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ABSTRACT. We study the essential spectrum and Fredholm properties of cer-
tain integral and pseudo-differential operators associated to non-commutative
locally compact groups G. The techniques involve crossed product C∗-alge-
bras. We extend previous results on the structure of the essential spectrum to
self-adjoint operators belonging (or affiliated) to the Schrödinger representa-
tion of certain crossed products. When the group G is unimodular and type I,
we cover a new class of global pseudo-differential differential operators with
operator-valued symbols involving the unitary dual of G. We use recent re-
sults of Nistor, Prudhon and Roch on the role of families of representations in
spectral theory and the notion of quasi-regular dynamical system.
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INTRODUCTION

The present article is dedicated to some new results on the essential spec-
trum and the Fredholm property of certain (mainly bounded and self-adjoint)
integral operators on locally compact groups G. The integral kernel of these oper-
ators has an integrable dependence of one of the variables, while the behavior in
the second one is governed by a suitable C∗-algebraA of bounded left uniformly
continuous functions on G. In Section 1 we describe these “coefficient algebras”
while in Section 2 we recall how they serve to define crossed product C∗-algebras
that will be the main objects to study. The spectral properties will depend on
the choice of A through the quasi-orbit structure of its Gelfand spectrum. The
proofs will rely on the analysis of quasi-regular dynamical systems [49] and on
the recent sistematization of V. Nistor and N. Prudhon [37] (see also [10], [42])
of the notions relevant in spectral theory involving families of representations of
C∗-algebras.
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We insist on the fact that our groups G may not be discrete, Abelian or Lie
groups. Compact groups are out of question, since they would basically lead
to a trivial situation. The integral operators we study can be seen as a gener-
alization of convolution dominated operators [3], [28], [41], [47], which may be
essentially recovered for G = Zn and for the special form A = `∞(Zn) of the
algebra (analogue operators on discrete groups are also called convolution dom-
inated by certain authors). In Section 3, following the recent article [35], we give
a pseudo-differential form to these integral operators for the rather large sub-
class of unimodular, second countable type I groups (still containing many non-
commutative examples).

We recall that the spectrum of a bounded normal operator T in a Hilbert
space H admits the partition sp(T) = spdis(T) t spess(T). The point λ belongs
to the discrete spectrum spdis(T) of T if it is an eigenvalue of finite multiplicity and
isolated from the rest of the spectrum. The other spectral points belong to the
essential spectrum spess(T). It is known that spess(T) coincides with the usual
spectrum of the image of T in the Calkin algebra B(H)/K(H), where B(H) is
the C∗-algebra of all the bounded linear in H and K(H) is the ideal of all the
compact operators. Recall ([2], Section 3.3) that a bounded operator acting on a
Hilbert space is called Fredholm if, by definition, it has a finite dimensional kernel
and an image of finite codimension. By Atkinson’s theorem ([2], Theorem 3.3.2),
this happens exactly when T is invertible modulo compact operators, i.e. when
its image in B(H)/K(H) is invertible. Thus, from the above characterization of
the essential spectrum and from Atkinson’s theorem, it follows immediately that
a point λ is not in the essential spectrum of the bounded normal operador S if and only
if S − λIdH is Fredholm. Most of the times we will restrict our attention to self-
adjoint operators.

So both problems (the essential spectrum and Frehholm criteria) have a
common setting. The Calkin algebra does not offer effective tools to treat them,
but replacing B(H) by suitable C∗-subalgebras can lead to an improvement. In
the present work, both problems are connected to crossed products Ao G asso-
ciated to an action of our group on the coefficient C∗-algebra A.

The results for an operator H are written in our case in terms of a family
{Hi : i ∈ I} of “asymptotic operators”, each one defined by a precise algorithm
from a quasi-orbit of a dynamical system attached to A and, equivalently, from
a certain ideal of the crossed product. Applying older techniques would lead
at writing the essential spectrum of H as the closure of the union of the spectra
of all the operators Hi. Similarly, H is Fredholm if and only if each operator Hi
is invertible and the norms of the inverses are uniformly bounded. Recently a
systematic investigation [37], [42], put into clear terms conditions under which
the closure and the uniform bound are not needed. We will use this, in particular
conditions from Section 3 of [37] involving the primitive ideal space, to state our
main result in Section 4 and to prove it in 5.
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The relevant information for the primitive ideal space of the crossed product
[6], [7], [8], [9], [18], [19], [46], [48], relies on the notion of quasi-regular dynamical
system [49]. There is no counterexample to such a property, but for the moment,
unfortunately, we have to impose quasi-regularity as in implicit condition. Some
comments on sufficient conditions for quasi-regularity are contained in Section 6;
in particular the property holds if A is separable. Non-separable examples are
given in Section 7.

We partially neglect unbounded operators, although in a non-explicit way
they are covered if they happen to be affiliated, i.e. if their resolvent families have
the form already indicated. It is not easy to turn this into an explicit condition if
the group G is too complicated. For simpler groups (Abelian for instance) affilia-
tion is easier but many results already exist. So we will hopefully treat this issue
in a future publication.

This is not the right place to try to draw a detailed history of the subject.
Some basic articles and books are [3], [4], [22], [28], [38], [39], [40], [41] (see also
references therein). The important role that can be conferred to crossed prod-
uct C∗-algebras has been outlined in [15], [16], [17], [30], especially in the case of
Abelian groups. Twisted crossed products, needed to cover pseudo-differential
operators with variable magnetic fields, are advocated in [27], [34]. Groupoid or
related C∗-algebras have been used in [25], [26], [36], [37]. The paper [14] treats
operators on suitable metric spaces. In [32], [33] we examined pseudo-differential
operators in Rn with symbols f (x, ξ) having a complicated behavior at infinity
in “phase space”, i.e. in both variables x and ξ. The essential spectrum of opera-
tors (including Schrödinger Hamiltonians) has also been treated with geometrical
methods (without using C∗-algebras at all) in [20], [23].

By rather similar techniques one can prove localization (non-propagation)
results, adapting to the non-commutative setting the approach of [1], [34].

1. LEFT-INVARIANT C∗-ALGEBRAS OF FUNCTIONS ON A LOCALLY COMPACT GROUP

Let G be a locally compact group with unit e, modular function ∆ and fixed
left Haar measure m. Let us denote the left and right actions of G on itself by
ly(x) := yx and ry(x) := xy−1. They induce actions on the C∗-algebra Cb(G) of
all bounded continuous complex functions on G. To get pointwise continuous ac-
tions we restrict, respectively, to bounded left (LUC) and right (RUC) uniformly
continuous functions:

l : G→ Aut[LUC(G)], [ly(c)](x) := (c ◦ ly−1)(x) = c(y−1x),

r : G→ Aut[RUC(G)], [ry(c)](x) := (c ◦ ry−1)(x) = c(xy).

We denoted by Aut(D) the group of all the automorphisms of the C∗-algebra D
with the strong (pointwise convergence) topology.
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A C∗-subalgebra A of LUC(G) is called left-invariant if lyA ⊂ A for every
y ∈ G; right-invariance is defined analogously for C∗-subalgebras of RUC(G).
Then C0(G), the C∗-algebra of continuous complex functions which decay at in-
finity, is an invariant ideal, both to the left and to the right.

If K is a closed subgroup of G then G/K := {xK : x ∈ G} denotes the
locally compact space of orbits of the action r restricted to H. One denotes by
pK : G → G/K the canonical surjection. By the formula PK(c̃) := c̃ ◦ pK it can be
used to transform functions on G/K into functions on G that are right-invariant
under K, meaning that ry(c) = c for every y ∈ K. Conversely, such a right-
invariant function c can be written in the form c = PK(c̃) for a unique function
c̃ := cK defined on the quotient by cK(xK) := c(x).

For a C∗-subalgebra D of LUC(G) and a compact subgroup K of G one de-
fines the K-fixed point C∗-algebra

D(K) := {a ∈ D : ry(a) = a, ∀y ∈ K} = D ∩LUC(G)(K)

and the ideal D0 := D ∩ C0(G). If D is left invariant, both D(K) and D0 are left
invariant.

We call a G-compactification of the quotient G/K a compact topological dy-
namical system (Ω, ϑ,G) and an embedding of G/K as a dense open ϑ-invariant
subset of Ω such that on G/K the action ϑ coincides with the natural action of G
given by ϑx(yK) := (xy)K = lx(y)K.

DEFINITION 1.1. A right invariance data is a triple Υ = (K, Ω, ϑ) where K is
a compact subgroup of G and (Ω, ϑ,G) is a G-compactification of G/K.

The right invariance data being given, let us set C〈Ω〉 := {b|G/K : b ∈
C(Ω)}. It is a left invariant C∗-subalgebra of LUC(G/K) (left uniform conti-
nuity refers to the action of G in G/K ), containing C0(G/K) and isomorphic to
C(Ω). One sets Ω∞ := Ω \ (G/K); it is the space of a compact dynamical system
(Ω∞, ϑ,G). The quotient of C〈Ω〉 by the ideal C0(G/K) is canonically isomorphic
to C(Ω∞).

To each right invariance data Υ := (K, Ω, ϑ) one associates

(1.1) A[K, Ω] := {a ∈ LUC(G)(K) : aK ∈ C〈Ω〉}

(the notation aK has been introduced in a previous paragraph). It is formed of
bounded left uniformly continuous functions on G which are K-fixed points to
the right and which, after reinterpretation, can be extended continuously to the
compactification Ω of G/K.

LEMMA 1.2. A[K, Ω] is a left invariant unital C∗-subalgebra of LUC(G) equiv-
ariantly isomorphic to C〈Ω〉. Its quotient by A[K, Ω]0 is equivariantly isomorphic to
C(Ω∞).
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Proof. Checking that A[K, Ω] is a unital left invariant C∗-subalgebra is
straightforward. The isomorphism is a→ aK. In addition, if xK ∈ G/K, then

(lza)K(xK) = (lza)(x) = a(z−1x) = aK(z
−1xK) = aK[ϑz−1(xK)] =: [θz(aK)](xK),

which proves the equivariance. For the quotient, note that

A[K, Ω]0 = {a ∈ C0(G)
(K) : aK ∈ C〈Ω〉} = C0(G)

(K) ∼= C0(G/K)

is independent of Ω. The second equality follows from the fact that any C0(Σ)-
function on a locally compact space Σ extends continuously to any compactifica-
tion of Σ. Then, equivariantly, one has

A[K, Ω]/A[K, Ω]0 ∼= C(Ω)/C0(G/K) ∼= C(Ω∞)

and the proof is finished.

Taking K = {e} one gets the most general left-invariant C∗-subalgebra

A[{e}, Ω] := {a ∈ LUC(G) : a ∈ C〈Ω〉}
of LUC(G) containing C0(G) and perhaps this is the most interesting situation.
Here Ω is just a G-compactification of G. In particular LUC(G) = A[{e}, Ωluc],
where Ωluc is the (left) uniform compactification of G.

REMARK 1.3. Actually the C∗-algebra A[K, Ω] associated to some right in-
variance data Υ := (K, Ω, ϑ) is the most general unital left-invariant C∗-sub-
algebra A of LUC(G) for which A0 := A∩ C0(G) is an essential ideal.

To see this, we note thatA0 is a left invariant C∗-subalgebra of C0(G). Let us
recall ([24], Lemma 12) that the non-trivial left-invariant C∗-subalgebras of C0(G)
are in one-to-one correspondence with the compact subgroups of G. Explicitly,
applying this to A0,

KA := {y ∈ G : ry(a) = a, ∀a ∈ A0}
is a compact subgroup of G and one has the fixed-point characterization

A0 = {a ∈ C0(G) : ry(a) = a, ∀y ∈ KA} =: C0(G)
(KA) ∼= C0(G/KA).

Then one uses the fact that all the essential unitizations of A0 are given by com-
pactifications Ω of G/KA and that left invariance forces Ω to be a G-compactifi-
cation for some action ϑ.

2. CROSSED PRODUCT C∗-ALGEBRAS

We recall briefly some basic facts about crossed products, referring to [49]
for a full treatment.

The basic data is a C∗-dynamical system (A, α,G), consisting of a strongly
continuous action α of the locally group G by automorphisms of the C∗-algebra
G. For us, A will always be commutative. To the C∗-dynamical system (A, α,G)
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we associate L1(G;A) (the space of all Bochner integrable functions G → A with
the obvious norm) with the Banach ∗-algebra structure given by

(Φ �Ψ)(x) :=
∫
G

Φ(y)αy[Ψ(y−1x)]dm(y),

Φ�(x) := ∆(x)−1αx[Φ(x−1)∗].

The crossed product C∗-algebra Aoα G is the enveloping C∗-algebra of this Banach
∗-algebra, i.e. its completion in the universal norm ‖Φ‖univ := sup

Π

‖Π(Φ)‖B(H),

with the supremum taken over the non-degenerate ∗-representations Π : L1(G;A)
→ B(H). The Banach space L1(G;A) can be identified with the projective tensor
productA⊗L1(G), and Cc(G;A), the space of allA-valued continuous compactly
supported function on G, is a dense ∗-subalgebra.

We call a covariant representation of the C∗-dynamical system (A, α,G) a triple
(ρ, T,H) where H is a Hilbert space, ρ : A → B(H) a non-degenerate ∗-repre-
sentation, T : G→ U(H) is strongly continuous and satisfies

T(x)T(y) = T(xy), ∀x, y ∈ G,

T(x)ρ(a)T(x)∗ = ρ[αx(a)], ∀a ∈ A, x ∈ G.

The integrated form of the covariant representation (ρ, T,H) is the unique contin-
uous extension ρ o T : Aoα G→ B(H) defined initially on L1(G;A) by

(2.1) (ρ o T)(Φ) :=
∫
G

ρ[Φ(x)]T(x)dm(x).

REMARK 2.1. For further use, let us also examine ∗-morphisms in the set-
ting of crossed products (cf. [49]). Assume that (A, α,G) and (A′, α′,G) are C∗-
dynamical systems and π : A → A′ is an equivariant ∗-morphism, i.e. a ∗-morphism
satisfying π ◦ αx = α′x ◦ π, ∀x ∈ G. One defines

(2.2) πo : L1(G;A)→ L1(G;A′), [πo(Φ)](x) := π[Φ(x)].

It is easy to check that πo is a ∗-morphism of the two Banach ∗-algebra structures
and thus it extends to a ∗-morphism πo : Aoα G → A′ oα′ G. If π is injective,
πo is also injective.

Our most important crossed product will be attached to the C∗-dynamical
system (A[K, Ω], l,G), where A[K, Ω] is the left invariant C∗-subalgebra of
LUC(G) associated as in Section 1 to a right invariance data Υ = (K, Ω, ϑ). For
A[K, Ω]-valued functions Φ defined on G and for elements x, q of the group, we
are going to use notations as [Φ(x)](q) =: Φ(q; x), interpreting Φ as a function
of two variables. For the reader’s convenience, we rewrite the general formulae
defining the twisted crossed product in a concrete form:

(Φ �Ψ)(q; x) :=
∫
G

Φ(q; y)Ψ(y−1q; y−1x)dm(y),
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(2.3) Φ�(q; x) := ∆(x)−1Φ(x−1q; x−1).

In this case we have a natural covariant representation (Mult, T,H), for his-
torical reasons called the Schrödinger representation, given inH := L2(G) by

[T(y)u](q) := u(y−1q), Mult(a)u := au.

The corresponding integrated form Sch :=MultoT is given for Φ∈L1(G;A[K, Ω])
and u ∈ L2(G) by

(2.4) [Sch(Φ)u](q)=
∫
G

Φ(q; z)u(z−1q)dm(z)=
∫
G

Φ(q; qy−1)u(y)∆(y)−1dm(y).

PROPOSITION 2.2. The C∗-algebra C[K, Ω] := Sch(A[K, Ω]ol G) is isomorphic
to the reduced crossed product (A[K, Ω]ol G)red. If G is amenable, the representation

Sch : A[K, Ω]ol G→ C[K, Ω] ⊂ B[L2(G)]

is faithful.

Proof. This follows from the fact that, up to multiplicity, the Schrödinger
representation is unitarily equivalent to a left regular representation of the full
crossed product: Reg ∼= 1L2(G) ⊗ Sch. For the details see Proposition 7.9 of [35]
for instance.

REMARK 2.3. Let us define the convolution operator Conv : L1(G) →
B[L2(G)] by

[Conv(ϕ)u](q) = [Sch(1⊗ ϕ)u](q) =
∫
G

ϕ(qy−1)u(y)∆(y)−1dm(y).

Setting (a⊗ ϕ)(q; x) := a(q)ϕ(x), one gets immediatly a product of a multiplica-
tion operator with a convolution operator

Sch(a⊗ ϕ) = Mult(a)Conv(ϕ).

The represented C∗-algebra C[K, Ω] := Sch(A[K, Ω] ol G) coincides with
the closed vector space spanned by products of the form Mult(a)Conv(ϕ) with
a ∈ A[K, Ω] and ϕ ∈ L1(G). It is enough to use functions ϕ ∈ Cc(G) which are
continuous and compactly supported.

EXAMPLE 2.4. If the group G is discrete, then LUC(G) = RUC(G) = `∞(G).
The crossed product `∞(G)ol G is called traditionally the C∗-algebra of band dom-
inated operators or sometimes, in the context of coarse geometry, the uniform Roe
algebra. It contains a lot of interesting subclasses, as described in [3], [28], [41], [47]
for example. In this case δe ∈ `1(G) and the multiplication operator Mult(a) =
Sch(a ⊗ δe) also belongs to the C∗-subalgebra Sch[`∞(G) ol G] of B[`2(G)]. So,
besides products of the form Mult(a)Conv(ϕ), perturbations

Sch(1⊗ ϕ + a⊗ δe) = Conv(ϕ) +Mult(a)



488 MARIUS LAURENŢIU MĂNTOIU

of convolution operators by operators of multiplication with elements of `∞(G)
also belong to our C∗-algebra. These are a reminiscence of usual Schrödinger
operators.

3. PSEUDODIFFERENTIAL OPERATORS ON TYPE I GROUPS

To switch to a realization fitted to studying pseudo-differential operators
[35], we need more assumptions on the group G, allowing a manageable Fourier
transformation.

We set Ĝ := Irrep(G)/∼= and call it the unitary dual of G; by definition, it
is composed of unitary equivalence classes of strongly continuous irreducible
Hilbert space representation π : G → U(Hπ) ⊂ B(Hπ). There is a standard
Borel structure on Ĝ, called the Mackey Borel structure ([5], 18.5). If G is Abelian,
the unitary dual Ĝ is the Pontryagin dual group; if not, Ĝ has no group structure.

We denote by C∗(G) the full (universal) C∗-algebra of G. Any representation
π of G generates canonically a non-degenerate represention Π of the C∗-algebra
C∗(G).

DEFINITION 3.1. The locally compact group G is type I if for every irre-
ducible representation π one has K(Hπ) ⊂ Π[C∗(G)]. It will be called admissible
if it is second countable, type I and unimodular.

For the concept of type I group and for examples we refer to [5], [13]; a short
summary can be found in Section 2 of [35]. In Theorem 7.6 of [13] (see also [5]),
many equivalent characterisations are given for a second countable locally com-
pact group to be type I. The main consequence of this property is the existence of
a measure on the unitary dual Ĝ for which a Plancherel theorem holds. This is a
measure on Ĝ, called the Plancherel measure associated to m and denoted by m̂ ([5],
18.8). It plays a basic role in defining a Fourier transform.

It is known that there is a m̂-measurable field {Hξ : ξ ∈ Ĝ} of Hilbert spaces
and a measurable section Ĝ 3 ξ 7→ πξ ∈ Irrep(G) such that each πξ : G→ B(Hξ)
is an irreducible representation belonging to the class ξ. By a systematic abuse
of notation, instead of πξ we will write ξ, identifying irreducible representations
(corresponding to the measurable choice) with elements of Ĝ.

The Fourier transform ([5], 18.2) of u ∈ L1(G) is given in weak sense by

(F u)(ξ) ≡ û(ξ) :=
∫
G

u(x)ξ(x)∗dm(x) ∈ B(Hξ).

It defines an injective linear contraction F : L1(G)→ B(Ĝ), where

B(Ĝ) :=
∫
Ĝ

⊕
B(Hξ)dm̂(ξ)
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is a direct integral von Neumann algebra. One also introduces the direct integral
Hilbert space

B2(Ĝ) :=
∫
Ĝ

⊕
B2(Hξ)dm̂(ξ) ∼=

∫
Ĝ

⊕
Hξ ⊗Hξdm̂(ξ),

with the scalar product

〈φ1, φ2〉B2(Ĝ) :=
∫
Ĝ

〈φ1(ξ), φ2(ξ)〉B2(Hξ )
dm̂(ξ) =

∫
Ĝ

Trξ [φ1(ξ)φ2(ξ)
∗]dm̂(ξ),

where Trξ is the trace in B(Hξ). A generalized form of Plancherel’s theorem [5],
[13] states that the Fourier transform F extends from L1(G) ∩ L2(G) to a unitary iso-
morphism F : L2(G)→ B2(Ĝ).

Let us come back to the left invariant algebraA[K, Ω] associated to the right
invariance data (K, Ω). We already mentioned that L1(G;A[K, Ω]) can be identi-
fied with the completed projective tensor productA[K, Ω]⊗L1(G). Then one gets
a linear continuous injection

id⊗F : A[K, Ω]⊗L1(G)→ A[K, Ω]⊗B(Ĝ)

and we endow the image (id⊗F )(A[H, Ω]⊗L1(G)) with the Banach ∗-algebra
structure transported from L1(G;A[H, Ω]) ∼= A[H, Ω]⊗L1(G) through id⊗F .

Let us denote by A[H, Ω] the crossed product A[K, Ω]ol G, which is the en-
velopping C∗-algebra of the Banach ∗-algebra L1(G;A[K, Ω]). Similarly, B[K, Ω]
will be the envelopping C∗-algebra of the Banach ∗-algebra

(id⊗F )(A[K, Ω]⊗L1(G)).

By the universal property of the enveloping functor, the map id⊗F extends to
an isomorphism F : A[K, Ω]→ B[K, Ω].

If we compose the Schrödinger representation Sch with the inverse of this
partial Fourier transform one finds the pseudo-differential representation

(3.1) Op = Sch ◦ F−1 : B[K, Ω]→ B[L2(G)],

given explicitly (on reasonable symbols f ) by

(3.2) [Op( f )u](x) =
∫
G

∫
Ĝ

Trξ [ξ(xy−1) f (x, ξ)]u(y)dm(y)dm̂(ξ).

One could say roughly that Op( f ) is a strictly negative order pseudodifferential opera-
tor on G with coefficients in the C∗-algebraA[K, Ω]. Note that its symbol f is globally
defined and, for non-commutative groups, it is operator-valued. If G = Rn one
recovers the Kohn–Nirenberg quantization.

More information on this type of operators, including motivations, exten-
sion to distributions, τ-quantizations (allowing a Weyl symmetric form in some
cases) can be found in [35]. For compact Lie groups we refer to [43], [44], [45] (see
also references therein), while the nilpotent case is treated in [11], [12].



490 MARIUS LAURENŢIU MĂNTOIU

4. THE MAIN RESULT

All over this section a right invariance data Υ = (K, Ω, ϑ) will be fixed.
Associated to it one has the left invariant subalgebra A[K, Ω] of LUC(G) and
the crossed product A[K, Ω] := A[K, Ω]ol G represented by the C∗-subalgebra
C[K, Ω] of B[L2(G)].

If the group G is admissible, one also has the partially Fourier transformed
C∗-algebra B[K, Ω] := FA[K, Ω], composed essentially by symbols of pseudo-
differential operators, and the following diagram commutes:

A[K, Ω] B[K, Ω]

C[K, Ω]

-F

?
Sch

�
�

�
��+

Op

We set Ω∞ := Ω \ (G/K) and recall that (Ω∞, ϑ,G) is a compact dynamical
system giving rise to the C∗-dynamical system (C(Ω∞), θ,G). By definition, a
quasi-orbit is the closure of an orbit. So any point ω ∈ Ω∞ generates an orbit
Oω := ϑG(ω) and a (compact) quasi-orbit Qω := O

ω.

REMARK 4.1. Some comments on terminology are needed. In pag. 43 of
[7], the two points ω1 and ω2 of the G-space Ω∞ are said to be in the same quasi-
orbit if ω1 ∈ O

ω2 and ω2 ∈ O
ω1 . It is easy to see that this is an equivalence

relation and the corresponding equivalence classes are subsets of our quasi-orbits
(closures of orbits). They can be strict subsets, because some points of the closure
of an orbit could generate an orbit with strictly smaller closure. As an example,
think of the closed real line [−∞,+∞] with G = R acting by left translations on
(−∞,+∞) and leaving the points ±∞ invariant. For S. Echterhoff there are three
equivalence classes {−∞},R, {+∞}, while from our point of view we only have
a single quasi-orbit. We will stick to our definition (quasi-orbit = closure of an
orbit) mainly to be consistent with the terminology of several previous papers.

For every closed subset F of Ω∞ we denote by CF(Ω∞) the ideal of all the
elements b of C(Ω∞) such that b|F = 0. The quotient C(Ω∞)/CF(Ω∞) is natu-
rally isomorphic to C(F). If F is also ϑ-invariant, this gives rise ([49], Proposi-
tion 3.19) to a canonical isomorphism at the level of crossed products: C(Ω∞)o
G/CF(Ω∞)o G ∼= C(F)o G (the three actions are connected to the initial action
θ in an obvious way). The case F = Qω will play an important role in our argu-
ments below.

Let Φ ∈ L1(G;A[K, Ω]) and ω ∈ Ω∞. We indicate now a procedure to
associate to this function Φ : G × G → C another function Φω : G × G → C.
The next constructions are done up to negligible subsets in the second variable x;
one could also start with regular elements Φ ∈ Cc(G;A[K, Ω]) and then invoke
exensions.
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(i) Define ΦK : G/K× G→ C by ΦK(qK, x) := Φ(q, x).
(ii) Extend ΦK to a function Φ̃K on Ω× G continuous in the first variable.

(iii) Define Φω by Φω(q, x) := Φ̃K(ϑq(ω), x).
Note that (i) is connected to the fixed-point condition in the definition of

A[K, Ω] and (ii) to the second half of its definition, describing the behaviour at
infinity of its elements by the fact that, after reinterpretation, they can be extended
continuously on Ω = (G/K) tΩ∞.

A rough way to describe this procedure is to say that Φ is first transformed
in a function on the quotient (this step is not necessary if H = {e}), then it is
extended to Ω×G and restricted to Oω ×G, and then the variable along the orbit
is reinterpreted as the variable in the group.

It is easy to see that Φω ∈ L1(G;LUC(G)). So, if we represent Φ as an oper-
ator (a Hamiltonian) H := Sch(Φ) in L2(G), we also get a family of “asymptotic
Hamiltonians”

(4.1) {Hω := Sch(Φω) : ω ∈ Ω∞}.

Explicitly, for u ∈ L2(G), one has by (2.4)

(4.2) [Hω(u)](q) =
∫
G

Φ(ϑq(ω), qy−1)u(y)dm(y).

REMARK 4.2. It will be relevant for our Theorem 4.5 to understand in ad-
vance the dependence of Hω on ω. If ω and ω′ belong to the same orbit, then
Hω and Hω′ are unitary equivalent (use an element x ∈ G such that ϑx(ω) = ω′

to build the unitary operator). On the other hand, two points ω, ω′ could gen-

erate the same quasi-orbit (i.e. Oω
= O

ω′ ) without belonging to the same orbit
(think of minimal systems, for example). In such a situation it is still true that
sp(Hω) = sp(Hω′). We refer to Section 7.4 of [35] for proofs (in a slightly differ-
ent context), but the same conclusions will also follow from our proof in Section 5.

DEFINITION 4.3. A set {ωi : i ∈ I} of points of Ω∞ is called sufficient family if
the associated quasi-orbits {Qωi : i ∈ I} form a covering of Ω∞, i.e.

⋃
i∈I

Qωi = Ω∞.

We adapt now Definition 6.17 of [49] to the case of an Abelian C∗-algebra
A = C(Ω∞). Recall that every representation of a crossed product is deduced
from a covariant representation.

DEFINITION 4.4. A representation P = poU of C(Ω∞)oθ G lives on a quasi-
orbit if there exists ω ∈ Ω∞ such that Res(ker P) := ker(p) = CQ!

(Ω∞).
The dynamical system (Ω∞, ϑ,G) is called quasi-regular if every irreducible

representation of C(Ω∞)oθ G lives on a quasi-orbit.

We refer to [49] for a perspective of the notion of quasi-regularity in the
setting of the Effros–Hahn conjecture [9], [18], [46] and to [21] for similar issues
in the context of groupoid C∗-algebras.
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Let us now state our main result.

THEOREM 4.5. Assume that the locally compact group G is amenable, let Υ =
(K, Ω = (G/K) tΩ∞, ϑ) be a right invariance data and assume that (Ω∞, ϑ,G) is
quasi-regular. Let Φ ∈ L1(G;A[K, Ω]) and H := Sch(Φ) ∈ C[K, Ω] ⊂ B[L2(G)] a
self-adjoint operator (cf. (2.3)). Let {ωi : i ∈ I} a sufficient family of points of Ω∞ and
for each i ∈ I set Hωi := Sch(Φωi ).

(i) One has

(4.3) spess(H) =
⋃
i∈I

sp(Hωi ).

(ii) The operator H is Fredholm if and only if every Hωi is invertible.

REMARK 4.6. One can even take Φ ∈ A[K, Ω], but the operations leading
from Φ to Φωi must be understood, after extension, as abstract C∗-morphisms;
even in simple situations some of the elements of the crossed products are no
longer usual functions.

REMARK 4.7. If G is admissible, we can recast Theorem 4.5 in the equivalent
language of pseudo-differential operators introduced in Section 3. One just has
to express H as Op( f ) for an operator symbol f = FΦ of B(K, Ω) and then gets
symbols f ωi such that Hωi = Op( f ωi ) by performing suitable operations on f or,
equivalently, by setting f ωi = FΦωi for every i ∈ I. We leave the details to the
reader.

REMARK 4.8. The result describing the essential spectrum can be extended
to unbounded operators affiliated to C[K, Ω] ⊂ B[L2(G)], i.e. self-adjoint densely
defined operators in L2(G) for which the resolvent family belongs to C[K, Ω]. For
this one has to use Section 5 of [37] (see also [15], [16], [30], [34] and references
therein for previous work). Affiliation to crossed product C∗-algebras with non-
commutative groups is a difficult issue; hopefully a future publication will be
devoted to this issue and to its spectral consequences.

5. PROOF OF THEOREM 4.5

Our self-adjoint operator H belongs to the C∗-subalgebra C[K, Ω] of
B[L2(G)]. It is well-known that its essential spectrum coincides with the usual
spectrum of its image in the quotient C∗-algebra C[K, Ω]/C[K, Ω]0, where we
set C[K, Ω]0 := C[K, Ω] ∩ K[L2(G)]. (This quotient can be regarded as a C∗-
subalgebra of the Calkin algebra.) In addition, by Atkinson’s theorem, H is Fred-
holm if and only if its canonical image in the quotient is invertible.

It is also well-known [49] that the Schrödinger ∗-representation sends C0(G)
olG onto K[L2(G)] ⊂ B[L2(G)]; it is an isomorphism between C0(G) ol G and
K[L2(G)] since G is amenable. Taking this into account, we see that Sch : A[K, Ω]
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→ C[K, Ω] is an isomorphism sending A[K, Ω]0 := A[K, Ω] ∩ [C0(G) ol G] into
C[K, Ω]0. This leads to isomorphisms

(5.1) A[K, Ω]/A[K, Ω]0 ∼= C[K, Ω]/C[K, Ω]0.

On the other hand, by using exactness of the full crossed product functor ([49],
Proposition 3.19) and invoking Lemma 1.2, one justifies the isomorphisms

(5.2) A[K, Ω]/A[K, Ω]0 ∼= (A[K, Ω]/A[K, Ω]0)oG ∼= C(Ω∞)oθ G.

We did not indicate each time the actions defining the various crossed products,
because they are natural; the one involved in the last term in (5.2) is induced by
ϑ on the corona space Ω∞ of Ω as described in Section 1.

By the isomorphisms (5.1) and (5.2), one has to investigate the invertibility
issue in the crossed product C(Ω∞)oθ G, and this is the core of the proof. We
follow closely the abstract approach of [37], [42].

DEFINITION 5.1. Let C be a C∗-algebra. A family G := {Πi : C→ Ci : i ∈ I}
of morphisms of C∗-algebras is

(i) faithful if
⋂
i∈I

ker(Πi) = {0} (this is equivalent to ‖Φ‖C = sup
i∈I
‖Πi(Φ)‖Ci

for every Φ ∈ C).
(ii) strictly norming if for any Φ ∈ C there exists k ∈ I such that ‖Φ‖C =

‖Πk(Φ)‖Ck .
(iii) exhaustive if every primitive ideal P of C contains at least one of the ideals

ker(Πi).

It has been shown in [37] that

exhaustive =⇒ strictly norming =⇒ faithful

and none of the implications is an equivalence. However, if C is separable, “strictly
norming” and “exhaustive” are equivalent. The role of the strictly norming prop-
erty is put into evidence by the next result, taken from Section 3 of [37] and [42]
(cf. also [10]).

PROPOSITION 5.2. The family G is strictly norming if and only if the invertibility
of an arbitrary element Φ of C is equivalent to the invertibility of each of the elements
Πi(Φ) ∈ Ci and also equivalent to

(5.3) sp(Φ) =
⋃
i∈I

sp[Πi(Φ)], ∀Φ ∈ C.

Inverses and the spectra above are computed in the minimal unitalizations
of C and Ci, respectively (or, equivalently, in any larger unital C∗-algebra). Pass-
ing from the C∗-algebras to their minimal unitalizations is simple; it is described
in Section 3 of [37].
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A similar characterization of faithfulness is also given in [37], where the ex-
tra condition sup

i
‖Πi(Φ)−1‖Ci < ∞ should be added to the element-wise invert-

ibility and in the right-hand side of (5.3) a closure is needed. So one gets better
results for strictly norming than for faithful families. Although exhaustiveness is
not involved directly in the spectral results, it often looks easier to check that the
strictly norming property.

PROPOSITION 5.3. Let (Ω∞, ϑ,G) be a compact quasi-regular dynamical system
and {ωi : i ∈ I} a sufficient family of points of Ω∞. For every i ∈ I consider the
restriction morphism

πi : C(Ω∞)→ C(Qωi ), πi(b) := b|Qωi

and then (cf. Remark 2.1)

Πi := πo
i : C(Ω∞)oG→ C(Qωi )oG.

Then G := {Πi : i ∈ I} is an exhausting family of morphisms.

Proof. First we identify the kernel of Πi. Clearly one has ker(πi)=CQ
ωi(Ω∞).

Since the crossed product functor is exact, one gets ker(Πi) = CQ
ωi (Ω∞)oG. So,

to show that our family is exhaustive, one has to check that every primitive ideal
P of C(Ω∞)oG contains CQωk (Ω∞)oG for some k ∈ I.

Let P := poU be an irreducible representation of C(Ω∞)oG with ker(P) =
P. Since the dynamical system is quasi-regular, the representation P lives on a
quasi-orbit Qω, meaning that ker(p) = CQω

(Ω∞). It follows from this and from
formula (2.1) that P ⊃ CQω

(Ω∞)oG.
But {Qωi : i ∈ I} is a covering of Ω∞, so ω ∈ Qωk for some index k, which

implies Qω ⊂ Qωk and then CQω
(Ω∞) ⊃ CQωk (Ω∞). Therefore

P ⊃ CQω
(Ω∞)oG ⊃ CQ

ωk (Ω∞)oG = ker(Πk),

so the proof is finished.

To make the connection with the operators Hωi and to finish the proof of
our Theorem 4.5, we are only left with checking that for any point ω ∈ Ω∞

Schω : C(Qω)oG→ B[L2(G)], Schω(Ψ) := Sch(Ψω)

is a faithful representation. It is obviously the composition of the faithful repre-
sentation

Sch : LUC(G)ol G→ B[L2(G)]

with the morphism

Γω := (γω)o : C(Qω)oG→ LUC(G)ol G,

where at the Abelian level

[γω(b)](q) := b[ϑq(ω)].

Since γω is injective, Γω is injective too.
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6. ON QUASI-REGULARITY

Theorem 4.5 relies on the implicit requirement saying that the dynamical
system (Ω∞, ϑ,G) is quasi-regular. There is no counter-example to this prop-
erty, so it might simply be proved to hold always and then disappear from the
assumptions of Theorem 4.5 and also from many other results in the theory of
crossed products where it plays a role. Experts believe that a dynamical system
failing to be quasi-regular, if it exists, should be very pathological. We cite from
pag. 184 of [49]: “Most systems we are interested in will be quasi-regular and it
may even be the case that all are.”. This even refers to actions of locally compact
groups on non-abelian C∗-algebras.

In [49] quasi-regularity is studied in connection with the quasi-orbit struc-
ture of the dynamical system. Let Q(Ω∞) be the quasi-orbit space of (Ω∞, ϑ,G)
with the quotient topology. It is constructed from the equivalence relation ω ∼ ω′

if and only if Qω = Qω′ . Equivalently, it is the T0-ization ([49], Definition 6.9)
of the orbit space O(Ω∞) := Ω∞/G (this means that in the topological space
O(Ω∞), which might not be T0, points are identified if they have the same clo-
sure). By Proposition 6.21 of [49], (Ω∞, ϑ,G) is quasi-regular if either Q(Ω∞) is sec-
ond countable (which follows if Ω∞ is second countable) or if Q(Ω∞) is almost Hausdorff
(see bellow). Anyhow, if the initial left invariant C∗-algebra A[K, Ω] is separable,
quasi-regularity holds.

Second countability excludes many interesting examples, so let us spell out
the second sufficient condition. A topological space is called almost Hausdorff
if every nonempty closed subspace has a relatively open nonempty Hausdorff
subspace. Other characterizations of this property may be found in Section 6.1
of [49]. It seems, however, difficult to check this property in our case without a
good understanding of the quasi-orbit structure of (Ω∞, ϑ,G). Anyhow, we have
regularity if the quasi-orbit space is Hausdorff; we will encounter such a situation
in Section 7.

REMARK 6.1. Results from [29] corroborated with Proposition 5.2 seems to
indicate that (Ωluc

∞ , ϑ,Zn), corresponding to the crossed product `∞(Zn)oZn and
to standard band-dominated operators, is quasi-regular. It would be nice to prove
such a result for an arbitrary locally compact (maybe non-commutative group) G.

7. SOME EXAMPLES

We put now into evidence situations in which the quasi-orbit space is un-
derstood; this solves quasi-regularity and allows a concrete application of Theo-
rem 4.5.

Let us assume that K is a compact normal subgroup of G. Then H := G/K is
a locally compact group, the C∗-algebras LUC(H) and RUC(H) are available, as
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well as left and right translations with elements yK = Ky of H. We set

SO(H) := {b ∈ LUC(H) : ryK(b)− b ∈ C0(H), ∀yK ∈ H}

and call its elements slowly oscillation functions on H. There is a similar class de-
fined using left translations, but we are not going to need it. Since C0(H) is an
invariant ideal and left translations commute with right translations, it is easy to
check that SO(H) is a left-invariant C∗-subalgebra of LUC(H). It is unital and
contains C0(H). Therefore its Gelfand spectrum ΩSO is an H-compactification of
H = G/K. Using previous notation one has SO(H) = C〈ΩSO〉 ∼= C(ΩSO).

LEMMA 7.1. One has a right invariance data Υ := (K, ΩSO , ϑ), where every ϑx
is trivial on ΩSO∞ := ΩSO \ H. An element a of LUC(G) belongs to the associated
C∗-algebra A[K, ΩSO ] if and only if

a(xz) = a(x), ∀x ∈ G, z ∈ K

and for every ε > 0 and z ∈ G there exists a compact subset κ of G/K such that

|a(xz)− a(x)| 6 ε if xK /∈ κ.

Proof. For the first statement one has to show that the (Higson-type) corona
space ΩSO∞ := ΩSO \ H is only formed of fixed points under the action of the
group H. This is a particular case of Proposition 3.30 of [31]. The description of
the associated C∗-algebra follows straightforwardly from the definitions.

The next result can be easily deduced from these preparations and from
Theorem 4.5. It describes the essential spectrum and the Fredholm property of
a Schrödinger (or pseudo-differential) operator “with slowly oscillating coeffi-
cients” in terms of a family of convolution operators. By Lemma 7.1, the orbits
in the corona space are singletons, so the (quasi-)orbit space of ΩSO∞ can be iden-
tified to ΩSO∞ itself. It is Hausdorff, thus almost Hausdorff, so the dynamical
system is quasi-regular.

COROLLARY 7.2. Let K be a compact normal subgroup of the amenable locally
compact group G. For every self-adjoint Φ ∈ L1(G;A[K, ΩSO ]) and every ω ∈ ΩSO∞ ,
using notations from Section 4, let Φω(·) := Φ̃K(ω; ·) ∈ L1(G). Set H := Sch(Φ) and
Hω := Conv(Φω).

(i) One has

spess(H) =
⋃

ω∈ΩSO∞

sp(Hω).

(ii) The operator H is Fredholm if and only if all the operators Hω are invertible.

To get very explicit results, let us suppose that K = {e} and Φ = a⊗ ϕ, with
a ∈ A[{e}, ΩSO ] = SO(G) and ϕ ∈ L1(G). Then Φω = ã(ω)Conv(ϕ), where ã
is the extension to ΩSO of a : G → C. Obviously sp(Hω) = ã(ω)sp[Conv(ϕ)], so
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one gets

spess(H) =
[ ⋃

ω∈ΩSO∞

ã(ω)
]
sp[Conv(ϕ)].

On the other hand, if the group G is connected, it is true that⋃
ω∈ΩSO∞

ã(ω) =
[

lim inf
x→∞

a(x), lim sup
x→∞

a(x)
]
,

so one gets the essential spectrum of H by scaling the spectrum of the convolution oper-
ator Conv(ϕ) by the asymptotic range of the slowly oscillating function a.

The operator Hω is invertible if and only if Conv(ϕ) is invertible and ã(ω)
is non-null. So finally H is Fredholm if and only if Conv(ϕ) is invertible and 0 is not
contained in the asymptotic range of a .

One can treat similarly the case Φ(q; x) = ϕ(x) + a(q). For example

spess[Sch(Φ)] = sp[Conv(ϕ)] +
[

lim inf
x→∞

a(x), lim sup
x→∞

a(x)
]
.

REMARK 7.3. If G is Abelian, than Conv(ϕ) is unitarily equivalent, via the
Fourier transformation F , to the operator of multiplication with ϕ̂ := F (ϕ) in
the L2 Hilbert space of the dual group Ĝ. The spectrum of this operator is the
closure of the range ϕ̂(Ĝ); it is invertible if and only if this closed set does not
contain the point {0}. This makes the results above even more explicit.

REMARK 7.4. Let us suppose that G = G1 × G2 is the product of two locally
compact groups. In general SO(G) 6= SO(G1) ⊗ SO(G2). The tensor product
SO(G1) ⊗ SO(G2) is still very manageable. Its Gelfand spectrum can be iden-
tified to the topological product ΩSO,1 ×ΩSO,2 (obvious notations). Since the
natural action of G1×G2 is a product action, it is easy to understand the orbit and
the quasi-orbit structure in the corona space

(ΩSO,1×ΩSO,2) \ (G1×G2) = (ΩSO,1
∞ ×G2)t (G1×ΩSO,2)t (ΩSO,1

∞ ×ΩSO,2
∞ ).

The orbits of the last component are just singletons {(ω1, ω2)}, already closed.
Those of ΩSO,1

∞ ×G2 have the form {ω1}×G2 for some ω1 ∈ ΩSO,1
∞ , with closure

{ω1} ×ΩSO,2 and those of ΩSO,1
∞ × G2 have the form G1 × {ω2} for some ω2 ∈

ΩSO,2
∞ , with closure ΩSO,1 × {ω2}. The singleton quasi-orbits are covered by

other quasi-orbits, so they can be neglected. A sufficient family of points in the
corona space is

{ω1 × e2 : ω1 ∈ ΩSO,1} ∪ {e1 ×ω2 : ω2 ∈ ΩSO,2},

where ej denotes the unit of the group Gj. We leave to the motivated reader the
work of writing down the statements of Theorem 4.5 in this particular case.

Finally we indicate a more complex example for which the quasi-orbit struc-
ture can be computed. Then the spectral results can be easily deduced from The-
orem 4.5; some particular cases can already be found in [30]. The critical result
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allowing to understand the quasi-orbits in the non-commutative case is proven
(in greater generality) in [31], to which we send for further details and references.

We consider only the case K = {e}, for simplicity.
A left-invariant C∗-subalgebra B of LUC(G) will be called G-simple if it con-

tains no proper left-invariant ideal; this is equivalent to its Gelfand spectrum ΩB

being a minimal dynamical sistem (all orbits are dense). The elements of such
a G-simple C∗-algebra are called minimal functions. Large G-simple C∗-algebras
exist. All the almost periodic functions form such an algebra (the Gelfand spec-
trum is the Bohr “compactification” of G), but there are other explicit examples
involving distal or almost automorphic functions.

Let us pick a G-simple C∗-algebra B and denote by 〈B · SO(G)〉 the smallest
C∗-algebra containing both B and SO(G) (it is generated by products bc with
b ∈ B and c ∈ SO(G)). It is easy to show that it is a left-invariant subalgebra of
LUC(G). It is less easy, but still true [31], that

Ω〈B·SO(G)〉 = Gt (ΩB ×ΩSO∞ )

and that the (already closed) orbits of Ω
〈B·SO(G)〉
∞ are of the form ΩB × {ω′} for

some point ω′ ∈ ΩSO∞ of the Higson corona. Therefore the orbit and the quasi-
orbit spaces coincide and can be identified to the Hausdorff compact space ΩSO∞ ;
quasi-regularity is insured in a simple way. Choosing some ω0 ∈ ΩB , the family
{(ω0, ω′) : ω′ ∈ ΩSO∞ } is sufficient. If a ∈ 〈B · SO(G)〉, say a = bc with b ∈ B and
c ∈ SO(G), then a(ω0,ω′)(x) = c(ω′)b̃[ϑ′x(ω0)], where ϑ′ is the (minimal) action
of G on ΩB . Thus the x-dependence of this function comes from the minimal
component b; the slowly oscillating part c, evaluated in ω′, serves as a coupling
constant.
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[32] M. MĂNTOIU, Rieffel’s pseudodifferential calculus and spectral analysis for quantum
Hamiltonians, Ann. Inst. Fourier (Grenoble) 62(2012), 1551–1558.
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