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ABSTRACT. We define the S-functional calculus for unbounded closed quater-
nionic operators and n-tuples of operators directly via a Cauchy integral. This
allows us to consider also operators, whose S-resolvent sets do not contain real
points. We show that the main properties of the calculus also hold true with
this definition and that it is compatible with intrinsic polynomials, although
polynomials are not included in the set of admissible functions.

We also prove that the S-functional calculus is able to create spectral projec-
tions. For this purpose, we remove the assumption that admissible functions
are defined on slice domains, which leads to an unexpected phenomenon: the
S-functional calculi for left and right slice hyperholomorphic functions be-
come inconsistent and give different operators for functions that are both left
and right slice hyperholomorphic. Any such function is however the sum of
a locally constant and an intrinsic function. For intrinsic functions both func-
tional calculi agree, but for locally constant functions this may in general not
be the case.
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1. INTRODUCTION

Since Birkhoff and von Neumann showed in their paper [11] of 1936 that
quantum mechanics can only be formulated using either complex numbers or
quaternions, mathematicians have tried to develop a theory of quaternionic lin-
ear operators that provides techniques similar to those for complex linear opera-
tors. However, even defining such basic concepts as the spectrum or the resolvent
of a quaternionic linear operator caused serious problems. Thus, little progress
was made until the discovery of the slice hyperholomorphic functional calculus,
usually called S-functional calculus, and the S-spectrum about ten years ago.

In the classical theory, the spectrum σ(TC) of a linear operator TC is a gen-
eralization of the concept of eigenvalues. It consists of those points λ ∈ C such
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that the operator λI − TC, which appears in the respective eigenvalue equation,
does not have a bounded inverse.

For a quaternionic right linear operator T, due to the noncommutativity of
the quaternionic multiplication, one can consider two possible eigenvalue equa-
tions, namely

T(v)− vλ = 0 and T(v)− λv = 0.

They lead to the notions of right and left eigenvalues. Right eigenvalues are use-
ful in the mathematical theory, for instance for proving the spectral theorem for
quaternionic matrices in [20], and they also admit a physical interpretation in
quaternionic quantum theory [1]. However, the operator associated to the right
eigenvalue equation is not right linear and therefore not suitable for defining a
resolvent operator and in turn a notion of spectrum. The operator associated to
the left eigenvalue equation on the other hand is right linear, but the left eigen-
values have no obvious mathematical or physical meaning. Thus, in contrast to
the classical complex setting, the operators of the eigenvalue equation are not the
appropriate tools to define a meaningful notion of spectrum.

Another difference between the complex and the quaternionic setting is that
right eigenvalues do not occur individually: if v is a right eigenvector of T with
respect to λ, then

T(va) = T(v)a = vλa = va(a−1λa)

for an arbitrary quaternion a. Unless a and λ commute, the vector va is therefore
an eigenvalue with respect to a−1λa instead of λ. Thus, if λ is a right eigenvec-
tor of T, then any quaternion of the form a−1λa is also a right eigenvector of T
and hence the set of right eigenvalues is axially symmetric. Moreover, the set
of eigenvectors associated to a single eigenvalue does in general not constitute a
quaternionic right linear space.

The discovery of the S-spectrum and the S-resolvent operators solved these
problems. The S-resolvent set ρS(T) consists of all quaternions s such that the
operator

Qs(T) := T2 − 2Re(s)T + |s|2I
has a bounded inverse defined on the entire space V and the S-spectrum is de-
fined as the complement of the S-resolvent set, that is

ρS(T) = {s ∈ H : Qs(T)−1 ∈ B(V)} and σS(T) := H \ ρS(T).

For any s ∈ ρS(T), the left and right S-resolvent operators are defined as

S−1
L (s, T) = Qs(T)s− TQs(T)−1 and S−1

R (s, T) = sQs(T)−1 − TQs(T)−1.

The introduction of these fundamental concepts several years ago opened
new possibilities in quaternionic operator theory and allowed to generalize im-
portant concepts of classical operator theory: the S-functional calculus, which
can for instance be found in the monograph [18], generalizes the Riesz–Dunford
functional calculus for holomorphic functions to quaternionic linear operators.
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Even more, using a Clifford-algebra approach, Colombo, Sabadini and Struppa
showed in [17] that it also applies to n-tuples of noncommuting operators. The
idea of using Clifford-algebras to investigate n-tuples of operators had already
come up earlier: McIntosh and Pryde used it to develop a functional calculus
for n-tuples of commuting operators that applies to monogenic functions in [28].
This approach was further developed and also applied to noncommuting opera-
tors in [24], [25], [26], [27].

The S-functional calculus allows to develop the theory of quaternionic op-
erator groups and semi-groups [10], [14]. Moreover, the H∞-functional calculus
for quaternionic linear operators and for n-tuples of noncommuting operators
has recently been introduced in [6]. The continuous functional calculus for nor-
mal operators on quaternionic Hilbert spaces has been introduced in [21] and it
has even been even possible to prove the spectral theorems for unitary and for
unbounded normal quaternionic linear operators in [4] respectively [3]. They are
also based on the S-spectrum. Finally, the S-point spectrum of an operator co-
incides with the set of its right eigenvalues [15]. Thus, the S-spectrum admits a
physical interpretation within quaternionic quantum theory.

The applications of the above concepts are not only limited to the theory
of quaternionic operators and n-tuples of noncommuting operators. In [22] the
theory of slice-hyperholomorphic functions has been extended to the more gen-
eral setting of functions on real alternative algebras, which allowed to develop
the theory of semigroups over real alternative ∗-algebras in [23]. Finally, the S-
resolvent operators appear in slice hyperholomorphic Schur analysis, in particu-
lar within realizations of slice hyperholomorphic Schur functions, see [7], [8], [9].

In this paper, we discuss and clarify several aspects of the S-functional cal-
culus for closed quaternionic operators or n-tuples of closed non-commuting op-
erators. It is the analogue of the Riesz–Dunford functional calculus in these set-
tings and it is based on the notion of slice hyperholomorphicity, a generalized
notion of holomorphicity: let either F0 = H and F = H or let F be the real
Clifford-algebra Rn and let F0 be the set of paravectors in Rn. Then any x ∈ F0
can be written in the form x = x0 + Ixx1 such that x0 ∈ R, x1 > 0 and Ix is an
imaginary unit satisfying I2

x = −1. A function f : U ⊂ F0 → F is called left slice
hyperholomorphic, if it is of the form

f (x) = α(x0, x1) + Ixβ(x0, x1)

where
α(x0,−x1) = α(x0, x1) and β(x0,−x1) = β(x0, x1)

and α and β satisfy the Cauchy–Riemann equations.
Let now either V be a two-sided quaternionic Banach space and let T be a

quaternionic right linear operator on V or let V be a two-sided Banach-module
over Rn and let T be an operator of paravector type on V.

Assume that T is bounded and let f be left slice hyperholomorphic on a
suitable domain U (precisely, an axially symmetric slice domain) that contains
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σS(T) and has a sufficiently regular boundary. Then one defines, inspired by the
Cauchy formula for left slice hyperholomorphic functions,

(1.1) f (T) :=
1

2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s),

where I is an arbitrary imaginary unit, dsI = (−I)ds and ∂(U ∩CI) is the bound-
ary of U in the complex plane spanned by 1 and I. This integral is independent
of the choices of U and I.

In the complex setting, one can define the Riesz–Dunford functional cal-
culus for closed unbounded operators quite efficiently by reducing it to the one
for bounded operators [19]. An analogous approach is possible in our settings,
if T is closed and ρS(T) contains a real point a, see [18]. Then the operator
A := (T− aI)−1 equals−S−1

L (a, T) and is therefore bounded. If one sets Φa(s) =
(s− a)−1, then f 7→ f ◦Φ−1

a defines a bijective relation between those functions
that are slice hyperholomorphic on the S-spectrum of T and at infinity and those
functions that are slice hyperholomorphic on the S-spectrum of A. One therefore
defines

f (T) = ( f ◦Φ−1
a )(A).

If U is an axially symmetric slice domain with sufficiently regular boundary and
σS(T) ⊂ U such that f is slice hyperholomorphic on U, then the operator f (T)
can be represented as

(1.2) f (T) = f (∞)I + 1
2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s),

where the notation is as in (1.1). In particular this shows that f (T) is indepen-
dent of the choice of the real point a. Similarly, one can proceed to define the
S-functional calculus for right slice hyperholomorphic functions. However, this
procedure requires that the S-spectrum of the operator T contains a real point.
Otherwise, for non-real a, the operator (T− aI)−1 does not equal the S-resolvents
and the composition with the function Φ−1

a does not preserve slice hyperholo-
morphicity.

In this paper we choose a different approach and define the S-functional cal-
culus directly via (1.2) as it is done in [29] for complex linear operators. We show
that this defines a meaningful functional calculus under the only assumption that
the S-resolvent set of T is nonempty, which is analogue to the classical complex
case. In particular, we do not require that ρS(T) contains a real point.

We also remove another assumption, which existed only due to the his-
tory of the development of the theory, namely that the function f is defined on a
slice domain. Instead, we consider functions that are defined on not necessarily
connected sets. This is in particular important for obtaining spectral projections
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within the scope of the S-functional calculus, but it leads to an unexpected phe-
nomenon: the S-functional calculi for left and right slice hyperholomorphic func-
tions become inconsistent and must therefore be considered as separate calculi.
Indeed, for functions that are left and right slice hyperholomorphic, f (T) will in
general be different depending on whether f is considered as a left or as a right
slice hyperholomorphic function.

We discuss this phenomenon in detail: it turns out that, up to addition with
a locally constant function, every left and right slice hyperholomorphic function
is intrinsic. For intrinsic functions and for functions whose domains are con-
nected, both functional calculi agree. For a locally constant function f however,
the two S-functional calculi must give different operators f (T), unless all invari-
ant subspaces associated to spectral projections are two-sided subspaces. Finally,
we also give an explicit example for this situation in two dimensions.

Furthermore, we prove the product rule using the S-resolvent equation,
which was recently discovered in [2], and we discuss the compatibility of the
S-functional calculus with polynomials in T. For bounded operators, these are
included in the admissible class of functions, but for unbounded operators they
need to be investigated separately. As it happens often in the slice hyperholo-
morphic setting, we have to restrict ourselves to intrinsic functions. We show
that if x ∈ dom(Tn) for some n ∈ N, then f (T)x ∈ dom(Tn) and f (T)p(T)x =
p(T) f (T)x for any admissible intrinsic function f and any intrinsic polynomial p
of degree lower or equal to n. Moreover, if f has a zero of order n at infinity, then
f (T)x ∈ dom(Tn) for any vector x and p(T) f (T)x = (p f )(T)x for any intrinsic
polynomial p of degree lower or equal to n. As a consequence, we obtain that
p(T) is closed for any intrinsic polynomial p.

Finally, we show that the spectral mapping theorem and the theorem on
composite functions also hold with our definition of the S-functional calculus and
we discuss the possibility to generate spectral projections: if σ is a spectral set of
T, that is an open and closed subset of the closure of σS(T) in F0 ∪ {+∞} and Uσ

is an axially symmetric open set such that σ ⊂ U and σ ∩ (σS(T) \ σ) = ∅, then
the characteristic function χσ(s) of Uσ is admissible for the S-functional calculus
and Eσ := χσ(T) is a projection that commutes with T. Spectral projections were
studied for bounded operators in [2], [18], but they have never been investigated
for unbounded quaternionic operators.

2. PRELIMINARY RESULTS

Slice hyperholomorphic functions can be considered in different settings.
We shall be interested in two different situations, in which they allow to develop,
with analogous arguments, the spectral theory of certain operators: the quater-
nionic setting and the setting of Clifford-algebra-valued functions of a paravector
variable. Both settings are treated in detail in [18].
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The skew-field of quaternions consists of the real vector space

H :=
{

ξ0e0 +
3

∑
`=1

ξ`e` : ξ` ∈ R
}

,

endowed with an associative product with unity e0 that satisfies

eiej = −ejei and e2
i = −1

for i, j ∈ {1, . . . , 3} with i 6= j. Since e0 is the unity of the skew-field, we write 1
instead of e0 and identify spanR{e0} with the field of real numbers. The real part

of a quaternion x = ξ0 +
3
∑
`=1

ξ`e` is therefore defined as Re(x) := ξ0, its vectorial

part as x :=
3
∑
`=1

ξ`e` (sometimes we also write Im(x) := x) and its conjugate as

x := Re(x)− x. The modulus of x is defined by |x|2 =
3
∑

i=0
|ξi|2 and the relation

xx = xx = |x|2 holds true. Hence x−1 = x/|x|2.
Each element of the set

S := {x ∈ H : Re(x) = 0, |x| = 1}

is a square-root of −1 and is therefore called an imaginary unit. For any I ∈ S,
the subspace CI := {x0 + Ix1 : x0, x1 ∈ R} is an isomorphic copy of the field
of complex numbers. If I, J ∈ S with I ⊥ J, set K = I J = −J I. Then 1, I, J
and K form an orthonormal basis of H as a real vector space and 1 and J form an
orthonormal basis of H as a left or right vector space over the complex plane CI ,
that is

(2.1) H = CI +CI J and H = CI + JCI .

For consistency with the Clifford-algebra setting, we introduce the following no-
tation: after choosing I and J, we set I∅ = 1, I{1} = I, I{2} = J and I{1,2} = K = I J
and we call {I, J} a generating basis of H. Any quaternion can then be repre-
sented as x = ∑

A⊂{1,2}
ξA IA with ξA ∈ R and as x = ∑

A⊂{2}
zA IA or x = ∑

A⊂{2}
IA z̃A

with zA, z̃A ∈ CI .
Finally, any quaternion x belongs to a complex plane: if we set

Ix :=

{
x/|x| if x 6= 0,
any I ∈ S if x = 0,

then x = x0 + Ixx1 with x0 = Re(x) and x1 = |x|. The set

[x] := {x0 + Ix1 : I ∈ S},

is a 2-sphere, that reduces to a single point if x is real.
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In order to introduce the real Clifford-algebra Rn over n units, we consider
the space

Rn+1 =
{

ξ0e0 +
n

∑
i=1

ξiei : ξi ∈ R
}

.

The Clifford-algebra Rn is the algebra that is generated by this space when e0 is
the unity of the multiplication and

eiej = −ejei and e2
i = −1

for i, j ∈ {1, . . . , n} with i 6= j. Any element x ∈ Rn can be written in the form
x = ∑

A⊂{1,...,n}
ξAeA with ξA ∈ R, where e∅ = e0 and eA = ei1 · · · eik for any

other subset A = {i1 < i2 < · · · < ik} of {1, . . . , n}. Since e0 is the unity of the
algebra, we write 1 instead of e0 and identify R with spanR{e0}. The conjugation
on the Clifford algebra Rn is defined by the rule xy = y x and its action on the
generating basis e0 = e0 and ei = −ei for i ∈ {1, . . . , n}. The modulus of an
element x = ∑

A⊂{1,...,n}
ξAeA ∈ Rn is defined via |x|2 = ∑

A⊂{1,...,n}
ξ2

A.

An element x = ξ0 +
n
∑

i=1
ξiei of the generating space Rn+1 is called a par-

avector. A paravector can be decomposed into its real part Re(x) = ξ0 and its

vectorial part x =
n
∑

i=1
ξiei, which will sometimes also be denoted as Im(x) = x.

Obviously, x = Re(x) + x and x = Re(x) − x. Any paravector is invertible as
xx = |x|2 and hence x−1 = x/|x|2. However, not any element of Rn is invertible:
R1 is isomorphic to the field of complex numbers C and R2 is isomorphic to the
skew-field of quaternions H, but if n > 3, then Rn contains zero divisors.

In the Clifford-algebra setting, imaginary units are elements of the set

S := {x ∈ Rn+1 : Re(x) = 0, |x| = 1}.

Also here I2 = −1 for any I ∈ S. Hence CI := {x0 + Ix1 : x0, x1 ∈ R} is an
isomorphic copy of the field of complex numbers. Any paravector x belongs to
such a complex plane: if we set

Ix :=

{
x/|x| if x 6= 0,
any I ∈ S if x = 0,

then x = x0 + Ixx1 with x0 = Re(x) and x1 = |x|. The set

[x] := {x0 + Ix1 : I ∈ S},

is an (n− 1)-sphere in Rn+1, that reduces to a single point if x is real.
Moreover, for any I ∈ S, one can find a basis of Rn+1 that contains I and

generates Rn as an algebra, cf. Proposition 2.2.10 of [18].

LEMMA 2.1. Let I ∈ S and set I1 := I. Then there exist I2, . . . , In ∈ S such
that {1, I1, . . . , I2} forms a generating basis of Rn, i.e. Ii Ij = −Ij Ii. In this case any
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x ∈ Rn can be written in the form x = ∑
A⊂{1,...,n}

ξa IA with ξA ∈ R, where I∅ = 1 and

IA = Ii1 · · · Iik for any other subset A = {i1 < · · · < ik} of {1, . . . , n}. We thus have

x = ∑
A⊂{2,...,n}

zA IA with zA ∈ CI

and similarly
x = ∑

A⊂{2,...,n}
IA z̃A with z̃A ∈ CI .

In particular, Rn can be considered as a complex vector space over CI , when the multi-
plication with scalars is simply defined by restricting the Clifford-multiplication from the
left or from the right to elements of CI .

As pointed out before, the theory of slice hyperholomorphic functions al-
lows to develop the spectral theory of operators in two different settings with
analogue arguments. We introduce a notation to cover both cases simultaneously.

DEFINITION 2.2. In the quaternionic setting, we set F0 := H and F := H. In
the Clifford-algebra setting, we denote F0 := Rn+1 and F := Rn.

2.1. SLICE HYPERHOLOMORPHIC FUNCTIONS. The notion of slice hyperholomor-
phicity is the generalization of holomorphicity to quaternion- respectively Rn-
valued functions that underlies the theory of linear operators in these settings.
We recall the main results on slice hyperholomorphic functions. Their proofs can
be found in [16] and [18].

DEFINITION 2.3. A set U ⊂ F0 is called
(i) axially symmetric if [x] ⊂ U for any x ∈ U; and

(ii) a slice domain if U is open, U ∩R 6= 0 and U ∩CI is a domain for any I ∈ S.

DEFINITION 2.4. Let U ⊂ F0 be an axially symmetric open set. A function
f : U → F is called a left slice function, if it has the form

(2.2) f (x) = α(x0, x1) + Ixβ(x0, x1), ∀x = x0 + Ixx1 ∈ U

such that the functions α and β satisfy the compatibility condition

(2.3) α(x0, x1) = α(x0, x1) β(x0, x1) = −β(x0,−x1).

A real differentiable left slice function f : U → F is called left slice hyperholomorphic
if α and β satisfy the Cauchy–Riemann-differential equations:

(2.4)
∂

∂x0
α(x0, x1) =

∂

∂x1
β(x0, x1),

∂

∂x0
β(x0, x1) = −

∂

∂x1
α(x0, x1).

A function f : U → F is called a right slice function if it has the form

(2.5) f (x) = α(x0, x1) + β(x0, x1)Ix, ∀x = x0 + Ixx1 ∈ U,

such that the functions α and β satisfy (2.3). If in addition f is real differentiable
and α and β satisfy (2.4), then f is called right slice hyperholomorphic.
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The sets of left and right slice hyperholomorphic functions on U are denoted
by SHL(U) and SHR(U), respectively. Finally, we say that a function f is left or
right slice hyperholomorphic on a closed axially symmetric set K, if there exists
an open axially symmetric set U with K ⊂ U such that f ∈ SHL(U) respectively
SHR(U).

COROLLARY 2.5. Let U ⊂ F0 be axially symmetric.
(i) If f , g ∈ SHL(U) and a ∈ F, then f a + g ∈ SHL(U).

(ii) If f , g ∈ SHR(U) and a ∈ F, then a f + g ∈ SHR(U).

On axially symmetric slice domains, slice hyperholomorphic functions can
be characterized as those functions that lie in the kernel of a slicewise Cauchy–
Riemann-operator. As a consequence, the restriction of a slice hyperholomorphic
function to a complex plane can be split into holomorphic components.

DEFINITION 2.6. Let U ⊂ F0 be open. For a real differentiable function
f : U → F, we denote f I := f |CI for I ∈ S and define the following differential
operators: for x = x0 + Ixx1 we set

∂I f (x) =
∂

∂x0
f Ix (x)− Ix

∂

∂x1
f Ix (x), ∂I f (x) =

∂

∂x0
f Ix (x) + Ix

∂

∂x1
f Ix (x) and

f (x)∂←
I
=

∂

∂x0
f I(x)− ∂

∂x1
f I(x)Ix, f (x)∂←

I
=

∂

∂x0
f I(x) +

∂

∂x1
f I(x)Ix.

The arrow← indicates that the operators ∂←
I

and ∂←
I

act from the right.

COROLLARY 2.7. Let U ⊂ F0 be open and axially symmetric.
(i) If f ∈ SHL(U), then ∂I f = 0. If U is an axially symmetric slice domain, then

f ∈ SHL(U) if and only if ∂I f = 0.
(ii) If f ∈ SHR(U), then f ∂←

I
= 0. If U is an axially symmetric slice domain, then

f ∈ SHR(U) if and only if f ∂←
I
= 0.

Corollary 2.7 states that a function is left respectively right slice hyperholo-
morphic if any restriction to a complex subplane CI is a holomorphic function
with values in the left respectively right Banach space F over CI . Splitting into
components with respect to a chosen basis as in Lemma 2.1 immediately yields
the next result.

LEMMA 2.8 (Splitting lemma). Let U ⊂ F0 be axially symmetric, let I ∈ S and
let I2, . . . , In be imaginary units that form, together with I, a generating basis of F.

(i) If f ∈ SHL(U), then there exist holomorphic functions fA : U ∩CI → CI such
that f I = ∑

A⊂{2,...,n}
fA IA.

(ii) If f ∈ SHR(U), then there exist holomorphic functions fA : U ∩CI → CI such
that f I = ∑

A⊂{2,...,n}
IA fA.
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REMARK 2.9. Originally, slice hyperholomorphic functions were defined as
functions that satisfy ∂I f = 0 respectively f ∂←

I
= 0. In principle this leads to a

larger class of functions, but on axially symmetric slice domains both definitions
are equivalent. Indeed, in this case the representation formula, cf. Theorem 2.16,
holds true and allows for a representation of the form Definition 2.2 respectively
Corollary 2.5. Therefore, the theory of slice hyperholomorphicity with the origi-
nal definition was only developed for functions that are defined on axially sym-
metric slice domains.

However, most results on slice hyperholomorphic functions actually require
the possibility of a representation of the form in Definition 2.2 respectively Corol-
lary 2.5 and not that the function is defined on an axially symmetric slice domain.
Hence, Definition 2.4 seems to be more appropriate since it allows to extend the
theory to functions defined on sets that are not connected or do not intersect the
real line. This is in particular important in spectral theory, for instance when one
wants to define spectral projections.

DEFINITION 2.10. Let U ⊂ F0 be axially symmetric. A left slice hyperholo-
morphic function f (x) = α(x0, x1) + Ixβ(x0, x1) is called intrinsic if α and β are
real-valued. We denote the set of intrinsic functions on U by N (U).

Note that intrinsic functions are both left and right slice hyperholomorphic
because β(x0, x1) commutes with the imaginary unit Ix. The converse is not true:
the constant function x 7→ b ∈ F \R is left and right slice hyperholomorphic, but
it is not intrinsic.

COROLLARY 2.11. Let f be left or right slice hyperholomorphic on U. The follow-
ing statements are equivalent:

(i) f is intrinsic.
(ii) f (x) = f (x) for all x ∈ U.

(iii) f (U ∩CI) ⊂ CI for all I ∈ S.

The importance of the class of intrinsic functions is due to the fact that mul-
tiplication and composition with intrinsic functions preserve slice hyperholomor-
phicity, which is not true for arbitrary slice hyperholomorphic functions.

COROLLARY 2.12. Let U ⊂ F0 be axially symmetric.
(i) If f ∈ N (U) and g ∈ SHL(U), then f g ∈ SHL(U). If f ∈ SHR(U) and

g ∈ N (U), then f g ∈ SHR(U).
(ii) If g ∈ N (U) and f ∈ SHL(g(U)), then f ◦ g ∈ SHL(U). If g ∈ N (U) and

f ∈ SHR(g(U)), then f ◦ g ∈ SHR(U).

Important examples of slice hyperholomorphic functions are power series

with coefficients in F: series of the form
+∞
∑

n=0
xnan are left slice hyperholomorphic
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and series of the form
∞
∑

n=0
anxn are right slice hyperholomorphic on their domain

of convergence. A power series is intrinsic if and only if its coefficients are real.
Conversely, any slice hyperholomorphic function can be expanded into a

power series of the respective type, but only at real points.

DEFINITION 2.13. The slice-derivative of a function f ∈SHL(U) is defined as

∂S f (x) = lim
CIx3s→x

(s− x)−1( f (s)− f (x)),

where lim
Cix3s→x

g(s) denotes the limit as s tends to x = x0 + Ixx1 ∈ U in CIx .The

slice-derivative of a function f ∈ SHR(U) is defined as

f ∂←
S
(x) = lim

CIx3s→x
( f (s)− f (x))(s− x)−1.

COROLLARY 2.14. The slice derivative of a left (or right) slice hyperholomorphic
function is again left (or right) slice hyperholomorphic. Moreover, it coincides with the
derivative with respect to the real part, that is

∂S f (x) =
∂

∂x0
f (x), respectively f ∂←

S
(x) =

∂

∂x0
f (x).

THEOREM 2.15. If f is left slice hyperholomorphic on the ball Br(α) with radius r
centered at α ∈ R, then

f (x) =
+∞

∑
n=0

(x− α)n 1
n!

∂n
S f (α) for x ∈ Br(α).

If f is right slice hyperholomorphic on Br(α), then

f (x) =
+∞

∑
n=0

1
n!

f ∂n
←
S
(α)(x− α)n for x ∈ Br(α).

As a consequence of the slice structure of slice hyperholomorphic functions,
their values are uniquely determined by their values on one complex plane. Con-
sequently, any function that is holomorphic on a suitable subset of a complex
plane possesses a unique slice hyperholomorphic extension.

THEOREM 2.16 (Representation formula). Let U ⊂ F0 be axially symmetric
and let I ∈ S. For any x = x0 + Ixx1 ∈ U set xI := x0 + Ix1. If f ∈ SHL(U). Then

f (x) =
1
2
(1− Ix I) f (xI) +

1
2
(1 + Ix I) f (xI).

If f ∈ SHR(U), then

f (x) = f (xI)(1− I Ix)
1
2
+ f (xI)(1 + I Ix)

1
2

.

COROLLARY 2.17. Let I ∈ S and let f : O → F be real differentiable, where O is
a domain in CI that is symmetric with respect to the real axis.
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(i) The axially symmetric hull [O] :=
⋃

z∈O
[z] of O is an axially symmetric slice do-

main.
(ii) If f satisfies (∂/∂x0) f + I(∂/∂x1) f = 0, then there exists a unique left slice

hyperholomorphic extension extL( f ) of f to [O].
(iii) If f satisfies (∂/∂x0) f + (∂/∂x1) f I = 0, then there exists a unique right slice

hyperholomorphic extension extR( f ) of f to [O].

REMARK 2.18. If f has a left and a right slice hyperholomorphic extension,
they do not necessarily coincide. Consider for instance the function z 7→ bz on
CI with a constant b ∈ CI \R. Its left slice hyperholomorphic extension to F0 is
x 7→ xb, but its right slice hyperholomorphic extension is x 7→ bx.

Finally, slice hyperholomorphic functions satisfy an adapted version of Cau-
chy’s integral theorem and a Cauchy-type integral formula with a modified ker-
nel.

DEFINITION 2.19. We define the left slice hyperholomorphic Cauchy-kernel as

S−1
L (s, x) = −(x2 − 2Re(s)x + |s|2)−1(x− s) for x ∈ F0 \ [s]

and the right slice hyperholomorphic Cauchy-kernel as

S−1
R (s, x) = −(x− s)(x2 − 2Re(s)x + |s|2)−1 for x ∈ F0 \ [s].

COROLLARY 2.20. The left slice hyperholomorphic Cauchy-kernel S−1
L (s, x) is left

slice hyperholomorphic in the variable x and right slice hyperholomorphic in the variable
s on its domain of definition. Moreover, we have

(2.6) S−1
R (s, x) = −S−1

L (x, s).

REMARK 2.21. If x and s belong to the same complex plane, they commute
and the slice hyperholomorphic Cauchy-kernels reduce to the classical one:

1
s− x

= S−1
L (s, x) = S−1

R (s, x).

DEFINITION 2.22. An axially symmetric set U ⊂ F0 is called a slice Cauchy
domain if U ∩CI is a Cauchy domain for any I ∈ S. More precisely, for any I ∈ S,
the following conditions must hold:

(i) U ∩CI is open;
(ii) U∩CI has a finite number of components (i.e. maximal connected subsets),

the closures of any two of which are disjoint;
(iii) the boundary of U ∩CI consists of a finite positive number of closed piece-

wise continuously differentiable Jordan curves, no two of which intersect.

REMARK 2.23. Observe that any Cauchy domain has at most one unbound-
ed component. This component must then contain a neighborhood of infinity.
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DEFINITION 2.24. Let I ∈ S and γ : [0, 1] → CI be a path. We set dsI :=
(−I)ds such that

∫
γ

f (s)dsI g(s) :=
∫
γ

f (s)(−I)ds g(s).

THEOREM 2.25 (Cauchy’s integral theorem). Let U ⊂ F0 be a bounded slice
Cauchy domain, let f ∈ SHR(U) and g ∈ SHL(U). For any I ∈ S holds∫

∂(U∩CI)

f (s)dsI g(s) = 0.

THEOREM 2.26 (Cauchy’s integral formula). Let U ⊂ F0 be a bounded slice
Cauchy domain and let I ∈ S. If f ∈ SHL(U), then

f (x) =
1

2π

∫
∂(U∩CI)

S−1
L (s, x)dsI f (s) for all x ∈ U.

If f ∈ SHR(U), then

f (x) =
1

2π

∫
∂(U∩CI)

f (s)dsI S−1
R (s, x) for all x ∈ U.

REMARK 2.27. Although the presented results were stated for scalar valued
functions, they also hold true for functions with values in a two-sided quater-
nionic Banach space respectively in a two-sided Banach module over Rn. Indeed,
one can prove them in these settings with the usual technique of reducing the
vector-valued to the scalar-valued case by applying elements of the dual space.
For details see [5].

2.2. THE S-RESOLVENT OPERATORS AND THE S-FUNCTIONAL CALCULUS. In this
paper, V denotes either a two-sided quaternionic Banach space or a two-sided
Banach module over Rn:

(i) A two-sided quaternionic Banach space is a two-sided quaternionic vector
space endowed with a norm ‖ · ‖V such that it is a Banach space over R and
such that |a|‖v‖V = ‖av‖V and ‖va‖V = ‖v‖V |a| for all v ∈ V and all a ∈ H.
A mapping T : dom(T) → V defined on a right subspace dom(T) of V is said
to be right linear if T(ua + v) = T(u)a + T(v) for all u, v ∈ dom(T) and all
a ∈ H. It is said to be bounded if ‖T‖B(V) := sup

‖v‖V=1
‖T(v)‖V < +∞. The set

of all bounded right linear operators, which we denote by B(V), is a two-sided
quaternionic Banach space, when it is endowed with the scalar multiplications
(aT)(v) := a(T(v)) and (Ta)(v) = T(av) and with the operator norm.

A right linear operator T : dom(T) ⊂ V → V is called closed if its graph is
closed and we denote the set of all such operators by K(V).

We shall occasionally refer to a quaternionic vector space as a module over
H in order combine the discussions of the quaternionic and the Clifford setting.
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(ii) Let VR be a real Banach space. Then V = VR ⊗Rn is a two-sided Clifford
module. If (eA)A⊂{1,...,n} is a basis of Rn, then any element of V is of the form
v = ∑

A⊂{1,...,n}
vA ⊗ eA with vA ∈ VR. The multiplications with scalars on the left

and on the right are defined as

av := ∑
A,B⊂{1,...,n}

(aBvA)⊗ (eBeA) and va := ∑
A,B⊂{1,...,n}

(aBvA)⊗ (eAeB)

for v ∈ V and a = ∑
B⊂{1,...,n}

aBeB. In the following, we shall omit the symbol ⊗.

The Clifford module V turns into a Banach module over Rn when it is en-
dowed with the norm ‖v‖V := ∑

A⊂{1,...,n}
‖vA‖VR , i.e. it is a real Banach space and

there exists a constant C > 0 such that ‖va‖V 6 C‖v‖V |a| and ‖av‖V 6 C|a|‖v‖V
for all v ∈ V and all a ∈ Rn.

If TA, A ⊂ {1, . . . , n}, are bounded operators on VR, then the operator T =

∑
A⊂{1,...,n}

TAeA that acts as

T(v) = ∑
A⊂{1,...,n}

TA(vB)eAeB

for v = ∑
B⊂{1,...,n}

vBeB ∈ V is right Rn-linear. The set of all such operators cor-

responds to B(VR)⊗Rn, which is a two-sided Banach module over Rn with the
norm ‖T‖B(VR)⊗Rn := ∑

A⊂{1,...,n}
‖TA‖B(VR). In the following, we omit all sub-

scripts of norms unless it is unclear which norm we are referring to.
In the Clifford-setting we shall only be interested in operators of paravector

type, that is operators of the form

(2.7) T = T0 +
n

∑
i=0

Tiei with Ti ∈ B(VR)

and B(V) shall thus denote the set of all such operators on V.
Similarly, we denote by K(V) the set of all closed operators of paravector

type, i.e. operators of the form (2.7) such that the components Ti, i = 0, . . . , n are
closed operators on VR. The operator T is then defined on the common domain

dom(T) =
n⋂

i=0
dom(Ti).

Based on the theory of slice hyperholomorphic functions, it is possible to
define a functional calculus for operators as they were introduced above. It is
the natural generalization of the Riesz–Dunford-functional calculus for complex
linear operators to the quaternionic or Clifford-setting; for details see again [18].

As usual, we define powers of an operator T inductively by T0 = I with
domain dom(T0) = V and Tn+1(v) = T(Tnv) with domain

dom(Tn+1) = {v ∈ dom(Tn) : T(v) ∈ dom(T)}.
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Moreover, we set dom(T∞) :=
⋂

n∈N0

dom(Tn).

DEFINITION 2.28. Let T ∈ K(V). For s ∈ F0 we define the operator

Qs(T)x := (T2 − 2Re(s)T + |s|2I)x, x ∈ dom(T2).

The S-resolvent set of T is the set

ρS(T) := {s ∈ F0 : Qs(T)−1 ∈ B(V)},
and for s ∈ ρS(T) the operator Qs(T)−1 : V → dom(T2) is called the pseudo-
resolvent of T at s. The S-spectrum of T is defined as

σS(T) := F0 \ ρS(T).

LEMMA 2.29. The S-spectrum of an operator T ∈ K(V) is axially symmetric and
closed. If T is bounded then σS(T) is a nonempty, compact set contained in the closed
ball B‖T‖(0).

REMARK 2.30. The following decomposition of the S-spectrum, which is
analogue to the one in the classical theory, was introduced in [21]:

(i) The point S-spectrum σSp(T) is the set of all s ∈ F0 with kerQs(T) 6= {0}.
(ii) The continuous S-spectrum σSc(T) is the set of all those s ∈ F0 such that

kerQs(T) = {0} and ranQs(T) is a dense proper subset of V.
(iii) The residual S-spectrum consists of all other points of the spectrum, i.e. of

all s ∈ F0 such that kerQs(T) = {0} but ranQs(T) is not dense in V.
In the quaternionic setting, the point S-spectrum of T equals the set of all

right eigenvalues of T as it was shown in [15]. The notion of eigenvalues must
however be replaced by the notion of eigenspheres due to the axial symmetry of the
S-spectrum. Indeed, if v is an eigenvector of T associated to the eigenvalue s, then
T(va) = T(v)a = vsa = (va)(a−1sa) for a ∈ H and hence va is an eigenvector
associated to a−1sa. Quaternions of the form a−1sa are exactly the elements of the
sphere [s] that is associated to s.

DEFINITION 2.31. Let T ∈ K(V). The left S-resolvent operator is defined as

(2.8) S−1
L (s, T) := Qs(T)−1s− TQs(T)−1

and the right S-resolvent operator is defined as

(2.9) S−1
R (s, T) := −(T − Is)Qs(T)−1.

REMARK 2.32. Observe that one obtains the right S-resolvent operator by
formally replacing the variable x in the right slice hyperholomorphic Cauchy-
kernel by the operator T. The same procedure yields

(2.10) S−1
L (s, T)v = −Qs(T)−1(T − sI)v, for v ∈ dom(T)

for the left S-resolvent operator. This operator is not defined on the entire space V,
but only on the domain dom(T) of T. Exploiting the fact thatQs(T)−1 and T com-
mute on dom(T), one can overcome this problem: commuting T and Qs(T)−1 in
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(2.10) yields (2.8). The operator Qs(T) = T2 − 2Re(s)T + |s|2I maps dom(T2)
to V. Hence, the pseudo-resolvent Qs(T)−1 maps V to dom(T2) ⊂ dom(T) if
s ∈ ρS(T). Since T is closed and Qs(T)−1 is bounded, equation (2.8) defines a
continuous and therefore bounded right linear operator on the entire space V.
Hence, the left resolvent S−1

L (s, T) is the natural extension of the operator (2.10)
to all of V. In particular, if T is bounded, then S−1

L (s, T) can directly be defined
by (2.10).

When considering left linear operators, one must obviously modify the def-
inition of the right S-resolvent operator for the same reasons.

THEOREM 2.33. Let T ∈ K(V) and let s ∈ ρS(T).
(i) If T and s commute, then

Qs(T)−1 = (T − sI)−1(T − sI)−1

and the S-resolvent operators reduce to the classical resolvent, that is

S−1
L (s, T) = S−1

R (s, T) = (sI − T)−1.

(ii) The function s 7→ S−1
R (s, T) is left slice hyperholomorphic and the function s 7→

S−1
L (s, T) is right slice hyperholomorphic on ρS(T).
(iii) The right S-resolvent operator satisfies the right S-resolvent equation

(2.11) sS−1
R (s, T)v− S−1

R (s, T)Tv = Iv, v ∈ dom(T).

The left S-resolvent operator satisfies the left S-resolvent equation

(2.12) S−1
L (s, T)sv− TS−1

L (s, T)v = Iv v ∈ V.

Finally, the S-resolvent equation is the analogue of the classical resolvent
equation. Note that it involves both S-resolvent operators and cannot be stated
just for one of them. The S-resolvent equation has been proved in [2] assuming
that T is bounded. In [13] it was generalized to the case of unbounded operators,
in which one has to take possible problems into account that concern the domains
of definition of the operators.

THEOREM 2.34 (S-resolvent equation). Let T ∈ K(V). For s, p ∈ ρS(T) with
s /∈ [p], we have

S−1
R (s, T)S−1

L (p, T) = [[S−1
R (s, T)− S−1

L (p, T)]p

− s[S−1
R (s, T)− S−1

L (p, T)]](p2 − 2s0 p + |s|2)−1.(2.13)

The definition of the S-resolvent operators allows us to define the S-func-
tional calculus, which generalizes the Riesz–Dunford-functional calculus for holo-
morphic functions to our settings. In the following, we denote the domain of a
function f by D( f ).
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DEFINITION 2.35 (S-functional calculus for bounded operators). Let T ∈ B(V).
We define for any f ∈ SHR(σS(T))

(2.14) f (T) :=
1

2π

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T)

and for f ∈ SHL(σS(T))

f (T) :=
1

2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s),

where I is an arbitrary imaginary unit and U is any bounded slice Cauchy domain
with σS(T) ⊂ U and U ⊂ D( f ) that is also a slice domain. These integrals are
independent of the choice of the imaginary unit I ∈ S and of the slice Cauchy
domain U.

We say that a function f is left slice hyperholomorphic at infinity if it is left
slice hyperholomorphic on the set {s ∈ F0 : r < |s|} for some r > 0 and the limit
lim
s→∞

f (s) exists. In this case we define

f (∞) := lim
s→∞

f (s).

Similarly, we define right slice hyperholomorphicity at infinity.

DEFINITION 2.36. Let T ∈ K(T). We denote by SHL(σS(T) ∪ {∞}) the set
of all functions f ∈ SHL(σS(T)) that are left slice hyperholomorphic at infinity and
by SHR(σS(T) ∪ {∞}) the set of all functions f ∈ SHR(σS(T)) that are right slice
hyperholomorphic at infinity.

As in the complex case the S-functional calculus for unbounded operators is
defined using a transformation of the unbounded operator into a bounded one.
For α ∈ R we consider the function Φα : F0 ∪ {∞} → F0 ∪ {∞} defined by
Φα(s) = (s− α)−1 for s ∈ F0 \ {α}, Φα(α) = ∞ and Φα(∞) = 0.

DEFINITION 2.37. Let T ∈ K(V) be such that ρS(T) ∩ R 6= ∅, let α ∈
ρS(T)∩R and set A = (T − αI)−1 = −S−1

L (α, T). The map f 7→ f ◦Φ−1
α defines a

bijective relation between SHL(σS(T) ∪ {∞}) and SHL(σS(A)) respectively be-
tween SHR(σS(T) ∪ {∞}) and SHR(σS(A)). For any f ∈ SHL(σS(T) ∪ {∞})
and any f ∈ SHR(σS(T) ∪ {∞}) we define

f (T) := ( f ◦Φ−1
α )(A).

This definition is independent of the choice of α ∈ ρS(T) ∩R. Moreover, an
integral representation corresponding to the one in (2.14) holds true as the next
theorem shows.
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THEOREM 2.38. Let T ∈ K(V) with ρS(T) ∩ R 6= ∅. If f ∈ SHL(σS(T) ∪
{∞}), then

f (T) = f (∞)I + 1
2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s),

and if f ∈ SHR(σS(T) ∪ {∞}), then

f (T) = f (∞)I + 1
2π

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T),

for any unbounded slice Cauchy domain U with σS(T) ⊂ U and U ⊂ D( f ) that is also
a slice domain and any imaginary unit I ∈ S.

The functional calculi defined above are consistent with algebraic opera-
tions on the underlying function classes such as addition, multiplications with
scalars from the left respectively right and multiplication and composition with
intrinsic functions.

3. A DIRECT APPROACH TO THE S-FUNCTIONAL CALCULUS
FOR UNBOUNDED OPERATORS

The technique of reducing the functional calculus for unbounded operators
to the one of bounded operators is very useful in the classical complex setting.
In the quaternionic or Clifford setting it has one disadvantage: it only applies
to operators whose S-resolvent set contains a real point. Otherwise the map
s 7→ (s − λ)−1 does not correspond to the S-resolvent operators at λ. In fact,
it is then not even slice hyperholomorphic. The natural candidates to replace this
function, the left and right Cauchy-kernels, are not intrinsic. Since the under-
lying concepts (spectral mapping, compatibility with composition of functions
etc.) only apply to intrinsic functions and since a composed function is in gen-
eral only slice hyperholomorphic, if the inner function is intrinsic, the left and
right Cauchy-kernels cannot be used to reduce the problem of defining a func-
tional calculus for unbounded operators to the bounded case either. We therefore
choose a direct approach, similar to the one Taylor chose in [29] for the com-
plex setting, and define the S-functional calculus also for operators in K(V) by a
Cauchy-integral.

The results in the following sections will often be stated for left and right
slice hyperholomorphic functions. We will only give the proofs for the left slice
hyperholomorphic case since the proofs of the other case are similar with obvious
modifications.

3.1. SOME REMARKS ON SLICE CAUCHY DOMAINS. The following theorem is
well known in the complex case. Implicitly, it has also been assumed to hold
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true in our settings but, to the best of the author’s knowledge, it has never been
stated explicitly, which we shall do for the sake of completeness.

THEOREM 3.1. Let C be a closed and let O be an open axially symmetric subset
of F0 such that C ⊂ O and such that ∂O is nonempty and bounded. Then there exists a
slice Cauchy domain U such that C ⊂ U and U ⊂ O and such that U is unbounded if O
is unbounded.

Proof. Let I ∈ S and set CI = C ∩CI and OI = O ∩CI . We cover the plane
CI by a honeycomb network of non-overlapping congruent hexagons of side δ/4
with

0 < δ < dist(CI , Oc
I) := inf{|z− z′| : z ∈ CI , z′ ∈ Oc

I},
where Oc

I denotes the complement of OI in CI and we choose this network sym-
metric with respect to the real axis. We call the closure of such a hexagon a cell
and denote the set of all cells in our network by S. Set

S :=
⋃
{∆ ∈ S : ∆∩Oc

I 6= ∅}.

By standard arguments, we deduce that UI := Sc is a Cauchy domain in CI such
that CI ⊂ UI and U I ⊂ OI , which is unbounded if OI is unbounded. We refer to
the proof of Theorem 3.3 in [29] for the technical details. Since both the network
of hexagons and the set Oc

I are symmetric with respect to the real axis, the set S
and in turn also UI are symmetric with respect to the real axis.

Now set U := [UI ], where [UI ] is the axially symmetric hull of UI . Since UI
is symmetric with respect to the real axis, we have UI = U ∩ CI . Moreover, as
CI ⊂ UI and U I ⊂ OI , we obtain C = [CI ] ⊂ [UI ] = U and U = [U I ] ⊂ [OI ] = O.
If O is unbounded then OI and UI are unbounded. Thus, U is unbounded too.

It remains to show that U is actually a slice Cauchy domain. Let J ∈ S and
observe that U ∩CJ = {z0 + Jz1 : z0 + Iz1 ∈ UI} because U is axially symmetric
and UI = U ∩ CI . Since the mapping Φ : z0 + Iz1 7→ z0 + Jz1 is a homeomor-
phism from CI to CJ and the set UI is a Cauchy domain in CI , we conclude that
U ∩CJ = Φ(UI) is a Cauchy domain.

The boundary of a slice Cauchy domain in a complex plane CI is of course
symmetric with respect to the real axis. Hence, it can be fully described by the
part that lies in the upper half plane C+

I := {x0 + Ix1 : x0 ∈ R, x1 > 0}. We
specify this idea in the following.

DEFINITION 3.2. For a path γ : [0, 1]→ CI , we define the paths (−γ)(t) :=
γ(1− t) and γ(t) := γ(t).

LEMMA 3.3. Let γ be a Jordan curve in CI whose image is symmetric with respect
to the real axis. Then γ+ := γ ∩C+

I consists of a single curve and γ = γ+ ∪ γ− with
γ− := −γ+.

Proof. Since its image is symmetric with respect to the real axis, γ must take
values in the upper and in the lower complex halfplane. Hence, as it is closed and
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continuous, it intersects the real line at least twice: once passing from the lower
to the upper halfplane and once passing from the upper to the lower halfplane.
Consider now a parametrization γ(t), t ∈ [0, 1] of γ with constant speed such
that γ(0) ∈ R and such that γ(t) ∈ C+

I for t small enough. Then γ(t) := γ(t)
defines a parametrization of γ with inverse orientation and constant speed be-
cause the image of γ is symmetric with respect to the real axis. On the other hand
(−γ)(t) := γ(1− t) is also a parametrization of γ with inverse orientation and
the same speed and starting point. We deduce−γ = γ and in turn γ = −γ. Thus,
γ(1/2) = (−γ)(1/2) = γ(1/2) and hence γ(1/2) ∈ R. Moreover, there are no
other points of γ that lie on the real line: if γ(τ) ∈ R for some τ /∈ {0, 1/2}, then
γ(τ) = γ(τ) = γ(1− τ), which yields a contradictions as γ does not intersect
itself.

Therefore, γ+(t) := γ(t/2), t ∈ [0, 1] takes values in C+
I . Otherwise, by

continuity, it would have to intersect the real line when passing from the upper to
the lower halfplane, which is impossible by the above argumentation. Moreover,
the image of γ+ coincides with γ ∩C+

I because γ = −γ and hence

γ \ γ+ =
{

γ(t) :
1
2
< t < 1

}
=
{

γ(t) : 0 < t <
1
2

}
= {γ+(t) : 0 < t < 1},

which is a subset of CI \C+
I as γ+(t) ∈ C+

I .
Finally, γ(t) = γ+(2t) if t ∈ [0, 1/2] and γ(t) = γ+(2− 2t) if t ∈ [1/2, 1]

and hence γ = γ+ ∪ γ−.

Let now U be a slice Cauchy domain and consider any I ∈ S. The boundary
∂(U ∩CI) of U in CI consists of a finite union of piecewise continuously differ-
entiable Jordan curves and is symmetric with respect to the real axis. Hence,
whenever a curve γ belongs to ∂(U ∩CI), the curve−γ belongs to ∂(U ∩CI) too.
We can therefore decompose ∂(U ∩CI) as follows:

(i) First define γ+,1, . . . , γ+,κ as those Jordan curves that belong to ∂(U ∩CI)
and lie entirely in the upper complex halfplane C+

I . Then the curves −γ+,1, . . . ,
−γ+,κ are exactly those Jordan curves that belong to ∂(U ∩CI) and lie entirely in
the lower complex halfplane C−I .

(ii) In a second step consider the curves γκ+1, . . . , γN that belong to ∂(U ∩CI)
and take values both in C+

I and C−I . Define γ+,` for ` = κ + 1, . . . , N as the part
of γ` that lies in C+

I and γ−,` as the part of γ` that lies in C−I , cf. Lemma 3.3.

Overall, we obtain the following decomposition of ∂(U ∩CI):

∂(U ∩CI) =
⋃

16`6N

γ+,` ∪−γ+,`.

DEFINITION 3.4. We call the set {γ1,+, . . . , γN,+} the part of ∂(U ∩CI) that
lies in C+

I .
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3.2. A DIRECT DEFINITION AND ALGEBRAIC PROPERTIES OF THE S-FUNCTIONAL

CALCULUS. In order to define the S-functional calculus for arbitrary operators
in K(V) with nonempty S-resolvent set properly, we have to show that the re-
spective Cauchy integral is independent of the choice the slice Cauchy domain
over which and the complex plane on which we integrate. We follow the strategy
of [18].

THEOREM 3.5. Let T∈K(V) with ρS(T) 6=∅. If f ∈SHL(σS(T)∪{∞}), then
there exists an unbounded slice Cauchy domain U with σS(T)⊂U and U⊂D( f ) and

(3.1)
1

2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s)

belongs to ∈ B(V), where the value of this integral is the same for any choice of the
imaginary unit I ∈ S and for any choice of U satisfying the above conditions.

Similarly, if f ∈ SHR(σS(T) ∪ {∞}), then there exists an unbounded slice Cau-
chy domain U such that σS(T) ⊂ U and U ⊂ D( f ) and

1
2π

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T) ∈ B(V),

where the value of this integral is the same for any choice of the imaginary unit I ∈ S and
for any choice of U satisfying the above conditions.

Proof. Let f ∈ SHL(σS(T)∪ {∞}) and p ∈ ρS(T). Since ρS(T) is open, there
exists a closed ball Bε(p) ⊂ ρS(T) and since ρS(T) is axially symmetric we have

[Bε(p)] = {s = s0 + Is1 ∈ V : (s0 − p0)
2 + (s1 − p1)

2 6 ε} ⊂ ρS(T).

The existence of the slice Cauchy domain U now follows from (3.1) applied with
C = σS(T) and O = D(F) ∩ [Bε(p)]c.

The integral defines a bounded operator because the boundary of U in CI
consists of a finite set of closed piecewise differentiable Jordan curves and the
integrand is continuous and hence bounded on the compact set ∂(U ∩CI).

We now show the independence on the slice Cauchy domain. Consider first
the case of another unbounded slice Cauchy domain U′ such that σS(T) ⊂ U′ and
U′ ⊂ U. Then W = U \U′ is a bounded slice Cauchy domain and

∂(W ∩CI) = ∂(U ∩CI) ∪−∂(U′ ∩CI),

where−∂(U′ ∩CI) denotes the inversely orientated boundary of U′ in CI . More-
over, the function s 7→ S−1

L (s, T) is right and the function s 7→ f (s) is left slice
hyperholomorphic on W. Thus, Theorem 2.25 implies

0 =
1

2π

∫
∂(W∩CI)

S−1
L (s, T)dsI f (s)
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=
1

2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s)− 1

2π

∫
∂(U′∩CI)

S−1
L (s, T)dsI f (s).

If U′ is not contained in U, then U ∩U′ is an axially symmetric open set with
nonempty and bounded boundary and it contains σS(T). By Theorem 3.1 there
exists a third slice Cauchy domain W such that σS(T) ⊂ W and W ⊂ U ∩U′ and
all of them yield the same operator in (3.1) by the above argumentation.

Finally, we consider another imaginary unit J ∈ S and another unbounded
slice Cauchy domain W with σS(T) ⊂ W and W ⊂ U. By the above argumenta-
tion and Theorem 2.26, we have

1
2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s)

=
1

2π

∫
∂(W∩CI)

S−1
L (s, T)dsI f (s)

=
1

(2π)2

∫
∂(W∩CI)

S−1
L (s, T)dsI

(
f (∞) +

∫
∂(U∩CJ)

S−1
L (p, s)dpJ f (p)

)

=
1

(2π)2

∫
∂(W∩CI)

S−1
L (s, T)dsI f (∞)

− 1
(2π)2

∫
∂(U∩CJ)

∫
∂(Wc∩CI)

S−1
L (s, T)dsI S−1

L (p, s)dpJ f (p),

where Fubini’s theorem allows us to exchange the order of integration in the last
equation because we integrate a bounded function over a finite domain. Now
observe that Wc is a bounded slice Cauchy domain and that the left S-resolvent
is right slice hyperholomorphic in S on Wc. Theorem 2.25 implies

1
(2π)2

∫
∂(W∩CI)

S−1
L (s, T)dsI f (∞) = − 1

(2π)2

∫
∂(Wc∩CI)

S−1
L (s, T)dsI f (∞) = 0.

Since any p ∈ ∂(U ∩ CI) belongs to Wc by our choices of U and W and since
S−1

L (p, s) = −S−1
R (s, p), we deduce from Theorem 2.26

1
2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s)=

1
2π

∫
∂(U∩CJ)

( 1
2π

∫
∂(Wc∩CI)

S−1
L (s, T)dsI S−1

R (s, p)
)

dpJ f (p)

=
1

2π

∫
∂(U∩CJ)

S−1
L (p, T)dpJ f (p).
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DEFINITION 3.6. Let T ∈ K(V) with ρS(T) 6= ∅. For any function f ∈
SHL(σS(T) ∪ {∞}), we define

(3.2) f (T) := f (∞)I + 1
2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s),

and for f ∈ SHR(σS(T) ∪ {∞}), we define

(3.3) f (T) := f (∞)I + 1
2π

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T),

where I ∈ S and U is any slice Cauchy domain as in Theorem 3.5.

REMARK 3.7. Obviously, by Theorem 2.38, our approach is consistent with
the one used in [18] if ρS(T) ∩ R 6= ∅. Moreover, it also includes the case of
bounded operators: if f ∈ SHL(σS(T)) for a bounded operator T, then, since
the slice domain U in Definition 2.35 is bounded and we do not require connect-
edness of D( f ) in Definition 3.6, we can choose r > 0 such that U is contained
in the ball Br(0). We might then extend f to a function in SHL(σS(T) ∪ {∞}),
for instance by setting f (s) = c with c ∈ F on F0 \ Br(0), and use the unbounded
slice Cauchy domain (F0 \ Br(0))∪U in (3.2). But since the left S-resolvent is then
right slice hyperholomorphic on F0 \ Br and f (s) is left slice hyperholomorphic
on this set, we obtain

f (T)= f (∞)I + 1
2π

∫
−∂(Br(0)∩CI)

f (s)dsI S−1
L (s, T) +

1
2π

∫
∂(U∩CI)

f (s)dsI S−1
L (s, T)

=
1

2π

∫
∂(U∩CI)

f (s)dsI S−1
L (s, T)

because Theorem 2.25 and Remark 2.27 imply that the sum of f (∞)I and the
integral over the boundary of Br(0) vanishes.

EXAMPLE 3.8. Let T ∈ K(V) with ρS(T) 6= ∅. Consider the left slice hy-
perholomorphic function f (s) = a for some a ∈ F and choose an arbitrary un-
bounded slice Cauchy domain U with σS(T) ⊂ U and an imaginary unit I. Then

(3.4) f (T) = f (∞)I + 1
2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s) = aI ,

because f (∞) = a and the integral vanishes by Theorem 2.25 and Remark 2.27
as the left S-resolvent is right slice hyperholomorphic in s on a superset of F0 \U
and vanishes at infinity. An analogue argument shows that also f (T) = Ia = aI
if f is considered right slice hyperholomorphic.

The following algebraic properties of the S-functional calculus immediately
follow from the left and right linearity of the integral.
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COROLLARY 3.9. Let T ∈ K(V) with ρS(T) 6= ∅.
(i) If f , g ∈ SHL(σS(T) ∪ {∞}) and a ∈ F, then

( f + g)(T) = f (T) + g(T) and ( f a)(T) = f (T)a.

(ii) If f , g ∈ SHR(σS(T) ∪ {∞}) and a ∈ F, then

( f + g)(T) = f (T) + g(T) and (a f )(T) = a f (T).

REMARK 3.10. Theorem 3.5 ensures that these functional calculi are well-
defined in the sense that they are independent of the choices of the imaginary
unit I ∈ S and the slice Cauchy domain U. However, they are not consistent
unless one restricts to functions that are defined on axially symmetric slice do-
mains. As we shall see in the following, there exist functions that are left and
right slice hyperholomorphic such that (3.2) and (3.3) do not give the same oper-
ator, cf. 3.16 and 6.8. However, at least for intrinsic functions (3.2) and (3.3) are
two representations for the same operator as we shall see now.

LEMMA 3.11. Let T ∈ K(V) with ρS(T) 6= ∅ and let f ∈ N (σS(T) ∪ {∞}).
Furthermore consider a slice Cauchy domain U such that σS(T) ⊂ U and U ⊂ D( f )
and some imaginary unit I ∈ S. If γ1, . . . , γN is the part of ∂(U ∩CI) that lies in C+

I
as in (3.4), then∫

∂(U∩CI)

f (s)dsI S−1
R (s, T) =

N

∑
`=1

1∫
0

2Re( f (γ`(t))(−I)γ′`(t)γ`(t))Q−1
γ`(t)

(T)dt

−
N

∑
`=1

1∫
0

2Re( f (γ`(t))(−I)γ′`(t))TQ
−1
γ`(t)

(T)dt.(3.5)

Proof. We have∫
∂(U∩CI)

f (s)dsIS−1
R (s, T)=

N

∑
`=1

∫
γ`

f (s)dsI S−1
R (s, T) +

N

∑
`=1

∫
−γ`

f (s)dsI S−1
R (s, T)

=
N

∑
`=1

1∫
0

f (γ`(t))(−I)γ′`(t)(γ`(t)− T)Q−1
γ`(t)

(T)dt

+
N

∑
`=1

1∫
0

f (γ`(1−t))Iγ′`(1−t)(γ`(1−t)−T)Q−1
γ`(1−t)

(T)dt.

Since f (x) = f (x) as f is intrinsic and Qs(T) = Qs(T) for s ∈ ρS(T), we get after
a change of variables in the integrals of the second sum

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T) =

N

∑
`=1

1∫
0

f (γ`(t))(−I)γ′`(t)(γ`(t)− T)Q−1
γ`(t)

(T)dt
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+
N

∑
`=1

1∫
0

f (γ`(t))(−I)γ′`(t)(γ`(t)− T)Q−1
γ(t)(T)dt

=
N

∑
`=1

1∫
0

2Re( f (γ`(t))(−I)γ′`(t)γ`(t))Q−1
γ`(t)

(T)dt

−
N

∑
`=1

1∫
0

2Re( f (γ`(t))(−I)γ′`(t))TQ
−1
γ`(t)

(T)dt.

THEOREM 3.12. Let T ∈ K(V) with ρS(T) 6= ∅. If f ∈ N (σS(T)∪ {∞}), then

1
2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s) =

1
2π

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T)

for any I ∈ S and any slice Cauchy domain as in (3.5).

Proof. Fix U and I, let γ1, . . . , γN be the part of ∂(U ∩ CI) that lies in C+
I

and write the integral involving the right S-resolvent as an integral over these
paths as in (3.5). Any operator commutes with real numbers and f (γ`(t)), γ′`(t)
and γ`(t) commute mutually since they all belong to the same complex plane CI .
Hence

∫
∂(U∩CI)

f (s)dsIS−1
R (s, T)=

N

∑
`=1

1∫
0

Q−1
γ(t)(T)2Re(γ`(t)γ′`(t)(−I) f (γ`(t)))dt

−
N

∑
`=1

1∫
0

TQ−1
γ`(t)

(T)2Re(γ′`(t)(−I) f (γ`(t)))dt

=
N

∑
`=1

1∫
0

(TQ−1
γ`(t)

(T)−Q−1
γ`(t)

(T)γ`(t))γ′`(t)(−I) f (γ`(t))dt

+
N

∑
`=1

1∫
0

(TQ−1
γ`(t)

(T)−Q−1
γ`(t)

(T)γ`(t))γ′`(t)I f (γ`(t))dt

=
N

∑
`=1

∫
γ`

S−1
L (s, T)dsI f (s) +

N

∑
`=1

∫
−γ`

S−1
L (s, T)dsI f (s)

=
∫

∂(U∩CI)

S−1
L (s, T)dsI f (s).

COROLLARY 3.13. Let T ∈ K(V) with ρS(T) 6= ∅. If f ∈ N (σS(T) ∪ {∞}),
then (3.2) and (3.3) give the same operator.
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Recall that a function f on U is called locally constant if every point x ∈ U
has a neighborhood Bx ⊂ U such that f is constant on U. A locally constant
function f is constant on every connected subset of its domain. Thus, since every
sphere [x] is connected, the function f is constant on every sphere if its domain
U is axially symmetric, i.e. it is of the form f (x) = c(x0, x1), where c is locally
constant on an appropriate subset of R2. Therefore f can be considered a left and
a right slice function and it is even left and right slice hyperholomorphic because
the partial derivatives of a locally constant function vanish.

LEMMA 3.14. A function f is left and right slice hyperholomorphic if and only if
f = c + f̃ , where c is a locally constant slice function and f̃ is intrinsic.

Proof. Obviously any function that admits a decomposition of this type is
both left and right slice hyperholomorphic.

Assume on the other hand that f is left and right slice hyperholomorphic
such that f (x) = α(x0, x1) + Ixβ(x0, x1) and f (x) = α̂(x0, x1) + β̂(x0, x1)Ix. The
compatibility condition (2.3) implies

α(x0, x1) =
1
2
( f (x) + f (x)) = α̂(x0, x1),

from which we deduce Iβ(x0, x1) = f (xI)− α(x0, x1) = β̂(x0, x1)I for any I ∈ S,
where xI = x0 + Ix1. Hence we have

Iβ(x0, x1)I−1 = β̂(x0, x1).

If we choose I = Iβ(x0,x1)
, then I and β(x0, x1) commute and we obtain β(x0, x1) =

β̂(x0, x1). Moreover, β(x0, x1) commutes with every I ∈ S because Iβ(x0, x1) =

β̂(x0, x1)I = β(x0, x1)I, which implies that β(x0, x1) is real.
Since β takes real values, its partial derivatives (∂/∂x0)β(x0, x1) and

(∂/∂x1)β(x0, x1) are real-valued too. Thus, since α and β satisfy the Cauchy–
Riemann-equations (2.4), the partial derivatives of α also take real-values.

Now define α̃(x0, x1) = Re(α(x0, x1)) and β̃(x0, x1) = β(x0, x1) and set
f̃ (x) = α̃(x0, x1) + Ixβ(x0, x1) and c(x) = f (x) − f̃ (x) = Im(α(x0, x1)). Ob-
viously, α̃ and β̃ satisfy the compatibility condition (2.3). They also satisfy the
Cauchy–Riemann-equations (2.4) because α and β do and

∂

∂xi
α̃(x0, x1) =

∂

∂xi
Re(α(x0, x1)) = Re

( ∂

∂xi
α(x0, x1)

)
=

∂

∂xi
α(x0, x1).

Therefore f̃ is a left slice hyperholomorphic function with real-valued compo-
nents, thus intrinsic.

It remains to show that c is locally constant. Since c̃(x) = Im(α(x0, x1)), it
depends only on x0 and x1 but not on the imaginary unit Ix and is therefore con-
stant on every sphere [x] with x ∈ U. Moreover, as the sum of two slice hyper-
holomorphic functions, it is left (and right) slice hyperholomorphic and thus its
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restriction cI to any complex plane CI is an F-valued holomorphic function. But

c′I(x) =
∂

∂x0
cI(x) =

∂

∂x0
f (x)− ∂

∂x0
f̃ (x) = 0 x ∈ U ∩CI

and hence c is locally constant on U ∩CI . If x ∈ U, we can therefore find a neigh-
borhood BIx of x in U ∩ CIx such that cIx is constant on BIx . Since c is constant
on any sphere, it is even constant on the axially symmetric hull B = [BIx ] of BIx ,
which is a neighborhood of x in U.

COROLLARY 3.15. Let T ∈ K(V) such that T ∈ ρS(T) 6= ∅ and let f be both
left and right slice hyperholomorphic on σS(T) and at infinity. IfD( f ) is connected, then
(3.2) and (3.3) give the same operator.

Proof. By applying Lemma 3.14 we obtain a decomposition f = c + f̃ of f
into the sum of a locally constant function c and an intrinsic function f̃ . Since
dom( f ) is connected, c is even constant. Thus, Corollary 3.13 and Example 3.8
imply

f (∞)I + 1
2π

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T)

= c
(
I+ 1

2π

∫
∂(U∩CI)

dsI S−1
R (s, T)

)
+ f̃ (∞)I+ 1

2π

∫
∂(U∩CI)

f̃ (s)dsI S−1
R (s, T)

= cI + f̃ (T) = Ic + f̃ (T)

=
(
I + 1

2π

∫
∂(U∩CI)

S−1
L (s, T)dsI

)
+ f̃ (∞)I + 1

2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f̃ (s)

= f (∞)I + 1
2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s),

where U and I are chosen as in Definition 3.6.

REMARK 3.16. We point out that Corollary 3.15 does not hold true in gen-
eral. The S-functional calculus has usually been considered for functions that are
defined on connected sets, namely on axially symmetric slice domains. Hence,
the calculi for left and right slice hyperholomorphic functions were consistent as
we have seen in Corollary 3.15.

However, this restriction occurred only due to the reasons explained in Re-
mark 2.9. Since it excludes a wide class of functions, in particular those that
generate spectral projections as they are studied in Section 6, it is worthwhile to
remove it. The price one has to pay in this case is that the two functional calculi
become inconsistent. Indeed, in Corollary 3.15 the function c is constant since
D( f ) is connected and hence, by Example 3.8, the functional calculi for left and
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right slice hyperholomorphic functions yield c(T) = cI and c(T) = Ic, respec-
tively. Since the identity operator commutes with every constant c, these opera-
tors coincide.

If on the contrary D( f ) is not connected, then c is only locally constant, i.e.
it will in general be of the form ∑ χ∆ i (s)ci, where the ∆ i are disjoint axially sym-
metric sets and χ∆ i denotes the characteristic function of ∆ i, which is obviously
intrinsic. The functional calculi for left and right slice hyperholomorphic func-
tions yield then c(T) = ∑ χ∆ i (T)ci and c(T) = ∑ ciχ∆ i (T), respectively. These
two operators coincide only if the operators χ∆ i commute with the scalars ci. As
we will see in Section 6, the operators χ∆ i (T) are spectral projections onto invari-
ant subspaces of the operator T. Since the operator T is right linear, its invariant
subspaces are right subspaces of V. But if a projection χ∆ i (T) commutes with
any scalar, then av = aχ∆ i (T)v = χ∆(T)av ∈ χ∆ i (T)V for any v ∈ χ∆ i (T)V and
any a ∈ F and thus χ∆ i (T)V is also a left and therefore a two-sided subspace
of V. In general, this is not true: the invariant subspaces obtained from spectral
projections are only right sided. Hence, the projections χ∆ i (T) do not necessarily
commute with any scalar and it might be that ∑ χ∆ i (T)ci 6= ∑ ciχ∆ i (T), i.e. the
two functional calculi give different operators for the same function.

An explicit example for this situation is given in Example 6.8.

4. THE PRODUCT RULES AND POLYNOMIALS IN T

In order to prove the product rule for our functional calculus, we recall
Lemma 3.23 of [2]. Observe that, for the reasons explained in Remark 2.9, the
lemma was originally stated assuming that U is a slice domain. However, the
same proof works also in the case that U is a bounded slice Cauchy domain.

LEMMA 4.1. Let B ∈ B(V), let U be a bounded slice Cauchy domain and let
f ∈ N (U). For p ∈ U and any I ∈ S, we have

B f (p) =
1

2π

∫
∂(U∩CI)

f (s)dsI (sB− Bp)(p2 − 2s0 p + |s|2)−1.

THEOREM 4.2. Let T ∈ K(V) with ρS(T) 6= 0. If f ∈ N (σS(T) ∪ {∞}) and
g ∈ SHL(σS(T) ∪ {∞}), then

(4.1) ( f g)(T) = f (T)g(T).

Similarly, if f ∈ SHR(σS(T)∪ {∞}) and g ∈ N (σS(T)∪ {∞}), then the product rule
(4.1) also holds true.

Proof. By Theorem 3.5, there exist unbounded slice Cauchy domains Up and
Us such that σS(T) ⊂ Up and Up ⊂ Us and Us ⊂ D( f ) ∩ D(g). The subscripts s
and p indicate the respective variable of integration in the following computation.
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Moreover, we use the notation [∂O]I := ∂(O ∩CI) for an axially symmetric set O
in order to obtain more compact formulas.

Recall that by Theorem 3.12 the operator f (T) can be represented using the
left and the right S-resolvent operator and hence

f (T)g(T)=
(

f (∞)I+ 1
2π

∫
[∂Us ]I

f (s)dsI S−1
R (s, T)

)(
g(∞)I+ 1

2π

∫
[∂Up ]I

S−1
L (p, T)dpI g(p)

)
.

For the product of the integrals, the S-resolvent equation (2.13) gives us that∫
[∂Us ]I

f (s)dsI S−1
R (s, T)

∫
[∂Up ]I

S−1
L (p, T)dpI g(p)

=
∫

[∂Us ]I

∫
[∂Up ]I

f (s)dsI S−1
R (s, T)S−1

L (p, T)dpI g(p)

=
∫

[∂Us ]I

∫
[∂Up ]I

f (s)dsI S−1
R (s, T)p(p2 − 2s0 p + |s|2)−1 dpI g(p)

−
∫

[∂Us ]I

∫
[∂Up ]I

f (s)dsI S−1
L (p, T)p(p2 − 2s0 p + |s|2)−1 dpI g(p)

−
∫

[∂Us ]I

∫
[∂Up ]I

f (s)dsI sS−1
R (s, T)(p2 − 2s0 p + |s|2)−1 dpI g(p)

+
∫

[∂Us ]I

∫
[∂Up ]I

f (s)dsI sS−1
L (p, T)(p2 − 2s0 p + |s|2)−1 dpI g(p).

For the sake of readability, let us denote these last four integrals by I1, . . . , I4.
If r > 0 is large enough, then F0 \Us is entirely contained in Br(0). In par-

ticular, W := Br(0) ∩Up is then a bounded slice Cauchy domain with boundary
∂(W ∩CI) = ∂(Up ∩CI) ∪ ∂(Br(0) ∩CI). From Lemma 4.1, we deduce

I1 =
∫

[∂Us ]I

f (s)dsI S−1
R (s, T)

∫
[∂Up ]I

p(p2 − 2s0 p + |s|2)−1 dpI g(p)

=
∫

[∂Us ]I

f (s)dsI S−1
R (s, T)

∫
[∂W]I

p(p2 − 2s0 p + |s|2)−1 dpI g(p)

−
∫

[∂Us ]I

f (s)dsI S−1
R (s, T)

∫
[∂Br(0)]I

p(p2 − 2s0 p + |s|2)−1 dpI g(p)

= −
∫

[∂Us ]I

f (s)dsI S−1
R (s, T)

∫
[∂Br(0)]I

p(p2 − 2s0 p + |s|2)−1 dpI g(p),

where the last equality follows from Cauchy’s integral theorem since the function
p 7→ p(p2 − 2s0 p + |s|2)−1 is left slice hyperholomorphic and the function p 7→
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g(p) is right slice hyperholomorphic on W by our choice of Us and Up. If we
let r tend to +∞ and apply Lebesgue’s theorem in order to exchange limit and
integration, the inner integral tends to 2πg(∞) and hence

I1 = −2π
( ∫
[∂Us ]I

f (s)dsI S−1
R (s, T)

)
g(∞).

We also have

−I2+ I4=
∫

[∂Us ]I

∫
[∂Up ]I

f (s)dsI (sS−1
L (p, T)−pS−1

L (p, T))(p2−2s0 p+|s|2)−1 dpI g(p),

and applying Fubini’s theorem allows us to change the order of integration. If we
now set W = Br(0) ∩Us with r sufficiently large we obtain as before a bounded
slice Cauchy domain with ∂(W ∩ CI) = ∂(Us ∩ CI) ∪ ∂(Br(0) ∩ CI). Applying
Lemma 4.1 with B = S−1

L (p, T), we deduce

−I2+ I4=
∫

[∂Up ]I

∫
[∂W]I

f (s)dsI (sS−1
L (p, T)−pS−1

L (p, T))(p2−2s0 p+|s|2)−1 dpI g(p)

−
∫

[∂Up ]I

∫
[∂Br(0)]I

f (s)dsI(sS−1
L (p, T)−pS−1

L (p, T))(p2−2s0 p+|s|2)−1dpI g(p)

=2π
∫

[∂Up ]I

S−1
L (p, T) f (p)dpI g(p)

−
∫

[∂Up ]I

∫
[∂Br(0)]I

f (s)dsI sS−1
L (p, T)(p2 − 2s0 p + |s|2)−1 dpI g(p)

−
∫

[∂Up ]I

∫
[∂Br(0)]I

f (s)dsI pS−1
L (p, T)(p2 − 2s0 p + |s|2)−1 dpI g(p).

Observe that the third integral tends to zero as r → ∞. For the second, we obtain
by applying Lebesgue’s theorem∫
[∂Up ]I

∫
[∂Br(0)]I

f (s)dsI sS−1
L (p, T)(p2 − 2s0 p + |s|2)−1 dpI g(p)

=
∫

[∂Up ]I

( 2π∫
0

f (reiφ)r2S−1
L (p, T)(p2 − 2r cos(φ)p + r2)−1 dφ

)
dpI g(p)

r→+∞−→ 2π f (∞)
∫

[∂Up ]I

S−1
L (p, T)dpI g(p).
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Since f is intrinsic, f (p) commutes with dpI , and hence

−I2 + I4 = 2π
∫

[∂Up ]I

S−1
L (p, T)dpI f (p)g(p)− 2π f (∞)

∫
[∂Up ]I

S−1
L (p, T)dpI g(p).

Finally, we consider the integral I3. If we set again W = Br(0) ∩Up with r suffi-
ciently large, then

−I3 = −
∫

[∂Us ]I

∫
[∂W]I

f (s)dsI sS−1
R (s, T)(p2 − 2s0 p + |s|2)−1 dpI g(p)

+
∫

[∂Us ]I

∫
[∂Br(0)]I

f (s)dsI sS−1
R (s, T)(p2 − 2s0 p + |s|2)−1 dpI g(p).

By our choice of Us and Up, the functions and p 7→ (p2 − 2s0 p + |s|2)−1 and p 7→
g(p) are left respectively right slice hyperholomorphic on V. Hence, Cauchy’s in-
tegral theorem implies that the first integral equals zero. Letting r tend to infinity,
we can apply Lebesgue’s theorem in order to exchange limit and integration and
we see that

−I3 =
∫

[∂Us ]I

∫
[∂Br(0)]I

f (s)dsI sS−1
R (s, T)(p2 − 2s0 p + |s|2)−1 dpI g(p)→ 0.

Altogether, we obtain

1
(2π)2

∫
[∂Us ]I

f (s)dsI S−1
R (s, T)

∫
[∂Up ]I

S−1
L (p, T)dpI g(p)

= − 1
2π

( ∫
[∂Us ]I

f (s)dsI S−1
R (s, T)

)
g(∞) +

1
2π

∫
[∂Up ]I

S−1
L (p, T)dpI f (p)g(p)

− f (∞)
1

2π

∫
[∂Up ]I

S−1
L (p, T)dpI g(p).

We thus have

f (T)g(T) = f (∞)g(∞)I + f (∞)
1

2π

∫
[∂Up ]I

S−1
L (p, T)dpI g(p)

+
( 1

2π

∫
[∂Us ]I

f (s)dsI S−1
R (s, T)

)
g(∞)

+
1

(2π)2

∫
[∂Us ]I

f (s)dsI S−1
R (s, T)

∫
[∂Up ]I

S−1
L (p, T)dpI g(p)

= f (∞)g(∞)I + 1
2π

∫
[∂Up ]I

S−1
L (p, T)dpI f (p)g(p) = ( f g)(T).
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If the operator T is bounded, then slice hyperholomorphic polynomials of T
belong to the class of functions that are admissible for the S-functional calculus.
In the unbounded cases, this is not true, but the S-functional calculus is in some
sense still compatible, at least with intrinsic polynomials. For such polynomial

P(s) =
n
∑

k=0
aksk with ak ∈ R, the operator P(T) is as usual defined as the operator

P(T)v :=
n

∑
k=0

akTkv v ∈ dom(Tn).

LEMMA 4.3. Let T ∈ K(V) with ρS(T) 6= ∅, let f ∈ N (σS(T)∪{∞}) and let P
be an intrinsic polynomial of degree n ∈ N0. If v ∈ dom(Tn), then f (T)v ∈ dom(Tn)
and f (T)P(T)v = P(T) f (T)v.

Proof. We consider first the special case p(s) = s. Let U be a slice Cauchy
domain with σS(T) ⊂ U and let {γ1, . . . , γn} be the part of ∂(U ∩CI) in C+

I for
some I ∈ S, cf. Definition 3.4. We apply Lemma 3.11 and write

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T) =

N

∑
`=1

1∫
0

2Re( f (γ`(t))(−I)γ′`(t)γ`(t))Q−1
γ`(t)

(T)dt

−
N

∑
`=1

1∫
0

2Re( f (γ`(t))(−I)γ′`(t))TQ
−1
γ`(t)

(T)dt.

Observe that Q−1
γi(t)

(T)Tv = TQ−1
γi(t)

(T)v for v ∈ dom(T) and that T also com-
mutes with real numbers. By applying Hille’s theorem for the Bochner integral,
we can move T in front of the integral and find

1
2π

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T)Tv=

n

∑
i=1

T
1

2π

1∫
0

2Re( f (γi(t))(−I)γ′i(t)γi(t))Q−1
γi(t)

(T)v

−
n

∑
i=1

T
1

2π

1∫
0

2Re( f (γi(t))(−I)γ′i(t))TQ−1
γi(t)

(T)v

=T
1

2π

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T)v,

where the last equation follows again from (3.5). Finally, observe that f (∞) =
lim
s→∞

f (s) is real since f (s) ∈ R for any s ∈ R. Hence,

f (T)Tv = f (∞)Tv +
1

2π

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T)Tv
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= T f (∞)v + T
1

2π

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T)v = T f (T)v.

In particular, this implies f (T)v ∈ dom(T).
We show the general statement by induction with respect to the degree n

of the polynomial. If n = 0 then the statement follows immediately from Exam-
ple 3.8. Now assume that it is true for n− 1 and consider P(s) = aksn + Pn−1(s),
where an ∈ R and Pn−1(s) is an intrinsic polynomial of degree lower or equal
to n− 1. For v ∈ dom(Tn) the above argumentation implies then f (T)Tn−1v ∈
dom(T) and

f (T)P(T)v = f (T)anTnv + f (T)Pn−1(T)v = anT f (T)Tn−1v + f (T)Pn−1(T)v.

From the induction hypothesis, we further deduce f (T)Tn−1v = Tn−1 f (T)v and
f (T)Pn−1(T)v = Pn−1(T) f (T)v and hence

f (T)P(T)v = anTn f (T)v + Pn−1(T) f (T)v = P(T) f (T)v.

In particular, we see that f (T)v belongs to dom(Tn) and we obtain that the state-
ment is true.

As in the complex case, we say that f has a zero of order n at ∞ if the first
n − 1-coefficients in the Taylor series expansion of s 7→ f (s−1) at 0 vanish and
the n-th coefficient does not. Equivalently, f has a zero of order n if lim

s→∞
f (s)sn is

bounded and nonzero. We say that f has a zero of infinite order, if it vanishes on
a neighborhood of ∞.

LEMMA 4.4. Let T ∈ K(V) with ρS(T) 6= ∅ and assume that the function
f ∈ N (σS(T) ∪ {∞}) has a zero of order n ∈ N0 ∪ {+∞} at infinity.

(i) For any intrinsic polynomial P of degree lower than or equal to n, we have
P(T) f (T) = (P f )(T).

(ii) If v ∈ dom(Tm) for some m ∈ N0 ∪ {∞}, then f (T)v ∈ dom(Tm+n).

Proof. Assume first that f has a zero of order greater than or equal to one at
infinity and consider P(s) = s. Then P f ∈ N (σS(T) ∪ {∞}) and for v ∈ V

(P f )(T)v = lim
s→∞

s f (s)v +
1

2π

∫
∂(U∩CI)

S−1
L (s, T)dsIs f (s)v,

with an appropriate slice Cauchy domain U and any imaginary unit I ∈ S. Since
s and dsI commute, we deduce from the left S-resolvent equation (2.12) that

1
2π

∫
∂(U∩CI)

S−1
L (s, T)dsI s f (s)v=

1
2π

∫
∂(U∩CI)

TS−1
L (s, T)dsI f (s)v+

1
2π

∫
∂(U∩CI)

dsI f (s)v.
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Any sufficiently large Ball Br(0) contains ∂U. The function f (s)v is then right
slice hyperholomorphic on Br(0) ∩U and Cauchy’s integral theorem implies

1
2π

∫
∂(U∩CI)

dsI f (s)v = lim
r→+∞

− 1
2π

∫
∂(Br(0)∩CI)

dsI f (s)v

= lim
r→+∞

− 1
2π

2π∫
0

reIϕ f (reIϕ)v dϕ = − lim
r→+∞

r f (r)v.

Thus, after applying Hille’s theorem for the Bochner integral in order to write the
operator T in front of the integral, we obtain

(P f )(T)v = T
1

2π

∫
∂(∩CI)

S−1
L (s, T)dsI f (s)v = P(T) f (T)v.

In particular, we see that f (T)v ∈ dom(T).
We show (i) for monomials by induction and assume that it is true for p(s) =

sn−1 if f has a zero of order greater than or equal to n− 1 at infinity. If the order of
f at infinity is even greater than or equal to n, then g(s) = sn−1 f (s) has a zero of
order at least 1 at infinity and, from the above argumentation and the induction
hypothesis, we conclude for P(s) = sn

(P f )(T)v = Tg(T)v = TTn−1 f (T)v = Tn f (T)v,

which implies also f (T)v ∈ dom(Tn). For arbitrary intrinsic polynomials the
statement finally follows from the linearity of the S-functional calculus.

In order to show (ii) assume first v ∈ dom(Tm) for m ∈ N. If f has a zero of
order n ∈ N at infinity, then (i) with P(s) = sn and Lemma 4.3 imply

(P f )(T)Tmv = Tn f (T)Tmv = TnTm f (T)v = Tm+n f (T)v

and hence f (T)v ∈ dom(Tm+n). Finally, if m = +∞ then v ∈ dom(Tk) and hence
f (T)v ∈ dom(Tk+n) for any k ∈ N. Thus, v ∈ dom(T∞).

COROLLARY 4.5. Let T ∈ K(X) with ρS(T) 6= ∅. For any intrinsic poly-
nomial P, the operator P(T) is closed.

Proof. We choose s ∈ ρS(T) and n ∈ N such that m 6 2n, where m is the
degree of P. Then f (p) = P(p)Qs(p)−n belongs to N (σS(T) ∪ {∞}) and has a
zero of order 2n−m at infinity. Applying Lemma 4.4, we see that

P(T)v = P(T)Qs(T)nQs(T)−nv = Qs(T)nP(T)Qs(T)−nv = Qs(T)n f (T)v

for v ∈ dom(Tm). Since its inverse is bounded, the operator Qs(T)n is closed
and in turn P(T) is closed as it is the composition of a closed and a bounded
operator.
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COROLLARY 4.6. Let T ∈ K(V) with ρS(T) 6= ∅. If f ∈ N (σS(T) ∪ {∞}) has
no zeros on σS(T) and a zero of even order n at infinity, then ran( f (T)) = dom(Tn)
and f (T) is invertible in the sense of closed operators. If ρS(T) ∩R 6= ∅, this holds true
for any order n ∈ N.

Proof. Let P ∈ ρS(T) and set k = n/2. The function h(s) = f (s)Qp(s)k

with Qp(s) = s2 − 2Re(p)s + |p|2 belongs to N (σS(T) ∪ {∞}) and does not have
any zeros in σS(T). Furthermore, h(∞) = lim

s→∞
h(s) is finite and nonzero. Hence,

s 7→ h(s)−1 belongs to N (σS(T) ∪ {∞}) and we deduce from Theorem 4.2 that
h(T) is invertible in B(V). Theorem 4.2 moreover implies f (T) = Qp(T)−kh(T).
Now observe that h(T) maps V bijectively onto V and thatQp(T)−k maps V onto
dom(T2k) = dom(Tn). Thus ran( f (T)) = dom(Tn).

Finally, f (T)−1 := h−1(T)Qp(T)k is a closed operator because h is bijective
and continuous andQp(T)k is closed by Corollary 4.5: it satisfies f (T)−1 f (T)v =

v for v ∈ V and f (T) f (T)−1v = v for v ∈ dom(Tn). Thus it is the inverse of f (T).
In the case there exists a point a ∈ ρS(T)∩R, a similar argumentation holds

with P(s) = (s − a)n instead of Qp(s)k. In particular, this allows us to include
functions with a zero of odd order at infinity too.

5. THE SPECTRAL MAPPING THEOREM AND COMPOSITE FUNCTIONS

DEFINITION 5.1. Let T ∈ K(V). We define the extended spectrum σSX(T) as
σS(T) if T is bounded and as σS(T) ∪ {∞} otherwise. The extended resolvent set
ρSX(T) is the complement of σSX(T) in F0 ∪ {∞}.

THEOREM 5.2 (Spectral mapping theorem). Let T ∈ K(V) with ρS(T) 6= ∅.
If f ∈ N (σS(T) ∪ {∞}), then σS( f (T)) = f (σSX(T)).

Proof. Let us first show the relation σS( f (T)) ⊃ f (σSX(T)). For p ∈ σS(T)
consider the function

g(s) := ( f (s)2 − 2Re( f (p)) f (s)− | f (p)|2)(s2 − 2Re(p)s + |p|2)−1,

which is defined on D( f ) \ [p]. If we set pIs = p0 + Is p1, then pIs and s commute.
Since f is intrinsic, it maps CI into CI and hence f (pIs) and f (s) commute too.
Thus

g(s) =
( f (s)− f (pIs))( f (s)− f (pIs))

(s− pIs)(s− pIs
)

and we can extend g to all of D( f ) by setting

(5.1) g(s) =

{
∂S f (s)( f (p) p−1) s ∈ [p] if p /∈ R,

(∂S f (s))2 s = p if p ∈ R,
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where p = (1/2)(p− p) denotes the vectorial part of p. Now observe that

(s2 − 2Re(p)s + |p|2)g(s) = f (s)2 + 2Re( f (p)) f (s) + | f (p)|2

and that g has zero of order greater or equal to 2 at infinity. Hence, we can apply
the S-functional calculus to deduce from Lemma 4.4, Theorem 4.2 and Exam-
ple 3.8 that

(T2 − 2Re(p)T + |p|2I)g(T)v = ( f (T)2 + 2Re( f (p)) f (T) + | f (p)|I)v

for any v ∈ V and

g(T)(T2 − 2Re(p)T + |p|2Ig(T))v = ( f (T)2 + 2Re( f (p)) f (T) + | f (p)|I)v

for v ∈ dom(T2). If f (p) ∈ ρS(T), then

Q f (p)( f (T)) = f (T)2 − 2Re( f (p)) f (T) + | f (p)|I

is invertible and Q f (p)( f (T))−1g(T) = g(T)Q f (p)( f (T))−1 is the inverse of the
operator Qp(T) = T2 − 2Re(p)T + |p|2I . Hence, f (p) /∈ σS( f (T)) implies p /∈
σS(T) and as a consequence p ∈ σS(T) implies f (p) ∈ σS(T), that is f (σS(T)) ⊂
σS( f (T)).

Finally, observe that f (∞) = lim
p→∞

f (p) is real because f is intrinsic and

thus takes real values on the real line. If T is unbounded and f (∞) 6= f (p) for
any p ∈ σS(T) (otherwise we already have f (∞) ∈ f (σS(T)) ⊂ σS( f (T))), then
the function h(s) = ( f (s) − f (∞))2 belongs to N (σS(T) ∪ {∞}) and has a zero
of even order n at infinity but no zero in σS(T). By Corollary 4.6, the range of
h(T) = Q f (∞)( f (T)) is dom(Tn). Thus, it does not admit a bounded inverse and
we obtain f (∞) ∈ σS( f (T)). Altogether, we have f (σSX(T)) ⊂ σ( f (T)).

In order to show the relation σS( f (T)) ⊂ f (σSX(T)), we first consider a
point c ∈ σS( f (T)) such that c 6= f (∞). We want to show c ∈ f (σS(T)) and
assume the converse, i.e. f (s)− c has no zeros on σS(T).

If c is real, then the function h(s) = f (s) − c is intrinsic, has no zeros
on σS(T) and lim

s→∞
h(s) = f (∞) − c 6= 0. Hence, h−1(s) = ( f (s) − c)−1 be-

longs to N (σS(T) ∪ {∞}). Applying the S-functional calculus, we deduce from
Theorem 4.2 that h−1(T) is the inverse of f (T) − cI and hence Qc( f (T))−1 =
(h−1(T))2, c.f. Theorem 2.33, which is a contradiction as c ∈ σS( f (T)). Thus,
c = f (p) for some p ∈ σS(T).

If on the other hand c is not real, then f − cI 6= 0 for any cI = c0 + Ic1 ∈
[c]. Indeed, f (p) = α(p0, p1) + Ipβ(p0, p1) = c0 + Ic1 would imply Ip = I and
α(p0, p1) = c0 and β(p0, p1) = c1 as α and β are real-valued because f is intrinsic.
This would in turn imply f (pIc) = α(p0, p1) + Icβ(p0, p1) = c, which would
contradict our assumption. Therefore, the function

h(s) = ( f (s)2 − 2Re(c) f (s) + |c|2) = ( f (s)− cIs)( f (s)− cIs)
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does not have any zeros on σS(T). Moreover, since f (∞) is real, we have

h(∞) = ( f (∞)− c)( f (∞)− c) = | f (∞)− c|2 6= 0

and hence h−1(s) = ( f (s)2 − 2Re(c) f (s) + |c|2)−1 belongs to N (σS(T) ∪ {∞}).
Applying the S-functional calculus, we deduce again from Theorem 4.2 that the
operator h−1(T) is the inverse of Qc(T), which contradicts c ∈ σS( f (T)). Hence,
there must exist some p ∈ σS(T) such that c = f (p).

Altogether, we obtain σS( f (T)) \ { f (∞)} is contained in f (σS(T)).
Finally, let us consider the case that the point c = f (∞) belongs to σS( f (T)).

If T is unbounded, then ∞ ∈ σSX(T) and hence c ∈ f (σSX(T)). If on the other
hand T is bounded, then there exists a function g ∈ N (σS(T) ∪ {∞}) that coin-
cides on an axially symmetric neighborhood σS(T) with f but satisfies c 6= g(∞).
In this case f (T) = g(T), as pointed out in Remark 3.7, and we can apply the
above argumentation with g instead of f to see that c ∈ g(σS(T)) = f (σS(T)).

THEOREM 5.3. If T ∈ K(V) with σS(T) 6= ∅, then P(σS(T)) = σS(P(T)) for
any intrinsic polynomial P.

Proof. The arguments are similar to those in the proof of Theorem 5.2: in or-
der to show that P(σS(T))⊂ σS(P(T)), we consider the polynomial QP(p)(P(s)),
which is given byQP(p)(P(s))=P(s)2−2Re(P(p))P(s)+|P(p)|2 for any p∈σS(T).
As p and p are both zeros of QP(p)(P(s)) respectively as p is a zero of even order
of QP(p)(P(s)) = (P(s)−P(p))2 if p is real, there exists an intrinsic polynomial
R(s) such that QP(p)(P(s)) = Qp(s)R(s). If P(p) /∈ σS(P(T)), then QP(p)(P(T))
is invertible and Lemma 4.4 and Example 3.8 imply that QP(p)(P(T))−1R(T) is
the inverse of Qp(T), which is a contradiction because we assumed p ∈ σS(T).
Therefore P(p) ∈ σS(P(T)).

Conversely assume that p /∈ P(σS(T)). Then the function Qp(P(s)) =

P(s)2 − 2Re(p)P(s) + |p|2 does not take any zero on σS(T) and we conclude from
Corollary 4.6 that Qp(P(T)) has a bounded inverse. Thus p /∈ σS(P(T)) and in
turn σS(P(T)) ⊂ P(σS(T)).

THEOREM 5.4. Let T ∈ K(V) with ρS(T) 6= ∅. If f ∈ N (σS(T) ∪ {∞}) and
g ∈ SHL( f (σSX(T)) or g ∈ SHR( f (σSX(T)), then

(g ◦ f )(T) = g( f (T)).

Proof. Because of Remark 3.7, we can assume with no loose of generality
that f (∞) belongs to f (σSX(T)). We apply Theorem 3.1 in order to choose a slice
Cauchy domain Up such that σS( f (T)) = f (σSX(T)) ⊂ Up and Up ⊂ D(g) and
a second slice Cauchy domain Us such that σS(T) ⊂ Us and Us ⊂ f−1(Up) ∩
D( f ). The subscripts are chosen in order to indicate the respective variable of
integration in the following computation.
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After choosing an imaginary unit I ∈ S, we deduce from Theorem 2.26,
Cauchy’s integral formula, that

(g◦ f )(T)−(g◦ f )(∞)I= 1
2π

∫
∂(Us∩CI)

S−1
L (s, T)dsI (g ◦ f )(s)

=
1

2π

∫
∂(Us∩CI)

S−1
L (s, T)dsI

( 1
2π

∫
∂(Up∩CI)

S−1
L (p, f (s))dpI g(p)

)
.

Changing the order of integration by applying Fubini’s theorem, we obtain

(g ◦ f )(T)− (g ◦ f )(∞)I

=
1

2π

∫
∂(Up∩CI)

( 1
2π

∫
∂(Us∩CI)

S−1
L (s, T)dsI S−1

L (p, f (s))
)

dpI g(p)

=
1

2π

∫
∂(Up∩CI)

S−1
L (p, f (T))dpI g(p)− 1

2π

∫
∂(Up∩CI)

S−1
L (p, f (∞))dpI g(p)I

= g( f (T))− g( f (∞))I

and hence (g ◦ f )(T) = g( f (T)).

6. SPECTRAL SETS AND PROJECTIONS

DEFINITION 6.1. A subset σ of σSX(T) is called a spectral set if it is open and
closed in σSX(T).

Just as σS(T) and σSX(T), every spectral set is axially symmetric: if s ∈
σ then the entire sphere [s] is contained in σ. Indeed, the set σ ∩ [s] is then a
nonempty, open and closed subset of σSX(T) ∩ [s] = [s]. Since [s] is connected
this implies σ ∩ [s] = [s]. Moreover, if σ is a spectral set, then σ′ = σSX(T) \ σ is a
spectral set too.

If σ is a spectral set of T, then σ and σ′ can be separated in F0 ∪ {∞} by
axially symmetric open sets and hence Theorem 3.1 implies the existence of two
slice Cauchy domains Uσ and U′σ containing σ and σ′ respectively such that one
of them is unbounded and U ∩Uσ′ = ∅. We define

χσ(x) :=

{
1 if x ∈ Uσ,
0 if x ∈ U′σ.

The function χσ(x) obviously belongs to N (σS(T) ∪ {∞}).

DEFINITION 6.2. Let T ∈ K(V) with ρS(T) 6= ∅ and let σ ⊂ σS(T) be a spec-
tral set of T. The spectral projection associated with σ is the operator Eσ := χσ(T)
obtained by applying the S-functional calculus to the function χσ. Furthermore,
we define Vσ := EσV and Tσ = T|dom(Tσ) with dom(Tσ) = dom(T) ∩Vσ.
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Explicit formulas for the operator Eσ are

Eσ =
1

2π

∫
∂(Uσ∩CI)

S−1
L (s, T)dsI =

1
2π

∫
∂(Uσ∩CI)

dsI S−1
R (s, T)

if σ is bounded and

Eσ = I + 1
2π

∫
∂(Uσ∩CI)

S−1
L (s, T)dsI = I +

1
2π

∫
∂(Uσ∩CI)

dsI S−1
R (s, T)

if σ is unbounded, where the imaginary unit I ∈ S can be chosen arbitrarily.

COROLLARY 6.3. Let T ∈ K(V) such that ρS(T) 6= ∅ and let σ be a spectral set
of T.

(i) The operator Eσ is actually a projection, i.e. E2
σ = Eσ.

(ii) Set σ′ = σSX(T) \ σ. Then Eσ + Eσ′ = I and EσEσ′ = Eσ′Eσ = 0.

Proof. This follows immediately from the algebraic properties of the S-func-
tional calculus shown in Corollary 3.9 and Theorem 4.2 as χ2

σ = χσ and χσ +
χσ′ = 1 and χσχσ′ = χσ′χσ = 0.

A right F-module X is the direct sum of two right submodules X1 and X2
of X, if every v ∈ X can be written in a unique way as v = v1 + v2 with vi ∈
Xi. In this case we write X = X1 ⊕ X2 and we call X1 and X2 complementary
submodules. Unlike for vector spaces over a field, it is not true for modules that
any submodule has a complement. (Though it can easily be verified that this
holds true at least for the quaternionic setting.) A complement exists if and only
if there exists a projection such that the respective submodule is either its kernel
or its image ([12], Chapter II, Section 1.9, Proposition 14). With this definition,
the following lemma is immediate and the second one follows easily from the
continuity of projections on a Banach module, whose ranges are closed.

LEMMA 6.4. Let A, B, M and N be right linear submodules of a right F-module
X such that A ⊂ M and B ⊂ M. If A⊕ B = M⊕ N, then A = M and B = N.

LEMMA 6.5. Let A, B, M and N be right linear subspaces of V such that A ⊂ M,
B ⊂ N and such that M, N and M⊕ N are closed. Then A⊕ B is dense in M⊕ N if
and only if A is dense in M and B is dense in N.

THEOREM 6.6. Let T ∈ K(V) with ρS(T) 6= ∅ and let E1, E2 be projections
on V such that E1 + E2 = I (and hence E1E2 = E2E1 = 0). Denote Vi := Ei(V)
and dom(Ti) := Ei(dom(T)) and assume that T(dom(Ti)) ⊂ Vi such that Ti :=
T|dom(Ti)

is a closed operator on the right Banach module Vi . Then
(i) EiTv = TEiv for v ∈ dom(T),

(ii) dom(T2
i ) = Ei(dom(T2)) for i ∈ {1, 2},

(iii) ran(Qs(T)) = ran(Qs(T1))⊕ ran(Qs(T2)) for any s ∈ F0,
(iv) σS(T) = σS(T1) ∪ σS(T2) and
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(v) σSp(T) = σSp(T1) ∪ σSp(T2).
If moreover σS(T1) ∩ σS(T2) = ∅, then

(vi) σSc(T) = σSc(T1) ∪ σSc(T2) and
(vii) σSr(T) = σSr(T1) ∪ σSr(T2).

Proof. The assertions (i), (ii) and (iii) are obvious. Now assume that s ∈
ρS(T). Then ran(Qs(T)) = V and from (iii) we deduce

V1 ⊕V2 = V = ran(Qs(T)) = ran(Qs(T1))⊕ ran(Qs(T2)).

As ran(Qs(Ti)) ⊂ Vi, Lemma 6.4 implies ran(Qs(Ti)) = Vi and henceQs(Ti)
−1 =

Qs(T)−1|Vi as Qs(Ti) = Qs(T)|dom(T2
i )

. Indeed, we have

Qs(T)−1Qs(Ti)v = Qs(T)−1Qs(T)v = v for v ∈ dom(T2
i )

and, since Qs(T)−1v ∈ dom(T2
i ) for v ∈ Vi, also

Qs(Ti)Qs(T)−1v = Qs(T)Qs(T)−1v = v for v ∈ Vi.

Thus, s ∈ ρS(T1) ∩ ρS(T2). Conversely, if s ∈ ρS(T1) ∩ ρS(T2), then the operator
Qs(T1)

−1E1 + Qs(T2)
−1E2 is the inverse of Qs(T) and hence s ∈ ρS(T). Alto-

gether, ρS(T) = ρS(T1) ∩ ρS(T2), which is equivalent to σS(T) = σS(T1) ∪ σS(T2).
Obviously, σSp(Ti) ⊂ σSp(T) as any S-eigenvector of Ti is also an S-eigen-

vector of T associated with the same eigensphere. Conversely, if v 6= 0 is an S-
eigenvector of T associated with the eigensphere [s] = s0 + Ss1, then set vi = Eiv
and observe that

0 = Qs(T)v = Qs(T1)v1 +Qs(T2)v2.

As Qs(Ti)vi ∈ Vi and V1 ∩ V2 = {0}, this implies Qs(Ti)vi = 0 for i = {1, 2}.
As v 6= 0, at least one of the vectors vi is nonzero and therefore an S-eigenvalue
of Ti associated to the eigensphere [s]. Thus [s] ⊂ σSp(T1) ∪ σSp(T2) and in turn
σSp(T) = σSp(T1) ∪ σSp(T2).

We assume now that σS(T1) ∩ σS(T2) = ∅. Then assertions (iv) and (v)
imply that s ∈ σSc(T) ∪ σSr(T) if and only if s ∈ σSc(Ti) ∪ σSr(Ti) for either i = 1
or i = 2. We assume with no lose of generality s ∈ σSc(T1) ∪ σSr(T1) and thus
s ∈ ρS(T2). As ran(Qs(T2)) = V2, we deduce from (iii) and Lemma 6.5 that
ran(Qs(T)) is dense in V = V1 ⊕ V2 if and only if ran(Qs(T1)) is dense in V. In
other words: s ∈ σSc(T) if and only if s ∈ σSc(T1) and in turn s ∈ σSr(T) if and
only if s ∈ σSr(T1).

THEOREM 6.7. Let T ∈ σS(T) with ρS(T) 6= ∅ and let σ ⊂ σS(T) be a spectral
set of T. Then

(i) Eσ(dom(T)) ⊂ dom(T),
(ii) T(dom(T) ∩Vσ) ⊂ Vσ,

(iii) σ = σSX(Tσ),
(iv) σ ∩ σSp(T) = σSp(Tσ),
(v) σ ∩ σSc(T) = σSc(Tσ),
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(vi) σ ∩ σSr(T) = σSr(Tσ).
If the spectral set σ is bounded, then we further have

(vii) Vσ ⊂ dom(T∞),
(viii) Tσ is a bounded operator on Vσ.

Proof. Assertion (i) follows from the definition of Eσ and Lemma 4.3. In
order to prove (ii), we observe that if v ∈ dom(T) ∩Vσ, then Eσv = v. Hence, we
deduce from Lemma 4.3 that EσTv = TEσv = Tv, which implies Tv ∈ Vσ.

If σ is bounded, then we can choose Uσ bounded and hence χσ has a zero of
infinite order at infinity. We conclude from Lemma 4.4 that v = Eσv = χσ(T)v ∈
dom(T∞) for any v ∈ Vσ and hence (vii) holds true. In particular, Vσ ⊂ dom(T).
Therefore Tσ is a bounded operator on Vσ as it is closed and everywhere defined.

We show now assertion (iii) and consider first a point s ∈ F0 \ σ. We show
s ∈ ρS(Tσ). For an appropriately chosen slice Cauchy domain Uσ, the function
f (s) := Qs(p)−1χUσ (s) belongs to N (σS(T) ∪ {∞}). By Lemmas 4.4 and 4.3, we
have

f (T)Qs(T)v = χUσ (T)v = Eσv for v ∈ dom(T2) ∩Vσ, and

Qs(T) f (T)v = χUσ (T)v = Eσv = v for v ∈ Vσ.

Hence, Qs(Tσ) = Qs(T)|Vσ∩dom(T2) has the inverse f (T)|Vσ ∈ B(Xσ). Thus s ∈
ρS(Tσ) and in turn σS(Tσ) ⊂ σ ∩ F0 =: σ1. The same argumentation applied
to Tσ′ with σ′ = σSX(T) \ σ shows that σS(Tσ′) ⊂ σ′ ∩ F0 := σ2. But by (vi) in
Theorem 6.6, we have

σS(Tσ) ∪ σS(Tσ) = σS(T) = σ1 ∪ σ2

and hence σS(Tσ) = σ1 = σ∩F0 and σS(Tσ′) = σ2 = σ′ ∩F0. If σ is bounded, then
this is equivalent to (iii) because of (viii). If σ is not bounded, then ∞ ∈ σ and T
is not bounded on X. However, in this case σ′ is bounded and hence Tσ ∈ B(Vσ).
But as T = TσEσ + Tσ′Eσ′ , we conclude that Tσ is unbounded as T is unbounded.
Hence ∞ ∈ σSX(Tσ) and (viii) holds true also in this case.

Finally, (iv), (v), (vi) are direct consequences of (v), (vi), (vii) in Theorem 6.6
as we know now that σS(Tσ) and σS(Tσ′) are disjoint.

EXAMPLE 6.8. Choose a generating basis I, J and K = I J of H and consider
the quaternionic right-linear operator T on V = H2 that is defined by its action
on the two right linearly independent right eigenvectors v1 = (1, I)T and v2 =
(J,−K)T , namely(

1
I

)
7→
(

0
0

)
and

(
J
−K

)
7→
(
−K
−J

)
=

(
J
−K

)
I.

Its matrix representation is

T =
1
2

(
−I 1
−1 −I

)
.
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Since, for operators on finite-dimensional spaces, the S-spectrum coincides with
the set of right-eigenvalues, cf. [15], we have σS(T) = σR(T) = {0} ∪ S. Indeed,
we have

Qs(T) =
1
2

(
−1 −I
I −1

)
− s0

(
−I 1
−1 −I

)
+ |s|2

(
1 0
0 1

)
=

(
− 1

2 + |s|2 + s0 I −s0 − 1
2 I

s0 +
1
2 I − 1

2 + |s|2 + s0 I

)
and hence

Qs(T)−1 = |s|−2(−1 + 2Is0 + |s|2)−1
(
− 1

2 + |s|2 + Is0
1
2 I + s0

− 1
2 I − s0 − 1

2 + |s|2 + Is0

)
,

which is defined for any s /∈ {0} ∪ S. For any s ∈ ρS(T), the left S-resolvent is
therefore given by

S−1
L (s, T) =

1
2
|s|−2(−1 + |s|2 + 2Is0)

−1

·
(
|s|2(I + 2s) + s(−1 + 2Is0) −|s|2 + s(I + 2s0)

|s|2 − s(I + 2s0) |s|2(I + 2s) + s(−1 + 2Is0)

)
.

Since σS(T) ∩ CI = {0, I,−I}, we choose U{0} = B1/2(0) and set US = B2(0) \
B2/3(0). For s = (1/2)eIϕ ∈ ∂U{0}(0) ∩CI , we have

S−1
L (s, T) = 2e−Iϕ(3I + 4Re(eIϕ))−1

(
I + eIϕ + 2 cos(ϕ) 2 + IeIϕ + 2I cos ϕ

−2− IeIϕ + 2I cos ϕ I + eIϕ + 2 cos ϕ

)
and so

E{0} =
1

2π

∫
∂(U{0}∩CI)

S−1
L (s, T)dsI

=
1

2π

2π∫
0

2e−Iϕ(3I + 4Re(eIϕ))−1

·
(

I + eIϕ + 2 cos(ϕ) 2 + IeIϕ − 2I cos ϕ

−2− IeIϕ + 2I cos ϕ I + eIϕ + 2 cos ϕ

)
1
2

eIϕ I(−I)dϕ

=
1
2

(
1 −I
I 1

)
.

A similar computation shows that

ES =
1

2π

∫
∂(US∩CI)

S−1
L (s, T)dsI =

1
2

(
1 I
−I 1

)
.

By basic calculations, one sees that these matrices actually define projections on
H2 with E{0} + ES = I . Moreover, we have E{0}v1 = v1 and ESv2 = 0 as well
as E{0}v2 = 0 and ESv2 = v2. Thus, the invariant subspace E{0}V associated to



A DIRECT APPROACH TO THE S-FUNCTIONAL CALCULUS FOR CLOSED OPERATORS 329

the spectral set {0} is the right linear span of v1, which consist of all eigenvectors
with respect to the real eigenvalues 0 as T(v1)a = T(v1)a = 0 for all a ∈ H. The
invariant subspace ES associated to the spectral set S consists of the right linear
span of v2. For a ∈ H \ {0}, we have T(v2a) = T(v2)a = v2 Ia = (v2a)(a−1 Ia).
Thus, as a−1 Ia ∈ S, the subspace ES consists of all right eigenvectors associated
to an eigenvalues in S. (This is true only because the associated subspace is one-
dimensional! Otherwise the subspace consists of sums of eigenvectors associated
to eigenvalues in the sphere, which do not have to be eigenvectors again.)

Finally, we can construct functions, which are left and right slice hyper-
holomorphic on σS(T), but for which the S-functional calculi for left and right
slice hyperholomorphic functions yield different operators: consider the function
f (s) = c1χU{0}(s) + c2χUS(s) such that c1 or c2 does not belong to CI . Choose for
instance c1 = J and c2 = 0 for the sake of simplicity. This function is a locally
constant slice function on U = U{0} ∪US and thus left and right slice hyperholo-
morphic by Lemma 3.14. Then

1
2π

∫
∂(U∩CI)

S−1
L (s, T)dsI f (s) =

( 1
2π

∫
∂(B1/2(0)∩CI)

S−1
L (s, T)dsI

)
J

=
1
2

(
1 −I
I 1

)
J =

1
2

(
J −K
K J

)
,

but
1

2π

∫
∂(U∩CI)

f (s)dsI S−1
R (s, T) = J

( 1
2π

∫
∂(B1/2(0)∩CI)

dsI S−1
R (s, T)

)

=
1
2

J
(

1 −I
I 1

)
=

1
2

(
J K
−K J

)
.

As pointed out in Remark 3.16, the spectral projections cannot commute with
arbitrary scalars because the respective invariant subspaces are not two-sided.
Indeed, −Jv2 = (1, I) = v1, which does obviously not belong to ESV.
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