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ABSTRACT. This article focuses on general Wiener–Hopf operators given as
W = P2 A|P1X where X, Y are Banach spaces, P1 ∈ L(X), P2 ∈ L(Y) are any
projectors and A ∈ L(X, Y) is boundedly invertible. It presents conditions
for W to be equivalently reducible to a Wiener–Hopf operator in a symmetric
space setting where X = Y and P1 = P2. The results and methods are related
to the so-called Wiener–Hopf factorization through an intermediate space and
the construction of generalized inverses of W in terms of factorizations of A.
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1. INTRODUCTION AND MAIN RESULTS

We investigate operators of the form

(1.1) W = P2 A|P1X : P1X → P2Y

under the basic assumptions that X and Y are Banach spaces, P1 ∈ L(X) and
P2 ∈ L(Y) are projectors, and A ∈ L(X, Y). Such operators are called general
Wiener–Hopf operators (WHO) [10], [19] or simply truncations or compressions of
an operator [14]. In the symmetric setting, where X = Y, P1 = P2 = P, the operator
W is commonly written in the form W = TP(A) = PA|PX : PX → PX. Follow-
ing [22], the setting in which X 6= Y or P1 6= P2 is referred to as the asymmetric
space setting. Throughout this paper we assume that the so-called underlying op-
erator A is invertible, i.e., that A is a linear homeomorphism of X onto Y. For
brevity and by tradition, thinking of the group GL(X) of the invertible elements
in the Banach algebra L(X), we denote the set of invertible operators in L(X, Y)
by GL(X, Y). The requirement that A be in GL(X, Y) is satisfied in many impor-
tant applications. This requirement is in fact no limitation of generality, since if
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W is any operator given by (1.1), we may suitably change X, Y, P1, P2 so that W is
of the form (1.1) with an invertible operator A; see, e.g., Proposition 5.1 of [24].

A fundamental idea to solve equations W f = g consists in the construction
of certain factorizations of the underlying operator A that yield explicit formu-
las for generalized inverses of W. Various “general” factorization theorems are
known in the existing literature. See, for instance, [8], [10], [16], [21], [22], [25].
We will here not embark on the constructive factorization of scalar or matrix func-
tions; for an overview on that wide research area see [1], [4], [9], [15], [20] and the
literature cited therein.

In 1968, Čebotarev [8] considered so-called abstract Wiener–Hopf equations
in a purely algebraic context: given a unital ring R, an element p ∈ R satis-
fying p2 = p, and an invertible element a ∈ R, he studied, in terms of cer-
tain factorizations of a, the one-sided invertibility of w = pap in the subring
Rp = {t ∈ R : t = ptp}. In 1969, Devinatz and Shinbrot [10] introduced the
notion of a general Wiener–Hopf operator. They worked in the symmetric setting
with separable Hilbert spaces X = Y and with orthogonal projectors P1 = P2 = P,
which implied that they had to deal with both topological and algebraical ques-
tions, and they proved a criterion for the invertibility of TP(A) in terms of a fac-
torization of A. We should mention that the original idea of operator factorization
was proposed before by Shinbrot [19] in 1964 in the context of one-dimensional
singular integral operators. For more details of the pre-history we refer the reader
to [22].

General asymmetric Wiener–Hopf operators were first investigated in [21].
A strong motivation to study the operator (1.1) in an asymmetric space setting is
given by the theory of pseudo-differential operators, which naturally act between
Sobolev-like spaces of different orders; see Eskin’s book [13]. Their symmetriza-
tion (lifting) by generalized Bessel potential operators is considered in [11]. Fur-
thermore, Toeplitz operators with singular symbols are another source of moti-
vation for considering symmetrization. We will briefly touch these two concrete
applications in the examples later in Section 2.

In [22], the second author introduced the notion of a cross factorization and
proved that the generalized invertibility of W is equivalent to the existence of a
cross factorization of A. In the recent paper [24], two further kinds of operator
factorizations were studied, the Wiener–Hopf factorization of A through an interme-
diate space and the full range factorization W = LR where L is left invertible and R
is right invertible. The main theorem of [24] states the equivalence between all
three factorizations, partly under the restrictive condition that the two projectors
P1 and P2 are equivalent. Unfortunately, one proof in [24] contains a gap. This
gap, which will be filled in Section 4 of the present paper, actually motivated us
to look after the matter again. Our efforts resulted in a symmetrization criterion
(Theorem 1.1 below) and a new proof of a basic theorem of [24] (Theorem 1.2
below).
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Our first topic here is the symmetrization of asymmetric WHOs. To be pre-
cise, we call the setting X, Y, P1, P2 symmetrizable if there are a Banach space Z,
operators M+ ∈ GL(X, Z), M− ∈ GL(Z, Y), and a projector P ∈ L(Z) such that

(1.2) M+(P1X) = PZ, M−(QZ) = Q2Y,

where Q = IZ − P and Q2 = IY − P2. Note that the invertibility of M+ and M−
in conjunction with (1.2) implies that

(1.3) U+ := M+|P1X : P1X → PZ, V− := M−|QZ : QZ → Q2Y,

are invertible. As will be made explicit below in (2.2), the invertibility of V− yields
(and is in fact equivalent to) the invertibility of

V+ := (PM−1
− |P2Y)

−1 : PZ → P2Y.

If the setting X, Y, P1, P2 is symmetrizable, then asymmetric WHOs may also be
symmetrized: given an operator of the form (1.1), there is an operator Ã ∈ L(Z)
such that A = M− ÃM+ and W = V+W̃U+ = V+TP(Ã)U+. Indeed, we have
Ã = M−1

− AM−1
+ , and since PM−1

− = PM−1
− P2 and PM+P1 = M+P1, we get

V+W̃U+ = (PM−1
− |P2Y)

−1PM−1
− AM−1

+ |PZ(PM+|P1X)

= (PM−1
− |P2Y)

−1PM−1
− P2 AM−1

+ M+|P1X = P2 A|P1X = W.

As usual, we call two operators T and S equivalent, written T ∼ S, if there exist
linear homeomorphisms E and F such that T = FSE. Thus, in the case of a
symmetrizable setting, W ∼ TP(Ã).

Here is our first main result. Given two Banach spaces Z1 and Z2, we write
Z1
∼= Z2 if the two spaces are isomorphic, that is, if there exists an operator A in

GL(Z1, Z2). We also put Q1 = IX − P1, Q2 = IY − P2.

THEOREM 1.1. The following are equivalent:
(i) the setting X, Y, P1, P2 is symmetrizable;

(ii) P1X ∼= P2Y and Q1X ∼= Q2Y;
(iii) P1 ∼ P2.

The theorem implies in particular that every setting given by two separa-
ble Hilbert spaces X, Y and two infinite-dimensional bounded projectors P1, P2 is
symmetrizable.

In Section 3, we will recall two types of factorizations of the underlying op-
erator A, the cross factorization (CFn) and the Wiener–Hopf factorization through
an intermediate space (FIS). Note that the existence of a CFn for A is equiva-
lent to the generalized invertiblity of W in the sense that there exists an operator
W− ∈ L(P2Y, P1X) such that WW−W = W. Herewith our second main result.

THEOREM 1.2. The following are equivalent:
(i) A has a CFn and P1 ∼ P2;

(ii) A has a FIS.
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Theorem 1.2 is already in [24], and it is the theorem whose proof in that
paper contains a gap. We here give another, more straightforward proof. In addi-
tion, in Section 4, we will repair the gap of the proof in [24], thus saving also the
original proof. Theorems 1.1 and 1.2 will be proved in Sections 2 and 3, respec-
tively. There we will also present concrete examples.

2. SYMMETRIZATION

In this section we prove Theorem 1.1. In what follows we repeatedly use
the following well known fact whose proof can be found, for example, on p. 332
of [3], pp. 16–17 of [18], or pp. 21–22 of [22].

LEMMA 2.1. If B is in GL(Z1, Z2) and R1, S1 ∈ L(Z1), R2, S2 ∈ L(Z2) are
projectors such that R1 + S1 = IZ1 and R2 + S2 = IZ2 , then

R2B|im R1 : im R1 → im R2 is invertible(2.1)

⇔ S1B−1|im S2 : im S2 → im S1 is invertible,

and in the case of invertibility, the Schur complement identity

(2.2) (S1B−1|S2Z2)
−1 = S2B|S1Z1 − S2BR1(R2B|R1Z1)

−1R2B|S1Z1

holds.

Proof of Theorem 1.1. (i) ⇒ (ii) Assume that the setting X, Y, P1, P2 is sym-
metrizable and let M+, M−, P be the corresponding operators defined in (1.3).
Combining (2.1) and the invertibility of the operators (1.3), we obtain that the
operators

U− := Q1M−1
+ |QZ : QZ → Q1X, V+ := PM−1

− |P2Y : P2Y → PZ

are invertible. Hence V−1
+ U+ : P1X → P2Y and V−U−1

− : Q1X → Q2Y are isomor-
phisms.

(ii) ⇒ (iii) Let U : P1X → P2Y and V : Q1X → Q2Y be isomorphisms.
Consider the operators E and F defined by

E := UP1 + VQ1 : X → Y, F := U−1P2 + V−1Q2 : Y → X.

It can be straightforwardly verified that EF = IY and FE = IX , that is, these two
operators are invertible. Moreover, we have

EP1F = EP1(U−1P2 + V−1Q2) = EP1U−1P2 + EP1V−1Q2

= EU−1P2 + EP1Q1V−1P2 = EU−1P2 = (UP1 + VQ1)U−1P2

= UP1U−1P2 + VQ1U−1P2 = UU−1P2 + VQ1P1U−1P2 = P2,

which shows that P1 ∼ P2.
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(iii)⇒ (i) Suppose P2 = EP1F with E ∈ GL(X, Y) and F ∈ GL(Y, X). The
operator U := E|P1X : P1X → P2Y is clearly injective together with E, and since
P2y = EP1Fy, it is also surjective. Consider the linear map

Φ : X/P1X → Y/P2Y, Φ(x + P1X) = Ex + P2Y.

This map is well-defined, since if x1 + P1X = x2 + P1X, then x1 − x2 ∈ P1X
and hence Ex1 − Ex2 = E(x1 − x2) ∈ P2Y. The map Φ is injective, because if
Ex = P2y ∈ P2Y, then Ex = EP1Fy, whence x = P1Fy ∈ P1X. Finally, Φ is
surjective because so is E. It follows that Φ is an isomorphism. Consequently,
X/P1X ∼= Y/P2Y, and since X/P1X ∼= Q1X and Y/P2Y ∼= Q2Y, we arrive at the
conclusion that Q1X ∼= Q2Y. Let V : Q1X → Q2Y be any isomorphism.

We claim that X, Y, P1, P2 is symmetrized by Z := P1X ×Q2Y, the projector
P : Z → Z defined by P(z1, z2) := z1, and the operators M± given by

M+ : X → Z, x 7→ (P1x, VQ1x), M− : Z → Y, (z1, z2) 7→ Uz1 + z2.

The operator M+ is obviously injective and surjective. The injectivity of M− can
be seen as follows: if Uz1 + z2 = 0 with z1 = P1x ∈ P1X and z2 = Q2y ∈ Q2Y,
then UP1x + Q2y = 0, which implies that Uz1 = UP1x ∈ P2Y ∩ Q2Y, whence
Uz1 = 0 and thus z2 = 0, and since U : P1X → P2Y is invertible, we conclude that
z1 = 0. The surjectivity of M− is again obvious: if y ∈ Y, then y = P2y + Q2y =
UP1x + Q2y with P1x ∈ P1X. Finally, we have

M+(P1X) = {(P1x, 0) : x ∈ X} = PZ,

M−(QZ) = M−({(0, Q2y) : y ∈ Y}) = {Q2y : y ∈ Y} = Q2Y,

which shows that (1.2) is satisfied. The proof of Theorem 1.1 is complete.

REMARK 2.2. From Theorem 1.1 we see that if P1 ∼ P2, then

P1X×Q2Y ∼= P1X×Q1X ∼= P1X⊕Q1X = X,

P1X×Q2Y ∼= P2Y×Q2Y ∼= P2Y⊕Q2Y = Y,

and hence

(2.3) X ∼= P1X×Q2Y ∼= Y.

However, (2.3) does not imply that P1 ∼ P2. A counterexample is provided by
the setting X = Y = `2(Z),

P1 : (. . . , x−2, x−1, x0, x1, x2, . . .) 7→ (. . . , 0, 0, 0, x1, x2, . . .),

P2 : (. . . , x−2, x−1, x0, x1, x2, . . .) 7→ (. . . , 0, 0, x0, 0, 0, . . .).

Indeed, condition (2.3) holds because X, Y, P1X, Q2Y are infinite-dimensional sep-
arable Hilbert spaces, but P1 and P2 are clearly not equivalent.

EXAMPLE 2.3. A concrete case where symmetrization was used (without
calling it symmetrization) occurs in the proof of the Fisher–Hartwig conjecture
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in [2]; see also pp. 281–283 of [3]. A Fisher–Hartwig symbol is a function on the
complex unit circle T of the form

a(t) = b(t)
N

∏
j=1
|t− tj|2αj , t ∈ T,

where b is a piecewise continuous function on T that is invertible in L∞, t1, . . . , tN
are distinct points on T, and α1, . . . , αN are complex numbers whose real parts lie
in the interval (−1/2, 1/2). The Toeplitz operator generated by a is an operator of
the form T(a) = P2M(a)|im P1 , where M(a) acts on certain Lebesgue spaces over
T by the rule f 7→ a f and P1, P2 are the Riesz projectors of the Lebesgue spaces
onto their Hardy spaces. The operators M(a) and T(a) are in general neither
bounded nor invertible on Lp and the corresponding Hardy spaces Hp. However,

things can be saved by passing to weighted spaces. Put $(t) =
N
∏
j=1
|t− tj|Reαj . For

1 < p < ∞, let

Lp($±1) =
{

f ∈ L1 : ‖ f ‖p :=
∫
T

| f (t)|p$(t)±p|dt| < ∞
}

.

The Riesz projector P, which may be defined as P = (I + S)/2 with the Cauchy
singular integral operator S given by

(S f )(t) = lim
ε→0

1
πi

∫
|τ−t|>ε

f (τ)
τ − t

dτ, t ∈ T,

is bounded on the spaces Lp($±1) if Reαj ∈ (−1/r, 1/r) where r = max(p, q) with
1/p + 1/q = 1. Thus, assume the real parts Reαj are all in (−1/r, 1/r). Finally,
consider the setting

X = Lp($), P1 = P, Y = Lp($−1), P2 = P.

It turns out that M(a) ∈ GL(X, Y) and hence we are in the setting (1.1) with the
invertible operator A = M(a). The Toeplitz operator T(a) acts from PLp($) to
PLp($−1). Thus, it is a WHO in an asymmetric setting. It can be shown that the
setting X, Y, P1, P2 is symmetrized by Z = Lp, P = Riesz projector, M+ := M(η),
M− := M(ξ), where

η(t) =
N

∏
j=1

(
1− t

tj

)αj
, ξ(t) =

N

∏
j=1

(
1−

tj

t

)αj
.

We have T(a) = V+T(b)U+ with T(b) ∈ L(Lp, Lp), which reduces the study of
T(a) to the investigation of the much simpler operator T(b).

EXAMPLE 2.4. Another useful application of symmetrization is the reduc-
tion of WHOs and pseudo-differential operators in scales of Sobolev spaces to
operators acting in Lp spaces by Bessel potential operators for a half-line, half-
space, quarter plane, or Lipschitz domain [12], [13], [17]. The same idea works
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for Wiener–Hopf plus/minus Hankel operators, convolution type operators with
symmetry, and convolutionally equivalent operators [7], and it also works for
other scales of spaces such as the Sobolev–Slobodetski spaces Ws,p and the Zyg-
mund spaces Zs, as well as for matrix operators, cf. [5]. To illustrate the strat-
egy, we here confine us to the basic variant of classical WHOs in Bessel potential
spaces (one-dimensional, scalar, p = 2).

Let F be the Fourier transformation, (F f )(ξ) =
∫
R

f (x)eiξxdx, and let Hs

denote the Sobolev space of all distributions f on R such that λsF f ∈ L2, where
λ(ξ) = (ξ2 + 1)1/2. The well-known Bessel potential operators are given by

Λs := Aλs := F−1λs · F : Hr → Hr−s,

Λs
± := Aλs

±
:= F−1λs

± · F : Hr → Hr−s,

where λ±(ξ) = ξ ± i; see, for example, [11], [13], [17]. Here r and s are real
numbers. Let Hs

+ and Hs
− stand for the subspace of all distributions in Hs that

are supported on [0, ∞) and (−∞, 0], respectively. We then have

Λs
+(Hr

+) = Hr−s
+ , Λs

−(Hr
−) = Hr−s

− .

In terms of operator identities, this may be rephrased as follows. If P(s)
1 and P(s)

2

are any bounded projectors on Hs such that im P(s)
1 = Hs

+ and ker P(s)
2 = Hs

−,
then

Λs
+P(r)

1 = P(r−s)
1 Λs

+P(r)
1 , P(r−s)

2 Λs
− = P(r−s)

2 Λs
−P(r)

2 .

In accordance with [13], a classical Wiener–Hopf operator is given by

T = r+AΦ|Hr
+

: Hr
+ → Hs(R+)

where Hs(R+) is the common Hilbert space of all restrictions of distributions
in Hs to R+ = (0, ∞), r+ : f 7→ f |R+

is the restriction operator, and AΦ is a
convolution (or translation invariant) operator of order r− s, that is, AΦ is of the
form

AΦ = F−1Φ · F : Hr → Hs with λs−rΦ ∈ L∞(R).
Obviously, T is equivalent to the general Wiener–Hopf operator W given by

W = P(s)
2 AΦ|Hr

+
: P(r)

1 Hr → P(s)
2 Hs,

where P(s)
2 := `(s)r+ ∈ L(Hs) and `(s) : Hs(R+) → Hs is any bounded exten-

sion operator that is left invertible by r+. The projector P(r)
1 may be an arbitrary

projector in L(Hr) such that im P(r)
1 = Hr

+. The equivalence between T and W is
simply given by W = `(s)T and T = r+W. Thus, in the case at hand the setting
X, Y, P1, P2 is Hr, Hs, P(r)

1 , P(s)
2 . As an interpretation of results in Section 2 of [17],

a symmetrization of W is achieved by the so-called lifting to L2: choosing

Z := H0 = L2(R), M+ := Λr
+, M− := Λ−s

− , P := `0r+,
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where `0 : L2(R+) → L2(R) denotes the extension by zero, we get, with Φ0 :=
λs
−Φλ−r

+ , P(0)
1 := `0r+, P(0)

2 := `0r+,

W = P(s)
2 AΦ|Hr

+
= P(s)

2 Λ−s
− AΦ0Λr

+|Hr
+

= P(s)
2 Λ−s

− |P(0)
2 H0 P(0)

2 AΦ0 |H0
+

P(0)
1 Λr

+|Hr
+

= P(s)
2 Λ−s

− |L2
+

PAΦ0 |L2
+

PΛr
+|Hr

+
=: EW0F.

3. FACTORIZATIONS

DEFINITION 3.1. Let X, Y be Banach spaces, let P1 ∈ L(X), P2 ∈ L(Y) be
projectors, and let A be an operator in GL(X, Y). A factorization

A = A− C A+

: Y ← Y ← X ← X.

is referred to as a cross factorization of A (with respect to X, Y, P1, P2), in brief CFn,
if the factors A± and C possess the properties

(3.1) A+ ∈ GL(X), A− ∈ GL(Y), A+(P1X) = P1X, A−(Q2Y) = Q2Y,

and C ∈ GL(X, Y) splits the spaces X, Y both into four complemented subspaces
such that

X =

P1X︷ ︸︸ ︷
X1 ⊕ X0 ⊕

Q1X︷ ︸︸ ︷
X2 ⊕ X3

↓ C↙↘ ↓(3.2)

Y = Y1 ⊕ Y2︸ ︷︷ ︸
P2Y

⊕ Y0 ⊕ Y3︸ ︷︷ ︸
Q2Y

.

The last property means that C maps each Xj bijectively onto Yj , j = 0, 1, 2, 3,
i.e., the complemented subspaces X0, X1, . . . , Y3 are images of the corresponding
projectors p0, p1, . . . , q3, namely

X1 = p1X = C−1P2CP1X, X0 = p0X = C−1Q2CP1X,

X2 = p2X = C−1P2CQ1X, X3 = p3X = C−1Q2CQ1X,(3.3)

Y1 = q1Y = CP1C−1P2Y, Y2 = q2Y = CQ1C−1P2Y,

Y0 = q0Y = CP1C−1Q2Y, Y3 = q3Y = CQ1C−1Q2Y.

The operators A± are called strong WH factors and C is said to be a cross factor,
since it maps a part of P1X onto a part of Q2Y (X0 → Y0) and a part of Q1X onto
a part of P2Y (X2 → Y2), which are all complemented subspaces.
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The last two equalities in (3.1) can be formulated in various different ways,
for instance as

A+P1 = P1 A+P1, A−1
+ P1 = P1 A−1

+ P1, P2 A− = P2 A−P2, P2 A−1
− = P2 A−1

− P2.

The cross factorization theorem tells us that if A ∈ GL(X, Y), then W is generalized
invertible if and only if a cross factorization of A exists. In that case a formula for
a generalized inverse of W is given by

W− = A−1
+ P1C−1P2 A−1

− |P2Y : P2Y → P1X.

A crucial consequence is the equivalence of W and P2C|P1X , that is, W ∼ P2C|P1X :

W = P2 A−|P2YP2C|P1XP1 A+|P1X = EP2C|P1X F

where E, F are linear homeomorphisms. We refer to [22] for more details.
In [6], [24] another type of factorization was studied. This factorization is

quite different from the previous and more interesting for certain applications.

DEFINITION 3.2. Suppose X, Y are Banach spaces, P1 ∈ L(X), P2 ∈ L(Y)
are projectors, and A is an operator in GL(X, Y). A factorization

A = A− C A+

: Y ← Z ← Z ← X.

is called a Wiener–Hopf factorization through an intermediate space Z (with respect to
the setting X, Y, P1, P2), in brief FIS, if Z, A±, and C possess the following proper-
ties:

(i) Z is a Banach space;
(ii) A+ ∈ GL(X, Z), C ∈ GL(Z), A− ∈ GL(Z, Y);

(iii) there exists a projector P ∈ L(Z) such that, with Q := IZ − P,

(3.4) A+(P1X) = PZ, A−(QZ) = Q2Y;

(iv) C splits the space Z twice into four complemented subspaces such that

Z =

PZ︷ ︸︸ ︷
X1 ⊕ X0 ⊕

QZ︷ ︸︸ ︷
X2 ⊕ X3

↓ C↙↘ ↓(3.5)

Z = Y1 ⊕ Y2︸ ︷︷ ︸
PZ

⊕ Y0 ⊕ Y3︸ ︷︷ ︸
QZ

.

Thus, C maps each Xj bijectively onto Yj , j = 0, 1, 2, 3, i.e., the complemented sub-
spaces X0, X1, . . . , Y3 are again images of corresponding projectors p0, p1, . . . , q3,
namely X0 = p0Z = C−1QCPZ, X1 = p1Z = C−1PCPZ, . . . , Y3 = q3Z =
CQC−1QZ, similarly as in (3.3) (with X and Y replaced by Z).

Again A± are called strong WH factors and C is said to be a cross factor, now
acting from a space Z onto the same space Z. If the factor C in a FIS is the identity,
we speak of a canonical FIS.
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Proof of Theorem 1.2. We begin with the proof of the implication (i) ⇒ (ii).
Since P1 ∼ P2, we infer from Theorem 1.1 that the setting X, Y, P1, P2 is sym-
metrizable. So let Z, P, M±, U±, V± be as in Section 1. Since A has a CFn, the
operator W = P2 A|P1X is generalized invertible. Consider the operators

Ã := M−1
− AM−1

+ : Z → Z, W̃ := PÃ|PZ.

Since W̃ = U−WU−1
+ , the operator W̃ is generalized invertible together with W.

It follows that Ã has a CFn Ã = A−CA+. But as A is an operator from Z to Z, this
CFn is automatically a FIS. We so have A = (M−A−)C(A+M+), and because

A+M+(P1X) = A+U+(P1X) = A+(PZ) = PZ,

M−A−(QZ) = M−(QZ) = V−(QZ) = Q2Y,

the factorization A = (M−A−)C(A+M+) is a FIS. This completes the proof of
the implication (i)⇒ (ii).

(ii) ⇒ (i) Let A = A−CA+ be a FIS. A straightforward computation along
the lines of pp. 27–29 in [22] shows that

(3.6) W− := A−1
+ PC−1PA−1

− |P2Y : P2Y → P1X

is a generalized inverse of W. Hence A has a CFn. From (3.4) we see that

A+|P1X = PA+|P1X : P1X → PZ, A−|QZ = Q2 A−|QZ : QZ → Q2Y

are invertible operators. Now (2.1) implies that

Q1 A−1
+ |QZ : QZ → Q1X, PA−1

− |P2Y : P2Y → PZ

are also invertible. Consequently,

P1X ∼= PZ ∼= P2Y, Q1X ∼= QZ ∼= Q2Y,

which, by Theorem 1.1, completes the proof.

REMARK 3.3. We want to repeat outside the proof that (3.6) is a generalized
inverse of the operator W. We also remark that a FIS of A implies the equivalence

W = P2 A−|PZPC|PZPA+|P1X = EPC|PZF.

This factorization of W is nicer than the corresponding factorization resulting
from a CFn because the middle factor C in a FIS sorts the spaces as in (3.5), which
is of higher quality than (3.2).

EXAMPLE 3.4. Consider the situation of Example 2.3. For simplicity, sup-
pose b is identically 1. Then T(b) = ILp is invertible and hence so also is T(a) =
V+U+ : PLp($) → PLp($−1). From the cross factorization theorem we deduce
that M(a) has a CFn

M(a) = A− C A+

: Lp($−1)← Lp($−1)← Lp($)← Lp($).
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Let P be the Riesz projector and put Q = I − P; the underlying space is sup-
pressed in this notation. Furthermore, let us simply write c for the operator
M(c) of multiplication by c. The operator Pa|im P : PLp($) → PLp($−1) may
be identified with the invertible Toeplitz operator T(a). From (2.1) we deduce
that Qa−1|im Q : QLp($−1)→ QLp($) is also invertible. The last operator may be
identified with JT(ã−1)J : QLp($−1) → QLp($), where J : im Q → im P is the
flip operator and ã is defined by ã(t) := a(1/t). One can show that

T(a) = T(ξ)T(η), [T(a)]−1 = T(η−1)T(ξ−1),

JT(ã−1)J = JT(η̃−1)T(ξ̃−1)J, [JT(ã−1)J]−1 = JT(ξ̃)T(η̃)J.

A concrete CFn is given by

A− = I + QaP(PaP)−1P, C = PaP + (Qa−1Q)−1Q, A+ = I + (PaP)−1PaQ;

here and in the following we use the abbreviations

(Pa|im P)
−1 =: (PaP)−1, (Qa−1|im Q)

−1 =: (Qa−1Q)−1.

The inverses of A−, C, and A+ are

A−1
− = I −QaP(PaP)−1P, C = (PaP)−1 + Qa−1Q, A−1

+ = I − (PaP)−1PaQ.

To verify the equality A = A−CA+ note that

A−C = PaP + (Qa−1Q)−1Q + QaP,

whence

A−CA+ = (PaP + (Qa−1Q)−1Q + QaP)(I + (PaP)−1PaQ)

= PaP + PaQ + (Qa−1Q)−1Q + QaP + QaP(PaP)−1PaQ,

and since
(Qa−1Q)−1Q = QaQ−QaP(PaP)−1PaQ

due to (2.2), we obtain that

A−CA+ = PaP + PaQ + QaP + QaQ = a = A.

Finally, the last two equalities in (3.1) are obvious in the case at hand. The split-
ting (3.2) now takes the form

Lp($) =

PLp($)︷ ︸︸ ︷
PLp($) ⊕ {0} ⊕

QLp($)︷ ︸︸ ︷
{0} ⊕ QLp($)

↓ T(ξ)T(η) I↙↘ JT(ξ̃)T(η̃)J ↓

Lp($−1) = PLp($−1) ⊕ {0}︸ ︷︷ ︸
P2Y

⊕ {0} ⊕ QLp($−1)︸ ︷︷ ︸
QLp($−1)

.
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Since the setting X, Y, P1, P2 is symmetrizable, Theorems 1.1 and 1.2 imply
that M(a) also admits a FIS

M(a) = B− D B+

: Lp($−1)← Lp ← Lp ← Lp($).

It is easily seen that a concrete FIS is given by B+ = M(η), B− = M(ξ), D = ILp .
Thus, in this case (3.5) becomes

Lp =

PLp︷ ︸︸ ︷
PLp ⊕ {0} ⊕

QLp︷ ︸︸ ︷
{0} ⊕ QLp

↓ I I↙↘ I ↓

Lp = PLp ⊕ {0}︸ ︷︷ ︸
PLp

⊕ {0} ⊕ QLp︸ ︷︷ ︸
QLp

.

It is obvious that the FIS is much simpler than the CFn.

EXAMPLE 3.5. The great advantage of the “equivalent reduction” of W to
W0 performed in Example 2.4 is that the generalized inversion of W is reduced
to a factorization of Φ0. In applications we often have Φ0 ∈ GCµ(R̈), i.e., Φ is
Hölder continuous on the two-point compactification R̈ = [−∞,+∞] of the real
line with Hölder conditions at ±∞. The factorization problem for this class of
functions is completely solved; see [17]. Instead of embarking on the subtleties of
factorization of functions in GCµ(R̈), we move from the real line to unit circle T
and to the Wiener–Hopf factorization of functions defined on T. In this context
things are a little easier.

The “middle factor” of a Wiener–Hopf factorization is a function of the form
c(t) = tn (t ∈ T) with n ∈ Z. The multiplication operator M(c) : L2(T) → L2(T)
is unitarily equivalent to Un : `2(Z)→ `2(Z), where U the shift operator defined
by (Ux)j = xj−1. So let us work in `2(Z). Given a set E ⊂ Z, we denote by
`2(E) the subspace of the sequences in `2(Z) which are supported in E. After
the symmetrization described in Example 2.4 and after passing from R to Z, we
are in the context where X = Y = Z = `2(Z), P is the orthogonal projection
of `2(Z) onto `2({0, 1, 2, . . .}), and Q = I − P. Let further Z+ = {0, 1, 2, . . .},
Z− = {−1,−2,−3, . . .}, B+

n = {0, . . . , n− 1}, A−n = {−1, . . . ,−n}. For C = Un

with n > 0, the splittings (3.2) and (3.5) are

`2(Z) =

`2(Z+)︷ ︸︸ ︷
`2(Z+) ⊕ {0} ⊕

`2(Z−)︷ ︸︸ ︷
`2(A−n )⊕ `2(Z−\A−n )

↓ Un↙↘ ↓

`2(Z) = `2(Z+\B+
n )⊕ `2(B+

n )︸ ︷︷ ︸
`2(Z+)

⊕ {0} ⊕ `2(Z−)︸ ︷︷ ︸
`2(Z−)

,
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while for C = U−n with n > 0, we obtain

`2(Z) =

`2(Z+)︷ ︸︸ ︷
`2(Z+\B+

n )⊕ `2(B+
n ) ⊕

`2(Z−)︷ ︸︸ ︷
{0} ⊕ `2(Z−)

↓ U−n↙↘ ↓

`2(Z) = `2(Z+) ⊕ {0}︸ ︷︷ ︸
`2(Z+)

⊕ `2(A−n )⊕ `2(Z−\A−n )︸ ︷︷ ︸
`2(Z−)

.

Note that the cross factors arising in the Wiener–Hopf factorization of matrix
functions are of the form diag(Un1 , . . . , Unk ) with n1, . . . , nk ∈ Z; see [9], [15].

4. ADDENDUM TO [24]

One of the main results of [24] is Theorem 2.2 on page 399, which is identical
to Theorem 1.2 of the present paper. In the first part of the proof of Theorem 2.2
(page 405, lines 22–23) we find the conclusion “The factor properties of A+ imply
P1 ∼ P and the factor properties of A− imply P2 ∼ P, therefore P1 ∼ P2 is
necessarily satisfied”, which is not correct. One can here directly conclude that
im P1

∼= im P and ker P2 ∼= ker P but not that P1 ∼ P2.
To fix the gap we now replace that text “...” by the following: “The fac-

tor properties of A+ and A− imply that the definition of Ã = A−A+ contains a
canonical FIS (with respect to X, Y, P1, P2) through the same intermediate space Z
that appeared in the (non-canonical) FIS of A = A−CA+. Hence W̃ = P2 Ã|P1X is
invertible and im P2 ∼= im P1. By a symmetry argument we prove that ker P2 ∼=
ker P1 holds, as well, exchanging the roles of X and Y, of P1 and Q2, and of P2
and Q1. Namely A−1 = A−1

+ C−1 A−1
− can be seen as a FIS of A−1 with respect

to Y, X, Q2, Q1. Therefore Ã−1 = A−1
+ A−1

− is a canonical FIS with respect to
Y, X, Q2, Q1 through the same space Z as before, W̃∗ = Q1 A−1

+ A−1
− |Q2Y is in-

vertible and im Q1
∼= im Q2, i.e., ker P2 ∼= ker P1. Together with im P2 ∼= im P1

we arrive at P2 ∼ P1”. The rest of the proof of Theorem 2.2 is then correct in the
existing form.

Beside of this change two misprints have to be corrected.

(i) The first obvious misprint occurs in formula (1.5) on page 397. Line 4 has
to start with Y0 = q0Y = CP1C−1Q2Y.

(ii) The second appears in Corollary 2.5 on page 400 where the assumption
ker P2 ∼= ker P1 was forgotten. Under the general assumption that A is boundedly
invertible, this corollary correctly reads as follows. If W is generalized invertible and
if P1 ∼ P2, there exists a FIS of A with Z = X and a FIS with Z = Y (and a FIS with
any prescribed intermediate space that is isomorphic to X and Y).
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