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ABSTRACT. In this paper, we study free holomorphic functions on regular
polyballs Bn and provide analogues of several classical results from com-
plex analysis such as: Abel theorem, Hadamard formula, Cauchy inequality,
Schwarz lemma, and maximum principle. These results are used together
with a class of noncommutative Berezin transforms to obtain a complete de-
scription of the group Aut(Bn) of all free holomorphic automorphisms of the
polyball Bn. We also obtain a concrete description for the group of automor-
phisms of the tensor product Tn1 ⊗ · · · ⊗ Tnk of Cuntz–Toeplitz algebras which
leave invariant the tensor product An1 ⊗min · · · ⊗min Ank of noncommutative
disc algebras, which extends Voiculescu’s result when k = 1.
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INTRODUCTION

Recently (see [22], [24]), we have tried to unify the multivariable operator
model theory for ball-like domains and commutative polydiscs, and extend it to
a more general class of noncommutative polydomains (which includes the reg-
ular polyballs) and use it to develop a theory of free holomorphic functions. In
general, one can view the free holomorphic functions as free noncommutative
functions in the sense of [8]. What is remarkable for these polydomains is that
they have universal models, in a certain sense, which are (weighted) creation op-
erators acting on tensor products of full Fock spaces. The model theory and the
free holomorphic function theory on these polydomains are related, via noncom-
mutative Berezin transforms, to the study of the operator algebras generated by
the universal models, as well as to the theory of functions in several complex vari-
able ([9], [27], [28]). It is the interplay between these three fields that lead to a rich
analytic function theory on these noncommutative polydomains. Our work on
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curvature invariant [23] and Euler characteristic [25] on noncommutative regular
polyballs has led us to study the free holomorphic automorphisms of these poly-
balls, which is the goal of the present paper and continues work of Voiculescu
[30], of Davidson and Pitts [6], of Helton, Klep, McCullough and Singled [7], of
Benhida and Timotin [2], [3], and of the author in [19], [21]. In a related context
we mention the work of Muhly and Solel [11], and of Power and Solel [26].

Throughout this paper, B(H) stands for the algebra of all bounded linear
operators on a Hilbert space H. We denote by B(H)n1 ×c · · · ×c B(H)nk , where
ni ∈ N := {1, 2, . . .}, the set of all tuples X := (X1, . . . , Xk) in B(H)n1 × · · · ×
B(H)nk with the property that the entries of Xs := (Xs,1, . . . , Xs,ns) are commuting
with the entries of Xt := (Xt,1, . . . , Xt,nt) for any s, t ∈ {1, . . . , k}, s 6= t. Note that
the operators Xs,1, . . . , Xs,ns are not necessarily commuting. Let n := (n1, . . . , nk)
and define the polyball

Pn(H) := [B(H)n1 ]1 ×c · · · ×c [B(H)nk ]1,

where

[B(H)n]1 := {(X1, . . . , Xn) ∈ B(H)n : ‖X1X∗1 + · · ·+ XnX∗n‖ < 1}, n ∈ N.

If A is a positive invertible operator, we write A > 0. The regular polyball on the
Hilbert spaceH is defined by

Bn(H) := {X ∈ Pn(H) : ∆X(I) > 0},
where the defect mapping ∆X : B(H)→ B(H) is given by

∆X := (id−ΦX1) ◦ · · · ◦ (id−ΦXk ),

and ΦXi : B(H)→ B(H) is the completely positive linear map defined by

ΦXi (Y) :=
ni

∑
j=1

Xi,jYX∗i,j, Y ∈ B(H).

We call the operator ∆X(I) the defect of X. Note that if k = 1, then Bn(H) co-
incides with the noncommutative unit ball [B(H)n1 ]1. We remark that the scalar
representation of the (abstract) regular polyball

Bn := {Bn(H) : H is a Hilbert space}
is Bn(C) = Pn(C) = (Cn1)1 × · · · × (Cnk )1.

Let Hni be an ni-dimensional complex Hilbert space with orthonormal basis
ei

1, . . . , ei
ni

. We consider the full Fock space of Hni defined by F2(Hni ) := C1 ⊕⊕
p>1

H⊗p
ni , where H⊗p

ni is the (Hilbert) tensor product of p copies of Hni . Let F+
ni

be the unital free semigroup on ni generators gi
1, . . . , gi

ni
and the identity gi

0. Set
ei

α := ei
j1
⊗ · · · ⊗ ei

jp
if α = gi

j1
· · · gi

jp
∈ F+

ni
and ei

gi
0

:= 1 ∈ C. The length of

α ∈ F+
ni

is defined by |α| := 0 if α = gi
0 and |α| := p if α = gi

j1
· · · gi

jp
, where

j1, . . . , jp ∈ {1, . . . , ni}. We define the left creation operator Si,j acting on the Fock
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space F2(Hni ) by setting Si,jei
α := ei

gi
jα

, α ∈ F+
ni

, and the operator Si,j acting on the

tensor product F2(Hn1)⊗ · · · ⊗ F2(Hnk ) by setting

Si,j := I ⊗ · · · ⊗ I︸ ︷︷ ︸
i− 1 times

⊗Si,j ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
k− i times

,

where i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}. We introduce the noncommutative
Hardy algebra F∞

n (respectively the polyball algebra An) as the weakly closed
(respectively norm closed) non-selfadjoint algebra generated by {Si,j} and the
identity.

We proved in [24] (in a more general setting) that X ∈ B(H)n1 × · · · ×
B(H)nk is a pure element in the regular polyball Bn(H)−, i.e. lim

qi→∞
Φ

qi
Xi
(I) = 0

in the weak operator topology, if and only if there is a Hilbert space K and a sub-
spaceM ⊂ F2(Hn1)⊗ · · · ⊗ F2(Hnk )⊗K invariant under each operator Si,j ⊗ I
such that X∗i,j = (S∗i,j ⊗ I)|M⊥ under an appropriate identification of H with

M⊥. The k-tuple S := (S1, . . . , Sk), where Si := (Si,1, . . . , Si,ni ), is an element
in the regular polyball Bn(

⊗k
i=1 F2(Hni ))

− and plays the role of universal model
for the abstract polyball B−n := {Bn(H)− : H is a Hilbert space}. The existence
of the universal model will play an important role in our paper, since it will make
the connection between noncommutative function theory, operator algebras, and
complex function theory in several variables. The latter is due to the fact that
the joint eingenvectors for the universal model are parameterized by the scalar
polyball (Cn1)1 × · · · × (Cnk )1 via the Berezin transforms (see [22]).

In Section 1, we show that the regular polyball Bn is a logarithmically con-
vex complete Reinhardt noncommutative domain, in an appropriate sense. We
provide characterizations for free holomorphic functions on polyballs in terms of
their universal models, obtain an analogue of Abel theorem from complex anal-
ysis, Cauchy type inequalities for the coefficients of free holomorphic functions,
and an analogue of Liouville’s theorem for entire functions. We prove that the
largest regular polyball γBn, γ ∈ [0, ∞], which is included in the universal do-
main of convergence of a formal power series ϕ in indeterminates {Zi,j} and rep-
resentation ϕ = ∑

(α)
A(α) ⊗ Z(α) with A(α) ∈ B(K), is given by the relation

1
γ

:= lim sup
(p1,...,pk)∈Zk

+

∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A∗(α)A(α)

∥∥∥1/2(p1+···+pk)
,

where Z(α) := Z1,α1 · · · Zk,αk
if (α) := (α1, . . . , αk) ∈ F+

n1
× · · · × F+

nk
and Zi,αi :=

Zi,j1 · · · Zi,jp if αi = gi
j1
· · · gi

jp
∈ F+

ni
.

In Section 2, we prove a Schwarz type result ([28]) which states that if F :
Bn(H) → B(H)p is a bounded free holomorphic function with ‖F‖∞ 6 1 and
F(0) = 0, then

‖F(X)‖ 6 mBn(X) < 1 and mBn(X) 6 ‖X‖, X ∈ Bn(H),
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where mB is the Minkovski functional associated with the regular polyball Bn.
This result is used to prove a maximum principle for bounded free holomorphic
functions on polyballs which states that if F : Bn(H) → B(H) is a bounded free
holomorphic function and there exists X0 ∈ Bn(H) such that

‖F(X)‖ 6 ‖F(X0)‖, X ∈ Bn(H),

then F must be a constant. The results of Section 2 will play an important role in
the next sections.

In Section 3, we give a complete description of the free holomorphic auto-
morphisms of the polyball Bn (see Theorem 3.6), which extends Rudin’s char-
acterization of the holomorphic automorphisms of the polydisc [28], and prove
some of their basic properties (see Theorem 3.9). We also present an analogue of
Poincaré’s result [9], that the open unit ball of Cn is not biholomorphic equiva-
lent to the polydisk Dn, for noncommutative regular polyballs. More precisely, if
n = (n1, . . . , nk) ∈ Nk and m = (m1, . . . , mq) ∈ Nq, we show that there is a bi-
holomorphic map between the polyballs Bn and Bm if and only if k = q and there
is a permutation σ of the set {1, . . . , k} such that mσ(i) = ni for any i ∈ {1, . . . , k}.
Moreover, any free biholomorphic function F : Bn → Bm is up to a permuta-
tion of (m1, . . . , mk) an automorphism of the noncommutative regular polyball
Bn. This resembles the classical result of Ligocka [10] and Tsyganov [29] concern-
ing biholomorphic automorphisms of product spaces with nice boundaries. The
results of this section are used to show that

Aut(Bn) ' Aut((Cn1)1 × · · · × (Cnk )1).

More precisely, we prove that the map Λ defined by

Λ(Ψ)(z) := (Bz[Ψ̂1], . . . ,Bz[Ψ̂k]) z ∈ (Cn1)1 × · · · × (Cnk )1,

is a group isomorphism, where Ψ̂ := SOT- lim
r→1

Ψ(rS) is the boundary function of

Ψ = (Ψ1, . . . , Ψk) ∈ Aut(Bn) with respect to the universal model S, and Bz is the
noncommutative Berezin transform at z.

In Section 4, we prove that any automorphism Γ of the Cuntz–Toeplitz C∗-
algebra C∗(S), generated by the universal model S = {Si,j}, which leaves invari-
ant the noncommutative polyball algebra An, i.e. Γ(An) = An, has the form

Γ(g) := BΨ̂ [g] = KΨ̂ [g⊗ ID
Ψ̂
]K∗

Ψ̂
, g ∈ C∗(S),

where Ψ ∈ Aut(Bn) and BΨ̂ is the noncommutative Berezin transform at the
boundary function Ψ̂. In this case, the noncommutative Berezin kernel KΨ̂ is
a unitary operator and Γ is a unitarily implemented automorphism of C∗(S).
Moreover, we have

AutAn(C
∗(S)) ' Aut(Bn),
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where AutAn(C
∗(S)) is the group of automorphisms of C∗(S) which leave in-

variant the noncommutative polyball algebra An. As a consequence, we ob-
tain a concrete description for the group of automorphisms of the tensor prod-
uct Tn1 ⊗ · · · ⊗ Tnk of Cuntz–Toeplitz algebras which leave invariant the tensor
product An1 ⊗min · · · ⊗min Ank of noncommutative disc algebras, which extends
Voiculescu’s result when k = 1. In particular, each holomorphic automorphism of
the regular polyball Bn induces an automorphism of the tensor product of Cuntz
algebras On1 ⊗ · · · ⊗ Onk which leaves invariant the non-self-adjoint subalgebra
An1 ⊗min · · · ⊗min Ank .

In Section 5, we prove that any unitarily implemented automorphism of the
noncommutative polyball algebra An (respectively the noncommutative Hardy
algebra F∞

n ) is the Berezin transform of a boundary function Ψ̂, where Ψ∈Aut(Bn).
Moreover, we have

Autu(An) ' Autu(F∞
n ) ' Aut(Bn).

When k = 1, we recover some of the results obtained by Davidson and Pitts
[6] and the author [19]. Let H∞(Bn) be the Hardy algebra of all bounded free
holomorphic functions on the regular polyball. If Λ : H∞(Bn) → H∞(Bn) is a
unital algebraic homomorphism, it induces a unique homomorphism Λ̃ : F∞

n →
F∞

n such that ΛB = BΛ̃, where B is the noncommutative Berezin transform. We
prove that Λ̃ is a unitarily implemented automorphism of F∞

n if and only if there
is ϕ ∈ Aut(Bn) such that

Λ( f ) = f ◦ ϕ, f ∈ H∞(Bn).

A similar result holds for the algebra A(Bn) of all bounded free holomorphic
functions on Bn(H) with continuous extension to Bn(H)−.

In Section 6, we prove that the free holomorphic automorphism group of
the polyball Bn is a σ-compact, locally compact topological group with respect to
the topology induced by the metric

dBn(φ, ψ) := ‖φ− ψ‖∞ + ‖φ−1(0)− ψ−1(0)‖, φ, ψ ∈ Aut(Bn).

We also show that if n = (n1, . . . , nk) ∈ Nk, then the free holomorphic automor-
phism group Aut(Bn) has card(Σ) path connected components, where

Σ := {σ ∈ Sk : (nσ(1), . . . , nσ(k)) = (n1, . . . , nk)}

and Sk is the symmetric group on the set {1, . . . , k}. We mention that a map
π : Aut(Bn) → U (K), where U (K) is the unitary group on the Hilbert space K,
is called (unitary) projective representation if π(id) = I,

π(Φ)π(Ψ) = c(Φ,Ψ)π(Φ ◦Ψ), Φ, Ψ ∈ Aut(Bn),

where c(Φ,Ψ) is a complex number with |c(Φ, Ψ)| = 1, and the map Aut(Bn) 3
Φ 7→ 〈π(Φ)ξ, η〉 ∈ C is continuous for each ξ, η ∈ K. Using the structure of the
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free holomorphic automorphisms of the regular polyball Bn, we conclude Sec-
tion 6 by providing a concrete unitary projective representation of the topologi-
cal group Aut(Bn), with respect to the metric dBn , in terms of noncommutative
Berezin kernels associated with regular polyballs.

We mention that the techniques of the present paper will be used in a future
one to study the structure of the automorphism groups associated with certain
classes of noncommutative varieties in polyballs, including the case of commuta-
tive operatorial polyballs. We also expect some of our results to extend to more
general noncommutative polydomains ([22], [24]).

1. NONCOMMUTATIVE POLYBALLS AND FREE HOLOMORPHIC FUNCTIONS

In this section, we show that the regular polyball Bn is a logarithmically
convex complete Reinhardt noncommutative domain. We study free holomor-
phic functions on regular polyballs and provide analogues of several classical re-
sults from complex analysis such as: Abel theorem, Hadamard formula, Cauchy
inequality, and Liouville theorem for entire functions.

First, we introduce a class of noncommutative Berezin transforms asso-
ciated with regular polyballs. Let X = (X1, . . . , Xk) ∈ Bn(H)− with Xi :=
(Xi,1, . . . , Xi,ni ). We use the notation Xi,αi := Xi,j1 · · ·Xi,jp if αi = gi

j1
· · · gi

jp
∈ F+

ni

and Xi,gi
0

:= I. The noncommutative Berezin kernel associated with any element X

in the noncommutative polyball Bn(H)− is the operator

KX : H → F2(Hn1)⊗ · · · ⊗ F2(Hnk )⊗ ∆X(I)(H)

defined by

KXh := ∑
βi∈F+

ni , i=1,...,k

e1
β1
⊗ · · · ⊗ ek

βk
⊗ ∆X(I)1/2X∗1,β1

· · ·X∗k,βk
h,

where ∆X(I) was defined in the introduction. A very important property of
the Berezin kernel is that KXX∗i,j = (S∗i,j ⊗ I)KX for any i ∈ {1, . . . , k} and j ∈
{1, . . . , ni}. The Berezin transform at X ∈ Bn(H) is the map

BX : B
(⊗k

i=1
F2(Hni )

)
→ B(H)

defined by

BX[g] := K∗X(g⊗ IH)KX, g ∈ B
(⊗k

i=1
F2(Hni )

)
.

If g is in the C∗-algebra generated by Si,1, . . . , Si,ni , we define the Berezin trans-
form at X ∈ Bn(H)−, by

BX[g] := lim
r→1

K∗rX(g⊗ IH)KrX, g ∈ C∗(S),
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where the limit is in the operator norm topology. In this case, the Berezin trans-
form at X is a unital completely positive linear map such that

BX(S(α)S
∗
(β)) = X(α)X

∗
(β), (α), (β) ∈ F+

n1
× · · · × F+

nk
,

where S(α) := S1,α1 · · · Sk,αk
if (α) := (α1, . . . , αk) ∈ F+

n1
× · · · × F+

nk
. The Berezin

transform will play an important role in this paper. More properties concerning
noncommutative Berezin transforms and multivariable operator theory on non-
commutative balls and polydomains, can be found in [17], [18], [19], [20], [22],
and [24]. For basic results on completely positive (respectively bounded) maps
we refer the reader to [12] and [13].

In what follows, we present some properties of the regular polyballs. Our
first observation is that, in general, the inclusion Bn(H) ⊂ Pn(H) is strict. In-
deed, consider the particular case n1 = · · · = nk = 1. Let M be a Hilbert

space, H = M⊕M, and Ti :=
(

0 0
Ai 0

)
, i ∈ {1, . . . , k}, where Ai ∈ B(M)

and ‖Ai‖ < 1. It is clear that TiTs = TsTi for i, s ∈ {1, . . . , k}, and ∆T(I) =(
I 0
0 I − A1 A∗1 − · · · − Ak A∗k

)
. Consequently, T = (T1, . . . , Tk) ∈ B(1,...,1)(H) if

and only if ‖A1 A∗1 + · · · + Ak A∗k‖ < 1. This clearly proves our assertion. On
the other hand, note that there is r ∈ (0, 1) such that rPn(H) ⊂ Bn(H). More-
over, due to Proposition 1.3 from [24], one can easily see that [B(H)n1+···+nk ]1 ⊂
Bn(H).

If z = (z1, . . . , zk), where zi = (zi,1, . . . , zi,ni ) ∈ Cni , and X := (X1, . . . , Xk)
is in the cartesian product B(H)n1 × · · · × B(H)nk with Xi = (Xi,1, . . . , Xi,ni ),
we denote zX := (z1X1, . . . , zkXk), where ziXi := (zi,1Xi,1, . . . , zi,kXi,ni ). If r :=
(r1, . . . , rk), ri > 0, we set rX := (r1X1, . . . , rkXk). When r ∈ R+, the notation rX is
clear.

LEMMA 1.1. If λi ∈ D, i ∈ {1, . . . , k}, and S = (S1, . . . , Sk) is the universal
model for the regular polyball B−n , then

(id−Φλ1S1)
p1 ◦ · · · ◦ (id−ΦλkSk )

pk (I) >
k

∏
i=1

(1− |λi|2)pi I.

If z = (z1, . . . , zk), where zi = (zi,1, . . . , zi,ni ) ∈ Dni , then

(id−Φz1S1)
p1 ◦ · · · ◦ (id−ΦzkSk )

pk (I) > (id−ΦS1)
p1 ◦ · · · ◦ (id−ΦSk )

pk (I)

for any pi ∈ {0, 1}.
Proof. We recall that two operators A, B ∈ B(H) are called doubly commut-

ing if AB = BA and AB∗ = B∗A. Since the entries of Si are doubly commuting
with the entries of St, whenever i, t ∈ {1, . . . , k}, i 6= t, we have

(id−Φλ1S1)
p1 ◦ · · · ◦ (id−ΦλkSk )

pk (I) =
k

∏
i=1

(I −ΦλiSi (I))pi .
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Taking into account that I − ΦλiSi (I) > (1− |λi|2)I, the first inequality follows.
Similarly, using the inequality I − ΦziSi (I) > I − ΦSi (I), one can deduce the
second inequality.

DEFINITION 1.2. Let G be a subset of B(H)n1 × · · · × B(H)nk .
(i) G is a complete Reinhardt set if zX ∈ G for any X ∈ G and z ∈ Dn1+···+nk .

(ii) G is a logarithmically convex set if

{(log ‖X1‖, . . . , log ‖Xk‖) : (X1, . . . , Xk) ∈ G, Xi 6= 0}

is a convex subset of Rk.

PROPOSITION 1.3. The following properties hold:
(i) the regular polyball Bn(H) is relatively open in B(H)n1 ×c · · · ×c B(H)nk , and

its closure in the operator norm topology is equal to

{X ∈ B(H)n1 ×c · · · ×c B(H)nk : ∆
p
X(I) > 0 for p = (p1, . . . , pk), pi ∈ {0, 1}},

where ∆
p
X := (id−ΦX1)

p1 ◦ · · · ◦ (id−ΦXk )
pk and (id−ΦXi )

0 := id;
(ii) Bn(H) is a complete Reinhardt domain such that

Bn(H) =
⋃

z∈Dn1+···+nk

zBn(H) =
⋃

z∈Dn1+···+nk

zBn(H)− =
⋃

z∈Dn1+···+nk

zBn(H), and

Bn(H) =
⋃

06r<1

rBn(H) =
⋃

06r<1

rBn(H)−;

(iii) Bn(H)− is a complete Reinhardt set and

Bn(H)− =
⋃

z∈Dn1+···+nk

zBn(H)− =
⋃

06r61

rBn(H)−.

Proof. If X = (X1, . . . , Xk) ∈ Bn(H), then there is c > 0 such that ∆X(I) >
cI. Given d ∈ (0, c), there is ε > 0 such that −dI 6 ∆Y(I) − ∆X(I) 6 dI for
any Y = (Y1, . . . , Yk) ∈ B(H)n1 ×c · · · ×c B(H)nk with max

i∈{1,...,k}
‖Xi − Yi‖ < ε.

Consequently, we have

∆Y(I) = (∆Y(I)− ∆X(I)) + ∆X(I) > (c− d)I > 0,

which proves that Bn(H) is relatively open in B(H)n1 ×c · · · ×c B(H)nk with re-
spect to the product topology. To prove the second part of item (i), set

D :={X∈B(H)n1 ×c · · · ×c B(H)nk : ∆
p
X(I)>0 for p = (p1, . . . , pk), pi∈{0, 1}}.

We shall prove that Bn(H)− = D. Since Bn(H) is open, if X ∈ Bn(H), then there
is r ∈ [0, 1) such that 1

r X ∈ Bn(H). Applying the Berezin transform at 1
r X to the

first inequality of Lemma 1.1, when λi = r, we deduce that

∆
p
X(I) = (id−ΦX1)

p1 ◦ · · · ◦ (id−ΦXk )
pk (I) >

k

∏
i=1

(1− r2)pi I.
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Hence, if Y ∈ Bn(H)−, a limiting process implies that ∆
p
Y(I) > 0 for any p =

(p1, . . . , pk) with pi ∈ {0, 1}. Therefore, Bn(H)− ⊆ D. To prove the reverse
inequality, let Y = (Y1, . . . , Yk) ∈ D. In particular, we have ‖rYi‖ < 1 for any
r ∈ [0, 1). Due to Lemma 1.1 and using the Berezin transform at Y, we have
∆rY(I) > (1− r2)k I, which shows that rY ∈ Bn(H). Since rY → Y, as r → 1, we
conclude that D ⊆ Bn(H)−, which proves item (i).

If z ∈ Dn1+···+nk and T ∈ Bn(H), then applying the Berezin transform at
T to the second inequality of Lemma 1.1 we obtain ∆

p
zT(I) > ∆

p
T(I) > 0 for any

p = (p1, . . . , pk) with pi ∈ {0, 1}. Consequently, we have

zBn(H) ⊆ Bn(H), z ∈ Dn1+···+nk ,

which shows that Bn(H) is a complete Reinhardt domain. Moreover, we have
Bn(H) =

⋃
z∈Dn1+···+nk

zBn(H).

Let T ∈ Bn(H)− and z ∈ Dn1+···+nk . Then there is r ∈ (0, 1) such that
1
r z ∈ Dn1+···+nk . Applying the Berezin transform at rT to the first inequality of
Lemma 1.1 when λ1 = · · · = λk = r, we deduce that rT ∈ Bn(H). Therefore,
zT ∈ 1

r zBn(H) ∈ Bn(H), which shows that

(1.1) zBn(H)− ⊆ Bn(H), z ∈ Dn1+···+nk .

Since Bn(H) is open, for any X ∈ Bn(H), there is r ∈ (0, 1) such that X ∈
rBn(H). Consequently,

Bn(H)⊂
⋃

06r<1

rBn(H)⊂
⋃

z∈Dn1+···+nk

zBn(H)⊆
⋃

z∈Dn1+···+nk

zBn(H)− and(1.2)

Bn(H) ⊂
⋃

06r<1

rBn(H) ⊂
⋃

06r<1

rBn(H)−.(1.3)

The relations (1.1) and (1.2) show that the first sequence of equalities in (ii) holds.
Due to relation (1.1), for each r ∈ [0, 1), we have rBn(H)− ⊆ Bn(H) which to-
gether with relation and (1.3) show that the second sequence of equalities in item
(ii) holds. Now, one can easily see that item (iii) follows immediately from (ii).
The proof is complete.

We remark that if r := (r1, . . . , rk), ri > 0, then we also have Bn(H) =⋃
06ri<1

rBn(H)−. Note also that the regular polyball Bn(H) is a logarithmically

convex complete Reinhardt domain.
For each i ∈ {1, . . . , k}, let Zi := (Zi,1, . . . , Zi,ni ) be an ni-tuple of noncom-

muting indeterminates and assume that, for any p, q ∈ {1, . . . , k}, p 6= q, the
entries in Zp are commuting with the entries in Zq. We set Zi,αi := Zi,j1 · · · Zi,jp if
αi ∈ F+

ni
and αi = gi

j1
· · · gi

jp
, and Zi,gi

0
:= 1, where gi

0 is the identity in F+
ni . Given

A(α1,...,αk)
∈ B(K) with (α1, . . . , αk) ∈ F+

n1
× · · · × F+

nk
, we consider formal power
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series

ϕ = ∑
α1∈F+

n1 ,...,αk∈F+
nk

A(α1,...,αk)
⊗ Z1,α1 · · · Zk,αk

, A(α1,...,αk)
∈ B(K),

in indeterminates Zi,j. In what follows, we set (α) := (α1, . . . , αk) ∈ F+
n1
× · · · ×

F+
nk

, Z(α) := Z1,α1 · · · Zk,αk
, and A(α) := A(α1,...,αk)

. We will also use the abbrevia-
tion ϕ = ∑

(α)
A(α) ⊗ Z(α).

The next result is an analogue of Abel theorem from complex analysis in
our noncommutative multivariable setting.

THEOREM 1.4. If ϕ = ∑
(p1,...,pk)∈Zk

+

∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ Z(α) is a formal

power series and r = (r1, . . . , rk), ri > 0, then the following statements hold:
(i) If the set

A :=
{∥∥∥r2p1

1 · · · r2pk
k ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α)A(α)

∥∥∥ : (p1, . . . , pk) ∈ Zk
+

}
is bounded, then the series

∑
(p1,...,pk)∈Zk

+

∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ X(α)

∥∥∥
is convergent in rBn(H), the regular polyball of polyradius r = (r1, . . . , rk), and uni-
formly convergent on sBn(H)− for s = (s1, . . . , sk) with 0 6 si < ri.

(ii) If the set A is unbounded, then the series

∑
(p1,...,pk)∈Zk

+

∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α)⊗X(α)

∥∥∥ and ∑
(p1,...,pk)∈Zk

+

∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α)⊗X(α)

are divergent for some X ∈ rBn(H)− and some Hilbert spaceH.

Proof. Let si < ri, i ∈ {1, . . . , k}, and X ∈ rBn(H), and assume that there is
C > 0 such that∥∥∥r2p1

1 · · · r2pk
k ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α)A(α)

∥∥∥ 6 C, (p1, . . . , pk) ∈ Zk
+.

Due to the von Neumann type inequality [24], we have∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ X(α)

∥∥∥6∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
sp1

1 · · · s
pk
k A(α) ⊗ S(α)

∥∥∥
= sp1

1 · · · s
pk
k

∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A∗(α)A(α)

∥∥∥1/2

<
( s1

r1

)p1
· · ·
( sk

rk

)pk
C1/2
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for any X ∈ sBn(H)−. On the other hand, due to Proposition 1.3, we have
rBn(H) =

⋃
06si<ri

sBn(H)−. Now, one can easily complete the proof of part (i).

To prove (ii), assume that the set A is unbounded. Then, using the fact that
the isometries S(α), with (α) = (α1, . . . , αk) ∈ F+

n1
× · · · × F+

nk
, |αi| = pi, have

orthogonal ranges, one can easily deduce that the series

∑
(p1,...,pk)∈Zk

+

∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ rp1

1 · · · r
pk
k S(α)

∥∥∥ and

∑
(p1,...,pk)∈Zk

+

∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ rp1

1 · · · r
pk
k S(α)

are divergent, and rS := (r1S1, . . . , rkSk) ∈ rBn(
⊗k

i=1 F2(Hni ))
−.

DEFINITION 1.5. A power series ϕ = ∑
(α)

A(α)⊗Z(α) is called free holomorphic

function (with coefficients in B(K)) on the abstract polyball ρBn := {ρBn(H) :
H is a Hilbert space}, ρ = (ρ1, . . . , ρk), ρi > 0, if the series

ϕ(X) := ∑
(p1,...,pk)∈Zk

+

∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ X(α)

is convergent in the operator norm topology for any X = {Xi,j} ∈ ρBn(H)
with i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}, and any Hilbert space H. We denote
by Hol(ρBn) the set of all free holomorphic functions on ρBn with scalar coeffi-
cients.

Using Theorem 1.4, one can easily deduce the following characterization for
free holomorphic functions on regular polyballs.

COROLLARY 1.6. Let S be the universal model associated with the abstract regular
polyball Bn. A formal power series ϕ = ∑

(α)
A(α) ⊗ Z(α) is a free holomorphic function

(with coefficients in B(K)) on the abstract polyball ρBn, where ρ = (ρ1, . . . , ρk), ρi > 0,
if and only if the series

∑
(p1,...,pk)∈Zk

+

∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ rp1

1 · · · r
pk
k S(α)

∥∥∥
converges for any ri ∈ [0, ρi), i ∈ {1, . . . , k}.

Throughout the paper, we say that the abstract polyball Bn or a free holo-
morphic function F on Bn has a certain property, if the property holds for any
Hilbert space representation of Bn and F, respectively. We remark that the coef-
ficients of a free holomorphic function on a polyball are uniquely determined by
its representation on an infinite dimensional Hilbert space. Indeed, assume that
F = ∑

(α)
A(α) ⊗ Z(α), A(α) ∈ B(K), is a free holomorphic function with F(rS) = 0
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for any r ∈ [0, 1). Then, for any x, y ∈ K, we have

〈F(rS)(x⊗ 1), (y⊗ S(α)1〉 = r|α1|+···+|αk |〈A(α)x, y〉 = 0

for any (α) = (α1, . . . , αk) ∈ F+
n1
× · · · × F+

nk
. Hence A(α) = 0, which proves our

assertion.

COROLLARY 1.7. If ϕ = ∑
(α)

a(α) ⊗ Z(α), a(α) ∈ C is a free holomorphic function

on the abstract polyball ρBn, ρ = (ρ1, . . . , ρk), then its representation on C, i.e.

ϕ(λ1, . . . , λk) = ∑
(α)

a(α) ⊗ λ(α), λi = (λi,1, . . . , λi,ni ),

is a holomorphic function on the scalar polyball ρPn(C) = (Cn1)ρ1 × · · · × (Cnk )ρk

In what follows, we obtain Cauchy type inequalities for the coefficients of
free holomorphic functions on regular polyballs.

THEOREM 1.8. Let F : ρBn(H) → B(K) ⊗min B(H) be a free holomorphic
function with representation

F(X) = ∑
(p1,...,pk)∈Zk

+

∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ X(α).

Let r = (r1, . . . , rk) be such that 0 < ri < ρi and set M(r) := sup
X∈rBn(H)−

‖F(X)‖.

Then, for each (p1, . . . , pk) ∈ Zk
+, we have∥∥∥ ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α)A(α)

∥∥∥1/2
6

1
rp1

1 · · · r
pk
k

M(r).

Moreover, M(r) = ‖F(rS)‖, where S is the universal model of the regular polyball Bn.

Proof. Using the fact that the isometries S(α), with (α) = (α1, . . . , αk) ∈
F+

n1
× · · · × F+

nk
, |αi| = pi, have orthogonal ranges, we deduce that∣∣∣〈( ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α) ⊗ S∗(α)
)

F(rS)(h⊗ 1), h⊗ 1
〉∣∣∣

6
∥∥∥ ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α) ⊗ S∗(α)‖M(r)‖h
∥∥∥2

=
∥∥∥ ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α)A(α)‖1/2M(r)‖h
∥∥∥2

for any h ∈ K. On the other hand, we have〈(
∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α) ⊗ S∗(α)
)

F(rS)(h⊗ 1), h⊗ 1
〉
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= rp1
1 · · · r

pk
k

〈(
∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α)A(α) ⊗ I
)
(h⊗ 1), h⊗ 1

〉

= rp1
1 · · · r

pk
k

∥∥∥( ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A∗(α)A(α)

)1/2
h
∥∥∥2

.

Hence, using the previous inequality, we deduce that

rp1
1 · · · r

pk
k

∥∥∥( ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A∗(α)A(α)

)1/2
h
∥∥∥2

6
∥∥∥ ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α)A(α)

∥∥∥1/2
M(r)‖h‖2

for any h ∈ K, and the inequality in the theorem follows. The fact that M(r) =
‖F(rS)‖ is due to von Neumann inequality [17]. The proof is complete.

We remark that due to the fact that there is r ∈ (0, 1) such that rPn(H) ⊂
Bn(H), we have

B(H)n1 ×c · · · ×c B(H)nk =
⋃

ρ>0
ρBn(H).

We say that F is an entire function in B(H)n1 ×c · · · ×c B(H)nk if F is free holomor-
phic on every regular polyball ρBn(H), ρ > 0.

Here is an analogue of Liouville’s theorem for entire functions on B(H)n1 ×c
· · · ×c B(H)nk .

COROLLARY 1.9. If F : B(H)n1 ×c · · · ×c B(H)nk → B(K)⊗min B(H) is an
entire function with the property that there is a constant C > 0 and (q1, . . . , qk) ∈ Zk

+

such that

‖F(X)‖ 6 C
∥∥∥ ∑

αi∈F+
ni ,|αi |=qi , i∈{1,...,k}

X(α)X
∗
(α)

∥∥∥1/2

for any X ∈ B(H)n1 ×c · · · ×c B(H)nk , then F is a polynomial of degree at most q1 +
· · ·+ qk. In particular, a bounded free holomorphic function must be constant.

Proof. Let F have the representation

F(X) = ∑
(p1,...,pk)∈Zk

+

∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ X(α).

Due to the hypothesis, we have

‖F(rS)‖ 6 Crq1
1 · · · r

qk
k

∥∥∥ ∑
αi∈F+

ni ,|αi |=qi , i∈{1,...,k}
S(α)S

∗
(α)

∥∥∥1/2
6 Crq1

1 · · · r
qk
k
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for any ri > 0. Hence, and using Theorem 1.8, we deduce that∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A∗(α)A(α)

∥∥∥1/2
6

1
rp1

1 · · · r
pk
k

M(r) 6
1

rp1
1 · · · r

pk
k
‖F(rS)‖

6 C
1

rp1−q1
1 · · · rpk−qk

k

for any ri > 0 and i ∈ {1, . . . , k}. Consequently, if there is s ∈ {1, . . . , k} such that
ps > qs, then taking rs → ∞ we obtain

∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A∗(α)A(α) = 0,

which implies A(α) = 0 for any (α) = (α1, . . . , αk) with αi ∈ F+
ni

and |αi| = pi and
any pi ∈ Z+, i 6= s. Hence, we have

F(X) = ∑
(p1,...,pk)∈Zk

+ , pi6qi

∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ X(α).

The proof is complete.

Let Λ be equal to the set{
r=(r1, . . . , rk)∈Rk

+ :
{∥∥∥ ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

r2p1
1 · · · r

2pk
k A∗(α)A(α)

∥∥∥}
(p1,...,pk)∈Zk

+

is bounded
}

.

Given a formal power series ϕ = ∑
(α)

A(α) ⊗ Z(α), we define the set

Dϕ(H) :=
⋃

r∈Λ

rBn(H).

We say that Dϕ is logarithmically convex if Λ is log-convex, i.e. the set

{(log r1, . . . , log rk) : (r1, . . . , rk) ∈ Λ, ri > 0}
is convex.

PROPOSITION 1.10. Let ϕ = ∑
(α)

A(α) ⊗ Z(α) be a formal power series. The fol-

lowing statements hold:
(i) ϕ is free holomorphic on Dϕ and

ϕ(X) = ∑
(p1,...,pk)∈Zk

+

∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ X(α), X ∈ Dϕ,

where the series is convergent in the operator norm.
(ii) Dϕ is a logarithmically convex complete Reinhardt domain.

Proof. According to Theorem 1.4 and due to the uniqueness of the represen-
tation for free holomorphic functions on polyballs, ϕ is a free holomorphic func-
tion on Dϕ(H) :=

⋃
r∈Λ

rBn(H) and has the representation of item (i). To prove (ii),



HOLOMORPHIC AUTOMORPHISMS OF NONCOMMUTATIVE POLYBALLS 401

note first that, due to Proposition 1.3, Dϕ is a complete Reinhardt domain. Now,
let (r1, . . . , rk) and (s1, . . . , sk) be in Λ. Then there is a constant C > 0 such that

‖r2p1
1 · · · r2pk

k Qp‖ 6 C and ‖s2p1
1 · · · s2pk

k Qp‖ 6 C

for any p = (p1, . . . , pk) ∈ Zk
+, where Qp := ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α)A(α). Con-

sequently, due to the spectral theorem for positive operators, we have

‖(rt
1s1−t

1 )2p1 · · · (rt
ks1−t

k )2pk Qp‖ = ‖(r2p1
1 · · · r2pk

k Qp)
t(s2p1

1 · · · s2pk
k Qp)

1−t‖

6 ‖(r2p1
1 · · · r2pk

k Qp)
t‖‖(s2p1

1 · · · s2pk
k Qp)

1−t‖

6 ‖r2p1
1 · · · r2pk

k Qp‖t‖s2p1
1 · · · s2pk

k Qp‖1−t

6 CtC1−t = C.

Consequently, (rt
1s1−t

1 , . . . , rt
kk1−t

1 ) ∈ Λ, which proves that Dϕ is logarithmically
convex. The proof is complete.

We remark that, due to Theorem 1.4, if ρ = (ρ1, . . . , ρk) /∈ Λ, then the series
∑

(p1,...,pk)∈Zk
+

∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ X(α) is divergent for some X ∈ ρBn(H)−

and some Hilbert space H. Indeed, take X = ρS and use Theorem 1.4. We call
the set Dϕ the universal domain of convergence of the power series ϕ.

Our next task is to find the largest polyball rBn(H), r > 0, which is included
in the universal domain of convergence of ϕ.

THEOREM 1.11. Let ϕ = ∑
(α)

A(α) ⊗ Z(α) be a formal power series and define

γ ∈ [0, ∞] by setting

1
γ

:= lim sup
(p1,...,pk)∈Zk

+

∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A∗(α)A(α)

∥∥∥1/2(p1+···+pk)
.

Then the following statements hold:
(i) The series

∑
(p1,...,pk)∈Zk

+

∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ X(α)

∥∥∥, X ∈ γBn(H),

is convergent. Moreover, the convergence is uniform on rBn(H)− if 0 6 r < γ.
(ii) For any s > γ, there is a Hilbert spaceH and Y ∈ sBn(H)− such that the series

∑
(p1,...,pk)∈Zk

+

∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗Y(α)

is divergent in the operator norm topology.
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Proof. Assume that γ > 0 and let X ∈ rBn(H)−, where 0 6 r < γ. Fix
ρ ∈ (r, γ) and note that∥∥∥ ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α)A(α)

∥∥∥1/2(p1+···+pk)
<

1
ρ

for all but finitely many (p1, . . . , pk) ∈ Zk
+. Consequently, due to the von Neu-

mann type inequality [17], we have∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ X(α)

∥∥∥6∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ rp1+···+pk S(α)

∥∥∥
= rp1+···+pk

∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A∗(α)A(α)

∥∥∥1/2

<
( r

ρ

)p1+···+pk

for all but finitely many (p1, . . . , pk) ∈ Zk
+. Hence, item (i) holds and also implies

that the series
∞
∑

q=0

∥∥∥ ∑
|α1|+···+|αk |=q, αi∈F+

ni

A(α) ⊗ X(α)

∥∥∥ is uniformly convergent on

rBn(H)−. The case when γ = ∞ can be treated in a similar manner. Now, assume
that γ < ρ < s and let Y := sS, where S is the universal model of Bn

−. It is clear
that Y ∈ sBn(H)− and∥∥∥ ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A(α)⊗Y(α)

∥∥∥= sp1+···+pk
∥∥∥ ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α)A(α)

∥∥∥1/2
.

Since 1
ρ < 1

γ , there are infinitely many tuples (p1, . . . , pk) ∈ Zk
+ such that∥∥∥ ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A∗(α)A(α)

∥∥∥1/2(p1+···+pk)
>

1
ρ

and, consequently,
∥∥∥ ∑

αi∈F+
ni ,|αi |=pi , i∈{1,...,k}

A(α) ⊗ Y(α)

∥∥∥> ( s
ρ )

p1+···+pk . This shows

that item (ii) holds and, moreover, that the series

∑
(p1,...,pk)∈Zk

+

∥∥∥ ∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗Y(α)

∥∥∥
is divergent.

The number γ satisfying properties (i) and (ii) in the theorem above is called
the polyball radius of convergence for the power series ϕ.

COROLLARY 1.12. Under the conditions of Theorem 1.11, the following state-
ments hold:
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(i) The series
∞

∑
q=0

∥∥∥ ∑
|α1|+···+|αk |=q, αi∈F+

ni

A(α) ⊗ X(α)

∥∥∥
is uniformly convergent on rBn(H)− if 0 6 r < γ.

(ii) For any s > γ, there is Y ∈ sBn(H)− such that the series
∞

∑
q=0

∑
|α1|+···+|αk |=q, αi∈F+

ni

A(α) ⊗Y(α)

is divergent in the operator norm topology.

Proof. A closer look at the proof of Theorem 1.11 reveals that item (i) was
already proved and the only thing that we need in order to complete the proof of
item (ii) is that, under the condition γ < ρ < s,

∞

∑
q=0

∑
|α1|+···+|αk |=q, αi∈F+

ni

A(α) ⊗ sqS(α)

is divergent in the operator norm topology. Assume the contrary and apply
the convergent series above to the vector x ⊗ 1, where x ∈ K. We deduce that
∞
∑

q=0
∑

|α1|+···+|αk |=q, αi∈F+
ni

A(α) ⊗ sqe(α) is in the Hilbert space K ⊗
k⊗

i=1
F2(Hni ). Since

the sequence {e(α)}(α)∈F+
n1×···×F

+
nk

is an orthonormal basis for
k⊗

i=1
F2(Hni ), we con-

clude that the series ∑
(α)

A∗(α)A(α) is WOT-convergent. Let r ∈ [0, 1) and note that

∞

∑
p=0

rp ∑
(p1,...,pk)∈Zk

+ , p1+···+pk=p

∥∥∥ ∑
βi∈F+

ni ,|βi |=pi , i∈{1,...,k}
A(β) ⊗ sp1+···+pk S(β)

∥∥∥
6

∞

∑
p=0

rp ∑
(p1,...,pk)∈Zk

+ , p1+···+pk=p

∥∥∥ ∑
βi∈F+

ni ,|βi |=pi , i∈{1,...,k}
s2(|β1|+···+|βk |)A∗(β)A(β)

∥∥∥1/2

6
∞

∑
p=0

rp
(

p + k− 1
k− 1

)∥∥∥ ∑
βi∈F+

ni , i∈{1,...,k}
s2(|β1|+···+|βk |)A∗(β)A(β)

∥∥∥1/2
.

Since the latter series is convergent for any r ∈ [0, 1), we deduce that
∞

∑
p=0

∑
(p1,...,pk)∈Zk

+ , p1+···+pk=p

∥∥∥ ∑
βi∈F+

ni ,|βi |=pi , i∈{1,...,k}
A(β) ⊗ (rs)p1+···+pk S(β)

∥∥∥ < ∞,

which implies that
∞

∑
p=0

∑
(p1,...,pk)∈Zk

+ , p1+···+pk=p

∥∥∥ ∑
βi∈F+

ni ,|βi |=pi , i∈{1,...,k}
A(β) ⊗ X(β)

∥∥∥ < ∞
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for any X ∈ ρBn(H)−, where ρ ∈ (γ, s), which contradicts Theorem 1.11 (see the
end of its proof). Therefore, item (ii) holds.

A closer look at the proofs of Theorem 1.11 and Corollary 1.12 reveals the
following result.

COROLLARY 1.13. The radius of convergence of a power series ϕ = ∑
(α)

A(α) ⊗

Z(α) satisfies the relation

γ = sup
{

r > 0 :
∞

∑
q=0

∑
|α1|+···+|αk |=q, αi∈F+

ni

A(α) ⊗ rqS(α) is convergent in norm
}

= sup
{

r > 0 : ∑
(p1,...,pk)∈Zk

+

∑
αi∈F+

ni ,|αi |=pi , i∈{1,...,k}
A(α) ⊗ rp1+···+pk S(α) is convergent in norm

}
.

Moreover, we have the following characterization for free holomorphic func-
tions on polyballs.

COROLLARY 1.14. Let S be the universal model associated with the abstract regu-
lar polyball Bn. A formal power series ϕ = ∑

(α)
A(α)⊗ Z(α) is a free holomorphic function

(with coefficients in B(K)) on the abstract polyball ρBn, where ρ = (ρ1, . . . , ρk), ρi > 0,
if and only if the series

∞

∑
q=0

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |=q

A(α) ⊗ rqρ
|α1|
1 · · · ρ|αk |

k S(α)

is convergent in the operator norm topology for any r ∈ [0, 1). Moreover, the set
Hol(ρBn) of all free holomorphic functions with scalar coefficients on ρBn is an alge-
bra.

2. MAXIMUM PRINCIPLE AND SCHWARZ TYPE RESULTS

In this section, we present some results concerning the composition of free
holomorphic functions and study bounded free holomorphic functions with scalar
coefficients on polyball. We prove a Schwarz lemma and a maximum principle
in this setting. The results play an important role in the next sections.

Let H∞(Bn) denote the set of all elements ϕ in Hol(Bn) such that

‖ϕ‖∞ := sup ‖ϕ(X)‖ < ∞,

where the supremum is taken over all X ∈ Bn(H) and any Hilbert space H. One
can show that H∞(Bn) is a Banach algebra under pointwise multiplication and
the norm ‖ · ‖∞. For each p ∈ N, we define the norms ‖ · ‖p : Mp×p(H∞(Bn)) →
[0, ∞) by setting

‖[ϕst]p×p‖p := sup ‖[ϕst(X)]p×p‖,
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where the supremum is taken over all X ∈ Bn(H) and any Hilbert space H. It is
easy to see that the norms ‖ · ‖p, p ∈ N, determine an operator space structure on
H∞(Bn), in the sense of Ruan ([12], [13]).

Given ϕ ∈ F∞
n and a Hilbert space H, the noncommutative Berezin trans-

form associated with the abstract noncommutative polyball Bn generates a func-
tion whose representation onH is

B[ϕ] : Bn(H)→ B(H)

defined by
B[ϕ](X) := BX[ϕ], X ∈ Bn(H),

where BX : B(
⊗k

i=1 F2(Hni ))→ B(H) is the Berezin transform at X defined by

BX[g] := K∗X
(

g⊗ IH
)

KX, g ∈ B(
⊗k

i=1
F2(Hni )),

where F2(Hni ) is the full Fock space on ni generators and

KX : H → F2(Hn1)⊗ · · · ⊗ F2(Hnk )⊗ ∆X(I)(H)

is the noncommutative Berezin kernel associated with X.
We call B[ϕ] the Berezin transform of ϕ. In [24], we identified the noncom-

mutative algebra F∞
n with the Hardy subalgebra H∞(Bn) of bounded free holo-

morphic functions with scalar coefficients on Bn. More precisely, we proved that
the map Φ : H∞(Bn)→ F∞

n defined by

Φ
(

∑
(α)

a(α)Z(α)

)
:= ∑

(α)

a(α)S(α)

is a completely isometric isomorphism of operator algebras. Moreover, if g :=
∑
(α)

a(α)Z(α) is a free holomorphic function with scalar coefficients on the abstract

polyball Bn, then the following statements are equivalent:

(i) g ∈ H∞(Bn);

(ii) sup
06r<1

‖g(rS)‖ < ∞, where g(rS) :=
∞
∑

q=0
∑

(α)∈F+
n1×···×F

+
nk

, |α1|+···+|αk |=q
rqa(α)S(α);

(iii) there exists ϕ ∈ F∞
n with g = B[ϕ], where B is the noncommutative Berezin

transform associated with the abstract polyball Bn.
In this case,

Φ(g) = SOT- lim
r→1

g(rS); Φ−1(ϕ) = B[ϕ], ϕ ∈ F∞
n , and

‖Φ(g)‖ = sup
06r<1

‖g(rS)‖ = lim
r→1
‖g(rS)‖.

We use the notation ĝ := Φ(g) and call ĝ the (model) boundary function of g with
respect to the universal model S. We denote by A(Bn) the set of all elements g in
Hol(Bn) such that the mapping

Bn(H) 3 X 7→ g(X) ∈ B(H)
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has a continuous extension to [Bn(H)]− for any Hilbert space H. One can show
that A(Bn) is a Banach algebra under pointwise multiplication and the norm
‖ · ‖∞, and it has an operator space structure under the norms ‖ · ‖p, p ∈ N.
Moreover, we can identify the polyball algebra An with the subalgebra A(Bn).
We proved in [24] that the map Φ : A(Bn)→ An defined by

Φ
(

∑
(α)

a(α)Z(α)

)
:= ∑

(α)

a(α)S(α)

is a completely isometric isomorphism of operator algebras. Moreover, if g :=
∑
(α)

a(α)Z(α) is a free holomorphic function on the abstract polyball Bn, then the

following statements are equivalent:

(i) g ∈ A(Bn);

(ii) g(rS) :=
∞
∑

q=0
∑

(α)∈F+
n1×···×F

+
nk

, |α1|+···+|αk |=q
rqa(α)S(α) is convergent in the

norm topology as r → 1;
(iii) there exists ϕ ∈ An with g = B[ϕ], where B is the noncommutative

Berezin transform associated with the abstract polyball Bn.

In this case,

Φ(g) = lim
r→1

g(rS) and Φ−1(ϕ) = B[ϕ], ϕ ∈ An,

where the limit is in the operator norm topology.
In what follows, we consider free holomorphic functions F : Bn(H) →

B(H)m1+···+mk with F := (F1, . . . , Fk) and Fi = (Fi,1, . . . , Fi,mi ), where each Fi,j
is a free holomorphic function with scalar coefficients on Bn(H). Note that F(0)
is always a scalar operator.

LEMMA 2.1. Let F : Bn(H)− → B(H)m1 × · · · × B(H)mq be a free holomor-
phic function on Bn(H) and continuous on Bn(H)−. If X ∈ Bn(H)− and F̂ ∈
Bm(

⊗k
i=1 F2(Hni ))

− are pure elements, then so is F(X) ∈ Bm(H)−.

Proof. Let f : Bn(H)− → [B(H)]−1 be a free holomorphic function on Bn(H)
and continuous on Bn(H)−. If X ∈ Bn(H)− is pure, we can apply the noncom-
mutative Berezin transform and obtain

f (X) f (X)∗ = lim
r→1

BrX[ f̂ f̂ ∗] = lim
r→1

BX[ f̂r f̂ ∗r ].

Since lim
r→1

f̂r = f̂ in norm and BX is continuous in norm, we deduce that f (X) f (X)∗

= BX[ f̂ f̂ ∗]. In a similar manner, if F = (F1, . . . , Fq) and i ∈ {1, . . . , q}, we obtain

∑
α∈F+

mi ,|α|=p

Fi,α(X)Fi,α(X)∗ = BX

[
∑

α∈F+
mi ,|α|=p

F̂i,α F̂∗i,α
]
.
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Since∥∥∥ ∑
α∈F+

mi ,|α|=p

F̂i,α F̂∗i,α
∥∥∥ 6 1 and ∑

α∈F+
mi ,|α|=p

F̂i,α F̂∗i,α → 0 strongly as p→ ∞,

we deduce that Fi(X) is pure and, therefore, so is F(X). The proof is complete.

PROPOSITION 2.2. Let G : Bn(H) → B(H)m1 × · · · × B(H)mq be a free holo-
morphic function, where n = (n1, . . . , nk) ∈ Nk and m = (m1, . . . , mq) ∈ Nq. Then
range G ⊆ Bm(H) if and only if

G(rS) ∈ Bm

(⊗k

i=1
F2(Hni )

)
, r ∈ [0, 1),

where S is the universal model of the regular polyball Bn.

Proof. Since rS ∈ Bn(
⊗k

i=1 F2(Hni )) for any r ∈ [0, 1), the direct implication
is obvious. To prove the converse, assume that G = (G1, . . . , Gq) has the prop-
erty that G(rS) ∈ Bm(

⊗k
i=1 F2(Hni )). Consequently, if i, s ∈ {1, . . . , q}, i 6= s,

then each entry of Gi(rS) = (Gi,1(rS), . . . , Gi,mi (rS)) commutes with each en-
try of Gs(rS) = (Gs,1(rS), . . . , Gs,ms(rS)). Moreover, G(rS) is a pure element
with entries {Gi,j(rS)} in the noncommutative polyball algebra An and, for each
r ∈ [0, 1),

(id−ΦG1(rS)) ◦ · · · ◦ (id−ΦGq(rS))(I) > dr I,

for some dr > 0. If X = (X1, . . . , Xk) ∈ Bn(H), then there is t ∈ (0, 1) such that
X ∈ tBn(H). Since G is a free holomorphic function, it is continuous and G(tS)
has the entries in An. Applying the noncommutative Berezin transform at 1

t X to
the relations mentioned above, when r = t, we deduce that the entries of Gi(X)
commute with the entries of Gs(X), if i, s ∈ {1, . . . , q}, i 6= s, and

(2.1) (id−ΦG1(X)) ◦ · · · ◦ (id−ΦGq(X))(I) > 0.

On the other hand, since Gi(tS) is pure, Lemma 2.1 implies that Gi(X) is pure.
Hence, and using relation (2.1), we conclude that G(X) ∈ Bn(H) for any X ∈
Bn(H). The proof is complete.

Using Proposition 2.2 and the properties of the noncommutative Berezin
transform, one can easily deduce the following result.

COROLLARY 2.3. Let G = (G1, . . . , Gq), with Gi : Bn(H) → B(H)mi , be a free
holomorphic function such that, for each r ∈ [0, 1),

(i) ‖Gt(rS)‖ < 1, t ∈ {1, . . . , q};
(ii) the entries of Gt(rS) are commuting with the entries of Gs(rS) for any s, t ∈

{1, . . . , q} with s 6= t.
Then range G ⊆ Bm(H) if either one of the following conditions holds:

(a) ∆G(rS)(I) > 0 for any r ∈ [0, 1);
(b) the entries of Gt(rS) are doubly commuting with the entries of Gs(rS) for any

s, t ∈ {1, . . . , q} with s 6= t.
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THEOREM 2.4. Let n = (n1, . . . , nk) ∈ Nk and m = (m1, . . . , mq) ∈ Nq. If
G : Bn(H) → Bm(H) and F : Bm(H) → B(H)⊗minB(E ,G) are free holomorphic
functions on regular polyballs, then F ◦ G is a free holomorphic function on Bn(H).

Proof. If F has the Fourier representation

F(Y) =
∞

∑
p=0

∑
|γ1|+···+|γq |=p, γi∈F+

mi

A(γ) ⊗Y(γ), Y ∈ Bm(H),

then we have

(F ◦ G)(X) =
∞

∑
p=0

∑
|γ1|+···+|γq |=p, γi∈F+

mi

A(γ) ⊗ G(γ)(X), X ∈ Bn(H),

where the convergence is in the operator norm topology. Due to Proposition 2.2,

G(rS) = {Gs,t(rS)} ∈ Bm(F2(Hn1)⊗ · · · ⊗ F2(Hnk )), r ∈ [0, 1),

where s ∈ {1, . . . , q}, t ∈ {1, . . . , ms} and S is the universal model of the reg-
ular polyball Bn. Since F : Bm(H) → B(H)⊗minB(E ,G) is a free holomorphic
function, for each r ∈ [0, 1),

(2.2) Λr :=
∞

∑
p=0

∑
|γ1|+···+|γq |=p, γi∈F+

mi

A(γ) ⊗ G(γ)(rS), X ∈ Bn(H),

is convergent in the operator norm topology. Taking into account that Gs,t(S)
is in the noncommutative polyball algebra An, we have Λr ∈ B(E ,G) ⊗An ⊂
B(E ,G)⊗F∞

n . This implies that, for each r ∈ [0, 1), the operator Λr has the Fourier

representation
∞
∑

q=0
∑

|α1|+···+|αk |=q, αi∈F+
ni

C(α)(r)⊗ r|α1|+···+|αk |S(α) and

(2.3) Λr = SOT- lim
`→1

∞

∑
q=0

∑
|α1|+···+|αk |=q, αi∈F+

ni

C(α)(r)⊗ (r`)|α1|+···+|αk |S(α),

where the series converges in the operator topology. The next step in our proof is
to show that C(α)(r) does not depend on r ∈ [0, 1). Using relations (2.2) and (2.3),
we have

〈C(α)(r)x, y〉

=
〈
(I ⊗ S∗(α))

1
r|α1|+···+|αk |

Λr(x⊗ 1), (y⊗ 1)
〉

= lim
d→∞

d

∑
p=0

∑
|γ1|+···+|γq |=p, γi∈F+

mi

〈A(γ)x, y〉
〈 1

r|α1|+···+|αk |
S∗(α)G(γ)(rS)1, 1

〉
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for any (α) ∈ F+
n1
× · · · × F+

nk
and for any x ∈ E , y ∈ G. On the other hand, the

product G(γ) is a free holomorphic function on Bn(H) and has a representation

G(γ)(X) =
∞

∑
p=0

∑
|β1|+···+|βq |=p, βi∈F+

ni

d(γ)
(β)

X(β), X ∈ Bn(H).

Consequently, 〈 1
r|α1|+···+|αk |

S∗(α)G(γ)(rS)1, 1
〉
= d(γ)

(α)
, r ∈ [0, 1),

for any (α) ∈ F+
n1
× · · · × F+

nk
and (γ) ∈ F+

m1
× · · · × F+

mk
. Therefore, C(α)(r) does

not depend on r ∈ [0, 1). We set C(α)(r) = C(α), and note that relation (2.3) implies
that

Q(X) :=
∞

∑
q=0

∑
|α1|+···+|αk |=q, αi∈F+

ni

C(α) ⊗ X(α), X ∈ Bn(H),

is a free holomorphic function on Bn(H). Moreover, since Q is continuous in the
operator norm we deduce that

Λr : =
∞

∑
p=0

∑
|γ1|+···+|γq |=p, γi∈F+

mi

A(γ) ⊗ G(γ)(rS) =
∞

∑
q=0

∑
|α1|+···+|αk |=q, αi∈F+

ni

C(α) ⊗ r|α1|+···+|αk |S(α)

for any r ∈ [0, 1). Now, if X ∈ Bn(H), then there is r ∈ (0, 1) such that X ∈
rBn(H). Applying the noncommutative Berezin transform at 1

r X to the relation
above, we deduce that

(F ◦ G)(X) =
∞

∑
p=0

∑
|γ1|+···+|γq |=p, γi∈F+

mi

A(γ) ⊗ G(γ)(X) = Q(X)

for any X ∈ Bn(H). The proof is complete.

PROPOSITION 2.5. Let F : Bn(H) → B(K)⊗minB(H) be a bounded free holo-
morphic function with coefficients in B(K) and representation

∞

∑
q=0

∑
|α1|+···+|αk |=q, αi∈F+

ni

A(α) ⊗ X(α).

If ‖F‖∞ 6 1, then

∑
|α1|+···+|αk |=q, αi∈F+

ni

A∗(α)A(α) 6 I − A∗(0)A(0)

for any q ∈ N, where A(0) := F(0).

Proof. Let M be the subspace of F2(Hn1) ⊗ · · · ⊗ F2(Hnk ) spanned by the
vectors 1, e1

α1
⊗ · · · ⊗ ek

αk
, where αi ∈ Fni and |α1| + · · · + |αk| = q ∈ N. Note
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that the operator C := PK⊗MF(S)|K⊗M is a contraction and, with respect to the
decomposition

K⊗M = K⊕
⊕

|α1|+···+|αk |=q, αi∈F+
ni

e1
α1
⊗ · · · ⊗ ek

αk
⊗K,

has the operator matrix representation
A(0) [0 · · · · · · · · · 0] A(α)

...
|α1|+ · · ·+ |αk| = q, αi ∈ F+

ni




A(0) 0 · · · 0 0
0 0 · · · 0 0
...

. . .
...

0 0 · · · 0 A(0)



 ,

where A(0) is on the main diagonal. Indeed, we have

〈C(x⊗ 1), y⊗ 1〉 = 〈F(S)(x⊗ 1), y⊗ 1〉 = 〈A(0)x, y〉 and

〈C(x⊗ 1), y⊗ e1
α1
⊗ · · · ⊗ ek

αk
〉 = 〈A(α)x, y〉

for any (α) = (α1, . . . , αk) ∈ F+
n1
× · · · × F+

nk
with |α1|+ · · ·+ |αk| = q. If |α1|+

· · ·+ |αk| = |β1|+ · · ·+ |βk| = q, then we have

〈C(x⊗ e1
α1
⊗ · · · ⊗ ek

αk
), y⊗ e1

β1
⊗ · · · ⊗ ek

βk
〉 = δα1β1 · · · δαk βk A(0)

for any x, y ∈ K. This proves our assertion. Consequently, the column operator
matrix 

A(0) A(α)
...

|α1|+ · · ·+ |αk| = q, αi ∈ F+
ni




is a contraction, which completes the proof.

We recall that Bn(H) is a complete Reinhardt domain and

B(H)n1 ×c · · · ×c B(H)nk =
⋃

ρ>0
ρBn(H).

We define the Minkovski functional associated with the regular polyball Bn(H)
to be the function mBn : B(H)n1 ×c · · · ×c B(H)nk → [0, ∞) given by

mBn(X) := inf{r > 0 : X ∈ rBn(H)}.

PROPOSITION 2.6. The Minkovski functional associated with the regular polyball
Bn(H) has the following properties:

(i) mBn(λX) = |λ|mB(X) for λ ∈ C;
(ii) mBn is upper semicontinuous;

(iii) Bn(H) = {X ∈ B(H)n1 ×c · · · ×c B(H)nk : mBn(X) < 1};
(iv) Bn(H)− = {X ∈ B(H)n1 ×c · · · ×c B(H)nk : mBn(X) 6 1};
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(v) there is a polyball rPn(H) ⊂ Bn(H) for some r ∈ (0, 1), where mBn is continu-
ous.

Proof. To prove (i), we may assume that X 6= 0 and λ 6= 0. It is clear that
mBn(λX) = t > 0 if and only if λX ∈ cBn(H) for any c > t, and λX /∈ dBn(H)
if 0 < d < t. Taking into account that Bn(H) = eiθBn(H) for any θ ∈ R, we
deduce that the latter conditions are equivalent to X ∈ c

|λ|Bn(H) for any c > t

and X /∈ d
|λ|Bn(H) if 0 < d < t. Hence, we obtain that mBn(X) =

t
|λ| , which shows

item (i). We skip the proof of item (ii), since it is due to (i) and a straightforward
argument.

According to Proposition 1.3, we have Bn(H) =
⋃

0<r<1
rBn(H). Using this

result, one can easily deduce item (iii). As we saw in the proof of the same propo-
sition, for any r ∈ (0, 1), we have Bn(H)− ⊆ 1

r Bn(H). Consequently, mBn(X) 6 1
for any X ∈ Bn(H)−. Now, assume that X ∈ B(H)n1 ×c · · · ×c B(H)nk is such that
mBn(X) = 1. Then there is a sequence {tm} with tm > 1 and tm → 1 such that
X ∈ tmBn(H) for any m ∈ N. Taking tm → 1, we deduce that X ∈ Bn(H)−.
Hence, and using item (iii), one can see that item (iv) holds. To prove (v), note
the fact that rPn(H) ⊂ Bn(H) for some r ∈ (0, 1) is quite clear, while the conti-
nuity of mBn on rPn(H) is due to the convexity of the latter polyball. The proof is
complete.

Let C〈Zi,j〉 be the algebra of all polynomials in indeterminates Zi,j, where
i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}. We define the free partial derivation ∂

∂Zi,j
on

C〈Zi,j〉 as the unique linear operator on this algebra, satisfying the conditions

∂I
∂Zi,j

= 0,
∂Zi,j

∂Zi,j
= I,

∂Zi,j

∂Zs,q
= 0 if (i, j) 6= (s, q) and

∂( f g)
∂Zi,j

=
∂ f

∂Zi,j
g + f

∂g
∂Zi,j

for any f , g ∈ C〈Zi,j〉. The same definition extends to formal power series in the
noncommuting indeterminates Zi,j. If F := ∑

(α)∈F+
n1×···×F

+
nk

A(α) ⊗ Z(α) is a power

series with operator-valued coefficients, then the free partial derivative of F with

respect to Zi,j is the power series ∂F
∂Zi,j

:= ∑
α∈F+

n

A(α) ⊗
∂Z(α)

∂Zi,j
. One can prove that if

F is a free holomorphic function on Bn(H) then so is ∂F
∂Zi,j

. We leave the proof to
the reader.

The next result is an analogue of Schwarz lemma from complex analysis.

THEOREM 2.7. Let F : Bn(H)→ B(H)p be a bounded free holomorphic function
with ‖F‖∞ 6 1. If F(0) = 0, then

‖F(X)‖ 6 mBn(X) < 1 and mBn(X) 6 ‖X‖, X ∈ Bn(H),
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where mBn is the Minkovski functional associated with the regular polyball Bn(H). In
particular, if p = 1, the free holomorphic function

ψ(X) =
k

∑
i=1

nj

∑
j=1

∂F
∂Zi,j

(0)Xi,j, X = (Xi,j) ∈ Bn(H),

has the property that ‖ψ(X)‖ 6 mBn(X) < 1.

Proof. Fix X ∈ Bn(H) and let t ∈ (0, 1) be such that mBn(X) < t < 1. Since
1
t X ∈ Bn(H), Proposition 1.3 implies λ

t X ∈ Bn(H) for any λ ∈ D := {z ∈ C :
|z| < 1}. For each x, y ∈ H(p) with ‖x‖ 6 1 and ‖y‖ 6 1, define the function
ϕx,y : D→ C by setting

ϕx,y(λ) :=
〈

F
(λ

t
X
)

x, y
〉

, λ ∈ D.

Taking into account that F is free holomorphic on Bn(H) and ‖F‖∞ 6 1, we
deduce that ϕx,y is a holomorphic function on the unit disc and |ϕx,y(λ)| 6 1.
Since ϕx,y(0) = 0, an application of the classical Schwarz lemma to ϕx,y implies
|ϕx,y(λ)| 6 |λ| for any λ ∈ D. Taking λ = mBn(X), we obtain

ϕx,y(λ) :=
〈

F
(mBn(X)

t
X
)

x, y
〉
6 mBn(X), λ ∈ D.

for any t ∈ (0, 1) with mBn(X) < t < 1. Since F is continuous on Bn(H) and
taking t → mBn(X), we obtain |〈F(X)x, y〉| 6 mBn(X) for any x, y ∈ H(p) with
‖x‖ 6 1 and ‖y‖ 6 1. Consequently,

‖F(X)‖ 6 mBn(X) < 1, X ∈ Bn(H).

According to Proposition 1.9 from [24], if ‖X‖ := ΦX1(I) + · · ·+ ΦXk (I) 6 I then
X = (X1, . . . , Xk) ∈ Bn(H)−. Consequently, if X ∈ Bn(H), then X

‖X‖ ∈ Bn(H)−,
which implies mBn(X) 6 t‖X‖ for any t > 1. taking t → 1, we deduce that
mBn(X) 6 ‖X‖.

Now, we consider the particular case when p = 1. Due to the classical
Schwarz lemma, we also have |ϕ′x,y(0)| 6 1. Since ϕ′x,y(0) = 〈 1

t ψ(X)x, y〉, we
deduce that ‖ψ(X)‖ 6 t < 1. Taking t→ mBn(X), we obtain ‖ψ(X)‖ 6 mBn(X) <
1. The proof is complete.

We have all the ingredients to prove the following maximum principle.

THEOREM 2.8. Let F : Bn(H)→ B(H) be a bounded free holomorphic function.
If there exists X0 ∈ Bn(H) such that

‖F(X)‖ 6 ‖F(X0)‖, X ∈ Bn(H),

then F must be a constant.
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Proof. Assume that ‖F‖∞ = 1 and that there exists X0 ∈ Bn(H) such that
‖F(X0)‖ = 1. Let F have the representation

∞

∑
q=0

∑
|α1|+···+|αk |=q, αi∈F+

ni

a(α)X(α).

According to Proposition 2.5, we have

∑
|α1|+···+|αk |=q, αi∈F+

ni

|a(α)|2 6 1− |F(0)|2

for any q ∈ N. Hence, if |F(0)| = 1, then a(α) = 0 for any (α) = (α1, . . . , αk) ∈
F+

n1
× · · · × F+

nk
with |α1|+ · · ·+ |αk| > 1, which implies F = F(0).

Now, we assume that |F(0)| < 1 and set λ := F(0). Note that if Ψλ is the
corresponding automorphism of the open unit ball [B(H)]1 (see the remarks pre-
ceding Theorem 3.6), then, due to Theorem 2.4, G := Ψλ ◦ F is a free holomorphic
function on Bn(H) with the property that G(0) = 0 and ‖G‖∞ 6 1. Using The-
orem 2.7, we have ‖G(X)‖ < 1 for any X ∈ Bn(H). Hence, ‖Ψλ(F(X0))‖ < 1.
Since Ψλ is an involutive automorphism of the open unit ball [B(H)]1, we deduce
that

‖F(X)‖ = ‖Ψλ(Ψλ(F(X)))‖ < 1

for any X ∈ Bn(H), which contradicts our assumption that ‖F(X0)‖ = 1. The
proof is complete.

COROLLARY 2.9. Let F : Bn(H) → B(H) be a nonconstant bounded free holo-
morphic function. Then the following statements hold:

(i) ‖F(X)‖ < ‖F‖∞ for any X ∈ Bn(H);
(ii) the map

[0, 1)k 3 r 7→ ‖Fr‖∞, r = (r1, . . . , rk)

is strictly increasing with respect to each ri, where

Fr(X1, . . . , Xk) := F(r1X1, . . . , rkXk), (X1, . . . , Xk) ∈ Bn(H).

Proof. Without loss of generality, we may assume that ‖F‖∞ = 1. Part (i)
is a consequence of Theorem 2.8. To prove part (ii), let 0 6 r1 < t1 < 1 and
set r := r1

t1
∈ [0, 1). Since F is a free holomorphic function on Bn(H), the op-

erator F(rS1, r2S2, . . . , rkSk) is in the polyball algebra An and ‖F(r,r2,...,rk)
‖∞ =

‖F(rS1, r2S2, . . . , rkSk)‖. Applying part (i) to the bounded free holomorphic func-
tion F(r,r2,...,rk)

on Bn(H) and X = (rS1, r2S2, . . . , rkSk), we obtain

‖F(r1,r2,...,rk)
‖∞ = ‖F(r1,r2,...,rk)

(S)‖∞ =
∥∥∥F(t1,r2,...,rk)

( r1

t1
S1, S2, . . . , Sk

)∥∥∥
< ‖F(t1,r2,...,rk)

(S1, S2, . . . , Sk)‖ = ‖F(t1,r2,...,rk)
‖∞.

The proof is complete.

The next version of the maximum principle is needed in the next sections.



414 GELU POPESCU

THEOREM 2.10. Let F : Bn(H) → B(H)p be a bounded free holomorphic func-
tion with ‖F(0)‖ < ‖F‖∞. Then there is no X0 ∈ Bn(H) such that ‖F(X0)‖ = ‖F‖∞.

Proof. Without loss of generality we may assume that ‖F‖∞ = 1. If F(0) =
0, Theorem 2.7 implies ‖F(X)‖ < 1 for any X ∈ Bn(H), which completes the
proof.

Now we consider the case when 0 6= ‖F(0)‖ < 1. Suppose that there is
X0 ∈ Bn(H) such that ‖F(X0)‖ = 1. Since ‖F(0)‖ < ‖F‖∞ = 1, we have λ :=
F(0) ∈ (Cp)1. Let Ψλ be the automorphism of the open unit ball [B(H)p]1 (see the
remarks preceding Theorem 3.6). We recall that Ψλ is a free holomorphic function
on [B(H)p]γ, where γ := 1

‖λ‖2
, and Ψλ(Ψλ(X)) = X for any X ∈ [B(H)p]γ, where

γ := 1
‖λ‖2

. Using Theorem 2.4, we deduce that G := Ψλ ◦ F : Bn(H) → B(H)p is
a free holomorphic function on Bn(H) such that G(0) = 0 and ‖G‖∞ 6 1. Due to
the Schwarz type result of Theorem 2.7, we have ‖G(X)‖ < 1 for any X ∈ Bn(H).
In particular, we have ‖Ψλ(F(X0))‖ < 1. Since Ψλ is an involutive automorphism
of the open unit ball [B(H)p]1, we deduce that

‖F(X0)‖ = ‖Ψλ(Ψλ(F(X0)))‖ < 1,

which is a contradiction. The proof is complete.

3. FREE HOLOMORPHIC AUTOMORPHISMS OF NONCOMMUTATIVE POLYBALLS

In this section, we use noncommutative Berezin transforms to obtain a com-
plete description of the group Aut(Bn) of all free holomorphic automorphisms of
the polyball Bn, which is an analogue of Rudin’s characterization of the holomor-
phic automorphisms of the polydisc, and prove some of their basic properties.
We show that Aut(Bn) ' Aut((Cn1)1 × · · · × (Cn1)1) and obtain an analogue
of Poincaré’s classical result that the open unit ball of Cn is not biholomorphic
equivalent to the polydisk Dn, for noncommutative regular polyballs.

PROPOSITION 3.1. If n = (n1, . . . , nk) ∈ Nk, then the following statements hold:
(i) If Ci ∈ B(Cni ), i ∈ {1, . . . , k}, are contractions, then g : Bn(H)− → Bn(H)−,

defined by

g(X) = (X1C1, . . . , XkCk), X := (X1, . . . , Xk) ∈ Bn(H)−,

is a free holomorphic function on Bn(H). In particular, if each Ci is a unitary operator,
then g|Bn(H) ∈ Aut(Bn) and g is a homeomorphism of Bn(H)−.

(ii) If σ is a permutation of the set {1, . . . , k} such that nσ(i) = ni, then pσ :
Bn(H)− → Bn(H)−, defined by

pσ(X) = (Xσ(1), . . . , Xσ(k)), X := (X1, . . . , Xk) ∈ Bn(H)−,

is a homeomorphism of Bn(H)− and pσ|Bn(H) a free holomorphic automorphism of
Bn(H).
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(iii) If ϕi : [B(H)ni ]1 → [B(H)ni ]−1 , i ∈ {1, . . . , k}, is a free holomorphic function,
then G : Bn(H)→ B(H)n1 × · · · × B(H)nk defined by

G(X) := (ϕ1(X1), . . . , ϕk(Xk)), X = (X1, . . . , Xk) ∈ Bn(H),

is a free holomorphic function on the regular polyball and range G ⊆ Bn(H). In par-
ticular, if each ϕi is a free holomorphic automorphism of the unit ball [B(H)ni ]1, then
G ∈ Aut(Bn).

The results are immediate consequences of Theorem 2.4 and Corollary 2.3.
Let F : Bn(H) → B(H)n1+···+nk be a free holomorphic function with F :=

(F1, . . . , Fk) and Fi = (Fi,1, . . . , Fi,ni ), where each Fi,j is a free holomorphic function
on Bn(H) with scalar coefficients. Note that we always have F(0) ∈ Cn1+···+nk .
We define F′(0) as the linear operator on Cn1+···+nk having the matrix

∂F1,1
∂Z1,1

(0) · · · ∂F1,1
∂Z1,n1

(0) · · · ∂F1,1
∂Zk,1

(0) · · · ∂F1,1
∂Zk,nk

(0)
... · · ·

... · · ·
...

∂F1,n1
∂Z1,1

(0) · · · ∂F1,n1
∂Z1,n1

(0) · · · ∂F1,n1
∂Zk,1

(0) · · · ∂F1,n1
∂Zk,nk

(0)
... · · ·

... · · ·
...

∂Fk,1
∂Z1,1

(0) · · · ∂Fk,1
∂Z1,n1

(0) · · · ∂Fk,1
∂Zk,1

(0) · · · ∂Fk,1
∂Zk,nk

(0)
... · · ·

... · · ·
...

∂Fk,nk
∂Z1,1

(0) · · ·
∂Fk,nk
∂Z1,n1

(0) · · ·
∂Fk,nk
∂Zk,1

(0) · · ·
∂Fk,nk
∂Zk,nk

(0)


.

Now, we can prove the following noncommutative version of Cartan’s
uniqueness theorem [4], for free holomorphic functions on regular polyballs.

THEOREM 3.2. Let F : Bn(H) → Bn(H) be a free holomorphic function such
that F(0) = 0 and F′(0) = I. Then

F(X) = X, X ∈ Bn(H).

Proof. Let X = (X1,1, . . . , X1,n1 , . . . , Xk,1, . . . , Xk,nk
) ∈ Bn(H) and let

F(X) = (F1,1(X), . . . , F1,n1(X), . . . , Fk,1(X), . . . , Fk,nk
(X)),

where Fi,j are free holomorphic functions on the regular polyball Bn(H), for any
i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}. We will also use the row matrix notation X =
[Xi,j; i, j], where the indices i, j are as above. Since F(0) = 0 and F′(0) = I, we
must have

Fi,j(X) = Xi,j +
∞

∑
q=2

∑
|α1|+···+|αk |=q, αs∈F+

ns

a(ij)α1,...,αk X1,α1 · · ·Xk,αk
, a(ij)α1,...,αk ∈ C,

for any i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}. Assume that at least one of the coef-
ficients a(ij)α1,...,αk is different from zero. Let m > 2 be the smallest natural number
such that there exist i0 ∈ {1, . . . , k}, j0 ∈ {1, . . . , ni0}, and α0

s ∈ F+
ns such that
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|α0
1|+ · · ·+ |α0

k | = m and a(i0 j0)
α0

1,...,α0
k
6= 0. Then we have Fi,j(X) = Xi,j +

∞
∑

p=m
G(ij)

p (X),

where

(3.1) G(ij)
p (X) := ∑

|α1|+···+|αk |=p, αs∈F+
ns

a(ij)α1,...,αk X1,α1 · · ·Xk,αk

for any p > m, i ∈ {1, . . . , k}, and j ∈ {1, . . . , ni}. Due to Theorem 2.4, G(ij)
p ◦ F,

p > m, is a free holomorphic function and

(G(ij)
m ◦ F)(X)= ∑

|α1|+···+|αk |=m, αs∈F+
ns

a(ij)α1,...,αk F1,α1(X) · · · Fk,αk
(X)=G(ij)

m (X)+K(ij)
m+1(X),

where K(ij)
m+1 is a free holomorphic function containing only monomials of degree

greater than or equal to m + 1. Using now Theorem 2.4, we deduce that F[2] :=
F ◦ F is a free holomorphic function on the regular polyball Bn(H). Note that

F(X) = [Xi,j : i, j] +
[ ∞

∑
p=m

G(ij)
p (X) : i, j

]
and

F[2](X) = [Fi,j(X) : i, j] +
[

G(ij)
m (F(X)) +

∞

∑
p=m+1

G(ij)
p (F(X)) : i, j

]
=
[

Xi,j + G(ij)
m (X) +

∞

∑
p=m+1

G(ij)
p (X) : i, j

]
+ [G(ij)

m (X) + Ω
(ij)
m+1(X) : i, j]

= [Xi,j : i, j] + [2G(i,j)
m (X) : i, j] + [Γ

(ij)
m+1(X) : i, j],

where Ω
(ij)
m+1 and Γ

(ij)
m+1 are free holomorphic functions containing only monomi-

als of degree greater than or equal to m + 1. Continuing this process, we obtain

(3.2) F[n](X) = [Xi,j : i, j] + [nG(i,j)
m (X) : i, j] + [Λ

(ij)
m+1(X) : i, j] n ∈ N,

where Λ
(ij)
m+1 are free holomorphic functions containing only monomials of degree

greater than or equal to m + 1.
Recall that α0

s ∈ F+
ns and |α0

1| + · · · + |α0
k | = m. Consequently, if βi ∈ F+

ni

with |β1| + · · · + |βk| = p > m, then S∗1,β1
⊗ · · · ⊗ S∗k,βk

(e1
α0

1
⊗ · · · ⊗ ek

α0
k
) 6= 0 if

and only if p = m and βi = α0
i for any i ∈ {1, . . . , k}. In this case, we have

S∗
1,α0

1
⊗ · · · ⊗ S∗

k,α0
k
(e1

α0
1
⊗ · · · ⊗ ek

α0
k
) = 1. Hence, and using relation (3.2) when

X = S, we obtain

F[n](rS)∗(e1
α0

1
⊗ · · · ⊗ ek

α0
k
)

= r[S∗i,j(e
1
α0

1
⊗ · · · ⊗ ek

α0
k
) : i, j] + nrm[G(ij)

m (S)∗(e1
α0

1
⊗ · · · ⊗ ek

α0
k
) : i, j],
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where G(ij)
m are homogeneous polynomials of degree m (see relation (3.1)). Taking

into account the latter relation and the fact that

‖[G(ij)
m (S)∗(e1

α0
1
⊗ · · · ⊗ ek

α0
k
) : i, j]‖ > |a(i0 j0)

α0
1,...,α0

k
| > 0,

we deduce that

nrm|a(i0 j0)
α0

1,...,α0
k
| 6 ‖F[n](rS)∗(e1

α0
1
⊗ · · · ⊗ ek

α0
k
)‖+ ‖r[S∗i,j(e1

α0
1
⊗ · · · ⊗ ek

α0
k
) : i, j]‖

for any n ∈ N. Since F[n](rS) ∈ Bn(F2(Hn1)⊗ · · · ⊗ F2(Hnk )), taking n → ∞ in
the inequality above, we obtain a contradiction. Therefore, we must have F(X) =
X. The proof is complete.

If L := [aij]n×n is a bounded linear operator on Cn, it generates a function
ΦL : B(H)n → B(H)n by setting

ΦL(X1, . . . , Xn) := [X1, . . . , Xn]L =
[ n

∑
i=1

ai1Xi, . . . ,
n

∑
i=1

ainXi

]
where L := [aij IH]n×n. By abuse of notation, we also write ΦL(X) = XL.

A map F : Bn(H) → Bn(H) is called free biholomorphic if F is free ho-
molorphic, one-to-one and onto, and has free holomorphic inverse. The auto-
morphism group of Bn(H), denoted by Aut(Bn(H)), consists of all free biholo-
morphic functions of Bn(H). It is clear that Aut(Bn(H)) is a group with respect
to the composition of free holomorphic functions.

In what follows, we characterize the free biholomorphic functions with the
property that F(0) = 0.

THEOREM 3.3. Let F : Bn(H) → Bn(H) be a free biholomorphic function with
F(0) = 0. Then there is an invertible bounded linear operator L on Cn1+···+nk such that

F(X) = ΦL(X), X ∈ Bn(H).

Proof. Consider the set Λn := {(i, j) : i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}} with
the lexicographic order. Since F(0) = 0, we have F(X) = [Fs,t(X) : (s, t) ∈ Λn]
with

(3.3) Fs,t(X) = ∑
(i,j)∈Λn

a(i,j)
(s,t)Xi,j + Ψs,t(X),

where Ψs,t is a free holomorphic function which contains only monomials of de-
gree > 2. Therefore, we have

(3.4) Ψs,t(X) =
∞

∑
m=2

∑
|α1|+···+|αk |=m, αs∈F+

ns

c(s,t)
α1,...,αk X1,α1 · · ·Xk,αk

for some coefficients c(s,t)
α1,...,αk ∈ C. Let L := [a(i,j)

(s,t)]((i,j),(s,t))∈Λn×Λn and note that

F(X) = [Xi,j : (i, j) ∈ Λn]L + [Ψs,t(X) : (s, t) ∈ Λn].
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Since F is free biholomorphic function with F(0) = 0, its inverse G : Bn(H) →
Bn(H) is also a free holomorphic function with G(0) = 0. As above, one can see
that G must have a representation of the form

G(X) = [Xs,t : (s, t) ∈ Λn]M + [Γi,j(X) : (i, j) ∈ Λn],

where M := [b(s,t)
(i,j) ]((s,t),(i,j))∈Λn×Λn is a square matrix with complex coefficients

and Γi,j is a free holomorphic function which contains only monomials of degree
> 2. Now, one can easily see that

(G ◦ F)(X)= [Fs,t(X) : (s, t) ∈ Λn]M + [Γi,j(F(X)) : (i, j) ∈ Λn]

= [Xi,j : (i, j)∈Λn]LM+[Ψs,t(X) : (s, t)∈Λn]M+[Γi,j(F(X)) : (i, j)∈Λn]

= [Xi,j : (i, j) ∈ Λn]LM + [Qi,j(X) : (i, j) ∈ Λn],

where each Qi,j is a free holomorphic function which contains only monomials of
degree > 2. Since (G ◦ F)(X) = X and due to the uniqueness of the representa-
tion of free holomorphic functions, we deduce that Qi,j = 0 for any (i, j) ∈ Λn
and LM = In1+···+nk . In a similar manner, one can prove that ML = In1+···+nk .
Therefore, L is an invertible operator.

Since Bn(H) is a noncommutative Reinhardt domain (see Proposition 1.3),
for each θ ∈ R, the map X 7→ e−iθ F(eiθX) is a free holomorphic function on the
regular polyball Bn(H). Consequently, Theorem 2.4 implies that

H(X) := G(e−iθ F(eiθX)), X ∈ Bn(H)

is a free holomorphic function with H(0) = 0 and

H(X) = [Xi,j : (i, j) ∈ Λn]LM + [Pi,j(X) : (i, j) ∈ Λn],

where each Pi,j is a free holomorphic function which contains only monomials of
degree > 2. Since LM = In1+···+nk , we can apply Theorem 3.2 and deduce that
H(X) = X. Due to the definition of H and using the fact that F ◦ G = id, we
obtain eiθ F(X) = F(eiθX) for any X ∈ Bn(H), and θ ∈ R. Using relations (3.3),
(3.4) and due to the uniqueness of the coefficients in the representation of free
holomorphic functions, we deduce that

c(s,t)
α1,...,αk eiθ(|α1|+···+|αk |) = eiθc(s,t)

α1,...,αk , θ ∈ R,

for any αi ∈ F+
ni

with |α1|+ · · ·+ |αk| > 2, and (s, t) ∈ Λn. Hence, c(s,t)
α1,...,αk = 0

and, therefore, Ψs,t = 0. Now, relation (3.3) implies F(X) = XL, and the proof is
complete.

THEOREM 3.4. Let n = (n1, . . . , nk) ∈ Nk and let F : Bn(H)→ Bn(H) be a free
biholomorphic function with F(0) = 0. Then there are unitary operators Ui ∈ B(Cni ),
i ∈ {1, . . . , k}, and a permutation σ ∈ Sk with the property that nσ−1(i) = ni for
i ∈ {1, . . . , k} such that

(pσ−1 ◦ F)(X) = [X1U1, . . . , XkUk], X = (X1, . . . , Xk) ∈ Bn(H).
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Moreover, the converse is also true.

Proof. According to Theorem 3.3, there is an invertible bounded linear op-
erator L on Cn1+···+nk such that

F(X) = [X1, . . . , Xk]L, X ∈ Bn(H).

Since F ∈ Aut(Bn), its scalar representation f (λ1, . . . , λk) := [λ1, . . . , λk]L is an
automorphism of the scalar polyball (Cn1)1 × · · · × (Cnk )1. Due to the classical
result (see [10], [27], [29]), there is a permutation σ ∈ Sk such that nσ−1(i) = ni for
i ∈ {1, . . . , k}, such that

(pσ−1 ◦ f )(λ1, . . . , λk) = (g1(λ1), . . . , gk(λk))

for (λ1, . . . , λk) ∈ (Cn1)1 × · · · × (Cnk )1,, where gi ∈ Aut((Cni )1) with gi(0) = 0
for any i ∈ {1, . . . , k}. According to [28], each gi ∈ Aut((Cni )1) with gi(0) = 0 has
the form gi(λi) = λiUi, where Ui ∈ B(Cni ) is a unitary operator. Consequently,
we obtain

(pσ−1 ◦ f )(λ1, . . . , λk) = [λ1, . . . , λk]U, (λ1, . . . , λk) ∈ (Cn1)1 × · · · × (Cnk )1,

where the unitary operator U ∈ B(Cn1+···+nk ) is the direct sum U = U1 ⊕ · · · ⊕
Uk. Hence, we deduce that (pσ−1 ◦ F)(λ1, . . . , λk) = [λ1, . . . , λk]U, which, due to
the linearity of each component of F, implies

(pσ−1 ◦ F)(X1, . . . , Xk) = [X1, . . . , Xk]U

for any (X1, . . . , Xk) ∈ Bn(H).
To prove the converse, let Ui ∈ B(Cni ), i ∈ {1, . . . , k}, be unitary opera-

tors. Note that the map gi defined by gi(Xi) := XiUi, Xi ∈ [B(H)ni ]1, is a free
holomorphic automorphism of the noncommutative ball [B(H)ni ]1. Hence, and
using Proposition 3.1, we deduce that g := (g1, . . . , gk) and pσ are holomorphic
automorphisms of the regular polyball Bn. Consequently, F := pσ ◦ g ∈ Aut(Bn)
with F(0) = 0. The proof is complete.

Under the conditions of Theorem 3.3, we consider the unitary operator U ∈
B(Cn1+···+nk ) defined as the direct sum U = U1⊕ · · · ⊕Uk and let ΦU : Bn(H)→
Bn(H) be the free biholomorphic function defined by ΦU(X) := XU. Then we
have F = pσ ◦ΦU.

THEOREM 3.5. Let F : Bn(H) → Bn(H) be a free holomorphic function such
that F′(0) is a unitary operator on Cn1+···+nk . Then F is a free holomorphic automor-
phism of Bn and

F(X) = X[F′(0)]τ , X ∈ Bn(H),
where τ denotes the transpose.

Proof. Assume that F has the representation

F(X) := A(0) +
∞

∑
q=1

∑
|α1|+···+|αk |=q, αi∈F+

ni

A(α) ⊗ X(α), X ∈ Bn(H),
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where A(α) ∈ Pn(C) is written as a row operator with entries in C. Note that

F′(0) = [Aτ
(α) : |α1|+ · · ·+ |αk| = 1, αi ∈ F+

ni
].

Taking into account that F′(0) is a co-isometry, we have ∑
|α1|+···+|αk |=1, αi∈F+

ni

A∗(α)A(α)

= I. Since F is a free holomorphic function with ‖F‖∞ = 1, we can apply Propo-
sition 2.5. Consequently, we have

∑
|α1|+···+|αk |=1, αi∈F+

ni

A∗(α)A(α) 6 I − F(0)∗F(0),

which implies F(0) = 0. Therefore, since [F′(0)]τ =

 A(α)
...

|α1|+ · · ·+ |αk| = 1

, we

have

(3.5) F(X) = X[F′(0)]τ +
∞

∑
q=2

∑
|α1|+···+|αk |=q, αi∈F+

ni

A(α) ⊗ X(α).

On the other hand, since F′(0) is an isometry, we have F′(0)τ [F′(0)τ ]∗ = I. Mul-
tiplying relation (3.5) to the right by ([F′(0)]τ)∗, we obtain

H(X) := F(X)([F′(0)]τ)∗ = X + [Gi,j(X) : (i, j) ∈ Λn],

where Λn := {(i, j) : i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}} and each Gi,j is a free holo-
morphic function containing only monomials of degree > 2. Since H is a free
holomorphic function on Bn(H) with H(0) = 0 and H′(0) = In1+···+nk , Theo-
rem 3.2 implies H(X) = X. Consequently, we have F(X)([F′(0)]τ)∗ = X. Mul-
tiplying this relation to the right by [F′(0)]τ and taking into account that F′(0)
is a co-isometry, we deduce that F(X) = X[F′(0)]τ for any X ∈ Bn(H). This
completes the proof.

In [19], the theory of noncommutative characteristic functions for row con-
tractions (see [14]) was used to find all the involutive free holomorphic automor-
phisms of [B(H)n]1. They turned out to be of the form

Ψλ(Y1, . . . , Yn) = −Θλ(Y1, . . . , Yn) := λ−∆λ

(
IK −

n

∑
i=1

λiYi

)−1
[Y1 · · ·Yn]∆λ∗ ,

for some λ = (λ1, . . . , λn) ∈ Bn, where Θλ is the characteristic function of the row
contraction λ, and ∆λ, ∆λ∗ are the defect operators defined by ∆λ = (1−‖λ‖2

2)
1/2

and ∆λ∗ = (ICn − λ∗λ)1/2. Moreover, we determined the group Aut([B(H)n]1)
of all the free holomorphic automorphisms of the noncommutative ball [B(H)n]1
and showed that if Ψ ∈ Aut([B(H)n]1) and λ := Ψ−1(0), then there is a unitary
operator U on Cn such that

Ψ = ΨU ◦Ψλ,
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where ΨU(Y) := YU for any Y ∈ [B(H)n]1. Let λ := (λ1, . . . , λn) ∈ Bn\{0} and
let γ := 1

‖λ‖2
. Then Ψλ := −Θλ is a free holomorphic function on [B(H)n]γ which

has the following properties:

(i) Ψλ(0) = λ and Ψλ(λ) = 0;
(ii) the identity

IH −Ψλ(X)Ψλ(X)∗ = ∆λ(I − Xλ∗)−1(I − XX∗)(I − λX∗)−1∆λ

holds for all X ∈ [B(H)n]γ;
(iii) Ψλ is an involution, i.e., Ψλ(Ψλ(X)) = X for any X ∈ [B(H)n]γ;
(iv) Ψλ is a free holomorphic automorphism of the noncommutative unit ball

[B(H)n]1;
(v) Ψλ is a homeomorphism of [B(H)n]−1 onto [B(H)n]−1 .

Now, we can prove a structure theorem for holomorphic automorphisms of
regular polyballs.

THEOREM 3.6. Let n = (n1, . . . , nk) ∈ Nk and let Ψ ∈ Aut(Bn(H)). If λ =
(λ1, . . . , λk) = Ψ−1(0), then there are unique unitary operators Ui ∈ B(Cni ), i ∈
{1, . . . , k}, and a unique permutation σ ∈ Sk with nσ(i) = ni such that

Ψ = pσ ◦ΦU ◦ Ψλ,

where U := U1 ⊕ · · · ⊕Uk and Ψλ := (Ψλ1 , . . . , Ψλk ).

Proof. Let Ψ ∈ Aut(Bn(H)) and let λ = (λ1, . . . , λk) = Ψ−1(0). For each
i ∈ {1, . . . , k}, λi ∈ (Cni )1, and Ψλi is a free holomorphic automorphism of the
noncommutative unit ball [B(H)ni ]1. Moreover, Ψλi (Ψλi (X)) = X for any X ∈
[B(H)ni ]1, Ψλi (0) = λi. Consequently, using Proposition 3.1 and Theorem 2.4, we
deduce that Ψλ := (Ψλ1 , . . . , Ψλk ) is a holomorphic automorphism of the regular
polyball Bn with the property that

Ψλ(Ψλ(X)) = X, X ∈ Bn(H),

and Ψλ(0) = λ. Hence, Ψ ◦ Ψλ ∈ Aut(Bn(H)) and (Ψ ◦ Ψλ)(0) = 0. Apply-
ing Theorem 3.3, there are unitary operators Ui ∈ B(Cni ), i ∈ {1, . . . , k}, and a
permutation σ ∈ Sk with the property that nσ−1(i) = ni for i ∈ {1, . . . , k} such
that

(pσ−1 ◦ (Ψ ◦ Ψλ))(X) = [X1U1, . . . , XkUk] X = (X1, . . . , Xk) ∈ Bn(H).

Hence, taking into account that Ψλ(Ψλ(X)) = X, we obtain Ψ = pσ ◦ΦU ◦ Ψλ,
which completes the proof.

We remark that, unlike the classical case, the free holomorphic automor-
phism group is not transitive because 0 must be mapped to another scalar point.

COROLLARY 3.7. Let F : Bn(H) → Bm(H) be a bounded free holomorphic
function and a ∈ Bn(C). Then

‖ΨF(a)(F(X))‖ 6 mBn(Ψa(X)) 6 ‖Ψa(X)‖
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for any X ∈ Bn(H), where mBn is the Minkovski functional.

Proof. Consider the automorphisms Ψa ∈ Aut(Bn) and ΨF(a) ∈ Aut(Bm).
Due to Theorem 2.4 and using the fact that Ψa(0) = a and ΨF(a)(F(a)) = 0, we
deduce that G := ΨF(a) ◦ F ◦ Ψa is a free holomorphic function from Bn(H) to
Bm(H), and G(0) = 0. Applying Theorem 2.7 to G, we obtain

‖ΨF(a) ◦ F ◦Ψa(Y)‖ 6 mBm(Y) 6 ‖Y‖, Y ∈ Bm(H).

Setting Y = Ψa(Y) and using the fact that Ψa ◦Ψa = id, we complete the proof.

In what follows, we present an analogue of Poincaré result that the open
unit ball of Cn is not biholomorphic equivalent to the polydisk Dn, for noncom-
mutative regular polyballs.

We denote by Bih(Bn(H), Bm(H)) the set of all biholomorphic functions
from Bn(H) to Bm(H).

THEOREM 3.8. Let n = (n1, . . . , nk) ∈ Nk and m = (m1, . . . , mq) ∈ Nq. Then

Bih(Bn(H), Bm(H)) 6= ∅

if and only if k = q and there is a permutation σ ∈ Sk such that mσ(i) = ni for any
i ∈ {1, . . . , k}. Moreover, any free biholomorphic function F : Bn(H) → Bm(H)) is
up to a permutation of (m1, . . . , mk) an automorphism of the noncommutative regular
polyball Bn.

Proof. Let F : Bn(H)→ Bm(H)) be a free biholomorphic function. Then its
scalar representation

f : (Cn1)1 × · · · × (Cnk )1 → (Cm1)1 × · · · × (Cmq)1,

defined by f (z) := F(z), z = {zi,j} ∈ Bn(C) = (Cn1)1 × · · · × (Cnk )1, is a scalar
biholomorphic function. Using Browder’s invariance of domain theorem, we de-
duce that n1 + · · ·+ nk = m1 + · · ·+mq. On the other hand, according to the clas-
sical result of Ligocka and Tsyganov (which is a generalization of Rudin’s charac-
terization of the holomorphic automorphisms of the polydisc [27]), we must have
k = q and there is a permutation σ ∈ Sk such that mσ(i) = ni for any i ∈ {1, . . . , k}.
Using Proposition 3.1 and Theorem 2.4, we deduce that pσ ◦ F ∈ Aut(Bn), which
completes the proof.

Let λ := (λ1, . . . , λn) ∈ Bn, λ 6= 0, and let Θ̃λ be the boundary function of
the characteristic function with respect to the right creation operators R1, . . . , Rn

on the Fock space F2(Hn), i.e., Θ̃λ := SOT- lim
r→1

Θλ(rR1, . . . , rRn). We recall from

[19], the following properties:

(i) the map Θλ is a free holomorphic function on the open ball [B(H)n]γ,
where γ := 1

‖λ‖2
;

(ii) Θ̃λ = Θλ(R1, . . . , Rn) = −λ + ∆λ

(
IF2(Hn)

−
n
∑

i=1
λiRi

)−1
[R1, . . . , Rn]∆λ∗ ;
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(iii) Θ̃λ is a pure row isometry with entries in the noncommutative disc algebra
generated by R1, . . . , Rn and the identity;

(iv) rank (I − Θ̃λΘ̃∗λ) = 1 and Θ̃λ is unitarily equivalent to [R1, . . . , Rn].

We define the right creation operators Ri,j acting on the Fock space F2(Hni )

and the ampliations Ri,j acting on the tensor product F2(Hn1)⊗ · · · ⊗ F2(Hnk ).

THEOREM 3.9. Let Ψ = (Ψ1, . . . , Ψk) ∈ Aut(Bn(H)), where n = (n1, . . . , nk)

is in Nk, and let Ψ̂ = (Ψ̂1, . . . , Ψ̂k) be the boundary function with respect to the universal
model S = {Si,j}. The following statements hold:

(i) Ψ is a free holomorphic function on the regular polyball γBn for some γ > 1.
(ii) The boundary function Ψ̂ with respect to S is a pure element in the polyball

Bn(
⊗k

i=1 F2(Hni ))
− and Ψ̂ := lim

r→1
Ψ(rS) = Ψ(S). Each Ψ̂i = (Ψ̂i,1, . . . , Ψ̂i,ni ) is

an isometry with entries in the noncommutative disk algebra generated by Si,1, . . . , Si,ni
and the identity.

(iii) Ψ is a homeomorphism of Bn(H)− onto Bn(H)−.
(iv) If Ψ ∈ Aut(Bn(H)) and λ = (λ1, . . . , λk) = Ψ−1(0), then the identity

∆Ψ(X)(I) = ∆λ

[ k

∏
i=1

(
IH −

ni

∑
j=1

λi,jXi,j

)−1]
∆X(I)

[ k

∏
i=1

(
IH −

ni

∑
j=1

λi,jX∗i,j
)−1]

holds for any X = {Xi,j} ∈ Bn(H)−, where ∆λ =
k

∏
i=1

(1− ‖λi‖2
2).

(v) The defect of the boundary function of Ψ with respect to the universal model R =
{Ri,j} satisfies the relation

∆Ψ(R)(I) = KΨ−1(0)K
∗
Ψ−1(0),

where KΨ−1(0) is the noncommutative Berezin kernel at Ψ−1(0) ∈ Bn(C).
(vi) rank ∆

Ψ̂
(I) = 1 and Ψ̂ is unitarily equivalent to the universal model S.

Proof. Due to Theorem 3.6, if Ψ ∈ Aut(Bn(H)) and λ = (λ1, . . . , λk) =
Ψ−1(0), then there are unique unitary operators Ui ∈ B(Cni ), i ∈ {1, . . . , k}, and
a unique permutation σ ∈ Sk with nσ(i) = ni such that

Ψ = pσ ◦ΦU ◦ Ψλ,

where U := U1 ⊕ · · · ⊕Uk and Ψλ := (Ψλ1 , . . . , Ψλk ). Since Ψλi := −Θλi is a free
holomorphic function on the open ball [B(H)ni ]γi , where γi := 1

‖λi‖2
if λi 6= 0 and

γi = ∞, otherwise, Proposition 3.1 part (iii) implies that Ψλ is a free holomorphic
function on the regular polyball γBn for γ := min{γi : i ∈ {1, . . . , k}}. Using
Theorem 2.4 and Proposition 3.1, one can complete the proof of item (i).

The first part of item (ii) follows from (i) and the continuity of the Ψ on
γBn. On the other hand, due to the remarks preceding the theorem, we know
that Ψ̂λi := lim

r→1
Ψλi (rSi) = Ψλi (Si) is a pure row isometry with entries in the

noncommutative disc algebra generated by Si,1, . . . , Si,ni and the identity, on the
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full Fock space F2(Hni ). If Ui ∈ B(Cni ) are unitary operators, it is clear that the
components of the boundary function

Φ̂U ◦ Ψλ = (Ψλ1(S)U1, . . . , Ψλk (S)Uk)

are isometries. On the other hand, set (ξi,1, . . . , ξi,ni ) := SiUi and note that each
ξi,j is a linear combination of Si,1, . . . , Si,ni . Note that ∑

α∈F+
ni ,|α|=p

ξi,αξ∗i,α(e
i
β) = 0 for

any β ∈ F+
ni

and p > |β|. Since ∑
α∈F+

ni ,|α|=p
ξi,αξ∗i,α 6 I, we deduce that

lim
p→∞ ∑

α∈F+
ni ,|α|=p

ξi,αξ∗i,αx = 0, x ∈ F2(Hni ),

which proves that Φ̂U ◦ Ψλ is a pure element in Bn(
⊗k

i=1 F2(Hni ))
−. For any

permutation σ ∈ Sk with nσ(i) = ni, the boundary function p̂σ = (Sσ(1), . . . , Sσ(k))
has the entries pure row isometries. Now, using Lemma 2.1, we deduce that the
boundary function of the composition Ψ = pσ ◦ ΦU ◦ Ψλ satisfies the required
properties of item (ii).

According to the remarks preceding Theorem 3.6, each Ψλ is a homeomor-
phism of [B(H)ni ]−1 and Ψλi (Ψλi (Xi)) = Xi for any Xi ∈ [B(H)ni ]−1 . This implies
that

Ψλ(Ψλ(X)) = X, X ∈ Bn(H)−,

which proves that Ψλ is a homeomorphism of Bn(H)−. According to Proposi-
tion 3.1, Φλ and pσ are also homeomorphisms of Bn(H)−. Since, due to Theo-
rem 3.6, each Ψ ∈ Aut(Bn(H)) has the representation Ψ = pσ ◦ ΦU ◦ Ψλ, we
conclude that Ψ is a homeomorphism of Bn(H)−, which proves item (iii).

For each i ∈ {1, . . . , k}, let Si = (Si,1, . . . , Si,ni ) be the ni-tuple of left creation
operators on the full Fock space F2(Hni ). According to the remarks preceding
Theorem 3.6, we have

(id−Φψλi
(Si)

)(I) = (1−‖λi‖2
1)
(

I−
ni

∑
j=1

λi,jSi,j

)−1
(id−ΦSi )(I)

(
I−

ni

∑
j=1

λi,jS∗i,j
)−1

.

Taking the tensor product of these relations when i ∈ {1, . . . , k}, and using the
definition of the universal model S, we obtain

(id−Φψλ1
(Si)

) ◦ · · · ◦ (id−Φψλk
(Sk)

)(I⊗k
i=1F2(Hni )

)

=
k

∏
i=1

(1− ‖λi‖2
1)

k

∏
i=1

(
I⊗k

i=1F2(Hni )
−

ni

∑
j=1

λi,jSi,j

)−1

×(id−ΦS1) ◦ · · · ◦ (id−ΦSk )(I⊗k
i=1F2(Hni )

)
k

∏
i=1

(
I⊗k

i=1F2(Hni )
−

ni

∑
j=1

λi,jS∗i,j
)−1

.

Note that both sides of the relation above, as well as the factors involved, are in
the noncommutative polyball algebra An. Applying the Berezin transform at any
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element X = (X1, . . . , Xk) ∈ Bn(H)−, we obtain

(3.6) ∆Ψλ(X)(I) = ∆λ

[ k

∏
i=1

(
IH −

ni

∑
j=1

λi,jXi,j

)−1]
∆X(I)

[ k

∏
i=1

(
IH −

ni

∑
j=1

λi,jX∗i,j
)−1]

,

where ∆λ =
k

∏
i=1

(1− ‖λi‖2
2). Since each Ψ ∈ Aut(Bn(H)) has the representation

Ψ = pσ ◦ΦU ◦ Ψλ, one can easily see that ∆Ψ(X)(I) = ∆Ψλ(X)(I), which shows
that item (iv) holds.

Now, we prove item (v). If λ = (λ1, . . . , λk) = Ψ−1(0), the Berezin kernel

Kλ : C→
k⊗

i=1
F2(Hni ) is defined by

Kλ(1) = ∑
(α)∈F+

n1×···×F
+
nk

∆1/2
λ λ(α) ⊗ e(α).

It is easy to see that K∗λ(e(α)) = ∆1/2
λ λ(α) and

KλK∗λ = Kλ(∆
1/2
λ λ(α)) = ∆1/2

λ λ(α) ∑
(β)∈F+

n1×···×F
+
nk

λ(β) ⊗ e(β).

On the other hand, relation (3.6) written for the universal model R = {Ri,j} im-
plies

∆Ψ(R)(I)(e(α)) = ∆λ

[ k

∏
i=1

(
IH −

ni

∑
j=1

λi,jRi,j

)−1]
PC
[ k

∏
i=1

(
IH −

ni

∑
j=1

λi,jR∗i,j
)−1]

(e(α))

= ∆λ

[ k

∏
i=1

(
IH −

ni

∑
j=1

λi,jRi,j

)−1]
(λ(α))

= ∆1/2
λ λ(α) ∑

(β)∈F+
n1×···×F

+
nk

λ(β) ⊗ e(β).

Therefore, item (v) follows. The fact that rank ∆
Ψ̂
(I) = 1 is a simple conse-

quence of item (iv) or (v). Since the boundary function Ψ̂ = (Ψ̂1, . . . , Ψ̂k), with
respect to the universal model S = {Si,j}, is a pure element in the polyball
Bn(

⊗k
i=1 F2(Hni ))

− and each Ψ̂i = (Ψ̂i,1, . . . , Ψ̂i,ni ) is an isometry with entries in
the noncommutative disk algebra generated by Si,1, . . . , Si,ni and the identity, we
deduce that Ψ̂ = (Ψ̂i,1, . . . , Ψ̂i,ni ) is a pure doubly commuting tuple of isometries
with rank ∆

Ψ̂
(I) = 1. Now, using the Wold type decomposition for nondegener-

ate ∗-representations of the C∗-algebra C∗(S) from [24] (see Corollary 7.3 and its
consequences), we conclude that Ψ̂ is unitarily equivalent to the universal model
S. The proof is complete.
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THEOREM 3.10. The map Λ : Aut(Bn) → Aut((Cn1)1 × · · · × (Cnk )1) de-
fined by

Λ(Ψ)(z) := (Bz[Ψ̂1], . . . , Bz[Ψ̂k]) z ∈ (Cn1)1 × · · · × (Cnk )1,

is a group isomorphism, where Ψ̂ is the boundary function of Ψ = (Ψ1, . . . , Ψk) ∈
Aut(Bn) with respect to the universal model S and Bz is the noncommutative Berezin
transform at z.

Proof. Fix Ψ = (Ψ1, . . . , Ψk) ∈ Aut(Bn) and λ = {λi,j} = Ψ−1(0) ∈ Bn(C) =
(Cn1)1 × · · · × (Cnk )1. Then, due to Theorem 3.6, there are unique unitary opera-
tors Ui ∈ B(Cni ), i ∈ {1, . . . , k}, and a unique permutation σ ∈ Sk with nσ(i) = ni
such that

(3.7) Ψ = pσ ◦ΦU ◦ Ψλ,

where U := U1⊕ · · · ⊕Uk. According to Theorem 3.9, Each Ψ̂i = (Ψ̂i,1, . . . , Ψ̂i,ni ) is
a pure row isometry with entries in the noncommutative disk algebra generated
by Si,1, . . . , Si,ni and the identity. Note that if z = {zi,j} ∈ Bn(C) = (Cn1)1 ×
· · · × (Cnk )1, then the Berezin kernel Kz : C → F2(Hn1) ⊗ · · · ⊗ F2(Hnk ) is an
isometry and zi,j = Kz

∗Si,jKz for i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}. Hence, using
the continuity of the noncommutative Berezin transform in the operator norm
topology and relation (3.7), we deduce that

[Λ(Ψ)](z) : = (Bz[Ψ̂1], . . . , Bz[Ψ̂k]) = (pσ ◦ΦU ◦ Ψλ)(z)

for any z ∈ Bn(C). Due to [10], [27], [29], each automorphism of the scalar
polyball (Cn1)1 × · · · × (Cnk )1 has the form z 7→ (pσ ◦ΦU ◦ Ψλ)(z). Therefore,
Λ(Ψ) ∈ Aut(Bn(C)), which proves the surjectivity of Λ. Moreover, we have
[Λ(Ψ)](z) = Ψ(z), z ∈ Bn(C), which clearly implies that Λ is a homomorphism.
To prove injectivity of Λ, assume that Λ(Ψ) = id, where Ψ = pσ ◦ΦU ◦Ψλ. Using
the calculations above, we have pσ ◦ΦU ◦ Ψλ(z) = z for any z ∈ Bn(C). Hence,
one can easily deduce that λ = 0, U = −I, and σ = id, which implies Ψ = id.
Therefore, Λ is a group isomorphism. This completes the proof.

4. AUTOMORPHISMS OF CUNTZ–TOEPLITZ ALGEBRAS

In this section, we determine the group of automorphisms of the Cuntz–
Toeplitz C∗-algebra C∗(S) which leave invariant the noncommutative polyball
algebra An, and the group of unitarily implemented automorphisms of the non-
commutative polyball algebra An (respectively Hardy algebra F∞

n ). As a con-
sequence, we obtain a concrete description for the group of automorphisms of
the tensor product Tn1 ⊗ · · · ⊗ Tnk of Cuntz–Toeplitz algebras which leave invari-
ant the tensor product An1 ⊗min · · · ⊗min Ank of noncommutative disc algebras,
which extends Voiculescu’s result when k = 1.
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PROPOSITION 4.1. A free holomorphic function F : Bn(H) → Bn(H)− has a
continuous extension (also denoted by F) to the closed polyball Bn(H)− if and only if
the boundary function F̂ has the entries in the noncommutative polyball algebra An and
F̂ ∈ Bn(

⊗k
i=1 F2(Hni ))

−. Moreover, the noncommutative Berezin transform has the
property that

BF(X)[g] = BX[BF̂[g]]

for any X ∈ Bn(H)− and g ∈ C∗(S). If, in addition, F̂ is a pure element of the polyball
Bn(

⊗k
i=1 F2(Hni ))

−, then the same relation holds for any pure element X ∈ Bn(H)−

and g ∈ F∞
n .

Proof. The first part of the proposition follows from [24] (Corollary 4.3). To
prove the second part, let F = (F1, . . . , Fk), with Fi = (Fi,1, . . . , Fi,ni ). Note that
the boundary function F̂ = (F̂1, . . . , F̂k), with F̂i = (F̂i,1, . . . , F̂i,ni ), is an element of
the polyball Bn(

⊗k
i=1 F2(Hni ))

− and the entries F̂i,j := lim
r→1

Fi,j(rS) are in the non-

commutative polyball algebra An. Let X ∈ Bn(H)− and set A := (A1, . . . , Ak),
with Ai = (Ai,1, . . . , Ai,ni ), where

Ai,j := Fi,j(X) = BX[F̂i,j] := lim
r→1

BrX[F̂i,j].

We recall that the noncommutative Berezin transform BX : C∗(S) → B(H),
which is defined by BX( f ) := lim

r→1
BrX[g], is a completely contractive linear map

such that
BX[ f g∗] = BX[ f ]BX[g]∗, f , g ∈ An,

and the restriction BX|An is a unital contractive homomorphism from An to
B(H). Now, note that A(α) = F(α)(X) = BX[F̂(α)] and

BX[BF̂[S(α)S
∗
(β)] = BX[F̂(α) F̂

∗
(β)] = BX[F̂(α)]BX[F̂∗(β)]

= F(α)(X)F(β)(X)
∗ = A(α)A∗(β) = BF(X)[S(α)S

∗
(β)]

for any (α), (β) ∈ F+
n1
× · · · ×F+

nk
. Since the linear span of the monomials S(α)S∗(β)

is dense in the C∗-algebra C∗(S) and the Berezin transform is continuous in the
operator norm topology, we deduce that BF̂[g] is in C∗(S) for any g ∈ C∗(S), and
BF(X)[g] = BX[BF̂[g]] for any X ∈ Bn(H)− and g ∈ C∗(S).

Now, we assume, in addition, that F̂ is a pure element of the regular poly-
ball Bn(

⊗k
i=1 F2(Hni ))

−. Let f ∈ F∞
n have the Fourier representation ∑

(α)
a(α)S(α)

and set

fr(S) =
∞

∑
q=0

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |=q

rqa(α)S(α), r ∈ [0, 1),

where the convergence is in the operator norm topology. Since F(X) is pure for
any pure element X ∈ Bn(H)−, we can use the F∞

n -functional calculus for pure
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elements in the regular polyball to deduce that

BF(X)[ f ] = SOT- lim
r→1

BrF(X)[ f ]

= SOT- lim
r→1

∞

∑
q=0

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |=q

rqa(α)F(α)(X).

On the other hand, since the boundary function F̂ = (F̂1, . . . , F̂n) is a pure element
in the polyball, we have

BF̂[ f ] = SOT- lim
r→1

BF̂[ fr] = SOT- lim
r→1

∞

∑
q=0

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |=q

rqa(α) F̂(α).

Now, since X is pure, the Berezin transform BX : F∞
n → B(H) is SOT-continuous

on bounded sets, and it coincides with the F∞
n -functional calculus. Hence, using

the calculations above and the fact that BX[F̂(α)] = F(α)(X) for any (α) ∈ F+
n1
×

· · · × F+
nk

, we deduce that

BX[BF̂[ f ]] = SOT- lim
r→1

BX

[ ∞

∑
q=0

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |=q

rqa(α) F̂(α)
]

= SOT- lim
r→1

∞

∑
q=0

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |=q

rqa(α) F̂(α) = BF(X)[ f ]

for any f ∈ F∞
n . This completes the proof.

A consequence of Proposition 4.1 is the following.

COROLLARY 4.2. If Ψ, Φ ∈ Aut(Bn), then B
Ψ̂◦Φ[g] = (BΦ̂BΨ̂)[g] for any g

in the Cuntz–Toeplitz algebra C∗(S), or any g ∈ F∞
n .

Proof. Note that Ψ̂ ◦Φ = (Ψ ◦ Φ)(S) = Ψ(Φ̂). Taking X = Φ̂ in Proposi-
tion 4.1, the result follows.

THEOREM 4.3. Let T = {Ti,j} ∈ Bn(H)− and let S = {Si,j} be the universal
model of the regular polyball. Then T is unitarily equivalent to S ⊗ IK, where K is
a Hilbert space, if and only if dimDT = dimK, where DT = ∆T(I)(H), and the
noncommutative Berezin kernel KT is a unitary operator. Moreover, in this case,

Ti,j = K∗T(Si,j ⊗ IDT)KT = K∗T(I ⊗W)(Si,j ⊗ IK)(I ⊗W∗)KT

for any i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}, where W : K → DT is a unitary operator.

Proof. First, we assume that T is unitarily equivalent to S ⊗ IK := {Si,j ⊗
IK}, i.e., there is a unitary operator U : (

⊗k
i=1 F2(Hni ))⊗K → H such that

Ti,j = U(Si,j ⊗ IK)U∗, i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}.
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We show that the noncommutative Berezin kernel KT satisfies the relation

KT = (I ⊗W)U∗,

where W : K → DT is a unitary operator. Indeed, note that we have ∆T(I) =
U∆S⊗IK (I)U∗ = U(PC⊗K)U∗ and ∆T(I)1/2 = U∆S⊗IK (I)1/2U∗. Consequently,
we have dim ∆T(I)(H) = dimK and U(1⊗K) = ∆T(I)(H). Using the definition
of the noncommutative Berezin kernel, we deduce that

KTh : = ∑
βi∈F+

ni ,i=1,...,k

e1
β1
⊗ · · · ⊗ ek

βk
⊗ ∆T(I)1/2T∗1,β1

· · · T∗k,βk
h

= ∑
βi∈F+

ni ,i=1,...,k

e1
β1
⊗ · · · ⊗ ek

βk
⊗U∆S⊗IK (I)1/2U∗U(S∗1,β1

· · · S∗k,βk
⊗ IK)U∗h

= ∑
βi∈F+

ni ,i=1,...,k

e1
β1
⊗ · · · ⊗ ek

βk
⊗U(PC⊗K)(S∗1,β1

· · · S∗k,βk
⊗ IK)U∗h.

Consider the unitary operator W : K → DT defined by Wy := U(1⊗ y), y ∈ K.
For any vector g = ∑

βi∈F+
ni ,i=1,...,k

e1
β1
⊗ · · · ⊗ ek

βk
⊗ y(β) in (

⊗k
i=1 F2(Hni ))⊗K, the

computations above imply

KTUg = ∑
βi∈F+

ni ,i=1,...,k

e1
β1
⊗ · · · ⊗ ek

βk
⊗U(PC⊗K)(S∗1,β1

· · · S∗k,βk
⊗ IK)g

= ∑
βi∈F+

ni ,i=1,...,k

e1
β1
⊗ · · · ⊗ ek

βk
⊗Wy(β) = (I ⊗W)g.

Hence, KT = (I ⊗W)U∗ is a unitary operator. On the other hand, we have

Si,j ⊗ IDT = (I ⊗W)(Si,j ⊗ IK)(I ⊗W∗)

for any i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}. Due to the properties of the noncom-
mutative Berezin kernel, we have KTT∗i,j = (S∗i,j ⊗ IDT)KT. Since KT is a unitary
operator, we deduce that

Ti,j = K∗T(I ⊗W)(Si,j ⊗ IK)(I ⊗W∗)KT.

Conversely, if the noncommutative Berezin kernel KT is a unitary operator,
then, due to the fact that T is a pure element in Bn(H)− and Ti,j = K∗T(Si,j ⊗
IDT)KT for any i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}, we complete the proof.

COROLLARY 4.4. Let T = {Ti,j} ∈ Bn(H)− and let S = {Si,j} be the universal
model of the regular polyball. Then T is unitarily equivalent to S if and only if dimDT =
1 and the noncommutative Berezin kernel KT is a unitary operator. Moreover, in this
case, the defect space DT = Cv0 for some vector v0 ∈ H with ‖v0‖ = 1, and

Ti,j = K∗T(Si,j ⊗ IDT)KT = K∗TW̃Si,jW̃∗KT, i ∈ {1, . . . , k}, j ∈ {1, . . . , ni},
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where W̃ :
k⊗

i=1
F2(Hni )→ (

⊗k
i=1 F2(Hni ))⊗Cv0 is the unitary operator defined by

W̃g := g⊗ v0, g ∈
k⊗

i=1

F2(Hni ).

We denote by AutAn(C
∗(S)) the group of automorphisms of the Cuntz–

Toeplitz algebra C∗(S) such that Γ(An) = An.

THEOREM 4.5. Any automorphism Γ of the Cuntz–Toeplitz C∗-algebra C∗(S)
which leaves invariant the noncommutative polyball algebra An, i.e. Γ(An) = An, has
the form

Γ(g) := BΨ̂ [g] = KΨ̂ [g⊗ ID
Ψ̂
]K∗

Ψ̂
, g ∈ C∗(S),

where Ψ ∈ Aut(Bn) and BΨ̂ is the noncommutative Berezin transform at the boundary
function Ψ̂. In this case, the noncommutative Berezin kernel KΨ̂ is a unitary operator
and Γ is a unitary implemented automorphism of C∗(S). Moreover, we have

AutAn(C
∗(S)) ' Aut(Bn).

Proof. Let Γ ∈ AutAn(C
∗(S)), i.e., Ψ is an automorphism of the Cuntz–

Toeplitz algebra C∗(S) such that Γ(An) = An. For each i ∈ {1, . . . , k} and j ∈
{1, . . . , ni}, set ϕ̃i,j := Γ(Si,j). If ϕ̃i := (ϕ̃i,1, . . . , ϕ̃i,ni ), then, using the fact that Γ
is a morphism of C∗-algebras, we have

(id−Φϕ̃i
)(I) = Γ

(
I −

ni

∑
j=1

Si,jS∗i,j
)
> 0

and, similarly,

(id−Φϕ̃1
)p1 ◦ · · · ◦ (id−Φϕ̃k

)pk = Γ[(id−ΦSi )
p1 ◦ · · · ◦ (id−ΦSi )

pk (I)] > 0

for any pi ∈ {0, 1}. On the other hand, if s, t ∈ {1, . . . , k}, s 6= t, then

ϕ̃s,j ϕ̃t,p = Γ(Ss,jSt,p) = Γ(St,pSs,j) = ϕ̃t,p ϕ̃s,j

for any j ∈ {1, . . . , ns} and p ∈ {1, . . . , nt}. Consequently, the k-tuple ϕ̃ :=
(ϕ̃1, . . . , ϕ̃k) is in the closed regular polyball Bn(

⊗k
i=1 F2(Hni ))

−. Now, using the
noncommutative Berezin transform, we define ϕi,j(X) := BX[ϕ̃i,j] for X ∈ Bn(H),
and remark that, due to Proposition 4.1, the mapping ϕ : Bn(H) → Bn(H)− de-
fined by ϕ(X) := (ϕ1(X), . . . , ϕk(X)) and ϕi(X) := (ϕi,1(X), . . . , ϕi,ni (X)) is a free
holomorphic function on Bn(H) which has a continuous extension to the closed
polyball Bn(H)−. This extension is also denoted by ϕ.

Now, note that Γ−1(An) = An. For each i ∈ {1, . . . , k} and j ∈ {1, . . . , ni},
let ξ̃i,j := Γ−1(Si,j). As in the first part of the proof, one can show that the k-
tuple ξ̃ := (ξ̃1, . . . , ξ̃k), with ξ̃i := (ξ̃i,1, . . . , ξ̃i,ni ), is in the closed regular polyball
Bn(

⊗k
i=1 F2(Hni ))

−. Using the noncommutative Berezin transform, we define
ξi,j(X) := BX[ξ̃i,j] for X ∈ Bn(H), and using again Proposition 4.1 we deduce
that the map ξ : Bn(H) → Bn(H)− defined by ξ(X) := (ξ1(X), . . . , ξk(X)) and
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ξi(X) := (ξi,1(X), . . . , ξi,ni (X)) is a free holomorphic function on Bn(H) which
has a continuous extension to Bn(H)−, which is also denoted by ξ.

According to the results preceding Lemma 2.1, each ξ̃i,j ∈ An has a unique

formal Fourier type representation ∑
(α)

a(i,j)
(α)

S(α) such that

ξ̃i,j = lim
r→1

∞

∑
q=0

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |=q

rqa(i,j)
(α)

S(α),

where the limit is in the operator norm topology. Using the continuity of Γ in the
norm topology, we deduce that

Si,j = Γ(ξ̃i,j) = lim
r→1

∞

∑
q=0

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |=q

rqa(i,j)
(α)

Γ(S(α))

= lim
r→1

∞

∑
q=0

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |=q

rqa(i,j)
(α)

ϕ̃1,α1 · · · ϕ̃k,αk
.

Due to the continuity in norm of the Berezin transform BX, where X ∈ Bn(H),
we have

Xi,j =BX[Si,j] = lim
r→1

∞

∑
q=0

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |=q

rqa(i,j)
(α)

BX[ϕ̃1,α1 · · · ϕ̃k,αk
]

= lim
r→1

∞

∑
q=0

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |=q

rqa(i,j)
(α)

ϕ1,α1(X) · · · ϕk,αk
(X)

= lim
r→1

Bϕ(X)

[ ∞

∑
q=0

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |=q

rqa(i,j)
(α)

S(α)

]
=Bϕ(X)[ξ̃i,j] = ξi,j(ϕ(X))

for any X ∈ Bn(H), i ∈ {1, . . . , k}, and j ∈ {1, . . . , ni}. Consequently, using
the continuity in norm of ϕ and ξ on the closed polyball Bn(H)−, we deduce that
(ξ ◦ ϕ)(X) = X for any X ∈ Bn(H)−. Similarly, one can prove that (ϕ ◦ ξ)(X) = X
for any X ∈ Bn(H)−. Therefore, ϕ : Bn(H)− → Bn(H)− is a homeomorphism
such that ϕ and ϕ−1 = ξ are free holomorphic functions on Bn(H).

The next step is to prove that ϕ(X) ∈ Bn(H) for any X ∈ Bn(H). Indeed,
due to Corollary 1.7, the scalar representations of ϕ and ξ are holomorphic func-
tions on Bn(C) with values in the closed polyball Bn(C)−. Applying the open
mapping theorem from complex analysis to the scalar representations of ϕ and
ξ, we deduce that ϕ(Bn(C)) = Bn(C) and ξ(Bn(C)) = Bn(C). In particular, for
each i ∈ {1, . . . , k}, ϕi : Bn(H) → B(H)ni is a free holomorphic function with
the properties: ‖ϕi‖∞ = 1 and ‖ϕi(0)‖ < 1. Applying the maximum principle
of Theorem 2.10, we conclude that ‖ϕi(X)‖ < 1 for any X ∈ Bn(H). Hence, and
using Proposition 1.3 from [24], we deduce that ϕ(X) ∈ Bn(H), which proves our



432 GELU POPESCU

assertion. Similarly, one proves that ξ(X) ∈ Bn(H) for any X ∈ Bn(H). There-
fore, ϕ ∈ Aut(Bn).

Now, we apply Theorem 3.9 and deduce that rank ∆ϕ̃ = 1 and ϕ̃ is unitarily
equivalent to the universal model S. Combining this with Theorem 4.3 and Corol-
lary 4.4, we deduce that the noncommutative Berezin transform Kϕ̃ is a unitary
operator and

Γ(Si,j) = ϕ̃i,j = K∗ϕ̃(Si,j ⊗ IDϕ̃
)Kϕ̃ = K∗ϕ̃W̃Si,jW̃∗Kϕ̃,

where W̃ :
k⊗

i=1
F2(Hni )→ (

⊗k
i=1 F2(Hni ))⊗Cv0 is the unitary operator defined by

W̃g := g⊗ v0, g ∈
k⊗

i=1

F2(Hni ),

where Dϕ̃ = Cv0 for some vector v0 ∈
k⊗

i=1
F2(Hni ) with ‖v0‖ = 1. Hence, we also

have
Γ(g) = K∗ϕ̃(g⊗ IDϕ̃

)Kϕ̃, g ∈ C∗(S).

Conversely, assume that Γ : C∗(S)→ C∗(S) is defined by

(4.1) Γ(g) := BΨ̂ [g] := KΨ̂ [g⊗ ID
Ψ̂
]K∗

Ψ̂
, g ∈ C∗(S),

where Ψ ∈ Aut(Bn) and BΨ̂ is the Berezin transform at the boundary function Ψ̂.
As above, due to Theorem 3.9, Theorem 4.3, and Corollary 4.4, the noncommuta-
tive Berezin transform KΨ̂ is a unitary operator and Γ is a unitarily implemented
automorphism of C∗(S).

Now, note that each Γ ∈ AutAn(C
∗(S)) corresponds to a unique Ψ ∈

Aut(Bn) such that relation (4.1) holds. Indeed, if Ψ1, Ψ2 ∈ Aut(Bn) and BΨ̂1
=

BΨ̂2
, then BΨ̂1

[Si,j] = BΨ̂2
[Si,j], which shows that (Ψ̂1)i,j = (Ψ̂2)i,j. Applying the

Berezin transform at X ∈ Bn(H), we obtain (Ψ1)i,j(X) = (Ψ̂2)i,j(X), which implies
Ψ1 = Ψ2.

Define Λ : AutAn(C
∗(S)) → Aut(Bn) by setting Λ(Γ) = Ψ. As we have

seen above, Λ is a bijection. Let Γ1, Γ2 ∈ AutAn(C
∗(S)) and Ψ1, Ψ2 ∈ Aut(Bn)

be such that Λ(Γj) = Ψj, j = 1, 2. Using Proposition 4.1 and Corollary 4.2, we
deduce that

Γ1[Γ2(g))]=BΨ̂1
[Γ2(g)]=BΨ̂1

[BΨ̂2
[g]]=BΨ2(Ψ̂)[g]=B

Ψ̂2◦Ψ1
[g]=Λ−1(Ψ2 ◦Ψ1)(g)

for any g ∈ C∗(S). Hence, we obtain Λ(Γ1Γ2) = Ψ2 ◦ Ψ1 = Λ(Γ2) ◦Λ(Γ1). The
proof is complete.

We remark that, in the particular case when k = 1, the result of Theorem 4.5
is contained in Theorem 3.4 from [19], which extends one of Voiculescu’s results
from [30]. In [24], we proved that the C∗-algebra C∗(S) is irreducible and contains
the compact operators in B(

⊗k
i=1 F2(Hni )). Standard results in representation
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theory of C∗-algebras (see e.g. [1]), imply that any automorphism of C∗(S) is a
unitarily implemented automorphism. Having this result at hand, we remark
that an alternative proof of the fact that ϕ ∈ Aut(Bn) in Theorem 4.5 can be
obtained using some ideas from the proof of Theorem 5.5 and avoiding the use of
the open mapping theorem from complex analysis.

The Cuntz–Toeplitz algebra Tn is the unique unital C∗-algebra generated by
n ∈ N isometries s1, . . . , sn satisfying relations s∗i sj = δij1 and s1s∗1 + · · ·+ sns∗n <
1. The noncommutative disc algebra An (see [15], [16]) is the unique non-self-
adjoint closed algebra generated by s1, . . . , sn and the identity. We also recall [5]
that the Cuntz algebra On is uniquely defined as the C∗-algebra generated by
n > 2 isometries satisfying relations σ∗i σj = δij1 and σ1σ∗1 + · · ·+ σnσ∗n = 1. In [5],
Cuntz showed that if K ⊂ Tn denotes the algebra of compact operators, then

0→ K→ Tn → On → 0

is a short exact sequence of C∗-algebras. Since the Cuntz algebra On and the
algebra of compact operators K are nuclear, so is the Cuntz–Toeplitz algebra
Tn. This implies that the tensor products of C∗-algebras Tn1 ⊗ · · · ⊗ Tnk and
On1 ⊗ · · · ⊗ Onk have a unique C∗-norm. The C∗-algebra C∗(S) generated by
the universal model S = {Si,j} is ∗-isomorphic to Tn1 ⊗ · · · ⊗ Tnk (see [17]). Ac-
cording to the definition of the min norm on tensor products of operator algebras
([12]) and sinceAni can be seen as a subalgebra of Tni (see [16]), we also have that
An ' An1 ⊗min · · · ⊗min Ank .

Using the short exact sequence obtained by Cuntz [5], one can deduce that
there is a a surjective ∗-representation χ : C∗(S) → On1 ⊗ · · · ⊗ Onk such that
χ(Si,j) = σi,j, where

σi,j := I ⊗ · · · ⊗ I︸ ︷︷ ︸
i− 1 times

⊗ σi,j ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
k− i times

,

for i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}, where {σi,j}
ni
j=1 is a set of generators of

the Cuntz algebra Oni . We also remark (see [16]) that the closed non-seladjoint
algebra Alg(1, σi) generated by {σi,j}

ni
j=1 and the identity is completely isometric

isomorphic to the noncommutative disc algebra Ani . Consequently, one can see
An ' An1 ⊗min · · · ⊗min Ank as a subalgebra of On1 ⊗ · · · ⊗ Onk .

COROLLARY 4.6. Let n = (n1, . . . nk) ∈ Nk. Each holomorphic automorphism
of the regular polyball Bn induces an automorphism of the C∗-algebra On1 ⊗ · · · ⊗ Onk

which leaves invariant the non-self-adjoint subalgebra An1 ⊗min · · · ⊗min Ank .

5. AUTOMORPHISMS OF THE POLYBALL ALGEBRA A(Bn)

AND THE HARDY ALGEBRA H∞(Bn)

In this section, we determine the group of unitarily implemented automor-
phisms of the noncommutative polyball algebra An and Hardy algebra F∞

n and
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show that they are isomorphic to the group Aut(Bn). We also present the corre-
sponding results for the Hardy algebra of all bounded free holomorphic functions
on the regular polyball H∞(Bn) and the polyball algebra A(Bn).

PROPOSITION 5.1. Let f : Bm(H) → B(H) and g : Bn(H) → Bm(H) be free
holomorphic functions. Then the following statements hold:

(i) If f and g have continuous extensions to the closed polyballs Bm(H)− and
Bn(H)−, respectively, then f ◦ g ∈ A(Bn).

(ii) If f ∈ H∞(Bm) then f ◦ g ∈ H∞(Bn) and ‖ f ◦ g‖∞ 6 ‖ f ‖∞.
(iii) If f ∈ H∞(Bm) and ĝ = (ĝ1, . . . , ĝm) is a pure element of the polyball

Bm(
⊗k

i=1 F2(Hni )) with entries ĝj∈An, then ( f ◦ g)(X)=BX[B ĝ[ f̂ ]] for X∈Bn(H).

Proof. Using Theorem 2.4, part (i) and (ii) are obvious. Since range g ⊂
Bm(H), Proposition 2.2 implies g(rS) ∈ Bm(

⊗k
i=1 F2(Hni )), r ∈ [0, 1), where S

is the universal model of Bn. Since f ◦ g ∈ H∞(Bn) its boundary function f̂ ◦ g
exists and

(5.1) f̂ ◦ g = SOT- lim
r→1

f (g(rS)).

According to the second part of Proposition 4.1, we have

(5.2) f (g(rS)) = Bg(rS)[ f̂ ) = BrS[B ĝ[ f̂ ]].

Due to Theorem 3.5 and Lemma 3.3 from [24], if Ψ ∈ F∞
n , then we have ψ =

SOT- lim
r→1

BrS[ψ]. Applying this result to B ĝ[ f̂ ] ∈ F∞
n and using relations (5.1)

and (5.2), we deduce that f̂ ◦ g = B ĝ[ f̂ ]. Since ( f ◦ g)(X) = BX[ f̂ ◦ g] for any
X ∈ Bn(H), we complete the proof.

COROLLARY 5.2. Let f ∈ Hol(Bn) and Ψ ∈ Aut(Bn). Then the following
statements hold:

(i) f ◦Ψ ∈ A(Bn) for any f ∈ A(Bn).
(ii) f ◦Ψ ∈ H∞(Bn) for any f ∈ H∞(Bn).

(iii) If f ∈ H∞(Bn), then ‖ f ◦Ψ‖∞ = ‖ f ‖∞ and

( f ◦Ψ)(X) = BX[BΨ̂ [ f̂ ]], X ∈ Bn(H).

We remark that there are operator-valued coefficient versions of the previ-
ous two results and the proofs are similar.

THEOREM 5.3. Any unitarily implemented automorphism of the noncommutative
polyball algebra An is the Berezin transform BΨ̂ |An of a boundary function Ψ̂, where
Ψ ∈ Aut(Bn). Moreover, we have

Autu(An) ' Aut(Bn).

Proof. First, assume that Ψ ∈ Aut(Bn). Due to Theorem 4.5, the noncom-
mutative Berezin transform BΨ̂ is a unitarily implemented automorphism of the
Cuntz–Toeplitz algebra C∗(S) such that BΨ̂(An) = An. Consequently, BΨ̂ |An
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is a unitarily implemented automorphism of the noncommutative polyball alge-
bra An.

Now, we assume that Γ is a unitarily implemented automorphism of An,
i.e., there exists a unitary operator U ∈ B(

⊗k
i=1 F2(Hni )) such that Γ(Y) = U∗YU

for any Y ∈ An. As in the proof of Theorem 4.5, we deduce that there is Ψ ∈
Aut(Bn) such that Γ = BΨ̂ |An and Aut(Bn) ' Autu(An). The proof is com-
plete.

We remark that Theorem 4.5 and Theorem 5.3 reveal that each unitarily im-
plemented automorphism of An has a unique extension to an automorphism of
the C∗-algebra C∗(S). Moreover, the mappings BΨ̂ |An 7→ BΨ̂ 7→ Ψ are group
isomorphisms, showing that

Autu(An) ' AutAn(C
∗(S)) ' Aut(Bn).

If Λ : A(Bn) → A(Bn) is an algebraic homomorphism, it induces a unique
homomorphism Λ̃ : An → An such that ΛB = BΛ̃. The homomorphisms Λ and
Λ̃ uniquely determine each other by the formulas:

(Λ f )(X)=BX[Λ̃( f̂ )], f ∈A(Bn), X∈Bn(H), and Λ̃( f̂ )=Λ̂( f ), f̂ ∈An.

We say that a unital completely contractive homomorphism Λ̃ : An → An
has a completely contractive hereditary linear extension to C∗(S) if the linear
maps defined by

S(α)S
∗
(β) 7→ Λ̃(S(α))Λ̃(S(β))

∗, (α), (β) ∈ F+
n1
× · · · × F+

nk
, and

S(α)S
∗
(β) 7→ Λ̃−1(S(α))Λ̃

−1(S(β))
∗, (α), (β) ∈ F+

n1
× · · · × F+

nk
,

are completely contractive.

THEOREM 5.4. Let Λ : A(Bn) → A(Bn) be a unital algebraic automorphism.
Then the following statements are equivalent:

(i) Λ̃ is a unitarily implemented automorphism of An.
(ii) There is ϕ ∈ Aut(Bn) such that

Λ( f ) = f ◦ ϕ, f ∈ A(Bn).

(iii) Λ̃ is a completely contractive automorphism of An with completely contractive
hereditary linear extension to C∗(S).

(iv) Λ̃ is continuous and {Λ̃(Si,j)} and {Λ̃−1(Si,j)} are in the regular polyball
Bn(

⊗k
i=1 F2(Hni ))

−, where S={Si,j} is the universal model of the regular polyball Bn.

Proof. Assume that (i) holds. According to Theorem 5.3, there is ϕ∈Aut(Bn)

such that Λ̃ = B ϕ̂|An . Consequently, using Proposition 4.1 we obtain

Λ( f )(X) = BX[Λ̃( f̂ )] = BX[B ϕ̂[ f̂ )]] = Bϕ(X)[ f̂ ] = f (ϕ(X)) = ( f ◦ ϕ)(X)
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for any f ∈ A(Bn), therefore item (ii) holds. Now, we prove that (ii) =⇒ (iii).
Note that we have

Λ̃( f̂ ) = Λ̂( f ) = f̂ ◦ ϕ = B ϕ̂[ f̂ ]

for any f ∈ A(Bn). Hence Λ̃ = BΨ̂ |An , which is a completely contractive au-
tomorphism and BΨ̂ is a completely contractive hereditary linear extension to
C∗(S) (see Theorem 4.5). Let us prove that (iii) =⇒ (iv). Assume that (iii) holds.
For each i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}, set ϕ̂i,j := Λ̃(Si,j) ∈ An. We need to
show that ϕ̂ := (ϕ̂1, . . . , ϕ̂k), with ϕ̂i,1, . . . , ϕ̂i,ni ), is in the noncommutative poly-
ball Bn(

⊗k
i=1 F2(Hni )

−. Since ΦSi (I) 6 I and Λ̃ is completely contractive, we
deduce that Φϕ̂i

(I) 6 I for i ∈ {1, . . . , k}. Let 1 6 p 6 k and i1 < · · · < ip with
i1, . . . , ip ∈ {1, . . . , k}. We have

0 6 (id−ΦSi1
) ◦ · · · ◦ (id−ΦSip

)(I)

= I − ∑
qj∈{0,1}, q1+···+qp>0

(−1)q1+···+qk+1ΦSi1
· · ·ΦSip

,

which is equivalent to∥∥∥ ∑
qj∈{0,1}, q1+···+qp>0

(−1)q1+···+qk+1ΦSi1
· · ·ΦSip

∥∥∥ 6 1.

Since Λ̃ has completely contractive hereditary linear extension, we deduce that∥∥∥ ∑
qj∈{0,1}, q1+···+qp>0

(−1)q1+···+qk+1Φϕ̂i1
· · ·Φϕ̂ip

∥∥∥ 6 1.

Taking into account that the operator under the norm is self-adjoint, we deduce
that

∑
qj∈{0,1}, q1+···+qp>0

(−1)q1+···+qk+1Φϕ̂i1
· · ·Φϕ̂ip

6 I,

which is equivalent to

(id−Φϕ̂i1
) ◦ · · · ◦ (id−Φϕ̂ip

)(I) > 0.

This shows that ϕ̂ := (ϕ̂1, . . . , ϕ̂k) is in the noncommutative regular polyball
Bn(

⊗k
i=1 F2(Hni )

−. Similarly, we can show that {Λ̃−1(Si,j)} is in the regular poly-
ball Bn(

⊗k
i=1 F2(Hni ))

−. Therefore, item (iv) holds.
It remains to prove that (iv) =⇒ (i). Assume that Λ̃(S) := {Λ̃(Si,j)} ∈

Bn(
⊗k

i=1 F2(Hni ))
−. Due to the noncommutative von Neumann type inequality

[24], we have

‖[Λ̃(pi,j(S))]m×m‖ = ‖[pi,j(Λ̃(S))]m×m‖ 6 ‖[pi,j(S)]m×m‖

for any operator matrix [pi,j(S)]m×m ∈ An ⊗ Mm×m(C). Since Λ̃ is continuous
and An is the norm closed self-adjoint algebra generated by {Si,j} and the iden-
tity, we deduce that Λ̃ : An → An is a completely contractive homomorphism.



HOLOMORPHIC AUTOMORPHISMS OF NONCOMMUTATIVE POLYBALLS 437

Similarly, using the fact that {Λ̃−1(Si,j)} is in the polyball Bn(
⊗k

i=1 F2(Hni ))
−,

one can prove that Λ̃−1 : An → An is also a completely contractive homomor-
phism. Now, as in the proof of Theorem 4.5, one can show that Λ̃ is a unitarily
implemented automorphism of An. This completes the proof.

We remark that if Λ : A(Bn)→ A(Bn) is a unital algebraic homomorphism
and at least one of n1, . . . , nk is greater than or equal 2, then Λ̃ is automatically
continuous. Indeed, assume that there is i0 ∈ {1, . . . , k} such that ni0 > 2 and
Λ̃ is not continuous in the operator norm. Then there is a sequence {gp}∞

p=1 of

elements in the polyball algebra An such that Λ̃(gp) > p and ‖gp‖ 6 1
Mp+2 for

any p ∈ N, for some constant M > 1 with M > ‖Λ̃−1(Si,j)‖ for any i ∈ {1, . . . , k}

and j ∈ {1, . . . , ni}. Note that g :=
∞
∑

p=1
Λ̃−1(Si0,1)

pΛ̃−1(Si0,2)gp is convergent in

norm and, consequently, it is in the polyball algebra An. For each q ∈ N, we

have Λ̃(g) =
q
∑

p=1
Sp

i0,1Si0,2Λ̃(gp) + Sq+1
i0,1 Λ̃(ξq) for some ξq ∈ An. Since Si0,1 and

Si0,2 are isometries with orthogonal ranges, we have S∗i0,2(S
∗
i0,1)

qΛ̃(g) = Λ̃(gq)

and, consequently, ‖Λ̃(g)‖ > ‖Λ̃(gq)‖ > q for q ∈ N, which is a contradiction.
Therefore, Λ̃ is continuous.

THEOREM 5.5. Any unitarily implemented automorphism of the noncommutative
Hardy algebra F∞

n is the Berezin transform BΨ̂ of a boundary function Ψ̂, where Ψ ∈
Aut(Bn). Moreover, we have

Autu(F∞
n ) ' Aut(Bn).

Proof. Let Ψ = (Ψ1, . . . , Ψk) ∈ Aut(Bn). According to Theorem 3.9, each
Ψ̂i = (Ψ̂i,1, . . . , Ψ̂i,ni ) is a pure row isometry with entries in the noncommutative
disk algebra generated by Si,1, . . . , Si,ni and the identity. Consider the Berezin
transform BΨ̂ : F∞

n → B(F2(Hn1)⊗ · · · ⊗ F2(Hnk )) defined by

BΨ̂ [ f ] := KΨ̂ [ f ⊗ ID
Ψ̂
]K∗

Ψ̂
, f ∈ F∞

n .

Due to Theorem 3.9 and Corollary 4.4, the noncommutative Berezin kernel KΨ̂
is a unitary operator. We recall that if f ∈ F∞

n , then fr ∈ A, ‖ fr‖ 6 ‖ f ‖ and
SOT- lim

r→1
fr = f . Since BΨ̂ [S(α)] = Ψ̂(α) is in An for any (α) ∈ F+

n1
× · · · ×

F+
nk

, and F∞
n is the WOT-closed non-selfadjoint algebra generate by the operators

{S(α)}(α)∈F+
n1×···×F

+
nk

, we deduce that BΨ̂ [F
∞
n ] ⊆ F∞

n . On the other hand, B
Ψ̂−1

has similar properties and, due to Proposition 4.1, we have (BΨ̂BΨ̂−1)[ f ] = f
for any f ∈ F∞

n . Therefore BΨ̂(F
∞
n ) = F∞

n and BΨ̂ is a unitarily implemented
automorphism of F∞

n .
Now, we assume that Γ is a unitarily implemented automorphism of F∞

n ,
i.e., there exists a unitary operator U ∈ B(

⊗k
i=1 F2(Hni )) such that Γ(Y) = U∗YU
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for any Y ∈ F∞
n . For each i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}, set ϕ̃i,j := Γ(Si,j) ∈

F∞
n . Since

(id−Φϕ̃1
)p1 ◦ · · · ◦ (id−Φϕ̃k

)pk = U∗[(id−ΦSi )
p1 ◦ · · · ◦ (id−ΦSi )

pk (I)]U > 0

for any pi ∈ {0, 1}, and

ϕ̃s,j ϕ̃t,p = U∗(Ss,jSt,p)U = U(St,pSs,j)U = ϕ̃t,p ϕ̃s,j

for s, t ∈ {1, . . . , k}, s 6= t, and any j ∈ {1, . . . , ns}, p ∈ {1, . . . , nt}, we deduce that
the k-tuple ϕ̃ := (ϕ̃1, . . . , ϕ̃k) is in the closed regular polyball Bn(

⊗k
i=1 F2(Hni ))

−.
On the other hand, each ni-tuple ϕ̃i := (ϕ̃i,1, . . . , ϕ̃i,ni ) is a row isometry with
entries in the Hardy algebra F∞

n , and

Φ
p
ϕ̃i
(I) = ∑

α∈F+
ni ,|α|=p

ϕ̃i,α ϕ̃∗i,α = U∗
(

∑
α∈F+

ni ,|α|=p

Si,αS∗i,α
)

U

for any p ∈ N. Consequently, Φ
p
ϕ̃i
(I)→ 0 strongly as p→ ∞. Setting

ϕi,j(X) := BX[ϕ̃i,j], X ∈ Bn(H),

we deduce that the map ϕ defined by ϕ(X) := (ϕ1(X), . . . , ϕk(X)) is a free holo-
morphic function on Bn(H) with values in Bn(H)−. If X ∈ Bn(H), we can use
the Berezin transform at X and obtain

∑
α∈F+

ni ,|α|=p

ϕi,α(X)ϕi,α(X)∗ = K∗X
(

∑
α∈F+

ni ,|α|=p

ϕ̃i,α ϕ̃∗i,α ⊗ IH
)

KX.

Since ∑
α∈F+

ni ,|α|=p
ϕ̃i,α ϕ̃∗i,α 6 I for any p ∈ N and ∑

α∈F+
ni ,|α|=p

ϕ̃i,α ϕ̃∗i,α → 0 strongly

as p → ∞, we deduce that ∑
α∈F+

ni ,|α|=p
ϕi,α(X)ϕi,α(X)∗ → 0 strongly as p → ∞.

Therefore, each ϕi(X) is a pure row contraction for any X ∈ Bn(H). In particular,
ϕi(0) = λi = (λi,1, . . . , λi,ni ) ∈ (Cni )−1 . Hence, we deduce that( ni

∑
j=1
|λi,j|2

)p
= ∑

α∈F+
ni ,|α|=p

ϕi,α(0)ϕi,α(0)∗ → 0, as p→ ∞.

This implies ‖λi‖2 < 1 and ϕ(0) = (ϕ1(0), . . . , ϕk(0)) ∈ Bn(C). Therefore, for
each i ∈ {1, . . . , k}, ϕi : Bn(H)→ B(H)ni is a free holomorphic function with the
properties: ‖ϕi‖∞ = 1 and ‖ϕi(0)‖ < 1. Applying Theorem 2.10, we conclude
that ‖ϕi(X)‖ < 1 for any X ∈ Bn(H). Hence, and using Proposition 1.3 from [24],
we deduce that ϕ(X) ∈ Bn(H).

Now, note that Γ−1(Y) = UYU∗ for any Y ∈ F∞
n . For each i ∈ {1, . . . , k}

and j ∈ {1, . . . , ni}, let ξ̃i,j := Γ−1(Si,j) ∈ F∞
n . As in the first part of the proof,

one can show that the k-tuple ξ̃ := (ξ̃1, . . . , ξ̃k), with ξ̃i := (ξ̃i,1, . . . , ξ̃i,ni ), is in the
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closed regular polyball Bn(
⊗k

i=1 F2(Hni ))
−. Using the noncommutative Berezin

transform, we define

ξi,j(X) := BX[ξ̃i,j], X ∈ Bn(H),

and using again Proposition 4.1 we deduce that the map ξ defined by ξ(X) :=
(ξ1(X), . . . , ξk(X)) and ξi(X) := (ξi,1(X), . . . , ξi,ni (X)) is a free holomorphic func-
tion on Bn(H). As above, one can prove that ξ(X) ∈ Bn(H) for any X ∈ Bn(H).
As in the proof of Theorem 4.5, we have (ξ ◦ ϕ)(X) = (ϕ ◦ ξ)(X) = X for any X ∈
Bn(H), which shows ϕ ∈ Aut(Bn). Moreover, one can show that Γ|An = B ϕ̂|An .
Since An is w∗-dense in F∞

n and Γ and B ϕ̂ are unitarily implemented (therefore
w∗-continuous), we deduce that Γ = B ϕ̂. The fact that Aut(Bn) ' Autu(F∞

n ) can
be proved as in Theorem 4.5. The proof is complete.

If Λ : H∞(Bn) → H∞(Bn) is an algebraic homomorphism, it induces a
unique homomorphism Λ̃ : F∞

n → F∞
n such that ΛB = BΛ̃. The homomorphisms

Λ and Λ̃ uniquely determine each other by the formulas:

(Λ f )(X)=BX[Λ̃( f̂ )], f ∈H∞(Bn), X∈Bn(H), and Λ̃( f̂ )=Λ̂( f ), f̂ ∈F∞
n .

THEOREM 5.6. Let Λ : H∞(Bn)→ H∞(Bn) be a unital algebraic automorphism.
Then the following statements are equivalent:

(i) Λ̃ is a unitarily implemented automorphism of F∞
n .

(ii) There is ϕ ∈ Aut(Bn) such that

Λ( f ) = f ◦ ϕ, f ∈ H∞(Bn).

(iii) Λ̃ is a WOT-continuous, completely contractive automorphism of F∞
n with com-

pletely contractive hereditary linear extension.
(iv) Λ̃ is norm-continuous and WOT-continuous with the property that {Λ̃(Si,j)} and
{Λ̃−1(Si,j)} are in the polyball Bn(

⊗k
i=1 F2(Hni ))

−, where S = {Si,j} is the universal
model of the regular polyball Bn.

Proof. The implications (i) =⇒ (ii) =⇒ (iii) follow from Theorem 5.5 and
Proposition 4.1. Now, assume that item (iii) holds. As in the proof of Theorem 5.4
(implication (iii) =⇒ (iv)), one can prove that {Λ̃(Si,j)} and {Λ̃−1(Si,j)} are in the
polyball Bn(

⊗k
i=1 F2(Hni ))

−, hence, item (iv) holds. If we assume that (iv) holds,
then, due to the continuity in norm of Λ̃, we deduce, according to Theorem 5.4,
that ϕ ∈ Aut(Bn) and Λ̃|An = B ϕ̂|An . Recall that ϕ̂ is pure (see Theorem 3.9) and
B ϕ̂ is a unitarily implemented automorphism of F∞

n . Since An is WOT-dense in
F∞

n and Λ̃ and B ϕ̂ are WOT-continuous on F∞
n , we deduce that Λ̃ = B ϕ̂. There-

fore, item (i) holds. The proof is complete.
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6. THE AUTOMORPHISM GROUP Aut(Bn) AND UNITARY PROJECTIVE REPRESENTATIONS

In this section, we prove that, under a natural topology, the free holomor-
phic automorphism group Aut(Bn)) is a metrizable, σ-compact, locally compact
group, and provide a concrete unitary projective representation of it in terms of
noncommutative Berezin kernels associated with regular polyballs.

According to Section 3, any Φ ∈ Aut(Bn), it is uniformly continuous on
Bn(H)−. Using standard arguments, one can easily prove the following result.

LEMMA 6.1. Let Φm, Φ, Γp, and Γ be in the automorphism group Aut(Bn), where
m, p ∈ N. If Φm → Φ and Γp → Γ uniformly on Bn(H)−, then Φm ◦ Γp → Φ ◦ Γ

uniformly on Bn(H)−, as m, p→ ∞.

Let φ, ψ ∈ Aut(Bn) and define

dBn(φ, ψ) := ‖φ− ψ‖∞ + ‖φ−1(0)− ψ−1(0)‖.

It is clear that dBn is a metric on Aut(Bn).

LEMMA 6.2. Let Ψm = pσ(m) ◦ΦU(m) ◦ Ψ
λ(m) , m ∈ N, and Ψ = pσ ◦ΦU ◦ Ψλ

be free holomorphic automorphisms of the noncommutative polyball Bn(H) in standard
form, where σ(m), σ ∈ Sk, with nσ(m)(i) = nσ(i) = ni for i ∈ {1, . . . , k},

U(m) = U(m)
1 ⊕ · · · ⊕U(m)

k and U = U1 ⊕ · · · ⊕Uk with U(m)
i , Ui ∈ U (Cni ),

and

λ(k) = (λ
(k)
1 , . . . , λ

(k)
k ) and λ = (λ1, . . . , λk) with λ

(k)
i , λi ∈ (Cni )1.

Then the following statements are equivalent:

(i) For each i ∈ {1, . . . , k}, U(m)
i → Ui in B(Cni ) and λ

(m)
i → λi in the Euclidean

norm of Cni , and there is N ∈ N such that σ(m) = σ for any m > N.
(ii) pσ(m) → pσ, ΦU(m) → ΦU, and Ψ

λ(m) → Ψλ uniformly on Bn(H)−.
(iii) Ψm → Ψ in the metric dBn .

Proof. First, we prove that (i) is equivalent to (ii). Assume that U(m)
i =

[u(m)
st ]ni×ni , m ∈ N, and Ui = [ust]ni×ni are unitary matrices with scalar entries,

and ΦU(m) → ΦU uniformly on Bn(H)−, as m→ ∞. For each j = 1, . . . , ni, denote
Eij := [0, . . . , Eij, . . . , 0], where Eij is on the i-position, and Eij = [0, . . . , I, . . . , 0],
where the identity is on the j-position. Note that

‖ΦU(m)(Ei,j)−ΦU(Eij)‖ =
( ni

∑
j=1
|u(m)

ij − uij|2
)1/2

.

Consequently, if ΦU(m) → ΦU, then, for each i ∈ {1, . . . , k}, we have u(m)
ij → uij

as m → ∞. Hence, U(m)
i → Ui in B(Cni ). Conversely, assume that the latter
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condition holds. Since

‖ΦU(m)(X)−ΦU(X)‖ 6 k‖X‖ max
i∈{1,...,k}

‖U(m)
i −Ui‖

for any X ∈ Bn(H)−, we deduce that ΦU(m) → ΦU uniformly on Bn(H)−.

Now we prove that λ
(m)
i → λi in the Euclidean norm of Cn−i if and only

if Ψ
λ(m) → Ψλ uniformly on Bn(H)−. Since Ψ

λ(m)(0) = λ(m) and Ψλ(0) =
λ, one implication is clear. To prove the converse, assume that, for each i ∈
{1, . . . , k}, λ

(m)
i → λi in the Euclidean norm of Cni . Since the left creation oper-

ators Si,1, . . . , Si,ni are isometries with orthogonal ranges on the full Fock space
F2(Hni ), we have ∥∥∥ ni

∑
j=1

λi,jSi,j

∥∥∥ =
( ni

∑
j=1
|λi,j|2

)1/2
< 1.

Consequently,
( ni

∑
j=1

λ
(m)
i,j Si,j

)−1
converges to

( ni
∑

j=1
λi,jSi,j

)−1
, as m → ∞, in the

operator norm. Taking into account that

Ψ̂λi = λi −∆λi

(
I −

ni

∑
j=1

λi,jSi,j

)−1
[Si,1, . . . , Si,ni ]∆λ∗i

and a similar relation holds for Ψ̂
λ
(m)
i

, we deduce that Ψ̂
λ
(m)
i
→ Ψ̂λi in the operator

norm. Due to the noncommutative von Neumann inequality [17], we have

‖Ψ
λ(m)(X)−Ψλ(X)‖ 6 k max

i∈{1,...,k}
‖Ψ̂

λ
(m)
i
− Ψ̂λi‖

for any X ∈ Bn(H)−. Hence, Ψ
λ(m) → Ψλ uniformly on Bn(H)−, which proves

our assertion.
If σ(m) 6= σ, then there is i0 ∈ {1, . . . , k} such that σ(m)(i0) 6= σ(i0). Hence

‖pσ(m) − pσ‖∞ > sup
X=(X1,...,Xk)∈Bn(H)

‖Xσ(m)(i0)
− Xσ(i0)‖

> sup
Xσ(i0)

∈[B(H)
ni0 ]1

‖Xσ(i0)‖ = 1.

Therefore, pσ(m) → pσ as m → ∞ if and only if there is N ∈ N such that σ(m) = σ
for any m > N. In conclusion, (i) is equivalent to (ii).

Now, we prove that (iii) =⇒ (i). Assume that dBn(Ψm, Ψ) → 0 as k → ∞.
Hence, Ψm → Ψ uniformly on Bn(H)− and λ(m) = Ψ−1

m (0) → λ = Φ−1(0) in
Pn(C). Consequently, as proved above, we have that Ψ

λ(m) → Ψλ uniformly on
Bn(H)−. Using Lemma 6.1 and the fact that Ψm = pσ(m) ◦ΦU(m) ◦ Ψ

λ(m) , m ∈ N,
and Ψ = pσ ◦ΦU ◦ Ψλ, we deduce that

(6.1) pσ(m) ◦ΦU(m) → pσ ◦ΦU, as m→ ∞,
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uniformly on Bn(H)−. Note that we have ΦU(m)(X) = (X1U(m)
1 , . . . , XkU(m)

k ) and
ΦU(X) = (X1U1, . . . , XkUk) for any X = (X1, . . . , Xk) ∈ Bn(H). If σ(m) 6= σ, then
there is i0 ∈ {1, . . . , k} such that σ(m)(i0) 6= σ(i0). Consequently, we have

‖pσ(m) ◦ ΨU(m) − pσ ◦ ΨU‖∞ > sup
X=(X1,...,Xk)∈Bn(H)

‖Xσ(m)(i0)
Uσ(m)(i0)

− Xσ(i0)Uσ(i0)‖

> sup
Xσ(i0)

∈[B(H)
ni0 ]1

‖Xσ(i0)Uσ(i0)‖ = 1.

Hence, we deduce that relation (6.1) holds if and only if there is N ∈ N such that
σ(m) = σ for any m > N, and ΦU(m) → ΦU uniformly on Bn(H)−. Due to the

equivalence of (i) with (ii), the latter convergence is equivalent to U(m)
i → Ui in

B(Cni ) for each i ∈ {1, . . . , k}.
The implication (i) =⇒ (iii) is straightforward if one uses the equivalence of

(i) with (ii) and Lemma 6.1. The proof is complete.

After these preliminaries, we can prove the following.

THEOREM 6.3. The free holomorphic automorphism group Aut(Bn) is a
σ-compact, locally compact topological group with respect to the topology induced by
the metric dBn .

Proof. First, we prove that the map

Aut(Bn)×Aut(Bn) 3 (Ψ, Γ) 7→ Ψ ◦ Γ ∈ Aut(Bn)

is continuous when Aut(Bn) has the topology induced by the metric dBn . For
m, p ∈ N, let

Ψm = pσ(m) ◦ΦU(m) ◦ Ψ
λ(m) , Ψ = pσ ◦ΦU ◦ Ψλ,

Γ p = pω(p) ◦ΦW (p) ◦ Ψµ(p) , Γ = pω ◦ΦW ◦ Ψµ,

be free holomorphic automorphisms of Bn, in standard decomposition. Then

U(m) = U(m)
1 ⊕ · · · ⊕U(m)

k , U = U1 ⊕ · · · ⊕Uk,

W(p) = W(p)
1 ⊕ · · · ⊕W(p)

k , W = W1 ⊕ · · · ⊕Wk,

where U(m)
i , W(p)

i , Ui, Wi are unitary operators on Cni and λ(m), µ(p), λ, µ are in
Pn(C) satisfying relations

λ(m) = Ψ−1
k (0), µ(p) = Γ−1

p (0), λ = Ψ−1(0), and µ = Γ−1(0).

Assume that dBn(Ψm, Ψ) → 0 as m → ∞ and dBn(Γ p, Γ) → 0 as p → ∞. Using
Lemma 6.2, we deduce that Ψm ◦ Γ p → Ψ ◦ Γ uniformly on Bn(H). Note that

(Ψm ◦ Γ p)
−1(0) = (Ψ−1

µ(p) ◦Φ−1
W(p) ◦ p−1

ω(p) ◦Ψ−1
m )(0)

= (Ψµ(p) ◦Φ(W(p))∗ ◦ p(ω(p))−1)(λ
(m)).
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Similarly, we have

(Ψ ◦ Γ)−1(0) = (Ψ−1
µ ◦Φ−1

W ◦ p−1
ω ◦Ψ−1)(0) = (Ψµ ◦ΦW∗ ◦ pω−1)(λ).

According to Lemma 6.2, λ(m) → λ in Pn(C), W(p)
i →Wi in B(Cn), p−1

ω(p) → pω−1

and Ψµ(p) → Ψµ uniformly on Bn(H)−. Consequently, (Ψm ◦ Γ p)−1(0) → (Ψ ◦
Γ)−1(0) as m, p → ∞. Therefore, Ψm ◦ Γ p → Ψ ◦ Γ in the topology induced by
the metric dBn .

In what follows, we show that the map Ψ 7→ Ψ−1 is continuous on Aut(Bn)
with the topology induced by dBn . Assume that dBn(Ψm, Ψ)→ 0 as k→ ∞. Using
the same notations as above, we have

Ψ−1
m = Ψ

λ(m) ◦Φ(U(m))∗ ◦ p(σ(m))−1 and Ψ−1
m = Ψ

λ(m) ◦Φ(U(m))∗ ◦ p(σ(m))−1 .

Using Lemma 6.1 and Lemma 6.2, one can easily see that dBn(Ψ
−1
m , Ψ−1) → 0 as

m → ∞. Therefore, Aut(Bn) is a topological group with respect to the topology
induced by the metric dBn .

On the other hand, each free holomorphic automorphism Ψ ∈ Aut(Bn)
has a unique representation Ψ = pσ ◦ ΦU ◦ Ψλ, where λ := Φ−1(0) and U =
U1 ⊕ · · · ⊕ Uk with Ui ∈ U (Cni ), the unitary group on Cni . This generates a
bijection

χ : Aut(Bn)→ Σ×U (Cn1)× · · · × U (Cnk )× Pn(C),
by setting χ(Ψ) := (σ, U1, · · · , Uk, λ), where Σ is the discrete subgroup

Σ := {σ ∈ Sk : (nσ(1), . . . , nσ(k)) = (n1, . . . , nk)}.
According to Lemma 6.2, the map χ is a homeomorphism of topological spaces,
where Aut(Bn) has the topology induced by the metric dBn and U (Cni ) and
Pn(C) have the natural topology. Since Σ × U (Cn1) × · · · × U (Cnk ) × Pn(C) is
a σ-compact, locally compact topological space, so is the automorphism group
Aut(Bn). The proof is complete.

COROLLARY 6.4. Let n = (n1, . . . , nk) ∈ Nk and

Σ := {σ ∈ Sk : (nσ(1), . . . , nσ(k)) = (n1, . . . , nk)}.

The free holomorphic automorphism group Aut(Bn) has card(Σ) path connected com-
ponents.

Proof. We saw in the proof of Theorem 6.3 that the map

χ : Aut(Bn)→ Σ×U (Cn1)× · · · × U (Cnk )× (Cn1)1 × · · · × (Cnk )1

is a homeomorphism. Since U (Cni ) and (Cni )1 are path connected and Σ has
card(Σ) path connected components, the result follows.

Let Aut(Bn) be the free holomorphic automorphism group of the noncom-
mutative polyball Bn and let U (K) be the unitary group on the Hilbert space K.
According to Theorem 6.3, Aut(Bn) is a topological group with respect to the
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metric dBn . A map π : Aut(Bn)→ U (K) is called a (unitary) projective represen-
tation if the following conditions are satisfied:

(i) π(id) = I, where id is the identity on Bn(H);
(ii) π(Φ)π(Ψ) = c(Φ,Ψ)π(Φ ◦Ψ), for any Φ, Ψ ∈ Aut(Bn), where c(Φ,Ψ) is a

complex number with |c(Φ,Ψ)| = 1;
(iii) the map Aut(Bn) 3 Φ 7→ 〈π(Φ)ξ, η〉 ∈ C is continuous for each ξ, η ∈ K.

THEOREM 6.5. If Ψ = (Ψ1, . . . , Ψk) ∈ Aut(Bn) with Ψi = (Ψi,1, . . . , Ψi,ni ), then
there is a unitary operator UΨ ∈ B(F2(Hn1)⊗ · · · ⊗ F2(Hnk )) satisfying the relations

Ψi,j(S) = U∗ΨSi,jUΨ, i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}, and

UΨUΦ = c(Ψ,Φ)UΨ◦Φ, Φ, Ψ ∈ Aut(Bn),

for some complex number c(Φ,Ψ) ∈ T. Moreover, the map Ψ → U∗Ψ is continuous from
the uniform topology to the strong operator topology, and the map

π : Aut(Bn)→ B(F2(Hn1)⊗ · · · ⊗ F2(Hnk )) defined by π(Ψ) := UΨ

is a projective representation of the automorphism group Aut(Bn).

Proof. Let Ψ = (Ψ1, . . . , Ψn) ∈ Aut(Bn) and let Ψ̂ = (Ψ̂1, . . . , Ψ̂n) be its
boundary function with respect to the universal model S. According to The-
orem 3.9, Ψ̂ is a pure element in the regular polyball Bn(

⊗k
i=1 F2(Hni ))

− and
Ψ̂i = (Ψ̂i,1, . . . , Ψ̂i,ni ) is an isometry with entries in the noncommutative disk alge-
bra generated by Si,1, . . . , Si,ni and the identity. Moreover, rank ∆

Ψ̂
= 1 and Ψ̂ is

unitarily equivalent to the universal model S. Combining these results with The-
orem 4.3 and Corollary 4.4, we deduce that the noncommutative Berezin kernel
K

Ψ̂
is a unitary operator. Moreover, in this case, we have

(6.2) Ψ̂i,j =K∗
Ψ̂
(Si,j ⊗ ID

Ψ̂
)K

Ψ̂
=K∗

Ψ̂
W̃Si,jW̃∗KΨ̂

, i∈{1, . . . , k}, j∈{1, . . . , ni},

where W̃Ψ :
k⊗

i=1
F2(Hni ) → (

⊗k
i=1 F2(Hni )) ⊗ Cv0 is the unitary operator de-

fined by

W̃Ψg := g⊗ v0, g ∈
k⊗

i=1

F2(Hni ),

and the defect space D
Ψ̂
= Cv0 for some vector v0 ∈

k⊗
i=1

F2(Hni ) with ‖v0‖ = 1.

According to Theorem 3.6, if Ψ ∈ Aut(Bn(H)) and λ = (λ1, . . . , λk) =
Ψ−1(0), then there are unique unitary operators Ui ∈ B(Cni ), i ∈ {1, . . . , k}, and
a unique permutation σ ∈ Sk with nσ(i) = ni such that

Ψ = pσ ◦ΦU ◦ Ψλ,
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where U := U1 ⊕ · · · ⊕Uk and Ψλ := (Ψλ1 , . . . , Ψλk ). Moreover, we have

∆
Ψ̂
(I) = ∆

Ψ̂λ
(I) = ∆λ

[ k

∏
i=1

(
IH −

ni

∑
j=1

λi,jSi,j

)−1]
PC
[ k

∏
i=1

(
IH −

ni

∑
j=1

λi,jS∗i,j
)−1]

,

where ∆λ =
k

∏
i=1

(1− ‖λi‖2
2). Hence we deduce that

‖∆
Ψ̂
(I)1/2(1)‖2 =

∥∥∥∆1/2
λ PC

[ k

∏
i=1

(
IH −

ni

∑
j=1

λi,jS∗i,j
)−1]

(1)
∥∥∥2

= ∆λ.

Let v0 := ∆−1/2
λ ∆

Ψ̂
(I)1/2(1) ∈

k⊗
i=1

F2(Hni ) and note that ‖v0‖ = 1. Now, relation

(6.2) becomes

Ψ̂i,j = Ψi,j(S) = U∗ΨSi,jUΨ, i ∈ {1, . . . , k}, j ∈ {1, . . . , ni},

where UΨ := W̃∗K
Ψ̂

. Note that if Φ ∈ Aut(Bn) with Φ = (Φ1, . . . , Φk) and
Φi = (Φi,1, . . . , Φi,ni ), then the relation above written for Ψ ◦Φ shows that

(6.3) (Ψi,j ◦Φ)(S) = (Ψ̂ ◦Φ)i,j = UΨ◦ΦSi,jUΨ◦Φ.

On the other hand, due to Corollary 4.2,

B
Ψ̂◦Φ[g] = (BΦ̂BΨ̂)[g]

for any g in the Cuntz–Toeplitz algebra C∗(S). In particular, when g = Si,j, we
obtain

K∗
Ψ̂◦Φ

(Si,j ⊗ ID
Ψ̂◦Φ

)K
Ψ̂◦Φ = K∗

Φ̂
{[K∗

Ψ̂
(Si,j ⊗ ID

Ψ̂
)K

Ψ̂
]⊗ ID

Φ̂
}K

Φ̂
.

Hence, and using relation (6.3), we deduce that

(Ψi,j ◦Φ)(S) = (Ψ̂ ◦Φ)i,j = U∗ΦU∗ΨSi,jUΨUΦ, i ∈ {1, . . . , k}, j ∈ {1, . . . , ni}.
Combining this relation with (6.3), we deduce that

UΨ◦ΦSi,jUΨ◦Φ = U∗ΦU∗ΨSi,jUΨUΦ

which is equivalent to

UΨUΦU∗Ψ◦ΦSi,j = Si,jUΨUΦU∗Ψ◦Φ.

Since C∗(S) is irreducible and UΨUΦU∗Ψ◦Φ is a unitary operator, we deduce that
UΨUΦU∗Ψ◦Φ = c(Ψ,Φ) I for some complex number with |c(Ψ,Φ)| = 1. Hence, we
deduce that UΨUΦ = c(Ψ,Φ)UΨ◦Φ for any Φ, Ψ ∈ Aut(Bn).

Let Ψ(m) = (Ψ
(m)
1 , . . . , Ψ

(m)
k ), m ∈ N, with Ψ

(m)
i = (Ψ

(m)
i,1 , . . . , Ψ

(m)
i,ni

) and
Ψ = (Ψ1, . . . , Ψk), m ∈ N, with Ψi = (Ψi,1, . . . , Ψi,ni ) be free holomorphic automor-
phisms of the noncommutative polyball Bn(H). Assume that Ψ(m) → Ψ in the
uniform norm. Then, for each i ∈ {1, . . . , k} and j ∈ {1, . . . , ni}, Ψ̂

(m)
i,j → Ψ̂i,j in

the operator norm topology.
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Now consider the standard representations Ψ(m) = pσ(m) ◦ ΦU(m) ◦ Ψ
λ(m)

and Ψ = pσ ◦ ΦU ◦ Ψλ. Since Ψ(m)(0) = λ(m) and Ψ(0) = λ, we deduce that
‖λ(m)‖2 → ‖λ‖2 as m → ∞. Given ε > 0 and x = ∑

(α)∈F+
n1×···×F

+
nk

a(α)e(α) ∈

k⊗
i=1

F2(Hni ), let q ∈ N be such that

(6.4)
∥∥∥x− ∑

(α)∈F+
n1×···×F

+
nk

, |α1|+···+|αk |6q

a(α)e(α)
∥∥∥ <

ε

4
.

Since UΨ(m) := W̃∗
Ψ(m)KΨ̂(m) and W̃Ψ(m) :

k⊗
i=1

F2(Hni ) → (
⊗k

i=1 F2(Hni ))⊗DΨ̂(m) is

the unitary operator defined by

W̃Ψ(m) g := g⊗∆−1/2
λ(m) ∆

Ψ̂(m)(I)1/2(1), g ∈
k⊗

i=1

F2(Hni ),

we can use the properties of the noncommutative Berezin kernel to deduce that

∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |6q

a(α)U
∗
Ψ(m) e(α)= ∑

(α)∈F+
n1×···×F

+
nk

, |α1|+···+|αk |6q

a(α)K
∗
Ψ̂(m)W̃Ψ(m) e(α)

= ∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |6q

a(α)K
∗
Ψ̂(m)(e(α)⊗∆−1/2

λ(m) ∆
Ψ̂(m)(I)1/2(1))

= ∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |6q

a(α)[Ψ̂
(m)](α)∆

−1/2
λ(m) ∆

Ψ̂(m)(I)(1).

A similar relation holds if we replace Ψ(m) with Ψ. Since, for each i ∈ {1, . . . , k}
and j ∈ {1, . . . , ni}, Ψ̂

(m)
i,j → Ψ̂i,j in the operator norm topology, and ‖λ(m)‖2 →

‖λ‖2 as m→ ∞, there is N ∈ N such that

(6.5)
∥∥∥ ∑
(α)∈F+

n1×···×F
+
nk

, |α1|+···+|αk |6q

a(α)U
∗
Ψ(m) e(α)− ∑

(α)∈F+
n1×···×F

+
nk

, |α1|+···+|αk |6q

a(α)U
∗
Ψe(α)

∥∥∥< ε

2

for all q > N. Using relations (6.4), (6.5) and the fact that UΨ(m) and UΨ are unitary
operators, one can easily deduce that

‖U∗
Ψ(m)x−U∗Ψx‖ < ε

for any q > N. Therefore the map Ψ → U∗Ψ is continuous from the uniform
topology to the strong operator topology.

To prove the last part of this theorem, note that if Ψ(m) → Ψ in the metric
dBn , then Ψ(m) → Ψ in the uniform norm and, using the first part of the theorem,
we can complete the proof.
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