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ABSTRACT. In this article, we give a general construction of spectral triples
from certain Lie group actions on unital C∗-algebras. If the group G is com-
pact and the action is ergodic, we actually obtain a real and finitely summable
spectral triple which satisfies the first order condition of Connes’ axioms. This
provides a link between the “algebraic” existence of ergodic action and the
“analytic” finite summability property of the unbounded selfadjoint operator.
More generally, for compact G we carefully establish that our (symmetric) un-
bounded operator is essentially selfadjoint. Our results are illustrated by a
host of examples — including noncommutative tori and quantum Heisenberg
manifolds.
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1. INTRODUCTION

The Gelfand–Naimark theorem establishes an equivalence of categories be-
tween locally compact topological spaces and commutative C∗-algebras, which
one takes advantage of in order to define noncommutative spaces.

In 1980, Connes introduced in [8] what he called a “differential structure”
induced by a Lie group action on a C∗-algebra. This early notion was later su-
perseded by the framework of spectral triples, devised axiomatically by Connes in
[10], [11].

A choice of spectral triple comes down to fixing an unbounded operator
on a representation space for a C∗-algebra which corresponds to a Dirac-type
operator and is thus (in the unital case) supposed to be a self-adjoint operator of
compact resolvent (see Definition 2.1).

Lie group actions and spectral triples thus provide two different approaches
to “smoothness” for noncommutative spaces — for example, the boundedness
of the commutators [D, a] is a measure of regularity for a. The validity of this
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approach was confirmed to some extent by Connes’ reconstruction theorem [12]:
under a slight strengthening of the axioms of [11], spectral triples on commutative
C∗-algebras arise from smooth manifolds.

If we think of C∗-algebras as sets of continuous functions on NC spaces, to
study a “smooth noncommutative manifold” requires an analog of smooth func-
tions on this “manifold”. In other words, we need a “smooth subalgebra” A ⊆ A.
Such smooth subalgebras can be obtained in several ways (see e.g. [3], [4]). Here,
we follow the familiar construction (see Proposition 2.4 below) obtaining A from
an action of Lie group G on A. A natural question arises from this construction:
if we consider a Lie subgroup G0 ⊆ G, how do the two associated smooth subal-
gebras A0 and A differ?

In our case, this difficulty is solved by ergodicity: if the action of G is er-
godic, we can construct a summable spectral triple for A — which need not be
possible for G0, if its action is not ergodic (see Example 8.2 below).

Our paper is inspired by Rieffel’s article [33] in which he considers a Lie
group G acting by α on a C∗-algebra A. He introduces unbounded Dirac-type
operators of the form (see p. 226 of [33])

(1.1) D = ∑ ∂Ej ⊗ c(ej),

where (Ej) and (ej) are a basis for g and its dual basis in g∗, respectively. They act
by the differential ∂ of α and by a Clifford action c, respectively. His paper also
puts special emphasis on ergodic actions. However, Rieffel does not study the
formal properties of this operator — such as selfadjointness and compact resol-
vent. The expression (1.1) appeared in [7] too, where it is presented as a “general
principle of construction of spectral triple”.

In the present document we determine conditions under which this opera-
tor yields a spectral triple in the sense of Connes (see Definition 2.1 below) and
study its properties including summability and Diximier trace. As [33] seems to
suggest, we obtain a finitely summable spectral triple for ergodic actions of com-
pact Lie groups. More precisely (see Theorem 5.5 below for the exact forms of the
spectral triples):

THEOREM 1.1. If G is a compact Lie group of dimension n acting ergodically on a
unital C∗-algebra A, then

(i) there is a canonical n+-summable spectral triple on A, which is even when n is
even, has a real structure and satisfies the first order condition;

(ii) if we are given a covariant representation of (A, G) on H0 which satisfies an
additional finiteness condition, then we obtain an n+-summable spectral triple from it.

The above theorem is relevant on two counts:

(1) it recovers for instance the usual spectral triples for noncommutative tori
of any dimension (see Section 8);
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(2) it links algebraic or “geometric” properties — namely the existence of a
covariant representation — with analytic properties i.e. the selfadjointness and
finite summability of D.

For covariant representations of non-compact groups of dimension n, we
obtain a symmetric operator with bounded commutators (see Proposition 2.12),
which is graded when n is even. Furthermore, if the Hilbert space of the triple
comes from a G-invariant trace via the GNS construction, an associated real struc-
ture is available (see Proposition 3.4), thereby refining the “general principle”
mentioned in [7].

A general mean of obtaining spectral triples is given in [13]. This construc-
tion is similar to ours in the sense that it assumes a certain symmetry on the initial
space — a Riemannian manifold whose isometry group has rank at least 2 in [13],
an ergodic action of compact Lie group for us — and estimates the summability
of the resulting spectral triple. On the one hand, they rely on a deformation of
a (commutative) geometric situation, while we have purely “noncommutative”
assumptions, but on the other hand, their result yields orientability and Poincaré
duality besides the summability, real structure and first order properties (see [11]
for the definitions of these axioms).

Our results more closely ressemble the general construction presented in
[37]. Nevertheless, the aforementioned article focuses on semifinite spectral
triples and their index properties in the setting of general actions of compact Lie
groups, while we put emphasis on “ordinary” spectral triples and their summa-
bility properties in the case of ergodic actions.

The notion of “ergodic action” — which plays a crucial role in our results
— is well-studied, but our argument depends only on the seminal work [22] of
Høegh-Krohn, Landstad and Størmer. Let us just mention that the case of er-
godic actions of compact groups on von Neumann algebras was investigated in
details by A. Wassermann in a series of articles [38], [39], [40]. We expect the vast
literature on this topic to eventually provide new tractable classes of examples.
However, many classical examples of spectral triples are already covered by our
framework, as we try to indicate in the last section.

Another point of view on our results is that this article (together with the
forthcoming [17]) provides some sort of “backward compatibility” of the original
article [8] with the more recent framework of spectral triples.

This article starts with a preliminary Section 2, defining precisely the notion
of spectral triple that we will use. We prove that, given a covariant representation
of A and G on a Hilbert space H0, a symmetric unbounded operator D with
bounded commutators arises naturally. In the next Section 3, we proceed with
the particular case when H0 arises from the GNS construction and show that a
real structure (implying the existence of a selfadjoint extension of D) exists in this
case. Going back to general covariant representations, we establish carefully in
Section 4 that if G is compact, D is essentially selfadjoint. These two threads of
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results are finally combined in Section 5, where the main theorem is established.
Finally, the last Section 8 relates our results to prior work, by examining remarks,
examples and counterexamples.

2. SPECTRAL TRIPLES AND COVARIANT REPRESENTATIONS

In this article, we almost exclusively consider unital C∗-algebras and nonde-
generated representations π : A→ B(H ) of C∗-algebras, i.e. π(1A) = idH .

The expression “spectral triple” has been used to denote several slightly
different notions — thus we quickly remind the reader of the definition most
suitable for us.

DEFINITION 2.1. Let A be a C∗-algebra. An odd spectral triple, also called
odd unbounded Fredholm module, is a triple (π, H , D) where:

(i) H is a Hilbert space and π : A → B(H ) a ∗-representation of A as
bounded operators on H ;

(ii) a selfadjoint unbounded operator D — which we will call the Dirac operator
— with such that:

(a) π(a)(1 + D2)−1 is compact for all a ∈ A,
(b) the subalgebra A of all a ∈ A such that π(a)(Dom(D)) ⊆ Dom(D)

and [D, π(a)] extends to a bounded map on H is dense in A.
An even spectral triple is given by the same data, but we further require that

a grading γ be given on H such that (1) A acts by even operators, (2) D is odd.

REMARK 2.2. In the above definition, we do not require that the representa-
tion π be faithful. However, many references (including Connes’ articles) on this
topic include this additional constraint.

The notion of spectral triple is refined by the different additional properties
which one can require for them. The most complete collection of such “axioms”
is surely the one proposed by Connes in his article [11] (later amended in [12]
to prove his reconstruction theorem). Here, we will only need a few of these. In
(essential) accordance with the nomenclature of [11] and [12], we call them reality,
order one, finite summability and finiteness. References for them will be given later
on where needed.

ASSUMPTION 2.3. For the rest of this article, G denotes a Lie group of finite
dimension n which acts on a C∗-algebra A via a strongly continuous action α. We
denote by g the Lie algebra of G. We assume that we are given an Ad-invariant
positive-definite scalar product µ on g (e.g. in the case of a compact G, a negative
scalar multiple of the Killing form κ).

Such a G-action defines a “smooth version” A of A (see for instance Propo-
sition 3.45 p. 138 of [20] for a proof).
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PROPOSITION 2.4. The subalgebra A of G-smooth elements:

A := {a ∈ A : g 7→ αg(a) is in C∞(G, A)}

is a dense sub-∗-algebra of A, with a natural Fréchet structure, which is stable under
holomorphic functional calculus.

DEFINITION 2.5. Under Assumption 2.3, a covariant representation of A and
G on a Hilbert space H0 is a representation π of A together with a unitary and
strongly continuous representation U of G on H0 which satisfy the following
compatibility condition:

(2.1) π(αg(a))ξ = Ugπ(a)U∗g ξ,

for all a ∈ A, g ∈ G and ξ ∈ H0. In the rest of the present article, to simplify
notations we will suppress the representation when unambiguous, so that for
instance equation (2.1) reads αg(a) = UgaU∗g .

Given a covariant representation as above, we define a smooth domain
H ∞

0 ⊆H0 by

(2.2) H ∞
0 := {ξ ∈H0 : g 7→ Ugξ is in C∞(G, H0)}.

One sees easily that A H ∞
0 ⊆ H ∞

0 . Moreover, H ∞
0 is dense in H0, since it con-

tains the dense “Gårding’s domain” described in p. 306 of [29], and initially in-
troduced in [19].

NOTATION 2.6. Given any vector X ∈ g, we denote by:
(i) ∂A

X the associated infinitesimal generator of the action of G on A, i.e.

∂A
X (a) := lim

t→0

αexp(tX)(a)− a
t

for any a ∈ A .
(ii) ∂X the associated generator of the action of G on H0 defined in the same

way. Then ∂X satisfies the relation

(2.3) 〈∂Xξ, η〉+ 〈ξ, ∂Xη〉 = 0.

For all ξ ∈H ∞
0 and all a ∈ A , taking the derivative of (2.1) we clearly have:

∂A
X (a)ξ = ∂X(aξ)− a∂Xξ.

In other words, for all a ∈ A and all X ∈ g,

(2.4) [∂X , a] = ∂A
X (a).

We refer to Section 5 p. 171 of [20], for facts about Clifford algebras. We just
remind the reader of the definition.
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DEFINITION 2.7. Given a real vector space (V, µ) with a positive definite
scalar product, we can define its complex Clifford algebra Cl(V, µ), i.e. the universal
unital C∗-algebra generated by v ∈ V under the relations v∗ = −v and ∀v, w ∈ V,

(2.5) v w + w v = −2µ(v, w)1.

There is a natural Z/2Z-grading on Cl(V, µ) induced by the automorphism h
defined by h(v) = −v.

With this definition, up to isomorphism, Cl(V, µ) only depends on the di-
mension n ∈ N of V. We denote by Cl(n) this unique algebra. We can specify an
isomorphism Cl(V, µ) ' Cl(n) by choosing an orthonormal basis of V.

We can further identify Cl(n). Indeed, the following isomorphisms are well
known, see for example Lemma 5.5 p. 178 of [20]: for N = 2m

Cl(2m) = MN(C), Cl(2m + 1) = MN(C)⊕MN(C).(2.6)

It follows from the above identifications that, up to unitary equivalence, there is
a unique representation of Cl(n) for even n, and that there are two inequivalent
representations for odd n. A chirality element γ can be defined (compare Defini-
tion, p. 179 of [20]), which induces another grading operator. Indeed, it satisfies
γ∗ = γ and γ2 = 1 and moreover γvγ = v (in the odd case) or γvγ = −v (in
the even case). In other words, in this later case the grading is inner. In the odd
case, γ is in the center of Cl(n). For irreducible representations, γ has to be sent
to either 1 or −1. This distinguishes between the two possible irreducible repre-
sentations of Cl(n) for odd n. This also justifies that the chirality element does
not appear in irreducible representations of odd Clifford algebras.

Section 2 of the article [15] provides an explicit set of generators of the irre-
ducible representations of Cl(n) for all n, together with a concrete involution JS
and (in the even case) a grading operator γS. We summarise these results in the
following.

PROPOSITION 2.8. Consider a positive integer n and an irreducible representation
c of Cl(n) on a complex vector space S. Up to unitary equivalence, it is determined by n
matrices Fj such that

F∗j = −Fj, FjFk + FkFj = −2δjk.(2.7)

If n is even, a grading operator γS is available which satisfies γ∗S = γS, γ2
S = 1 and

γSFj = −FjγS for all j. There is an explicit anti-linear map JS such that for all j =

1, . . . , n and s, s′ ∈ S,

〈JSs, JSs′〉 = 〈s′, s〉, J2
S = ε J , JSFj = εDFj JS, JS γS = εγγS JS,

where
(i) the last equality (and therefore εγ) only appears in the even cases,

(ii) ε J , εD and εγ are all −1 or 1, the proper sign depending on n modulo 8:



ERGODIC ACTIONS AND SPECTRAL TRIPLES 313

n 0 2 4 6 1 3 5 7

ε J + − − + + − − +
εD + + + + − + − +
εγ + − + −

REMARK 2.9. In the original article, the matrices Fj associated to Cl(n) are

denoted γ
j
(n) (for n even) and γ

j
(n),± (for n odd, the sign corresponding to the two

irreducible representations) in [15]. They correspond to a choice of orthonormal
basis (vj) of V via Fj := c(vj). In the even case, the article [15] actually isolates
two possible antilinear maps denoted J± (see Section 2.3 p. 1836).

REMARK 2.10. The article [15] has the advantage of providing an explicit
description of γS and JS. However, at a more conceptual level, we can also say
that S comes with a spinor representation and as such it admits a Z/2Z-grading (see
Definition 5.14 and Proposition 5.15 p. 36 of [25]). The operator JS then identifies
with a charge conjugation operator.

In the rest of this article, following Assumption 2.3, we consider the Clifford
algebra Cl(g∗, µ∗) (also denoted simply Cl(g∗)), generated on the dual of the
Lie algebra g with the induced scalar product µ∗. We denote by S a fixed finite
dimensional Hilbert space equipped with an irreducible representation c of the
Clifford algebra Cl(g∗). The map c restricts to a linear map g∗ → B(S).

The tensor product g ⊗ g∗ identifies naturally with the linear endomor-
phisms of g. Under this natural identification, the identity map idg corresponds
to I := ∑

j
Ej ⊗ ej where (Ej) and (ej) are respectively a basis for g and its dual

basis in g∗. Of course, I does not depend on the choice of basis (Ej) for g.
Following Notation 2.6, the differential ∂ of the action α on H0 defines a

linear map from g to linear maps on H ∞
0 . Thus the image D of I under ∂ ⊗ c

defines a linear map on H ∞
0 ⊗ S, which does not depend on the choice of (Ej).

However, to express D more easily, we choose an orthonormal basis (Ej) for
(g, µ). Its dual basis (ej) is thus an orthonormal basis for (g∗, µ∗). For this choice
of basis, we set ∂j := ∂Ej and Fj := c(ej) and we can write:

(2.8) D := (∂⊗ c)(I) =
n

∑
j=1

∂Ej ⊗ c(ej) =
n

∑
j=1

∂j ⊗ Fj,

where the operators Fj := c(ej) satisfy the relations of Proposition 2.8 and D is a
linear map defined on H ∞

0 ⊗ S. Of course, we can define similarly ∂A
j := ∂A

Ej
. To

summarise our previous discussion:

REMARK 2.11. The operator D defined in (2.8) is independent of the choice
of basis (Ej) for g.

We next investigate the properties of the operator D.
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PROPOSITION 2.12. Let G be a Lie group of finite dimension n which acts on
a C∗-algebra A via a strongly continuous action α. Suppose we are given a covariant
representation of (A, G) on H0. The operator D of (2.8) is a symmetric unbounded
operator D on H := H0 ⊗C S with domain Dom(D) = H ∞

0 ⊗ S. Moreover,
(i) for any a ∈ A , the commutators with D are bounded; more precisely:

a(Dom(D)) ⊆ Dom(D), [D, a] = ∑ ∂A
j (a)⊗ Fj;

(i) if n is even, there is a selfadjoint grading operator γ such that for all a ∈ A,

γ2 = 1, γa = aγ, γ(Dom D) ⊆ Dom(D), γD = −Dγ.

DEFINITION 2.13. Under Assumption 2.3, an unbounded operator D ob-
tained from a covariant representation of (A, G) on a Hilbert space H0 by formula
(2.8) is called a Lie–Dirac operator. We also use this name for selfadjoint extensions
of D when they exist (see e.g. Propositions 3.4 and 4.1).

REMARK 2.14. We note that:
(i) The above proposition, together with Proposition 2.4, already proves the

requirement (ii) of Definition 2.1. Condition (i) of the same definition will be
examined in Theorem 5.5.

(ii) When n is even, the operator γ determines a grading for an even spectral
triple.

(iii) If we replace S with any finite (possibly reducible) representation S′ of
Cl(n), equation (2.8) defines the operator D on H := H0 ⊗ S′ and the proof
below applies verbatim.

Proof of Proposition 2.12. It is clear from the definition of H ∞
0 that D is de-

fined on H ∞
0 ⊗ S. Let us first prove that D is symmetric on this domain: take

ξ ⊗ s and ξ ′ ⊗ s′ in H ∞
0 ⊗ S. By (2.3), we get:

〈ξ ⊗ s, D(ξ ′ ⊗ s′)〉 =
〈

ξ ⊗ s, ∑ ∂jξ
′ ⊗ Fjs′

〉
= ∑〈ξ, ∂jξ

′〉 〈s, Fjs′〉 = ∑〈−∂jξ, ξ ′〉 〈−Fjs, s′〉

=
〈

∑ ∂jξ ⊗ Ejs, ξ ′ ⊗ s′
〉
= 〈D(ξ ⊗ s), ξ ′ ⊗ s′〉.

Any a ∈ A sends H ∞
0 ⊗ S to itself and [D, a] extends to a bounded operator: this

is obvious from the definitions of A and H ∞
0 together with equation (2.4).

Let γ be the grading operator for the graded tensor product of the trivially
graded space H0 and S graded by γS, or in other words, define the grading on
H0⊗ S by the operator γ := 1⊗ γS in the notations of Proposition 2.8. We clearly
get γ2 = 1 and γ∗ = γ. γ clearly commutes with the action of A. Moreover,
Dom(D) is evidently mapped to itself by γ and the anticommutation relation
with D is then easily checked using the properties of γS.

PROPOSITION 2.15. Assume that the adjoint action Ad of G on g preserves the
metric µ (see Assumption 2.3) on g. We say that a projective representation Φ of G on S
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implements the action β := Ad∗ on g∗ if ∀T ∈ Cl(g∗, µ∗), ∀g ∈ G,

(2.9) Φgc(T)Φ∗g = c(βg(T)).

(i) If n is even, then this spatial implementation always exists.
(ii) If n is odd, such Φ exist if and only if Ad preserves the orientation on g.

(iii) For n odd, replacing S by any finite representation c′ on S′ (as in Remark 2.14),
if the orientation is not preserved, then Φ exists if and only if c′(γ) and c′(−γ) are
equivalent in B(S′).

In any case, if Φ exists, then U ⊗Φ is a unitary projective representation of G on
H0 ⊗ S under which D is invariant: ∀g ∈ G,

(2.10) (Ug ⊗Φg)D(U∗g ⊗Φ∗g) = D.

REMARK 2.16. A few points:
(i) If G is a connected semi-simple Lie group and µ = κ is the opposite of the

Killing form, then both orientation and metric are preserved.
(ii) In general, we cannot require that Φ be an ordinary representation — but

projective representations are enough for our purposes (see Proposition 6.1 be-
low).

(iii) This covariance property (and its use of the contragredient representation
β := Ad∗) further justifies the identification of the Clifford algebra with Cl(g∗).

(iv) We can check the (“unbounded”) commutation relation (2.10) on finite di-
mensional spaces given by E ⊗ S, where E is an irreducible component in the
Peter–Weyl decomposition. Indeed, all E ⊗ S are globally invariant under both
U ⊗Φ and D.

Proof of Proposition 2.15. We first notice that since the ∂j are the infinitesimal
generators associated to the action implemented by Ug, we have:

Ug∂jU∗g = ∑ Adjk(g)∂k,

where Adjk(g) is the adjoint representation of G on g. If we can find Φ which
implements the contragredient representation β := Ad∗ of Ad on the vector space
generated by the Xj, checking that D is invariant under U⊗Φ is straightforward.

At this point, we want to find a unitary projective action Φ of G on S, which
implements β in the sense of (2.9). To find such Φ, we can extend the orthogonal
action β of g∗ into a Bogolyubov automorphism (see [20]) of Cl(g∗, µ∗) — which
we also denote β.

In the even case, the identification (2.6) together with the fact that all auto-
morphisms of MN(C) are inner ensure that for any Bogolyubov automorphism
β, we can find a unitary Φ : S→ S such that ∀T ∈ MN(C), β(T) = Φ ◦ T ◦Φ∗.

In the odd case, Cl(2m+ 1) has two inequivalent irreducible representations
S+ and S− with the same dimension N = 2m characterised by πS±(γ) = ±1. If
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β is orientation preserving, then γ is invariant under the Bogolyubov automor-
phism, since γ does not depend on the choice of oriented orthonormal basis used
to defined it — see Definition 5.2 p. 179 of [20].

Now consider a representation S′. We can decompose it into a direct sum
of n+ copies of S+ and n− copies of S−. We have Tr(πS′(γ)) = (n+ − n−)N. If
πS′(γ) is equivalent to πS′(−γ), then this trace vanishes, i.e. n+ = n−. Conse-
quently, for all g ∈ G, πS′ ◦ βg is equivalent to πS′ and we can find a unitary Φg
such that ∀T ∈ Cl(n), πS′ ◦ βg(T) = ΦgπS′(T)Φ∗g .

So in both even and odd cases, provided βg preserves the orientation, we
can “extract” an irreducible representation S of Cl(n) and get for all g ∈ G and all
T ∈ Cl(n), πS ◦ βg(T) = ΦgTΦ∗g . We can compose these equations for g0, g1 ∈ G
using βg0g1 ◦ βg−1

1
◦ βg−1

0
= id and get, for all T ∈ Cl(n):

Φg0g1 Φ∗g1
Φ∗g0

πS(T)Φg0 Φg1 Φ∗g0g1
= πS(T).

Since the representation S is irreducible, the intertwiner Φg0g1 Φ∗g1
Φ∗g0

has to be a
scalar — which in turn has to be in U(1) by composition of unitaries. This proves
that we get a projective representation.

Conversely, if βg does not preserve the orientation, then βg(γ) = −γ and
the operator Φg satisfies πS′(−γ) = πS′ ◦ βg(γ) = ΦgπS′(γ)Φ

∗
g , i.e. πS′(γ) and

πS′(−γ) are equivalent in B(S′).

REMARK 2.17. As a concrete example of a situation where the lifting in S
fails, consider U(1) o Z/2Z realised inside U(1) × {±1} by the product
(z, ε) · (z′, ε′) = (z(z′)ε, εε′). If the Clifford algebra Cl(1) is generated by 1 and
F, then the adjoint representation gives Ad(0,−1)(F) = −F, which can not be im-
plemented inside a one dimensional irreducible representation of Cl(1).

3. GNS REPRESENTATION

LEMMA 3.1. Under Assumption 2.3, given a G-invariant trace τ on A, the Hilbert
space H0 obtained by the GNS construction from (A, τ) is equipped with a natural
covariant representation of A and G.

Proof. From the definition of H0 = GNS(A, τ), the image H := {[a], a ∈ A}
of A in H0 is dense. We define the representations of A and G on this subset by:

π(a)([a′]) = [aa′], Ug([a]) = [αg(a)].

It is readily checked from these expressions that (2.1) is satisfied. Let us now
prove that Ug is unitary:

〈Ug([a]), Ug([a′])〉 = τ(αg(a)∗αg(a′)) = τ(a∗a′) = 〈[a], [a′]〉
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since τ is G-invariant. As α is strongly continuous on A, it is clear that U is
strongly continuous on H. It then follows from a standard density argument that
U is strongly continuous on H0.

We need the following slight generalisation of Theorem X.3 of [30].

LEMMA 3.2. If D is a densely defined unbounded symmetric operator on a Hilbert
space H whose domain is Dom(D) ⊂ H and J is an antilinear map on H such that
for all

〈Jξ, Jη〉 = 〈η, ξ〉, J2 = ε J , J(Dom(D)) ⊆ Dom(D), JD = εDDJ,(3.1)

where ε J and εD in {−1, 1}, then D admits a selfadjoint extension.

REMARK 3.3. An antilinear operator J which satisfies the equation (3.1) for
all ξ, η ∈H is called norm-preserving.

Proof of Lemma 3.2. We first consider the cases εD = 1. If ε J = 1, we are back
to the hypotheses of Theorem X.3 p. 143 of [30], thus the conclusion holds.

If ε J = −1, we reduce the situation to the previous case by an easy com-

putation using tensor products: define an antilinear map C on C2 by C
(

x1
x2

)
=(

−x2
x1

)
and then set

D2 = D⊗ 1, J2 = J ⊗ C,

where the domain of D2 is Dom(D)⊕Dom(D). Clearly, the tensor product (over
C) of two antilinear maps is well-defined and J2 is antilinear. The following facts
are easily checked using tensor products: D2 is symmetric, J2

2 = 1, J2 preserves
the norm of H ⊗C2 and the domain of D2. Finally, J2 and D2 commute. Hence,
we are back to the previous hypotheses and D2 admits a selfadjoint extension,
denoted D̃2. It is written as a diagonal block matrix, thus the upper left entry
denoted D̃ is already a selfadjoint operator, which extends D.

It remains to treat the cases of εD = −1. We use the same kind of argument:

introduce on C2 the antilinear operator C′
(

x1
x2

)
=

(
x2
x1

)
and then set

D2 = D⊗
(

1 0
0 −1

)
, J2 = J ⊗ C,

the domain of D2 being Dom(D)⊕Dom(D). Clearly, we have J2
2 = J2⊗ 1C2 = ε J ,

J2 preserves the norm of H ⊗C2 and sends Dom(D2) to itself.
Moreover, J2 and D2 commute algebraically, as a simple computation using

tensor products shows.
We are then back to the previous cases of εD = 1. Hence, D2 admits a

selfadjoint extension and we can apply the same argument as in the previous
case to extract a selfadjoint extension of D.
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Under the same hypotheses as in Lemma 3.1, the Dirac operator satisfies
additional properties:

PROPOSITION 3.4. If H0 = GNS(A, τ) for a G-invariant trace and D is an
associated Lie–Dirac operator (see Definition 2.13) then:

(i) the operator D admits a real structure, i.e. there is a norm-preserving antilinear
map J : H →H such that for all a, b ∈ A

[a, Jb∗ J−1] = 0, J(Dom(D)) ⊆ Dom(D), JD = εDDJ,

and J2 = ε J , where ε J and εD are given by the table of Proposition 2.8; in the even case,
there is an additional equality: J γ = εγγ J and the value of εγ is also given by the
previous table;

(ii) D and J satisfy the first order condition, i.e. for all a, b ∈ A ,

[[D, a], Jb∗ J−1] = 0;

(iii) D admits a selfadjoint extension D̃.

REMARK 3.5. The above proposition relates to the axioms of [11], [12] in the
following way:

(i) Point (i) precisely shows the reality condition of [11] (see Axiom (7’) p. 163).
(ii) Point (ii) is the first order condition denoted Axiom (2’) p. 164 of [11].

Of course, it still remains to take care of the compactness of (1 + D2)−1/2.

Proof of Proposition 3.4. We continue to use the notation of the proof of Lem-
ma 3.1. We define an antilinear operator J0 on H by J0([a]) = [a∗]. This operator
preserves the norm on H:

〈J0([a]), J0([b])〉 = 〈[a∗], [b∗]〉 = τ(ab∗) = τ(b∗a) = 〈[b], [a]〉

since τ is a trace. It thus extends to an antilinear operator on all of H0. We then set
J := J0 ⊗ JS — which is well-defined since both J and JS are antilinear. Moreover,
both J0 and JS are norm-preserving which implies that J is also norm-preserving.

As both a and Jb∗ J−1 are bounded (linear) operators on H , it suffices to
check the commutation condition on the subset H ⊗ S ⊆H0 ⊗ S, i.e.

a Jb∗ J−1([c]⊗ s) = aJ([b∗c∗]⊗ J−1
S s) = [acb]⊗ s

= J([b∗c∗a∗]⊗ J−1
S s) = Jb∗ J([ac]⊗ s) = Jb∗ J a([c]⊗ s).

Regarding the first order condition, since both [D, a] and Jb∗ J−1 are bounded
linear operators, it suffices to prove the commutation relation on [c]⊗ s for c ∈ A
and s ∈ S. We then have:

[D, a] Jb∗ J−1([c]⊗ s) =
(

∑ ∂A
j (a)⊗ Fj

)
([cb]⊗ s) = ∑[∂A

j (a)cb]⊗ Fjs

= Jb∗ J−1
(

∑[∂A
j (a)c]⊗ Fjs

)
= Jb∗ J−1 [D, a]([c]⊗ s).
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Finally, the existence of a selfadjoint extension D̃ of D follows immediately from
the existence of the real structure J and Lemma 3.2.

4. COVARIANT REPRESENTATIONS OF COMPACT LIE GROUPS

Going back to general covariant representations, in the case of a compact
Lie group, the operator D is essentially selfadjoint, so we do not need to choose a
selfadjoint extension.

PROPOSITION 4.1. Let H0 be a Hilbert space endowed with a covariant represen-
tation of (A, G). If G is compact, then the associated Lie–Dirac operator D is essentially
selfadjoint.

REMARK 4.2. In full generality, whenever the Lie–Dirac operator D is essen-
tially selfadjoint, then properties (i)–(ii) of Proposition 2.12 and (i)–(ii) of Propo-
sition 3.4 (if applicable) also hold for D — see for instance Proposition 2 in the
appendix of [27].

Proof of Proposition 4.1. Peter–Weyl’s decomposition theorem enables us to
write H0 as a direct sum of G-representations:

(4.1) H0 =
⊕
`

E` ⊗Cm`

where

(i) ` is a multi-index labelling the highest weight of a representation of G,
(ii) E` is a finite dimensional Hilbert space, endowed with the representation

π` of G of highest weight `,
(iii) m` is the multiplicity of E` inside H0.

For each `, we can fix m` subspaces E`,k ⊆ H0 for k = 1, . . . , m` which are
pairwise orthogonal, unitarily equivalent to E` and exhaust the E` component
of H0. Denoting P`,k the associated projections on H0 and Q`,k := P`,k ⊗ 1S,
we have Q`,k Dom(D) ⊆ E`,k ⊗ S ⊆ Dom(D) and Q`,k commutes with D. To
prove that D is essentially selfadjoint, it suffices to prove that Ran(D + i) and
Ran(D − i) are dense (see Corollary p. 257 of [29]). Using the decomposition
(4.1) and the commutation of Q`,k with D, it suffices to prove that for each `, k,
E`,k ⊗ S = Ran(Q`,kD± i). Since Q`,kD is a symmetric operator on the finite di-
mensional space E`,k⊗ S, it induces a basis of eigenvectors whose eigenvalues are
real. This implies that both Q`,kD + i and Q`,kD− i are surjective and completes
the proof.
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5. ERGODIC ACTIONS

In the particular case of ergodic actions of compact Lie groups, we can even
estimate the summability of the closure D of D. To lighten notation, we some-
times write D instead of D.

DEFINITION 5.1. The action α of G on A is ergodic if the only G-invariants
elements are the scalars, i.e. if ∀g ∈ G, αg(a) = a, then a ∈ C1A.

REMARK 5.2. If G is compact and the action is ergodic, then a theorem of
Høegh-Krohn, Landstad and Størmer (see Theorem 4.1 p. 82 of [22]) proves that
the unique G-invariant state is actually a trace τ. Hence the existence of a G-
invariant trace τ is automatic!

We now need a brief reminder regarding Dixmier trace ideals, for which we
follow Chapter IV of [9]. For more details concerning symmetrically normed
operator ideals and singular traces we refer the reader to [26] and [36].

DEFINITION 5.3. For p > 1, the ideal Lp+ (also denoted L(p,∞) in [9] and
Jp,ω in p. 21 of [36]) is given by the compact operators T on H such that

‖T‖p+ := sup
k

σk(T)
k(p−1)/p

< ∞,

where σk(T) is defined as the supremum of the trace norms of TE, when E is an
orthonormal projection of dimension k, i.e.

σk(T) := sup{‖TE‖1, dim E = k}.

Equivalently, σk(T) is the sum of the k largest eigenvalues (counted with their
multiplicities) of the positive compact operator |T| := T∗T. We extend the defini-
tion to the case of p = 1: L1+ is the ideal of compact operators T such that

(5.1) ‖T‖1+ := sup
k

σk(T)
log k

< ∞.

The elements of Lp+ are called p+-summable (or (p, ∞)-summable — see Sec-
tion IV.2 α p. 299 and following, of [9]).

The following notion is then the analogue of dimension for spectral triples.

DEFINITION 5.4. A spectral triple is p+-summable if (1 + D2)−1/2 ∈ Lp+ .

Examples of n+-summable spectral triples include spin manifolds of dimen-
sion n equipped with their Dirac operators — see Theorem 11.1 p. 488 and The-
orem 7.18 p. 293 of [20]. This last property is related to Weyl’s theorem. More
material on this topic is available in [34], especially Chapter 8 therein. We are
now ready to state our main
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THEOREM 5.5. Let G be a compact Lie group of dimension n acting ergodically on
a unital C∗-algebra A, then

(i) using the unique G-invariant trace τ of Remmark 5.2, H0 := GNS(A, τ) is
endowed with a covariant representation of (A, G) and the Lie–Dirac operator

(5.2) D =
n

∑
j=1

∂j ⊗ Fj,

is essentially selfadjoint; its closure D defines an n+-summable spectral triple (A, H0 ⊗
S, D) on A, which is even when n is even, carries a real structure and satisfies the first
order condition (as in Proposition 3.4);

(ii) given a covariant representation of (A, G) on H0 such that the space of G-smooth
elements H ∞

0 is a finitely generated projective module on A , the spectral triple (A, H0⊗
S, D) obtained from (5.2) is n+-summable and even if n is even.

REMARK 5.6. This theorem finally proves condition (i) of Definition 2.1! The
other properties of the spectral triple are immediate consequences of Proposi-
tion 2.12 and 3.4.

In condition (ii), the notation H ∞
0 is the same as in (2.2). The condition on

H ∞
0 as a A -module mimicks the finiteness Axiom (5) found in p. 160 of [11].

REMARK 5.7. The crucial step of the proof below is to control the multiplic-
ities appearing in the Peter–Weyl decomposition Theorem (4.1). Here, we rely on
ergodicity and an estimate provided by [22]. However, other means of control-
ling these multiplicities should lead to analogs of Theorem 5.5 for more general
settings.

Proof of Theorem 5.5. We begin with point (i) of the theorem. We are going
to prove that D has compact resolvent and is finitely summable by comparing it
to the Lie–Dirac operator Dref associated to the C∗-algebra C(G) and its covariant
representation on L2(G) — equipped with the left regular representation Vg of G.
Consequently, Dref acts on the Hilbert space Href := L2(G)⊗ S.

Since the tangent space TG is trivial, Dref is actually a Dirac operator on the
compact manifold G — equipped with its trivial spin structure. In particular, Dref
has compact resolvent and is n+-summable.

We can now decompose Href for the unitary representation Vg ⊗ 1 using
Peter–Weyl’s theorem. The result is a sum of Hilbert G-spaces:

(5.3) Href =
⊕
`

E` ⊗Cd` ⊗ S

where

(a) ` is a multi-index labelling the highest weight of a representation of G,
(b) E` is a finite dimensional Hilbert space, endowed with the representation

π` of G of highest weight `,
(c) d` is the dimension of E`, which is also the multiplicity of E` inside L2(G).
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We need to perform the same decomposition for H0. We first decompose A into
its spectral subspaces (also called isotypical components): given a highest weight `,
we interpret the associated representation π` on E` as a d` × d`-matrix and write
χ`(g) = d` Tr(π`(g−1)) for its normalised character. The associated spectral sub-
space A` is the norm closed subspace defined by:

A` :=
{ ∫

G
χ`(g)αg(a)dg : a ∈ A

}
⊆ A.

Relation (2.2.40) on p. 45 of [5] proves that the (algebraic) direct sum Aalg :=⊕alg A` is norm dense in A. From p. 76 of [22], we get that A` decomposes into a
direct sum of irreducible components, each equivalent to E`. Moreover, Proposi-
tion 2.1 in the same article ensures that the multiplicity m` of E` inside A` satisfies
m` 6 d` — thereby proving that the dimension of A` is bounded by d2

` .
Relying on the dense subset Aalg of A, it is easy to prove that the unique

G-invariant trace τ is faithful and therefore H0 decomposes as a sum of Hilbert
spaces:

H0 =
⊕

E` ⊗Cm` .

Comparing the above expression with (5.3), it is clear that there is an inclusion
ι0 : H0 → L2(G) which commutes with the action of G. This inclusion extends to
an inclusion ι : H →Href.

Since Dref has compact resolvent, Href admits a Hilbertian basis of eigen-

vectors. If for each `, we choose a decomposition
d⊕̀

k=1
E`,k of the term E` ⊗Cd` in

(5.3), it is easily checked that the associated projections P`,k intertwine the action
of G on Href and thus commute with Dref. Moreover, we can pick the spaces E`,k
so that if k 6 m`, then E`,k ∈ ι(H ) and if k > m`, then E`,k is orthogonal to ι(H ).

Hence, we can choose a basis of Href of eigenvectors of Dref. Since P`,k com-
mutes with Dref, we can even take a basis which is compatible with the decom-
position 1Href

=
⊕

P`,k. It is then clear that Dref and D coincide on the relevant
building blocks E`,k, therefore providing a basis of H of eigenvectors for D. The
associated eigenvalues are the same for Dref and D. In particular, since Dref has
compact resolvent, so does D.

To prove that D is n+-summable, note first that as a consequence of the
previous discussion the eigenvalues (µk)k∈N of |D| are the same as those (λk)k∈N
of |Dref|, but they have lower (possibly vanishing) multiplicities. This implies
that if the eigenvalues (µk) and (λk) (repeated with their multiplicities) are in
increasing order, then for all k ∈ N, λk 6 µk.

Formally, we want to prove that (1 + D2)−1/2 is in the ideal Ln+ and we
already know that (1 + D2

ref)
−1/2 ∈ Ln+.

Since the function f (x) = (1 + x2)−1/2 is decreasing on R+, we see that
if (λk) is the sequence of eigenvalues of |Dref| in increasing order, then (λ′n) :=
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( f (λk)) is the sequence of eigenvalues of (1+ D2
ref)
−1/2 in decreasing order. More-

over, as λk 6 µk, we have λ′k = f (λk) > µ′k := f (µk). In the notations of Defini-
tion 5.3, we have:

σk,ref := σk((1 + D2
ref)
−1/2) =

k−1

∑
p=0

λ′p , σk := σk((1 + D2)−1/2) =
k−1

∑
p=0

µ′p ,

and the monotony of f implies σk,ref > σk. That (1 + D2
ref)
−1/2 ∈ Ln+ means

‖(1 + D2
ref)
−1/2‖n+ = sup

k

σk,ref

k(n−1)/n
< ∞.

This in turn implies

‖(1 + D2)−1/2‖n+ = sup
k

σk

k(n−1)/n
6 sup

k

σk,ref

k(n−1)/n
< ∞

and completes the proof that D is n+-summable.
We now turn our attention to point (ii). The proof is essentially the same,

but we need to compare D with Dref,k := Dref ⊗ 1k acting on L2(G) ⊗ S ⊗ Ck

instead of Dref. The finiteness condition on H ∞
0 can be written H ∞

0 ' pA k,
thus yielding a covariant inclusion H0 ⊆ GNS(A⊗Ck, τ) where τ is defined on
A⊗Ck by:

τ(a1, . . . , ak) =
1
k

k

∑
j=1

τ(aj).

This is indeed a state since it is the restriction to diagonal matrices of the state
τ ⊗ Tr defined on A⊗Mk(C).

Dref,k is n+-summable since functional calculus leads to

(1 + D2
ref,k)

−1/2 = (1 + D2
ref)
−1/2 ⊗ 1k,

and this is a finite sum of operators ∑
j
(1+ D2

ref)
−1/2⊗ ejj which are all in the ideal

Ln+. Another way to prove this property would be to use the “scale invariance”
considered in IV.2.β p. 305 of [9].

In any case, we conclude as in point (i): using a Peter–Weyl decomposition,
we see that Dref,k and D coincide on the relevant irreducible components and a
comparison of multiplicities leads to the n+-summability of D.

REMARK 5.8. The above proof is based on methods from noncommutative
geometry but another proof using only representation theory should be possible.
It would involve a comparison of D2 with ∆ (see equation (6.2) below). ∆ is the
Casimir operator and so can be treated by representation theoretic methods. To-
gether with the estimate of Proposition 2.1 in [22], it would follow that (1 +∆)−1

is n+-summable.
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6. EVALUATION OF DIXMIER TRACE

The n+-summability of D established in the previous section enables us to
use the Dixmier trace Trω (see IV.2 of [9]):

PROPOSITION 6.1. Let G be a compact Lie group of dimension n acting ergodically
on a unital C∗-algebra A, consider a state ω of B∞ as in Definition 7.16 p. 288 of [20]
and a spectral triple (A, H , D) as in Theorem 5.5.

Given a positive real number n0 such that (1 + D2)−n0/2 ∈ L1+, for any T ∈
B(H ) we can evaluate the Dixmier trace Trω in the expression φ(T) := Trω(T(1 +
D2)−n0/2). In particular, there is a scalar λ such that for any a ∈ A,

(6.1) Trω(a(1 + D2)−n0/2) = λτ(a).

REMARK 6.2. Theorem 5.5 ensures the existence of real numbers n0 > n
such that (1 + D2)−n0/2 ∈ L1+: according to Lemma 7.37 p. 316 of [20], since
(1 + D2)−1/2 is positive and in Ln+, (1 + D2)−n/2 ∈ L1+.

Proof of Proposition 6.1. It follows directly from the hypothesis (1+D2)−n0/2

∈ L1+ that for any T ∈ B(H ), T(1 + D2)−n0/2 is in the ideal L1+ of B(H ) and
we can evaluate φ(T). The precise value of φ(T) may depend on the choice of ω,
however.

A consequence of Proposition 2.15 above is that for any g ∈ G, we have

(Ug ⊗Φg)(1 + D2)−n0/2(Ug ⊗Φg)
∗ = (1 + D2)−n0/2.

Since Trω is a trace (see Proposition 3 (b) p. 306 of [9]) we have:

φ(αg−1(a)) = Trω((Ug ⊗Φg)
∗(a⊗ idS)(Ug ⊗Φg)(1 + D2)−n0/2)

= Trω((a⊗ idS)(Ug ⊗Φg)(1 + D2)−n0/2(Ug ⊗Φg)
∗)

= Trω((a⊗ idS)(1 + D2)−n0/2) = φ(a).

Theorem 4.1 p. 82 of [22] proves that all G-invariant linear forms on A are pro-
portional to the unique normalised G-invariant trace τ, so (6.1) is proved.

Under a slightly different condition, we can refine the result. To this end,
we follow the conventions of [9] (see p. 303) and write L1+

0 for the closure of the
finite rank operators under the norm ‖ · ‖1+ defined in (5.1). It follows from p. 288
of [20] that L1+

0 lies inside the common kernel of all Dixmier traces.

THEOREM 6.3. Under the same hypotheses as Proposition 6.1 above,
(i) the positive unbounded operator ∆ := −∑

j
∂2

j ⊗ 1 with domain Dom(∆) =

H ∞
0 ⊗C S is essentially selfadjoint and (1 + ∆)−n/2 ∈ L1+.

Given a positive real number n0 such that (1 + ∆)−n0/2 ∈ L1+,
(ii) the operator (1 + D2)−n0/2 is in L1+ and

(6.2) (1 + D2)−n0/2 − (1 + ∆)−n0/2 ∈ L1+
0 ;
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(iii) the form φ(T) := Trω(T(1 + D2)−n0/2) extends to a trace on A⊗ B(S) and

(6.3) Trω(T(1 + D2)−n0/2) = λ(τ ⊗ TrS)(T),

where the trace TrS on the finite dimensional algebra B(S) satisfies TrS(1) = 1 and λ is
the same as in equation (6.1) above.

REMARK 6.4. A few comments on the above theorem, using the involutive
algebra Ω generated by A and the commutators {[D, a], a ∈ A }.

(i) It is clear from the expression Proposition 2.12 above that Ω ⊆ A⊗ B(S),
and therefore the equation (6.3) evaluates the Dixmier trace on Ω.

(ii) We remind the reader that a spectral triple is tame in the sense of p. 465 in
[20], if the functional T 7→ Trω(T(1 + D2)−n0/2) is a trace on Ω. It follows from
the above Theorem 6.3 that the spectral triple of Theorem 5.5 is tame.

(iii) The condition on (1+∆)−n0/2 is actually easier to evaluate in concrete cases
than the original condition on (1 + D2)−n0/2 — see Example 7.1 below.

Proof of Theorem 6.3. Regarding item (i), it is clear that ∆ is positive as sum of
the positive operators −∂2

j ⊗ 1. Proving that ∆ is essentially selfadjoint proceeds
as in Theorem 5.5 above. We also follow the proof of this theorem to show that
this operator is n+-summable.

Only this time, we compare ∆ to the Casimir operator ∆ref acting on the
manifold G. In this situation, the expression (1 + ∆ref)

−n/2 represents an ellip-
tic pseudodifferential operator of order −n on compact Riemannian manifold of
dimension n, which is therefore in L1+ by Theorem 7.18 p. 293 of [20].

To compare D2 and ∆ in item (ii), notice first that if we can prove (6.2), then
it follows that (1 + D2)−n0/2 ∈ L1+. An easy computation yields:

D2 = −∑
j

∂2
j ⊗ 1 + ∑

j<k
[∂j, ∂k]⊗ FjFk.

Selecting a couple j < k, we denote λj,k the (absolute value of the) norm of [∂j, ∂k]
measured using the metric µ and Tj,k := [∂j, ∂k]⊗ FjFk.

For any ξ in a finite dimensional Hilbert space involved in the Peter–Weyl
decomposition (4.1), we have:

〈ξ, T∗j,kTj,kξ〉 6 λ2
j,k〈ξ, (1 + ∆)ξ〉.

Indeed, we know that the expression of the Casimir operator actually does not
depend on the choice of orthonormal basis in g, so up to renormalisation, [∂j, ∂k]
appears in the sum defining ∆. From this relation, we get

〈η, (1 + ∆)−1/2T∗j,kTj,k(1 + ∆)−1/2η〉 6 λ2
j,k〈η, η〉,

which in turn proves that Tj,k(1 + ∆)−1/2 extends to a bounded operator on H .
At this point, remark that (1+∆)−1/2 commutes with Tj,k, as can be easily checked
on the finite dimensional spaces obtained from the Peter–Weyl decomposition.
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If we write T := ∑
j<k

Tj,k = D2 − ∆, the above shows that T(1 + ∆)−1/2 is a

bounded operator. Moreover, the previous commutation relation proves that
T(1 + ∆)−1/2 = (1 + ∆)−1/4T(1 + ∆)−1/4 is selfadjoint. Using this commutation
relation, we want to write:

(6.4) (1 + D2)−n0/2 − (1 + ∆)−n0/2 = ((1 + T(1 + ∆)−1)−n0/2 − 1)(1 + ∆)−n0/2.

Of course, this expression only makes sense if 1+ T(1+∆)−1 is invertible, which
may not be satisfied. However, it appears from the previous discussion that T(1+
∆)−1 = T(1 + ∆)−1/2(1 + ∆)−1/2 is the product of the bounded operator T(1 +
∆)−1/2 with the compact operator (1 + ∆)−1/2 and is therefore compact in its
own right. Consequently, the projection P on the eigenspaces associated to the
eigenvalues λ with |λ| > 1/2 is a finite dimensional projection. We then split
H = PH ⊕ P⊥H and the commutation of (1+∆)−1/2 with T(1+∆)−1/2 ensure
that (1+ D2)−n/2− (1+∆)−n/2 splits in the sum of two endomorphisms, on PH

and P⊥H .
Since PH is finite dimensional, this part clearly lives in L1+

0 . On P⊥H , by
construction, 1 + T(1 +∆)−1 is invertible and therefore the expression (6.4) has a
meaning. Consider the scalar function:

f (t) := (1 + t)−n0/2 − 1.

The image of the compact operator T(1 + ∆)−1 under this continuous function
with f (0) = 0 is a compact operator. The difference (1+ D2)−n0/2− (1+∆)−n0/2

thus identifies with the product of the compact operator K=((1+T(1+∆)−1)−n0/2

−1) and the element of L1+ given by T′ = (1 + ∆)−n0/2. The discussion of
Dixmier traces in p. 288 of [20] proves that

(a) the norm ‖ · ‖1+ is symmetric thus ‖KT′‖1+ 6 ‖K‖ ‖T′‖1+;
(b) Dixmier traces are continuous for ‖ · ‖1+.

Since Dixmier traces vanish on finite-rank operators, they also vanish on the
‖ · ‖1+-closure of finite-rank operators, i.e. L1+

0 . The operator K is compact, so
it can be approximated (in operator norm) by a sequence of finite-rank operators
Kn. Since ‖ · ‖1+ is a symmetric norm, we have ‖KT′−KnT′‖1+6‖K−Kn‖ ‖T′‖1+,
which proves that the sequence KnT′ of finite rank operators converges to KT′ for
the ‖ · ‖1+-norm. In other words, (1 + D2)−n0/2 − (1 + ∆)−n0/2 ∈ L1+

0 .
Item (iii) follows from (6.2): for any Dixmier trace Trω and any T∈A⊗B(S),

Trω(T(1 + D2)−n0/2) = Trω(T(1 + ∆)−n0/2).

Since the operator −∑
j

∂2
j is the Casimir operator on the compact Lie group G,

(1 + ∆)−n0/2 commutes with the unitary Ug ⊗ 1. Similarly, for any unitary U′ ∈
U (S) of B(S), 1⊗U′ commutes with (1 +∆)−n0/2. It is easy to see that the action
of G×U (S) on A⊗ B(S) implemented by Ug ⊗U′ is ergodic.
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The same computation as in Proposition 6.1 proves that the linear form φ(T)
on A ⊗ B(S) is invariant under the ergodic action of G × U (S). It is therefore
proportional τ ⊗ Tr. Since this is an extension of the linear form of point (i), the
scalar λ has to be the same in both cases.

7. SUMMABILITY: THE CASE OF THE 2-SPHERE S2

In this section, we discuss the questions of summability in relation with the
following example.

EXAMPLE 7.1. We can apply our construction to the 2-sphere on which the
group G = SU(2) is acting.

Let us start by simple observations on our main result.

REMARK 7.2. Theorem 5.5 only gives an upper bound on summability, i.e.
the scalar λ can take the value λ = 0. Assuming ergodicity, in general we cannot
do better: if G acts ergodically on A, then letting K act trivially on A, we obtain
an ergodic G× K-action. However:

(i) The degree of freedom that we gain by using the real number n0 in Propo-
sition 6.1 and Theorem 6.3 can compensate this problem, as we will see in this
section.

(ii) If there is a n0 such that λ is finite and nonzero, then this “dimension” is
unique: indeed, for all ε > 0, (1 + D2)−(n0+ε)/2 = (1 + D2)−n0/2(1 + D2)−ε/2 is
the product of (1 + D2)−n0/2 ∈ L1+ and the compact operator (1 + D2)−ε/2 and
its Dixmier trace therefore vanishes (see proof of Theorem 6.3).

(iii) We can consider an ergodic action with full multiplicity — i.e. in the decom-
position (4.1) m` = d`, dimension of the representation E` (compare with Theo-
rem A, p. 1482 of [38]). In this case, the eigenvalues of D are the same as those of
Dref acting on Href (see proof of Theorem 5.5), therefore the techniques available
for manifolds apply, and following for instance the lines of Proposition 7.7 p. 269
of [20], it appears that for n0 = n, λ is nonvanishing.

PROPOSITION 7.3. If we consider A = C(S2) equipped with its natural SU(2)
action,

(i) the action of SU(2) on A is ergodic.
Using the spectral triple constructed as in Theorem 5.5,

(ii) the operator (1 + ∆)−3/2 is traceclass and thus

Trω((1 + D2)−3/2) = 0;

(iii) the operator (1 + ∆)−1 is in L1+ and its Dixmier trace does not vanish; more
precisely:

(7.1) Trω((1 + D2)−1) = 2.
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REMARK 7.4. The estimate (7.1) together with Theorem 6.3 proves that all
T ∈ A ⊗ B(S) are measurable, i.e. Trω(T(1 + D2)−1) does not depend on the
choice of ω (see e.g. Definition 7.16 p. 288 of [20]).

Proof of Proposition 7.3. It is well-known that the spherical harmonics pro-
vide a decomposition of the Hilbert space H0 = L2(S2) into an orthogonal Hilbert
sum of eigenspaces of ∆0 = −(∂2

1 + ∂2
2 + ∂2

3). Formally,

H0 =
⊕
`>0

E2`,

where E2` is the (Hilbert space of the) irreducible representation of SU(2) of di-
mension 2`+ 1. It follows that the eigenvalues of ∆0 are `(`+ 1) (for ` ∈ N) and
they have multiplicity 2`+ 1. A consequence is that the only G-invariant func-
tions in H0 are the constants. Since A ⊆ H0, it appears that the action of G on A
is ergodic and thus item (i) is proven.

To proceed in the direction of items (ii) and (iii), notice that the Lie group
G = SU(2) has dimension 3, so following (2.6), the Hilbert space we consider for
the Dirac operator of Theorem 5.5 is H = H0 ⊗C2, meaning the operator ∆ as
defined in Theorem 6.3 has eigenvalues `(`+ 1) with multiplicities 2(2`+ 1).

Next step is to evaluate ‖(1 + ∆)−n0/2‖1+ and prove by direct examination
that it is finite for n0 = 3 and n0 = 2. Of course, the case n0 = 3 is also a conse-
quence of Theorem 6.3 item (i) and we complete the computation as an illustra-
tion only. Consider the sum σk((1 + ∆)−n0/2) (see Definition 5.3), which we sim-

ply denote σk. We can evaluate it explicitly for k(`0) =
`0
∑
`=0

2(2`+ 1) = 2(`0 + 1)2

corresponding to the eigenvalues of
⊕

06`6`0

E2`. In this case, we get:

σk(`0)
=

`0

∑
`=0

2(2`+ 1)(`(`+ 1))−n0/2.

For n0 = 3, we get the upper bound:

(2`+ 1)
(`(`+ 1))3/2 6

2
`
√
`(`+ 1)

= O(`−2),

where we used Landau’s notation. This shows that for n0 = 3, the series σk
of positive terms actually converges. It follows that the operator (1 + ∆)−3/2 is
traceclass and thus its image under the Dixmier trace is 0 (see p. 304 of [9]). As a
consequence of Theorem 6.3 item (ii), this also proves that Trω((1+ D2)−3/2) = 0,
i.e. λ = 0 in equation (6.1). This completes the discussion of item (ii).

Taking now n0 = 2, we can estimate the general term of the series σk(`0)
:

2(2`+ 1)
`(`+ 1)

∼ 4`−1,
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and since all the terms in the series are positive, this series itself is equivalent to
4 log(`0). More generally, for all k ∈ Jk(`0), k(`0 + 1)K we get the estimate:

(7.2) 0 6
σk(`0)

log(k(`0 + 1))
6

σk
log(k)

6
σk(`0+1)

log(k(`0))
.

Using the equivalences σk(`0)
∼ 4 log(`0) and log(k(`0)) = log(2(`0 + 1)2) ∼

2 log(`0), it appears that both sides of the inequality (7.2) converge to 2 for `0 → 0.
Following Definition 2 p. 305 of [9], this proves that the value of the Dixmier trace
does not depend on ω and actually:

Trω((1 + D2)−1) = 2.

In other words, the scalar λ in (6.1) is equal to 2.

8. EXAMPLES AND COUNTEREXAMPLES

We begin this section with a few comments on Theorem 5.5.

(i) For an n+-summable operator D, we know that a Hochschild cocycle ϕ on
A can be defined by:

(8.1) ϕ(a0, a1, . . . , an) = λn Trω(γa0[D, a1] · · · [D, an]|D|−n),

as stated in IV.2 Theorem 8 p. 308 of [9] — which was later improved in [14]. In
the case of noncommutative tori (see Example 8.1 below), the equation (8.1) leads
(up to normalisation) to the cyclic cocycle:

ϕ(a0, a1, a2) = τ(a0(∂1(a1)∂2(a2)− ∂2(a1)∂1(a2))).

Would it be possible in the setting of Theorem 5.5(i) to relate (8.1) to cyclic cocycles
as constructed in III.6 example 12 c p. 256 of [9])?

(ii) Another interesting improvement would be to find sufficient conditions for
the Poincaré duality (Axiom (6’) of [11]) to hold. However, this property would
really depend on the algebraic structure on A, and not just on the multiplicity of
its spectral subspaces.

(iii) Examples of covariant representations of (A, G) on H0 satisfying the hy-
potheses of the second point of the theorem can be constructed from finite di-
mensional representations β : G → B(K ) by setting: H0 := GNS(A, τ)⊗K on
which G acts by U ⊗ β, where U is defined by Lemma 3.1. Sub-covariant repre-
sentations of such H0 are also suitable.

To illustrate our results and hypotheses we give examples showing that fre-
quently spectral triples arise from Lie group actions, and we hint at some possible
interesting generalizations.
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EXAMPLE 8.1. The spectral triples on noncommutative tori were among the
first examples considered by Connes. Indeed, they already appear in his arti-
cle [11] (see p. 166). His original example was in dimension 2 but the construc-
tion was later extended to include noncommutative tori of any dimension (see
Section 12.3 and especially p. 545 of [20]). We illustrate the notion in the two-
dimensional case which was studied as early as in [31]: the C∗-noncommutative
torus Aθ is the universal C∗-algebra generated by two unitaries U and V subject
to the relation UV = e2πiθVU for θ ∈ R.

It is well known that the actions of Tn on the noncommutative tori (even
of dimension n) are ergodic (see p. 537 of [20]). Hence our construction fully
applies to these algebras. The unbounded operator D obtained from our Theo-
rem 5.5 is exactly the same as the operator defined in (12.24) p. 545 of [20]. The
n+-summability of D corresponds to Proposition 12.14 p. 545 of [20] and is a
sharp estimate of summability in this case.

EXAMPLE 8.2. It is easy to see that some hypothesis on the fixed-point al-
gebra is unavoidable. For example, already the action of S1 on T2 given by
λ · (z1, z2) := (λz1, z2) yields an unbounded operator on the Hilbert space L2(T2)
which certainly does not have compact resolvent because it has an infinite dimen-
sional kernel.

However, note that this operator has “compact (even summable) resolvent
with coefficients in C(T2)”, i.e. (1 + D2)−1 ⊗ 1 ∈ Lp ⊗π C(T). In this sense, it
yields an (unbounded) LC-Kasparov module from C(T2) to Lp ⊗π C(T) in the
sense of [21].

EXAMPLE 8.3. Quantum Heisenberg manifolds (QHM) provide another il-
lustration of our results. This family of algebras was introduced in [32] as an ex-
ample of Rieffel’s strict quantization-deformation and largely studied since, e.g.
[1], [2], [7], [16], [18] to name just a few elements of the available literature. In
particular, QHM admit an ergodic action of the (non-compact) Heisenberg group
G and a unique G-invariant trace τ — yielding properties very similar to those
assumed in Theorem 5.5. In the article [7], Chakraborty and Sinha constructed
a family of spectral triples on QHM whose Hilbert space is obtained from τ by
the GNS construction. The expression of the operator is given by (2.8) (compare
Proposition 9 of [7]) and they went further, proving summability in Theorem 10
p. 431.

When applied to quantum Heisenberg manifolds, our results recover a real
structure and thus complement [7]. However, the non-compactness of the
Heisenberg group prevents us from reproducing summability. We will encounter
a similar phenomenon in Example 8.5 below. To bypass this problem, we elabo-
rate on our construction in another article [17], where we give a setting to treat
the case of QHM.
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EXAMPLE 8.4. Another, related, example is given by Kasparov’s Dirac el-
ement (see for example [23] or [24] for the Dirac-dual Dirac method at work).
It is easy to generalize our results in the following two ways: first we can treat
more general modules than the uniquely determined spinor module we used in
our construction of the Dirac-type operator. In fact, it suffices that the module S
used in the representation be a complex module over Cl(n) (which carries a real
structure if one wants to recover Proposition 2.12). In the Real case, this means
that the module is equipped with a Real structure which is compatible with the
canonical Real structure on Cl(n). Secondly, one may include a Real structure
on the C∗-algebra A which is preserved by the action of G. “Real structures” in
this sense were already used by Kasparov in his very first definition of KK-theory
(see, for example, [35] for an overview).

In order to carry over the summability results for the associated spectral
triple it suffices to decompose the “spinor module” into irreducible representa-
tions.

With this slight generalization, it is possible to include Kasparov’s Dirac ele-
ment into our framework. It is given by the Hilbert space ΩC(Rn) of L2-forms on
Rn on which C(Rn) acts naturally, together with the Hodge–Dirac operator. Our
Proposition 3.4 is in the spirit of Wolf’s theorem ([25], Theorem 5.7). However,
the operator one obtains has continuous spectrum and therefore does not have
compact resolvent as in the example of the Heisenberg manifold. This shows that
some hypothesis is necessary on the relative size of the Lie group compared with
the algebra in order to apply our techniques. Note however that for every func-
tion f ∈ C(Rn) with compact support the operator f (i + D)−1 is in fact compact
and the mapping f 7→ f (i + D)−1 is continuous (this also holds for Schwartz
functions). In this sense, it should be possible to generalize our results to non-
compact Lie groups by passing to nonunital spectral triples.

EXAMPLE 8.5. A less simple-minded example is provided by the harmonic
oscillator d + d∗ + c(x) acting as in the last example on ΩC(Rn), where c(x) de-
notes Clifford multiplication by x and d + d∗ the Hodge–Dirac operator. This op-
erator has recently come to our attention in [41] and was also used heavily in [21].
And it again has a group-theoretic interpretation: it can be obtained as the oper-
ator associated to an action of the Heisenberg group of Rn on Rn. The fact that
it has summable resolvent (which is classical and seen by using Hermite polyno-
mials) shows that when the Lie group is non-compact, it may induce a selfadjoint
operator in the above way which has nevertheless summable resolvent.

This example is closely related to the spectral triple on C(T) obtained by
our techniques: the class of the spectral triple on C(R) defined by our techniques
is in a sense a unitalization of the one defined in this example.

EXAMPLE 8.6. Further examples can be obtained from (Cuntz–)Pimsner alge-
bras as defined in [28]. Indeed, consider a C∗-correspondence E over a C∗-algebra
A, i.e. a (right) Hilbert module E with a (faithful) left A-action φ : A → L(E).
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Such objects are called “Hilbert bimodules” in [28]. These data E and A define a
Pimsner algebra OE.

Assume moreover that a Lie group G acts on A and that there is a compati-
ble G-action on E, in the sense of Remark 4.10-(2) in [28]. The latter then provides
us with a G-action on the Pimsner algebra, which commutes with the canonical
gauge action, thereby defining an action of G× S1 on OE — to which our theory
may apply. In general, even if G acts ergodically on A, the action of G× S1 onOE
need not be ergodic, as illustrated by the Cuntz algebra O2 generated by A = C
(on which the trivial group G = {1} acts ergodically) and E = C2: the S1-action
induced on O2 is clearly not ergodic!

Yet, if we consider Hilbert bimodules (E with a left- and a right-Hilbert mod-
ule structure) instead of C∗-correspondences, the resulting Pimsner algebras are
in fact generalised crossed products (see [2]) and better results are available. For
instance, if G acts ergodically on A, then the induced G× S1-action on OE is er-
godic, and our theory applies to its fullest extent (namely Theorem 5.5). This sort
of results form the core of our forthcoming article [17].

Let us conclude with a nonexample showing that the previous theory can-
not be extended in general to noncompact groups. In particular, the G-invariant
trace may not be available:

EXAMPLE 8.7. There is an ergodic action of R on the infinite Cuntz algebra
O∞. Since this algebra is purely infinite and simple, it has no trace.

To prove it, identify O∞ with the Cuntz algebra generated by the vector
space L2(R) and consider the natural unitary R-action by translation on L2(R).
This action has no finite dimensional invariant subspaces, and following Theo-
rem 5.4 and Corollary 5.5 of [6], this suffices to conclude that the action of R on
O∞ is ergodic.
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