θ(e)θ( f ) = θ(e)θ(1− f ) + θ(1− e)θ( f ).

The second equality follows by subtracting both sides of the above equality
from 1.

REMARK 1.10. The proof of Theorem 1.11, Corollary 1.12, and Corollary 1.13
corresponds to Proposition 2.8 and Theorem 2.9 in [1], but our proof includes
a new characterisation of when ce = c f , . . . , ce = c−1

e+ f in terms of the equa-
tions (1.5)–(1.8). This observation is essential in the subsequent proofs of Corol-
lary 1.12, Corollary 1.13 used to prove Lemma 1.15 and Lemma 1.16.

THEOREM 1.11. Let (A, B, ϕ, θ) be as in (1.3). Suppose that e, f ∈ I(A)̃ are
two orthogonal idempotents in A not adding to one. Then

θ(e)θ( f ) = 0 ⇔ ce = c f = ce+ f ,

θ(1− e)θ(1− f ) = 0 ⇔ ce = c f = c−1
e+ f ,

θ(1− e)θ( f ) = 0 ⇔ ce = c−1
f = ce+ f ,

θ(e)θ(1− f ) = 0 ⇔ ce = c−1
f = c−1

e+ f .

Proof. Since ϕ(λe + 1 − e)ϕ(λ f + 1 − f ) = ϕ(λ(e + f ) + 1 − (e + f )) for
λ 6= 0, Lemma 1.6 ensures that

(aeθ(e) + beθ(1− e))(a f θ( f ) + b f θ(1− f )) = ae+ f θ(e + f ) + be+ f θ(1− (e + f )).

Multiplying each side of the above equality by θ(e)θ( f ), θ(1− e)θ( f ), θ(1− e)θ( f )
or θ(e)θ(1− f ) and then using Lemma 1.9, we obtain the following four equa-
tions:

aea f θ(e)θ( f ) = be+ f θ(e)θ( f ),(1.1)

beb f θ(1− e)θ(1− f ) = be+ f θ(1− e)θ(1− f ),(1.2)

bea f θ(1− e)θ( f ) = ae+ f θ(1− e)θ( f ),(1.3)

aeb f θ(e)θ(1− f ) = ae+ f θ(e)θ(1− f ).(1.4)

Consider the following properties:

aea f = be+ f ,(1.5)

beb f = be+ f ,(1.6)

bea f = ae+ f ,(1.7)

aeb f = ae+ f .(1.8)
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We claim that

(1.7), (1.8) ⇔ ce = c f ,

(1.5), (1.6) ⇔ ce = c−1
f ,

(1.6), (1.8) ⇔ ce = ce+ f ,

(1.5), (1.7) ⇔ ce = c−1
e+ f .

Going from left to right is straightforward. To go from right to left one simply
adds two of the equations (1.1)–(1.4), possibly with coefficients. For example if
ce = c f then aeb f = bea f . By Lemma 1.9 the equality (1.3)+(1.4), where we add
each side separately, reduces to

aeb f θ(e + f ) = bea f θ(e + f ) = ae+ f θ(e + f ).

Hence (1.7) and (1.8) both hold. The remaining three equivalences are obtained
similarly using (1.1)+(1.2), ae· (1.2)+be· (1.3), and be· (1.1)+ae· (1.3). We obtain

(1.6), (1.7), (1.8) ⇔ ce = c f = ce+ f ,

(1.5), (1.7), (1.8) ⇔ ce = c f = c−1
e+ f ,

(1.5), (1.6), (1.8) ⇔ ce = c−1
f = ce+ f ,

(1.5), (1.6), (1.7) ⇔ ce = c−1
f = c−1

e+ f .

We now show that θ(e)θ( f ) = 0 if and only if ce = c f = ce+ f . The other three
equivalences follow from similar calculations.

Suppose first that θ(e)θ( f ) = 0. Assume that ce = c f = ce+ f does not hold.
We derive a contradiction. Using the observation above, one of (1.6), (1.7), or
(1.8) does not hold. It follows that θ(1 − e)θ(1 − e) = 0, θ(1 − e)θ( f ) = 0, or
θ(e)θ(1− f ) = 0. Adding this to θ(e)θ( f ) = 0, Lemma 1.9 gives θ(1− e− f ) = 0,
θ( f ) = 0, or θ(e) = 0. Contradiction.

Conversely suppose that the first equation ce = c f = ce+ f above holds.
Since c2

g 6= 1 for g = e, f , e + f , by Proposition 1.7(ii), we obtain that all the other
three equations are false. Since (1.6), (1.7), and (1.8) hold, (1.5) must fail. We
conclude that θ(e)θ( f ) = 0.

COROLLARY 1.12. Let (A, B, ϕ, θ) be as in (1.3). Suppose that e, f ∈ I(A)̃ are
two orthogonal, ∼c-equivalent, idempotents in A not adding to one. Then precisely one
of θ(e)θ( f ), θ(1− e)θ(1− f ) is zero.

Proof. If both terms are zero then ce+ f = c−1
e+ f . If both terms are non-zero

then (1.5) and (1.6) are true: if (1.5) fails then θ(e)θ( f ) = 0 by (1.1), and similarly
for (1.6). Hence ce = c−1

f and by ∼c-equivalence also c f = c−1
f .
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COROLLARY 1.13. Let (A, B, ϕ, θ) be as in (1.3). Suppose that e, f ∈ I(A)̃ are
two orthogonal idempotents in A not adding to one. Then precisely one of ce = ce+ f ,
ce = c−1

e+ f is true.

Proof. Consider the four equations from Theorem 1.11:

ce = c f = ce+ f , ce = c f = c−1
e+ f , ce = c−1

f = ce+ f , ce = c−1
f = c−1

e+ f .

It is clear that at least one of (1.5)–(1.8) is false. Consequently at least one of the
four equations above is true: if (1.5) fails then θ(e)θ( f ) = 0, so ce = c f = ce+ f .
Similarly for the remaining cases. We obtain ce = ce+ f or ce = c−1

e+ f is true. Both
can not be true because this contradicts Proposition 1.7(ii).

DEFINITION 1.14. Let (A, B, ϕ, θ) be as in (1.3). For any subset S ⊆ I(A) we
say that θ : I(A) → I(B) preserves orthogonality (respectively flips orthogonality)
on S if θ(e)θ( f ) = 0 (respectively θ(1− e)θ(1− f ) = 0) for any two orthogonal
idempotents e and f in S.

LEMMA 1.15. Let (A, B, ϕ, θ) be as in (1.3). Suppose that e, f , g ∈ I(A)̃ are
three orthogonal, ∼c-equivalent, idempotents in A not adding to one. If θ preserves
(respectively flips) orthogonality on a subset of {e, f , g} of size two, then θ preserves
(respectively flips) orthogonality on all of {e, f , g}.

Proof. The proof of Lemma 2.14 in [1] does not generalise nicely, so we in-
clude a short proof:

Step 1. Suppose that θ(e)θ( f ) = 0, θ(e)θ(g) = 0. Assume for contradiction
that θ(1− f )θ(1− g) = 0. By Lemma 1.9

θ(e)θ( f + g) = θ(e)(θ( f )θ(1− g) + θ(1− f )θ(g)) = 0.

Theorem 1.11 implies that ce = c f+g = ce+ f+g and c f = cg = c−1
f+g. Hence

c f+g = c−1
f+g which is false. We get θ(1− f )θ(1− g) 6= 0. By Corollary 1.12 we

conclude θ( f )θ(g) = 0.
Step 2. Now suppose that θ(1− e)θ(1− f ) = 0, θ(1− e)θ(1− g) = 0. As-

sume for contradiction that θ( f )θ(g) = 0. By Lemma 1.9,

θ(1− e)θ( f + g) = θ(1− e)(θ( f )θ(1− g) + θ(1− f )θ(g)) = 0.

Theorem 1.11 implies that ce = c−1
f+g = ce+ f+g and c f = cg = c f+g. We obtain

c f+g = c−1
f+g which is false. Consequently, we have that θ( f )θ(g) 6= 0. By Corol-

lary 1.12, θ(1− f )θ(1− g) = 0. It is evident that Steps 1 and 2 suffice to complete
the proof.

LEMMA 1.16. Let (A, B, ϕ, θ) be as in (1.3). Suppose that e, f , g ∈ I(A)̃ are
three orthogonal, ∼c-equivalent, idempotents in A not adding to one. Then

e ∼c f ∼c g ∼c e + f + g.
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Proof. The proof of Lemma 2.16 in [1] can be adapted to the present situ-
ation. We include the details for completeness: by Corollary 1.12 precisely one
of θ( f )θ(g), θ(1− f )θ(1− g) is zero. If θ( f )θ(g) = 0, then by Lemma 1.9 and
Lemma 1.15

θ(e)θ( f + g) = θ(e)(θ( f )θ(1− g) + θ(1− f )θ(g)) = 0.

Using Theorem 1.11, ce = c f+g = ce+ f+g. Similarly, if θ(1− f )θ(1− g) = 0, then
by Lemma 1.9 and Lemma 1.15

θ(1− e)θ( f + g) = θ(1− e)(θ( f )θ(1− g) + θ(1− f )θ(g)) = 0.

Using Theorem 1.11, ce = c−1
f+g = ce+ f+g.

2. ODDLY DECOMPOSABLE C∗-ALGEBRAS

Let (A, B, ϕ, θ) be as in (1.3), and let∼c be the equivalence relation on I(A)̃
introduced in Section 1. We now introduce a sufficient condition on the C∗-
algebra A, such that I(A)̃ /∼c has at most two elements.

DEFINITION 2.1. A unital C∗-algebra A is said to be oddly decomposable if
for every pair of idempotents e, f ∈ I(A)̃ there is an odd integer n > 3 and
n orthogonal idempotents g1, . . . , gn ∈ I(A)̃ adding to f , such that each gi is
similar to some g′i ∈ I(A)̃ with g′ie = eg′i = g′i 6= e.

REMARK 2.2. Oddly decomposable C∗-algebras where introduced in [1],
but with a definition in terms of projections and unitary equivalence rather than
idempotents and similarity. In [1] a unital C∗-algebra A was called oddly decom-
posable if for every pair of projections p, q ∈ A\{0, 1} there exist an odd integer
n > 3 and n orthogonal non-zero projections r1, . . . , rn ∈ A adding to q, such that
each ri is unitary equivalent to some projection r′i ∈ A with r′i < p. Let us outline
why the two definitions coincide.

Fix a pair of idempotents e, f ∈ I(A)̃ . Find projections p, q ∈ A and invert-
ible elements u, v ∈ GL(A) such that e = upu−1, and f = vqv−1 (see Lemma 3.2).
Assuming odd decomposability in sense of [1] there exist an odd integer n > 3

and a decomposition of q as a sum q =
n
∑

i=1
ri of pairwise nonzero orthogonal pro-

jections ri of A, such that each ri is unitarily equivalent to some projection r′i < p.
Define

gi := vriv−1, g′i := ur′iu
−1, i = 1, . . . , n.

It follows that gi, g′i ∈ I(A)̃ have the properties needed to make A oddly de-
composable in sense of Definition 2.1.

Conversely, fix a pair of projections p, q ∈ A\{0, 1}. Assuming odd decom-
posability in sense of Definition 2.1 there exist an odd integer n > 3 and n orthog-
onal idempotents g1, . . . , gn ∈ I(A)̃ adding to q, such that each gi is similar to
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some g′i ∈ I(A)̃ with g′i p = pg′i = g′i 6= p. We can select w1, . . . , wn ∈ GL(A)
such that

ri := wigiw−1
i , i = 1, . . . , n

are orthogonal projections adding to q. We can select projections r′1, . . . , r′n in A
such that each r′i is similar to g′i with r′i < p. It follows that each ri is similar and
hence also unitarily equivalent (see Lemma 3.2) to r′i , making A oddly decompos-
able in sense of [1].

NOTATION 2.3. Let A be a unital C∗-algebra and e ∈ I(A)̃ . We define

Ice := { f ∈ I(A)̃ : c f = ce}, Ice := { f ∈ I(A)̃ : c f = c−1
e }.

LEMMA 2.4. Let (A, B, ϕ, θ) be as in (1.3) with A oddly decomposable. Let e, f
be two non-trivial idempotents in A. Then there exist idempotents e′, f ′ ∈ I(A)̃ and
u ∈ GL(A) such that

e′, f ′ ∈ Ic f , e′e = ee′ = e′ 6= e, f ′ f = f f ′ = f ′ 6= f , e′ = u f ′u−1.

Proof. One can adapt the proof of Corollary 2.17 in [1] to the present situa-
tion. We include the details for completeness: find an odd integer n > 3 and n
commuting, orthogonal, idempotents g1, . . . , gn ∈ I(A)̃ adding to f , such that
each gi is similar to some g′i ∈ I(A)̃ with the property that g′ie = eg′i = g′i 6= e.

For each i = 1, . . . , n set ei := f − gi. By Corollary 1.13 we get that for
each i either cgi = c f or cgi = c−1

f . If cgi = c−1
f for i = 1, 2, 3 then Lemma 1.16

ensures that cg1+g2+g3 = c−1
f . If cgi = c−1

f for all i = 1, . . . , 5 (if applicable)

Lemma 1.16, used on g1 + g2 + g3, g4, g5, ensures that cg1+···+g5 = c−1
f . By in-

duction we conclude that cg1+···+gn = c−1
f if cgi = c−1

f for all i. Knowing that

cg1+···+gn = c f 6= c−1
f we conclude that cgm = c f for some m ∈ {1, . . . , n}. Define

f ′ := gm and e′ := g′m. Since f ′ is similar to e′ there exists u ∈ GL(A) such that
e′ = u f ′u−1. Using Proposition 1.7(i), e′ ∈ Ic f . We conclude that

e′, f ′ ∈ Ic f , e′e = ee′ = e′ 6= e, f ′ f = f f ′ = f ′ 6= f , e′ = u f ′u−1.

LEMMA 2.5. Let (A, B, ϕ, θ) be as in (1.3) with A oddly decomposable. Then for
each e ∈ I(A)̃

I(A)̃ = Ice ∪ Ice .

Proof. The proof of Remark 3.2 in [1] does not generalise nicely, so we in-
clude a short proof: fix any f ∈ I(A)̃ . Lemma 2.4 provides an idempotent
e′ ∈ I(A)̃ such that

e′ ∈ Ic f , e′e = ee′ = e′ 6= e.

Applying Corollary 1.13 to e′ and e− e′ we get that either ce′ = ce or ce′ = c−1
e .

Hence c f = ce or c f = c−1
e .
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REMARK 2.6. Borrowing material from a forthcoming paper [13] let us men-
tion the following result: let (A, B, ϕ, θ) be as in (1.3) with ϕ continuous. Then for
each e ∈ I(A)̃

I(A)̃ = Ice ∪ Ice .

LEMMA 2.7. Let (A, B, ϕ, θ) be as in (1.3) with A oddly decomposable. Let e, f
be two non-trivial orthogonal idempotents in A not adding to one. Suppose that θ pre-
serves (respectively flips) orthogonality on {e, f }. Then θ preserves (respectively flips)
orthogonality on all of Ice .

Proof. The proof of Lemma 3.4 in [1] can be adapted to the present situation.
We include the details for completeness: let g, h ∈ Ice be any two commuting,
orthogonal idempotents. It is enough to show θ preserves (respectively flips)
orthogonality on {g, h}. If g + h = 1 then θ(g)θ(h) = θ(g)θ(1− g) = 0, hence
assume g + h 6= 1. Using Lemma 2.4 select x, x′, y′, z′ ∈ I(A)̃ and u ∈ GL(A)
such that

x, x′ ∈ Ic1−e− f , x(1− g− h) = (1− g− h)x = x 6= 1− g− h,

x′(1− e− f ) = (1− e− f )x′ = x′ 6= 1− e− f , x = ux′u−1,

y′ ∈ Ice , y′x′ = x′y′ = y′ 6= x′,

z′ ∈ Ice , z′(x′ − y′) = (x′ − y′)z′ = z′ 6= x′ − y′.

By assumption θ preserves (respectively flips) orthogonality on {e, f } ⊆ Ice . Us-
ing Lemma 1.15 we get that θ preserves (respectively flips) orthogonality on the
evidently commuting, orthogonal idempotents

{z′, y′, e, f } ⊆ Ice .

Define y := uy′u−1 and z := uz′u−1. Since y′, z′ ∈ Ice we obtain that y, z ∈ Ice ,
see Proposition 1.7. By Proposition 1.1, θ(z)θ(y) = ϕ(u)θ(z′)θ(y′)ϕ(u)−1 =
0 (respectively θ(1 − z)θ(1 − y) = ϕ(u)θ(1 − z′)θ(1 − y′)ϕ(u)−1 = 0). Now
Lemma 1.15 ensures that θ preserves (respectively flips) orthogonality on the
clearly commuting, orthogonal idempotents

{z, y, g, h} ⊆ Ice .

LEMMA 2.8. Let (A, B, ϕ, θ) be as in (1.3) with A oddly decomposable. Let e, f be
two non-trivial idempotents that are not ∼c-equivalent. If θ preserves (respectively flips)
orthogonality on one of the sets Ice , Ic f , then θ flips (respectively preserves) orthogonality
on the other set.

Proof. One can adapt the proof of Proposition 3.6 in [1] to the present situa-
tion. We include the details for completeness: it suffices to show that

θ can not preserve orthogonality on Ice ∪ Ic f ;(2.1)

θ can not flip orthogonality on Ice ∪ Ic f .(2.2)
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Let us argue why (2.1)–(2.2) suffice: suppose θ preserves (respectively flips)
orthogonality on Ice . Using Lemma 2.4 select orthogonal idempotents g, h ∈ Ic f

not adding to one. By Corollary 1.12 and Lemma 2.7 we obtain that θ either pre-
serves or flips orthogonality on all of {g, h}, and hence on all of Ic f . We conclude
θ flips (respectively preserves) orthogonality on Ic f by (2.1)–(2.2).

(2.1). By Lemma 2.5, ce = c−1
f . Using Lemma 2.4 choose x, y, z ∈ I(A)̃ such

that:

x ∈ Ic f , x(1− e) = (1− e)x = x 6= 1− e,

y ∈ Ic f , ye = ey = y 6= e,

z ∈ Ice , zx = xz = z 6= x.

If 1 − e − x ∈ Ic f then {x, y, 1 − e − x} ⊆ Ic f are commuting, orthogonal ∼c-
equivalent idempotents in A not adding to one. By Lemma 1.16 we have that
1− e + y ∈ Ic f . Hence e− y ∈ Ic f , see Proposition 1.7. In particular

cy = ce−y = c−1
e .

If 1 − e − x ∈ Ice then {e, z, 1 − e − x} ⊆ Ice are commuting, orthogonal, ∼c-
equivalent idempotents in A not adding to one. It follows that 1− x + z ∈ Ice

and x− z ∈ Ice . In particular

cz = cx−z = c−1
x .

We conclude that θ can not preserve orthogonality on Ice ∪ Ic f .
(2.2). By Lemma 2.5, ce = c−1

f . Using Lemma 2.4 choose x, y, z ∈ I(A)̃ such
that:

x ∈ Ic f , x(1− e) = (1− e)x = x 6= 1− e,

y ∈ Ice , ye = ey = y 6= e,

z ∈ Ic f , zx = xz = z 6= x.

If 1− e− x ∈ Ic f then ce−y 6= cy implies that ce−y = c−1
y = c f , see Lemma 2.5.

Hence {e − y, x, 1 − e − x} ⊆ Ic f are commuting, orthogonal, ∼c-equivalent,
idempotents in A not adding to one. It follows that 1 − y ∈ Ic f and y ∈ Ic f :
contradiction. In particular

cy = ce−y = ce.

If 1− e− x ∈ Ice then cx−z 6= cz implies that cx−z = c−1
z = ce, see Lemma 2.5.

Hence {x − z, e, 1 − e − x} ⊆ Ice are commuting, orthogonal, ∼c-equivalent,
idempotents in A not adding to one. It follows that 1 − z ∈ Ice and z ∈ Ice :
contradiction. In particular

cz = cx−z = cx.

We conclude that θ can not flip orthogonality on Ice ∪ Ic f .
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THEOREM 2.9. Let (A, B, ϕ, θ) be as in (1.3). If A is oddly decomposable then
ϕ induces an orthoisomorphism between the sets of idempotents I(A) and I(B), which
preserves similarity of idempotents.

Proof. The proof of Theorem 2.21 in [1] can be adapted to the present situ-
ation. We include the details for completeness: we may assume I(A)̃ is non-
empty. Using Lemma 2.4 select two non-trivial orthogonal, ∼c-equivalent, idem-
potents e, f ∈ I(A)̃ not adding to one. Define o := ce+ f . By Corollary 1.13 either
ce = o or ce = o−1. If ce = o−1 then ce = c f = c−1

e+ f and θ flips orthogonality on
Ice . If ce = o then ce = c f = ce+ f and θ preserves orthogonality on Ice . In any case
Lemma 2.8 ensures that θ preserves orthogonality on Io and flips orthogonality
on Io. Define

θ̃(g) =


θ(g) if g ∈ Io,
1− θ(g) if g ∈ Io,
1 if g = 1,
0 if g = 0.

Fix two commuting, orthogonal idempotents g, h ∈ I(A). If g or h is equal to zero
then obviously θ̃(g)θ̃(h) = 0. If h, g are both nonzero and add to one then ch = cg,
see Proposition 1.7. Hence θ̃ restricts to either θ or 1 − θ on {g, h}, implying
θ̃(g)θ̃(h) = 0. We may assume g, h ∈ I(A)̃ with g + h 6= 1. Then

g, h ∈ Io ⇒ θ(g)θ(h) = 0;⇒

g, h ∈ Io ⇒ θ(1− g)θ(1− h) = 0⇒ θ̃(g)θ̃(h) = 0;

g ∈ Io, h ∈ Io ⇒ θ(g)θ(1− h) = 0.⇒

The fact that θ(g)θ(1 − h) = 0 above follows indirectly: since cg 6= ch either
θ(1− g)θ(h) = 0 or θ(g)θ(1− h) = 0 (by Theorem 1.11). The first equality implies
that cg = c−1

h = cg+h, hence g, 1− g − h ∈ Io. But then θ(g)θ(1− g − h) = 0,
meaning that cg = c1−g−h = c1−h: contradiction. We conclude that

θ̃ : I(A)→ I(B)

preserves orthogonality on I(A). Surjectivity of θ̃ follows from Lemma 1.2. In-
jectivity of θ̃ follows from the fact that if g ∈ Io, h ∈ Io then θ̃(g) 6= θ̃(h), since
θ̃(g) = θ̃(h) implies g = 1− h. Finally, for any g ∈ I(A)̃ and u ∈ GL(A), we
have g ∼c ugu−1, by Proposition 1.7, so

g ∈ Io θ̃(ugu−1) = θ(ugu−1) = ϕ(u)θ(g)ϕ(u)−1 = ϕ(u)θ̃(g)ϕ(u)−1,

g ∈ Io θ̃(ugu−1) = 1− θ(ugu−1) = · · · = ϕ(u)θ̃(g)ϕ(u)−1.

We conclude that θ preserves similarity of idempotents.
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3. THE CASE OF SIMPLE AH-ALGEBRAS

3.1. FROM AN ORTHOISOMORPHISM TO A K0-ORDER ISOMORPHISM. In this sub-
section, we prove that an (abstract) isomorphism GL(A) ∼= GL(B) between the
general linear groups of certain stably finite C∗-algebras A and B of real rank
zero (including the simple AH-algebras of slow dimension growth) induces an
isomorphism between their ordered K0-groups. In particular, we have that if A
and B are either two simple unital AF-algebras, or two irrational rotation alge-
bras, then A is ∗-isomorphic to B if and only if their general linear groups are
isomorphic (as abstract groups). Our approach uses ideas of [1], but with proofs
that are somehow different, and some clarifications are given.

NOTATION 3.1. (i) Let F denote the class of simple, unital, separable C∗-
algebras of real rank zero with cancellation (or equivalently with stable rank one,
see Corollary 6.5.7 in [2]). Let F1 denote the class of C∗-algebras A in F for which
K0(A) is noncyclic and weakly unperforated.

(ii) Let A be a unital C∗-algebra. Denote by P(A) the set of projections in A,
and by P(A)̃ the set P(A)\{0, 1} of non-trivial projections in A.

The following lemma is well known, see Proposition 4.6.2 and Proposi-
tion 4.6.5 in [2].

LEMMA 3.2. Let A be a unital C∗-algebra. Every idempotent in A is similar to a
projection in A. Every pair of projections is A are similar if and only if they are unitarily
equivalent.

PROPOSITION 3.3. Each C∗-algebra in F1 is oddly decomposable.

The result follows immediately from Proposition 4.2 in [1] in combination
with Remark 2.2.

Following [2] and [19] an ordered (abelian) group G is an abelian group with
a distinguished positive cone, i.e., a subset G+ ⊆ G fulfilling that

G+ + G+ ⊆ G+, G+ ∩ (−G+) = {0}, G+ − G+ = G.

The set G+ induces a translation-invariant partial ordering on G given by x 6 y
if y− x ∈ G+.

Essentially as in [9], (Effros presumes the group is unperforated (respec-
tively is a dimension group) in his definition of an ordered group (respectively a
scaled dimension group); we have removed these two constraints and changed
the terminology accordingly) a scaled ordered group G is an ordered group with a
distinguished scale, i.e., a subset Γ = Γ(G) of G+, which is generating, hereditary
and directed, i.e.,

(i) For each a ∈ G+, there exist a1, . . . , ar ∈ Γ with a =
r
∑

i=1
ai.

(ii) If 0 6 a 6 b ∈ Γ, then a ∈ Γ.
(iii) Given a, b ∈ Γ, there exists c ∈ Γ with a, b 6 c.
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A scale Γ has a partially defined addition; in fact a > b in Γ if and only if a = b+ c
for some c ∈ Γ. Following [9], a group homomorphism of scaled ordered groups
α : G → G′ is a contraction if α(Γ(G)) ⊆ Γ(G′). If Γ and Γ′ are scales of two scaled
ordered groups, then a map α : Γ → Γ′ is a scale homomorphism (respectively a
scale isomorphism) if a = b + c in Γ implies that (respectively is equivalent to)
α(a) = α(b) + α(c) in Γ′.

PROPOSITION 3.4 (Effros). Let G and G′ be two scaled ordered groups with Riesz
interpolation. Any scale homomorphism α : Γ(G) → Γ(G′) extends to a unique con-
traction α̃ : G → G′. If α is a scale isomorphism, then α̃ is an isomorphism of the scaled
ordered groups G and G′.

Notice that the proof of Lemma 7.3 and Corollary 7.4 in [9] does not use
perforation nor countability of the groups involved.

LEMMA 3.5. If A ∈ F , then K0(A) is a simple scaled ordered group with Riesz
interpolation and scale Σ(A) := {[p] : p ∈ P(A)}.

Proof. Since A is stably finite and simple, the group K0(A) is a simple scaled
ordered group with Riesz interpolation by Proposition 3.3.7 and Theorem 3.3.18
in [17], and Σ(A) is hereditary and directed, see p. 38 in [2].

For sake of completeness we show Σ(A) is generating: fix any x in K0(A)+.
Recall that x = [p] for some projection p in Mn(A) (with n ∈ N). Let 1n denote

the unit of Mn(A). Cleary, 1n =
n
∑

i=1
eii, where eii ∈ Mn(A) is the matrix with 1

at entry (i, i) and zero otherwise, and p 6 1n. Since Mn(A) has real rank zero it
follows from Corollary 3.3.17 in [17] that there exist projections pi ∈ Mn(A) such

that [pi] 6 [eii] and
n
∑

i=1
pi = p. Hence x =

n
∑

i=1
[pi] and [pi] ∈ Σ(A), using the

characterisation Σ(A) = {x ∈ K0(A)+ : x 6 [1]}, see [2].

THEOREM 3.6. Let A and B be two C∗-algebras in F1. If GL(A) and GL(B) are
isomorphic (as abstract groups), then K0(A) and K0(B) are isomorphic as scaled ordered
groups.

Proof. Let θ̃ : I(A) → I(B) be the orthoisomorphism preserving similarity
of idempotents given by Theorem 2.9 and Proposition 3.3 with θ̃(1) = 1. Let

θ̃∗ : Σ(A)→ Σ(B)

be given by θ̃∗([p]) = [p′], where p′ = uθ̃(p)u−1 for some u ∈ GL(B) such that p′

is a projection in B, see Lemma 3.2.
We show θ̃∗ is well defined: fix any two projections p, q in P(A). Assume

[p] = [q]. By Proposition 3.1.7(iv) in [19] also [1− p] = [1− q]. Since A has can-
cellation p and q are unitary equivalent, see Definition 7.3.1 and Proposition 2.2.2
in [19]. Since θ̃ preserves similarity θ̃(p) and θ̃(q) are similar. We conclude that
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p′ and q′ are similar and (by Lemma 3.2) unitarily equivalent. We obtain that
[p′] = [q′].

We show θ̃∗ is a scale homomorphism: fix x, y, z ∈ Σ(A) satisfying the
equality x + y = z. Find p, q ∈ P(A) such that x = [p] and y = [q]. Select
q1 ∈ P(A) such that

[q1] = [p] and q1 6 1− q

as follows: if z = [1] set q1 := 1 − q implying [q1] = z − y = [p]. If z < [1]
use [p] = z− [q] < [1− q] and Corollary 6.9.2 in [2] to deduce that p is Murray–
von Neumann equivalent to a subprojection, say q1, of 1− q. (Here we have used
A is simple, unital, stably finite, of real rank zero, with cancellation and weakly
unperforated K0(A).) We obtain that

θ̃(q1) + θ̃(q) = θ̃(q1 + q) and q1q = 0.

Find v ∈ GL(B) such that vθ̃(q1)v−1 and vθ̃(q)v−1 are orthogonal projections in
B (easy exercise, see Remark 2.2). Hence

θ̃∗(z) = θ̃∗([p] + [q]) = θ̃∗([q1] + [q]) = θ̃∗([q1 + q])

= [vθ̃(q1 + q)v−1] = [vθ̃(q1)v−1] + [vθ̃(q)v−1]

= θ̃∗([q1]) + θ̃∗([q]) = θ̃∗(x) + θ̃∗(y).

We show θ̃∗ is a scale isomorphism: as θ̃ : I(A) → I(B) is an orthoisomor-
phism, its inverse induces a scale homomorphism (θ̃−1)∗ : Σ(B) → Σ(A). For
p ∈ P(A) we have that

(θ̃−1)∗(θ̃∗([p]))=(θ̃−1)∗[uθ̃(p)u−1]= [vθ̃−1(uθ̃(p)u−1)v−1]= [vwpw−1v−1]= [p],

for appropriate u ∈ GL(B), and v, w ∈ GL(A), using that θ̃−1 maps uθ̃(p)u−1

to an idempotent similar to p. By symmetry both (θ̃−1)∗ ◦ θ̃∗ and θ̃∗ ◦ (θ̃−1)∗ are
identity maps. Hence (θ̃−1)∗ = (θ̃)−1

∗ .
Using Proposition 3.4 and Lemma 3.5 we obtain that K0(A) and K0(B) are

isomorphic as scaled ordered groups.

LEMMA 3.7. Every infinite-dimensional, simple, unital AH-algebra of slow di-
mension growth and of real rank zero belongs to the class F1.

Proof. Cancellation: we refer to Theorem 1 in [3] and Proposition 6.5.1 in [2].
Weakly unperforated: see p. 2 in [23]. Noncyclic: see Remark 2.7 in [6].

COROLLARY 3.8. If A and B are simple, unital AH-algebras of slow dimension
growth and of real rank zero, with isomorphic general linear groups (as abstract groups),
then

(K0(A), K0(A)+, [1A]) and (K0(B), K0(B)+, [1B])

are order isomorphic by a map preserving the distinguished order units.
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Proof. If A is infinite-dimensional then so is B. (By Lemma 3.7 and Proposi-
tion 3.3 A is oddly decomposable. We can therefore find arbitrary many orthogo-
nal idempotents (ei) in I(A)̃ . The isomorphism of GL(A) and GL(B) induces an
orthoisomorphism θ̃ : I(A) → I(B), by Theorem 2.9. The orthogonal idempo-
tents θ̃(ei) in I(B)̃ ensure B is infinite-dimensional.) The desired result follows
now from Theorem 3.6. If both A and B are finite dimensional we refer to [12].

Using H. Lin’s characterization of TAF-algebras (see [17] or Theorem 3.3.5
in [20]) we can also state Corollary 3.8 as follows.

COROLLARY 3.9. Let A and B be two simple, unital, nuclear, separable TAF-
algebras of real rank zero, in the UCT-class N with isomorphic general linear groups (as
abstract groups). Then

(K0(A), K0(A)+, [1A]) and (K0(B), K0(B)+, [1B])

are order isomorphic by a map preserving the distinguished order units.

COROLLARY 3.10. If A and B are either two simple unital AF-algebras, or two
irrational rotation algebras, then A is ∗-isomorphic to B if and only if their general linear
groups are isomorphic (as abstract groups).

Proof. Both the class of unital simple AF-algebras and the class of irrational
rotation algebras are classified by (K0, K0+, [1]), see Theorem 7.3.4 in [19] and
Corollary VI.5.3 in [7].

Any unital simple AF-algebra is a nuclear TAF-algebra of real rank zero, in
the UCT-class N , and any irrational rotation algebra is an AH-algebra of slow
dimension growth and of real rank zero, see [10].

3.2. FROM A GENERAL LINEAR GROUP ISOMORPHISM TO A C∗-ISOMORPHISM.
For simple AH-algebras of real rank zero, let us recall the classification theorem,
provided independently by Gong in [14] and Dadarlat in [5], whose proof uses
Elliott-Gong’s classification in [11] (see for example Theorem 3.3.1 in [20]).

THEOREM 3.11 (Dadarlat, Gong, Elliott). Let A and B be simple, unital, AH-
algebras of slow dimension growth and of real rank zero. It follows that A is ∗-isomorphic
to B if and only if

(K0(A), K0(A)+, [1A]) ∼= (K0(B), K0(B)+, [1B]), K1(A) ∼= K1(B).

NOTATION 3.12. Let A be a unital C∗-algebra. We equip the general linear
group GL(A) with the topology induced by the norm on A. Denote by GL0(A)
the connected component {u : u ∼h 1} of the identity element in GL(A).

THEOREM 3.13. Let A and B be simple, unital AH-algebras of slow dimension
growth and of real rank zero. Then A and B are isomorphic if and only if their general
linear groups are topologically isomorphic.
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Proof. If A and B are isomorphic then their general linear groups are topo-
logically isomorphic. Conversely let ϕ : GL(A) → GL(B) be a topological iso-
morphism from GL(A) onto GL(B). By continuity of ϕ, ϕ(GL(A)0) = GL(B)0. It
follows that u+ GL(A)0 7→ ϕ(u)+ GL(B)0 is an isomorphism of GL(A)/GL(A)0
and GL(B)/GL(B)0 (with inverse v + GL(B)0 7→ ϕ−1(v) + GL(A)0). Recall that
for a unital C∗-algebra C of stable rank one, K1(C) is isomorphic to the group
GL(C)/GL(C)0, see Theorem 2.10 in [18]. Consequently, we conclude that K1(A)
is isomorphic to K1(B).

4. THE CASE OF KIRCHBERG ALGEBRAS

4.1. FROM AN ORTHOISOMORPHISM TO A K0-ISOMORPHISM. In this subsection,
inspired by [1], we show that an isomorphism between the general linear groups
of simple, unital, purely infinite C∗-algebras induces an isomorphism between
their K0-groups.

THEOREM 4.1. Every simple, unital, purely infinite C∗-algebra is oddly decom-
posable.

The result follows immediately from Theorem 5.2 in [1] in combination with
Remark 2.2.

Recall that if A is a purely infinite simple C∗-algebra, then every nonzero
projection in A is infinite, and K0(A) = {[p] : p ∈ P(A), p 6= 0} (see p. 73–85
in [19]). If A, in addition, is unital then 1 is an infinite projection and therefore
Murray–von Neumann equivalent to a subprojection q < 1. Hence [q] = [1], and
K0(A) = {[p] : p ∈ P(A)̃ }.

THEOREM 4.2. If A and B are two unital, simple, purely infinite C∗-algebras,
whose general linear groups are isomorphic (as abstract groups), then there is an isomor-
phism from K0(A) to K0(B), sending [1A] to [1B].

Proof. Let θ̃ : I(A) → I(B) be the orthoisomorphism preserving similarity
of idempotents given by Theorem 2.9 and Theorem 4.1 with θ̃(1) = 1. Let

θ̃∗ : K0(A)→ K0(B)

be given by θ̃∗([p]) = [p′], where p′ = uθ̃(p)u−1 for some u ∈ GL(B) such that p′

is a projection in B, see Lemma 3.2.
We show θ̃∗ is well defined and injective: fix any two projections p, q in

P(A)̃ . Assume [p] = [q]. Since p, q are infinite the assumption is equivalent
to p, q being unitarily equivalent, see Corollary 6.11.9 in [2]. By Lemma 3.2 the
assumption is equivalent to p, q being similar. Since θ̃ and θ̃−1 preserves similar-
ity the assumption is equivalent to θ̃(p), θ̃(q) being similar. By definition of p′, q′
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the assumption is equivalent to p′, q′ being similar, and hence unitarily equiva-
lent (see Lemma 3.2). Using Corollary 6.11.9 in [2] once more we obtain that the
assumption [p] = [q] is equivalent to [p′] = [q′].

We show θ̃∗ is unital and surjective: since θ̃(1) = 1 is a projection we get that
θ̃∗([1]) = [θ̃(1)] = [1]. Fix a projection p ∈ P(B)̃ . Find an idempotent e ∈ I(A)̃

such that θ̃(e) = p. By Lemma 3.2 there exist a u ∈ GL(A) such that ueu−1 is a
projection. Now

θ̃∗([ueu−1]) = [vθ̃(ueu−1)v−1],

for an appropriate v ∈ GL(B). Since e is similar to ueu−1 then θ̃(e) is similar to
vθ̃(ueu−1)v−1. By Lemma 3.2 similar projections are unitarily equivalent. Hence
Corollary 6.11.9 in [2] ensures θ̃∗([ueu−1]) = [p].

We show θ̃∗ is a homomorphism: fix any p, q ∈ P(A)̃ . Since 1− q, q are
(full and properly) infinite we can find projections r 6 1− q and s 6 q in A such
that p (respectively q) is Murray–von Neumann equivalent to r (respectively s),
see p. 75 in [19]. In particular [p] = [r] and [q] = [s]. Since r and s are orthogonal
[r+ s] = [r] + [s]. Find v ∈ GL(B) such that vθ̃(r)v−1 and vθ̃(s)v−1 are orthogonal
projections in B (see Remark 2.2). Hence

θ̃∗([p]+[q])= θ̃∗([r]+[s])= θ̃∗([r+s])= [vθ̃(r+s)v−1]= [vθ̃(r)v−1+vθ̃(s)v−1]

= [vθ̃(r)v−1] + [vθ̃(s)v−1] = θ̃∗([r]) + θ̃∗([s]) = θ̃∗([p]) + θ̃∗([q]).

This shows that θ̃∗ is the desired isomorphism.

In [4], J. Cuntz proved that for 2 6 n < ∞, K0(On) ∼= Z/(n − 1)Z and
K0(O∞) ∼= Z. Hence, we have:

COROLLARY 4.3. Two Cuntz algebras are isomorphic if and only if their general
linear groups are isomorphic (as abstract groups).

4.2. FROM A GENERAL LINEAR GROUP ISOMORPHISM TO A C∗-ISOMORPHISM.
Recall that a Kirchberg algebra is a purely infinite, simple, nuclear, separable C∗-
algebra, see Definition 4.3.1 in [20], and that the following result of Kirchberg and
Phillips essentially classifies such algebras.

THEOREM 4.4 (Kirchberg, Phillips). Let A and B be unital Kirchberg algebras in
the UCT-classN . Then A and B are ∗-isomorphic if and only if there exist isomorphisms
α0 : K0(A)→ K0(B) and α1 : K1(A)→ K1(B) with α0([1A]) = [1B].

NOTATION 4.5. Let A be a unital C∗-algebra. As usual, the topology on the
unitary group U (A) is inherited from GL(A). Denote by U0(A) the connected
component {u : u ∼h 1} of the identity element in U (A).

THEOREM 4.6. If A and B are two unital, simple, purely infinite C∗-algebras,
whose general linear groups are isomorphic (as abstract groups), then the groups K1(A)
and K1(B) are isomorphic.
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Proof. Let ϕ : GL(A) → GL(B) denote the isomorphism from GL(A) into
GL(B). Since ϕ preserves symmetries (i.e., if s2 = 1 in GL(A) then ϕ(s)2 = 1
in GL(B)) and symmetries generate the connected component of the identity (by
Theorem 3.7 in [16]) we have that ϕ(GL0(A)) = GL0(B). Let

ϕ̃∗ : U (A)/U0(A)→ U (B)/U0(B)

be given by ϕ̃∗([u]) = [u′], where u′ = ω(ϕ(u)) and ω is the map from Proposi-
tion 2.1.8 in [19] turning invertible elements into unitaries.

We show ϕ̃∗ is well defined and injective. Fix any two unitaries u, v in U (A).
Assume [u] = [v]. Recall that u ∼h v in U (A) if and only if u ∼h v in GL(A), see
Proposition 2.1.8 in [19]. In particular the assumption is equivalent to ϕ(u) ∼h
ϕ(v) in GL(B) (recalling ϕ(GL0(A)) = GL0(B)). By Proposition 2.1.8 in [19] both
ϕ(u) ∼h ω(ϕ(u)) and ϕ(v) ∼h ω(ϕ(v)) in GL(B). Hence the assumption is
equivalent to u′ ∼h v′ in GL(B), and hence also to [u′] = [v′].

We show ϕ̃∗ is surjective. Fix an unitary u ∈ U (B). Find an invertible
element v ∈ GL(A) such that ϕ(v) = u. Similarly to a previous argument we
have that ω(v) ∼h v = ϕ−1(u) in GL(A) and ϕ(ω(v)) ∼h ϕ(v) = u in GL(B).
Using that ϕ(ω(v)) ∼h ω(ϕ(ω(v))) we obtain that [ω(ϕ(ω(v)))] = [u]. Hence
ϕ̃∗([ω(v)]) = [u].

We show ϕ̃∗ is a homomorphism. Fix any u, v ∈ U (A). Using the equiva-
lences ϕ(u) ∼h ω(ϕ(u)) and ϕ(v) ∼h ω(ϕ(v)) in GL(B) we obtain that

ϕ(u)ϕ(v) ∼h ϕ(u)ω(ϕ(v)) ∼h ω(ϕ(u))ω(ϕ(v)) in GL(B).

We also have that ω(ϕ(uv)) ∼h ϕ(uv) in GL(B). Combining these relations we
have that [ω(ϕ(uv))] = [ω(ϕ(u))ω(ϕ(v))]. We conclude that

ϕ̃∗([u])ϕ̃∗([v]) = [ω(ϕ(u))ω(ϕ(v))] = [ω(ϕ(uv))] = ϕ̃∗([uv]).

This shows that ϕ̃∗ is the desired isomorphism. Recall that for a unital
purely infinite simple C∗-algebra C, K1(C) is isomorphic to U (C)/U0(C) by The-
orem 1.9 in [4]. Consequently, we conclude that K1(A) is isomorphic to K1(B).

Thanks to Theorems 4.2 and 4.6, we have the following conclusion.

COROLLARY 4.7. Let A and B be two unital Kirchberg algebras in the UCT-class
N . Then A and B are isomorphic if and only if their general linear groups are isomorphic
(as abstract groups).
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