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ABSTRACT. Let n > 1 and let cr g be given real numbers defined for all
pairs of disjoint subsets F,G C {1,...,n}. We characterize commuting n-
tuples of operators T = (Ty, ..., Ty) acting on a Hilbert space H which have
a commuting unitary dilation U = (Ujy,...,U,) € B(K)", K D H such that
PrUPUY g = Csuppzx,supp‘BT*ﬁTa for all o, € Z' ,suppaNsupppf = @.
This unifies and generalizes the concepts of p-dilations of a single operator
and of regular unitary dilations of commuting n-tuples. We discuss also other
interesting cases.
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INTRODUCTION

There are many successful generalizations of the dilation theory of Hilbert
space contractions.

Let p > 0. An operator T on a Hilbert space H is said to have a p-dilation
if there exists a Hilbert space K D H and a unitary operator U € B(K) such that
Tk = pPyUF| for all k > 1, where Py denotes the orthogonal projection onto H.
It is known [4] that T has a p-dilation if and only if

172 +2(; ~1)Re (zTh ) + (1 - f)) |2Th]? > 0

forallh € Hand z € D.

The most important particular cases are p = 1 (which reduces to the classical
dilation theory of Hilbert space contractions) and p = 2. An operator has a 2-
dilation if and only if its numerical range is contained in the closed unit disc, see
(1], [4].

Letn > land let T = (Ty,...,T,) € B(H)" be a commuting n-tuple of
operators. T is said to have a unitary dilation if there exists a Hilbert space K D
H and an n-tuple of commuting unitary operators U = (Uy,...,U,) € B(K)"
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such that T* = PyU“|y for all « € Z7. It is well known that every pair of
commuting contractions has a unitary dilation (the Ando dilation). However, the
Ando dilation is not unique, its structure is not clear and in general such a dilation
does not exist for more than two commuting contractions. The main difficulty is
that the values of compressions PyU"|y for & = (ay,...,a,) € Z", mina; < 0,
maxa; > 0 are not prescribed and can be chosen arbitrarily.

The theory of regular unitary dilations overcomes this difficulty by requir-
ing that PyU*PU%|y = T*FT* forall a, B € Z", supp a Nsupp B = @. Itis known
that an n-tuple T = (Ty, ..., Ty) has a regular unitary dilation if and only if

(=0
ACB JEA
forall BC {1,...,n} and h € H, see [2], [4].

The aim of this paper is to unify and generalize these two approaches.

Let n > 1 and let cr g be a system of real numbers defined for pairs of
disjoint subsets F,G C {1,...,n} satisfying natural conditions cpp = 1 and
cgr = cr for all F,G. We characterize the n-tuples of commuting operators

T = (Ty,...,Tu) € B(H)" for which there exists a commuting unitary dilation
U= (U,...,U,) € B(K)" satisfying

PHU*ﬁua|H = Csuppa, suppp T*FT*

forall a,p € Z, suppa Nsupp B = @. This includes the above described cases
of p-dilations of a single operator and of regular unitary dilations. We describe
also other interesting cases.

1. NOTATIONS

We denote by Z and Z the set of all integers and non-negative integers,
respectively. Denote by D and T the open unit disc and the unit circle in the
complex plane, respectively. Let n € N. We use the standard multiindex notation.

n
For a, B € 7} we write a < Bifa; < Bjforallj=1,...,n, |« :jgltxj,zxjtﬁ =

(@1 + B1,.-.,an + Bn) and suppa = {j : a; # 0}. For a € Z" write ay =
(max{aq,0},..., max{a,, 0}) and a— = (max{—a1,0},..., max{—ay,,0}).

For F C {1,...,n} we define er € Z' by (er); = 1 (j € F) and (ep); =
0 (j ¢ F). We denote by |F| the cardinality of F.

Let T = (Ty,...,Ty) € B(H)" be a commuting n-tuple of operators acting

n .
on a Hilbert space H. For a € Z} we write T* = [] T;". For F C {1,...,n} write
j=1

Tr = I1 T;. In particular, Tp = I, the identity operator on H.

jeF
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Letcrg (F,G C {1,...,n},FNG = @) be a system of real numbers such
that

(1.1) cpp =1 and cgr=cpc forall F,G.

LetT = (Ty,...,Tu) € B(H)" be a commuting system of operators. We say that T
has a dilation determined by the system (cr ¢ ) if there exist a Hilbert space K O H
and an n-tuple U = (Uy, ..., U,) € B(K)" of commuting unitary operators such
that

(1.2) (U*h, uPg) - (T*h, TPg)

= Csupp a,supp B
forallh,¢ € Hand «, B € Z} with suppa Nsupp p = @. In particular,

(Uth,g) = Csupp w,2{T"h,g)
forallh,g € Hand a € Z. Clearly is equivalent to

PHua_ﬁ ‘H = Csupp &, supp ,BT*ﬁTa

forallwa, B € Z, suppa Nsupp f = @.

This definition includes the p-dilations of a single operator T; (for n = 1
and ¢ 15,0 = p’l) and the regular unitary dilations (for cr g = 1 for all F, G) of
n-tuples of commuting operators.

If we assume the natural minimality condition K = \/ U"H then it is
aeZ
easy to see that conditions (1.2) determine the dilation uniquely up to a unitary

equivalence.

The aim of this paper is to characterize the n-tuples T = (Tj, ..., T,) which
have dilation determined by (1.2). This will generalize the cases of p-dilations
of single operators as well as the case of regular unitary dilations of commuting
contractions.

2. NECESSARY CONDITIONS

In this section we fix a Hilbert space H, an n-tuple T = (T, ..., T,) € B(H)"
of commuting operators, real numbers cr ; (F, G c{1,...,n},F ﬂ G=0Q)anda

dilation U = (Uj, ..., U,) € B(K)" satisfying (1.1) and (1.2 .
For A C {1,...,n} define D4 : H — Kby Dy = z (—=1)FIU 4\ Tp. Thus

Dg is the isometrical embedding of H into K and D {]} =U;—Tforallj €
{1,. . .,7’1}. If] € AthenDy = U]DA\{]} — DA\{]}T]

Write for short [1,n] = {1,...,n

Note that in the classical dilation theory for n = 1 the space (U; — T1)H
plays an important role — it is a copy of the defect space (I — T; T1)1/2H and it
is a wandering subspace for the unitary dilation U;. For p-dilations this space is
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not exactly wandering any more but it is “almost” wandering: U} (U; — T1)H L
uk(uy, — Ty)H if [j — k| > 2, see [3].

In our situation the space Dy; ,; H may be viewed as an analogy of this defect
space.

Note that if &, B € Z}, suppaNsuppf =@, j € [I,n],a; > 2and h,g € H
then

<u1xh’ Uﬁg> = Csupp a,supp B <Tlxh/ T'Bg> = Csupp a,supp B <T1X_ej T]h/ T‘Bg>
_ <U“761Tjh, U’S>.

Consequently,

@D {U*Dpup iy UPDp i 538) = (U TDp 3 Tk UP Dpy i 18)
if Dé]‘ 2 2.

The next proposition shows that in our situation the space Dy, H is also
“almost” wandering in the following sense.

PROPOSITION 2.1. Let o, B € Z!} satisfy supp a Nsupp p = @ and max{a;, B; :
j=1,...,n} > 2. Then

(U*Dyy yh, UP Dy 118) = 0
forallh,g € H.

Proof. Without loss of generality we may assume that a; > 2 for some j €
[1,1]. We have

(U* Dy, ik, UPDpy 118
= (U (WD ¢y — Dy gy T UP(UiDp gy = Dy 7y T1)8)
= (U" Dy, (jy 1 UPDpy oy (38) — (U Dpy s gy Tyt UPDpy 38
— (U Dy gy 1 UP Dy (73 Ti8) + (U Dy 3 Tt UP Dy 3 Tig) = 0
by @1). 1

Leta € Z" and rnax{rx]- :1<j<n} <1 Then U* = Up, where F =
suppa. For F,G C [1,n], FNG = @ the spaces UpDyy , H and UgDyy , H are not
orthogonal in general. However, we can express their “angle”.

LEMMA 2.2. Let F,G,A C [1,n], FNG =@, h,g € H. Then
<UI:DAI”[, UGDAg>
= Y ()G £ Dy (rucy Te b U6, D av (Fuc) T6,8)-

F CFNA,
G1CGnA

Proof. The statement is trivial if (FU G) N A = @. We prove it by induction
on [(FUG)NA].
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Let (FUG) N A # @ and suppose that the statement is true for all F/, G', A’
with FNG =@and |(FUG' )N A’| < |(FUG)N A|. Without loss of generality
we may assume that FN A # @. Letj € FN A. We have

(UpDah,UgDyag)
= (Ur(U;iDa\(jy = Day gy Tph, Us(UiD a\gjy = Day g3 Tj)g)
= (UrDa\(jph UcDaygj38) — (UrD aygjy Tih, UcUiD v\ (j3.8)
— (UrU;D g\ (jyh, UsD (3 Tjg) + (UrD a1y Tih, Uc D ay 3 Tj8)
= (UrDa\(jph, UcDa\g38) — (Up (53D ay (3 Tilt Uc D ay 3 8)-

By the induction assumption this is equal to

F. G
Y. (—D)AFCN UL £ D ooy Tel Uey e, Day (rucuiiy) T618)
Fyc(FnA)\{j}
G1C(GNA\{j}
F|+|G
— Y Y)EFORUR 0 Dayrucugn Ta Tt Use Dan(rucutin Te: )
Fc(FnA)\{j}
G1C(GNA)\{j}

= Y (-)EHSKUL £ D gy (pu6) TrE U, D a\ (ruc) Te,8)- B
FCPNA
GjCGna

LEMMA 2.3. Let R, S, B C [1, n] be mutually disjoint sets, h,g € H. Then

(UrDph,UsDgg) = Y (Truah, Toua) Y, (—1)OHClep e s,

ACB Cy,CHCA
CyNCy=0
Proof. We have
<URDBh,U5DBg>
= ) <_1>‘B\B]H|B\BZ|<uRuB1TB\BlhrUSUBZTB\B2g>
By,B,CB
= ) (*U‘BlHlBZ‘<URU31\BZTB\Blh/USUBZ\BlTB\Bzg>
B1,B,CB
= Y (—D)BFBN TR Ty (55,01 TsTa (B,08,)8) CRUB, \By),SU(BS\ By
By,B,CB
=Y (Truah, Tsuag) Y. (_1)|Bl‘HBZ'CRU(Bl\Bz),SU(Bz\Bl)'
ACB By,B,CB

A=B\(B1NBy)

Setting C; = B; \ B, = BjnN Aand C; = B, \ By = B, N A we have

(UrDgh, UsDgg) = Y (Truah, Toua) Y. (=1)IC1H%lep e suc, 1

ACB C1,CHCA
C1NCr=0
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PROPOSITION 24. Let F,G C [1,n], FNG = @. Let h,g € H. Then

(UpDyy i h, UgDpy p8) = Y. (Truah, Tguag)Tr,c,a,
AC[Ln]\(FUG)

where

= C C F\F'|+|G\G’
FRea= Y. Y. (=1)ICHIGHIF\F+]G\ |CF’UC1,G’UC2
F/'cF C1,CCA
G'CG ¢ NCy=0
(note that the subsets F,G, A C {1,...,n} are mutually disjoint).

Proof. We have
(UpDyy,h, UcDpy 8)
= Y ()RS U £ Dy ruc) TR A U6, Dt (Fuc) T, 8)

FiCF
G1CG
= Y (-plaial Y. (TirryuaTrh Tie\cuaTe,8)
her AC[1n]\(FUG)
Cil+lc
pay (=Dl gy 6venues
;=0

= Y. (Truah Teuag)7r,G,as
AC[La]\(FUG)

where

= _ C1|+|Ca|+|F\F'|+|G\G’
Froa=Y Y (~1)QHGHIEFIHGE L oo
F/'cF Cp1,CCA

G'CG CNCy=0
THEOREM 2.5. Let T = (Ty,...,Ty) € B(H)" be a commuting n-tuple of oper-
ators having a dilation U = (U, ..., U,) € B(K)" satisfying (1.2). Then

Y 7rca(Truah, Touah) >0

F,G,AC[1,1]
mut.disjoint

forallh € H.
Proof. Leth € H and N € N. Consider the element

X = Z U“D[Ln]h € K.

n
uceZ+

a<(N,...,N)
Then
0< anHxHZ —N" Z <u(uc*l3)+D[1,n]h,u(ﬁ*a)JrD[l,n]h).

m,ﬁeZi
a,p<(N,...,.N)
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Setting v = min{«, B} one gets
O0<SN™ Y (UpDy,h,UcDph) - [{y € ZL : v +er, v +ec < (N,...,N)}|

F,GC[1,n]
FNG=0

=N Y (UDyh, UgDyy k) - NFYCH(N + 1)~ IFUCL

F,GC[1,n]
FNG=0

Letting N — oo, we have

0< Y, (UpDp,hUcDph) = Y.  7Fr,64(Truah Teuah).

F,GC[1,n] F,G,AC[1,n]
FNG=0 mut.disjoint

Instead of considering triples F, G, A of pairwise disjoint subsets of the set
{1,...,n} itis possible to simplify the notation by considering two sets F U A and
G U A in a general position.

For F,G C{1,...,n}let

(71)\F|+\G\+\F’UG’

(2.2) TEG = TR\G,G\FFNG = ) lep .

F'CF,G'cG
FInG'=0
Then the condition from the previous theorem becomes
(2.3) Y. rrc(Teh, Tgh) >0
F,GC[1,n]

forallh € H.
Lete = (e1,...,€n) € T". The n-tuple eT = (e1T1,...,€,Ty) has dilation
el = (e1Uy, . .., e4Uy) satisfying . Thus we have

THEOREM 2.6. Let T = (Ty,...,T,) € B(H)" be a commuting n-tuple of op-
erastors having a dilation U = (Uy, ..., U,) € B(K)" satisfying (1.2). Then

Y. rec((eT)rh, (eT)ch) >0
F,GC[1,n]

foralle € T" and h € H.
Note that rp ¢ = r  for all subsets F,G C {1,...,n}. So one can write
T}:’G <8T)1:h, (8T)Gh> + T’G,p<(€T)Gh, (8T)1:h> :ZTF,GRG <(€T)pl’l, (ET)GI’[>
foralle € T"and h € H.

3. SUFFICIENT CONDITIONS

We show that if the operators Tj,..., T, satisfy the vanishing condition
Tk — 0 in the strong operator topology for j = 1,...,n, then the condition in
Theorem [2.6]is also sufficient.
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THEOREM 3.1. Let T = (Ty,..., Tn) € B(H)" be a commuting n-tuple of opera-
tors satisfying SOT—klim T]l‘ =0forj=1,...,n. Letcpg (F,GC{1,...,},FNG =
— 00
@) be real numbers satisfying cpp = 1 and cgr = cp for all F,G. The following
statements are equivalent:
(i) T has a dilation U = (Uy, ..., U,) € B(K)" such that

Py utu- |H = Csuppa, supp‘BT*‘B T"
foralla, B € Z, suppa Nsupp p = O;
(i)
3.1 Y. rrG((eT)rh, (eT)gh) >0
F,GCl[1,1]
foralle € T" and h € H.

Proof. The implication (i) = (ii) was proved in the previous section.

Let T satisfy (ii). It is sufficient to show that the function ¢ : Z" — B(H)
defined by ®(a) = csuppa,suppa_ T~ T+ is a positive definite function on the
group Z", i.e., for all finite subsets A C Z" and systems (/y),c of vectors in H
we have

Y (@(a— &), hy) 20,
a,n €A
see [4].

Let (hy)aen be a finite system of vectors in H. Let N € N satisfy N >
2max{laj|:a € A, j=1,...,n}.

Fore = (e1,...,€e4) € T" consider the vector

=Y ) ef—2Thp,.

aEA  PEZy

Let m be the Lebesgue measure on T”. Using (3.1) we have

27r / Y. rrc((€T)rxn(e), (eT)gxn(e))dm(e)

Tn F,GC[1,1]

27'[ / Y I”PGZ Y. sﬁ*”‘“FEﬁ,*"‘/*eG(TFTﬁha,TGTﬁ,h“/>dm(s).

™ F GC[11] an' €A pplert
BB/ <(N,...N)

All terms with  — a + e # B/ — &’ + e will disappear in the integration. For the
remaining termslety = p—a +¢ep = p —a’ +eg.
Thus we have

o< Y e X Y (T, TV )

F,GC[1,1] a0’ €A 7:(0,...0)<y+a—ep<(N,...,N)
(0,...0)<y+a’ —eg<(N,..,N)

= ) (On(wa')ha, hy),

an’ €A
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where
!
QN("‘: [x/) — Z EG T*7+oc T’H_“.
F,GC[1,1] Yy:ep<y+Ha<(N,..,N)+ep
ecgy+a’<(N,“.,N)+eG

Write ¥ = min{a, &’} and @ = ¥+ 6,0’ = &+ ¢'. Then §,6' € Z' and suppd N
suppd’ = @. Setting 7 = v + & we have

On(wa')= Y reg ) T

F,GC[1,1] 1:ep<+OS(N,.., N) +ep
e <n+8' <(N,..,N)+eg
/
_ Z T*r]+5 T’7+‘SS,7,
1]621

7+6+6' <(N+1,..,N+1)

where

(3.2) sy = )y TEG:
{jinj+0j=N+1}CFCsupp (7+9)
{jn+ol=N+1}cGCsupp (7+)

We need the following lemma.

LEMMA 3.2. Let,6,6" € Z!{, supp é Nsupp &’ = @, max{n; + d;,1; + 9}, j =
1,...,n} < N+ 1. Write for short D = supp (5 + ), D' = supp (1 + '), E={j :
77]‘+5]' :N+1},El = {j:ﬂj-i-(s]/-:N-f—l}. Then:

(i) if there exists j € {1,...,n} such that j € (DN D') \ (EUE’) then

Y reg=0;

ECFCD
E'cGcD’!

(ii) if DN D' = @ then
2 rF,G = CD,D"

FCD
GcD/!

Proof. (i) Using (2.2) we have

Z TrG = E CM,LAM,L~

ECFCD McD,LcD’
E'cGcD/ MNL=®
where
aup= Y (~1)MUH()lFHe
MUECFCD
LUE'cGcD!
:(_1)\MUL\( y (_1)|F\)< y (_1)\G\).
MUECFCD LUE'CGCD'

Letj € (DND')\(EUE'). Since MNL = @, eitherj ¢ Morj ¢ L. If

j & Mthen ¥ (=1l =0, and so ay; = 0. Similarly, if j ¢ L then
MUECFCD
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(=1)I6l = 0, and so ap;; = 0. Hence

LUE'CcGcCD!
Z YrG = 0.

ECFCD
E'cGeD!

(i) Let DN D’ = @. Again

Z TrG = Z CM,LAM,L,

FcD McD,LcD!
GcD! MNL=0
where
ave=(D)MH(C Y )P (Y ().
MCFcCD LcGcDY)
IfM # Dthen Y (—1)Fl = 0andsoay; = 0. Similarly, if L # D’ then

MCECD
Y (-1)¢l=0,andsoay; =0.1f M =Dand L = D’ thenay;; = 1. So
LcGcD!

2 e =Cp,p/- 1

FCD
Gep/
Recall that
N _ +6' 48
On(a,a') = ) T T s,
nezt
+6+8' <(N+1,...,N+1)
where

5}7 = 2 rF,G.

{j:1/j+6j=N+1}CFCsupp (7+9)

{j:Uj+§;:N+1}CGCSupp(17+(5/)
If there exists j € supp n7 with max{#; + J;,7; + 5]’} < N, then's; = 0 by Lem-
ma 3.2i). So

QN(UC/ 0(/) — Z T*i]-’r(sl T;f/-‘r(ssnl
where the sum is taken over all 7 € Z} such that max{#; + ¢;,17; + 5]’} =N+1
for all j € supp#. Note that the number of nonzero terms in this sum does not
depend on N (for N large enough). Moreover, the coefficients s, are bounded in-
dependently of N. Since T]N — 0 in the strong operator topology forj =1,...,n,
we have
I\lli~r>r}>o<QN(a/ lx,)h“/hﬂé/> = 5(0,...,0) <T*5 Téhvé/ hnc’> = CsuppJ,supp &’ <T*5 Téhtxl huc’>~
Hence
0< lim Y (Qn(a, & )ha, hy)

N—o0 w,n €A

= Z Csupp(txfac’)_,.,supp(afa’)_<T*(a_a/)7T(a_a/)+hucrha’>'

a0/ €A
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Hence the function
P(a) = Csupp a4, supp a— T**-T*
defined on the group Z" is positive definite and there exists a unitary dilation
U= (U,...,U,) € B(K)" such that
(Uh, UPG) = couppa, supp p{T"h, TFg)
forallh,¢g € Hand «, B € Z'} withsuppa Nsuppp=0. 1

REMARK 3.3. Conditions T}‘ — 0 (SOT) in Theorem [3.1|are necessary. Even
in the classical case of regular unitary dilations condition (3.1)) is not sufficient
(for details see below).

If we do not assume that T}‘ — 0, then it is possible to modify condition
in the following way.

THEOREM 3.4. Let cpg (F,G C {1,...,},F NG = @) be real numbers satisfy-
ing (L.1). Let T = (T,..., Tn) € B(H)" be a commuting n-tuple of operators. Suppose
that

(3.3) Y. rrc{(zT)fh, (2T)Gh) >0
F,GC[1,1]

forallh € Hyz = (z1,...,zn) € D" Then T has a dilation U = (Uy,...,U,) €
B(K)" such that

(Uh, Uﬁg} = Csupp uc,suppﬁ<Tlxh/ Tﬁg>
forallh,g € H,a,p € Z't, suppaNsupp p = @.

Proof. Let 0 < r < 1. The n-tuple rT = (rTy,...,rT,) satisfies conditions
of Theorem Therefore the function @,(«) = csuppa,,suppa_ (rT)** (rT)*+ is
positive definite on the group Z". Letting r — 1_ we get that the function

P(a) = Csupp a4, supp «— T**=T**
is positive definite on the group Z". So T has a unitary dilation satisfying
<Tah/ Tﬁg> = Csuppa, supp <leh/ uﬁg>
forallh,g € H,a,p € Z' ,suppaNsuppf=0. 1

Recall that a commuting n-tuple T = (Ty, ..., T,) € B(H)" is polynomially
bounded if there exists a constant K > 0 such that

IP(D)l < K]|p|
for all polynomials p of n variables, where || p|| = sup{|p(z)| : z € D"}.

THEOREM 3.5. Letcp g (F,G C {1,...,n},FNG = @) be real numbers satisfy-
ingcpp=1,cpp #0andcgr = cp forall F,G. Let T = (Ty,...,Ty) € B(H)" be
a commuting n-tuple of operators having a unitary dilation U determined by the system
(cr,G). Then T is polynomially bounded.
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Proof. Let p(z)= ), a,z" be a polynomial in n variables. For FC{1,...,n}
€L,

let

a€Zlt
suppaCF

Clearly ||pe|| < ||p||. We have
Y o) Y (-1)Vegh

FC[1,n] FCGC|[1,n]

=X Y X oau }y o (1)

FC[1,n] F'CF supp a=F' G:FCGC|[1,n1]
-1 G\F
=y Y aaua( Yoo, Lo(-pe \)
F'C[1,n] suppa=F' G:F'CGC[1,n] F:F'CFCG
— x —1
= ) Y, al Cpo-
F'C[1,n] a:suppa=F
So

M =[pe ¥ T altegl, olu

F'C[1,n] supp a=F’

x —1
E aU Csupptx,@H
F'C[1,n] suppa=F'

| X e T (VG|

FC[1,n] G:FCGC[1,n1]

bl X | T (-1l

FC[1,n] G:FCGC[ln]

N

N

Hence T is polynomially bounded with the polynomial bound

K< D | X (-1)Vegh|

FC[l,n] G:FCGC[1,n]

4. EXAMPLES

41. Letn =1and p > 0. Set (1,0 = o {1} = p_l. We have o =T {1y =
ciy,0 — o = (1/p) —land ryyy 1y = 1—(2/p). Clearly rgp = 1. Hence
condition becomes

1 2

2 2
- _z >

1| +z(p 1)Re (eTh, ) + (1 p>||Th\| >0

forall h € H, |¢| = 1. Similarly condition (3.3) becomes

e +2(; 1) Re (Th 1) + (1 i) |2Th|2 > 0
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forallh € H,z € D, which is the well-known characterization of p-contractions.

The condition becomes simpler for either p = 1 orp = 2. Forp = 1t
reduces to ||h||> — ||Th||?> > 0, ie. T is a contraction. For p = 2 it reduces to
|h]|?> — Re (zTh,h) > 0, i.e., the numerical range of T is contained in the closed
unit disc.

4.2. Letn = 1. The parameter c(y) » may be any real number, not only positive.

The case c(1} ¢ = 0 is rather trivial. In this case rg,c = (—1)/F1*16l. Condi-
tion then becomes

|h||> — 2Re (zTh, i) + ||zTh||*> > 0,

which is satisfied for any operator T € B(H). The corresponding dilation is
U = Iy ® S acting in the space H ® ¢5(Z), where S is the bilateral shift in ¢,(Z).

If 1,0 < 0, then T, = ¢1y,0 — 1 and T4y = 1-— ZC{l},@. Thus
becomes

11]* + 2(cq1y,0 — 1)Re (zTh, h) + (1 — 2c(1y @) | zTh|* > 0.

-1
{1}, o

43. Letn>1landcpg =0forall F,Gwith FUG # . This case is again trivial.
We have r¢ g = (—1)IFI#I6 and condition becomes

Y. (—D)FHCH(T)eh, (zT)6h) > 0
F,GC[1n1]

This enables to define p-contractions for negative values of p := ¢

forallh € H and z € D". However, this condition is satisfied for any commuting
n-tuple T since the left-hand side of the condition is equal to

| © uFEnm|”
FC[1,1]

44. Letn>1landcpg =1forall F,G C [1,n], FNG = @. Then
roe = (~DFHE T (Cq)Fue]

F/CF,G'cG
F'nG'=0
= (_1)\F\+|G|( y (_1)\F1|) ( Y (_1)|G1\) ( Y (_1)\F2UG2\>.
F1CF\G G1CG\F Fy, GHCFNG
F)nGy=0
If F # G then either F\ G # @ or G \ F # @. In both cases rr g = 0.
Furthermore,
YEE = Z (_1)|F2UG2\ - (_1)\“.
’ Fy, Gy CF
FNG,=0
Hence condition (3.1)) becomes
4.1) Y (—)FTeR? >0

FC[1,n]
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forallh € H. So if T saisfies and T]l‘ — 0 in the strong operator topology for
all j, then T has the regular unitary dilation. However, condition is satisfied
for example if one of the operators Tj is an isometry and the remaining operators
are arbitrary. The classical Brehmer conditions state that T has a regular unitary
dilation if and only if

(42) > (=) TeR > 0
FCB
forallh € H, B C [1,n]. This is in fact equivalent to which becomes
(43) > (DFET)ER? > 0
FC[1,n]

forallh € H,r € [0,1])". Indeed, if 1} is satisfied and B C [1,#], then set rp=1
forallj € Band r; = 0 forall j ¢ B. Thus one gets .

Conversely, suppose that T satisfy (4.2). Let r, € [0,1] and S be the n-tuple
of operators defined by S = (Ty,..., Ty—1,7:Ty). Then

Y, COFserP = Y, (O)PTERP Y, (<) Ten)?
FC[1,n] n¢FC[1,n] neFC[1,n]
=a+12b,

where

a= Y (-)FTeh|? >0
ngFC[1,n]

and
b= Y (-DFTRP= Y (—D)FF TR <o
neFC[1,n] FC[l,n-1]
Since T satisfies lb wehavea+b > 0, and so a + r%b > Oforallr, € [0,1].
Thus (4.3) is satisfied for r = (1,...,1,r,). Inductively, we get that T satisfies
forany r € [0,1]".

45. Letpy,...,0n>0.Setcrg = [I p; ' (F,GC[L,n],FNG = @). Then
jeruG

(*U'F‘HG"’F,G: Z (71)\F’UG’| H pj_l

F’/CF,?’CG jeF'UG’
FnG'=0
F -1 -1
:( Y (-DIATTe; )( Y () T p; )
F,CF\G jE€ER G1CG\F j€Gy
Z (_1)‘F2UG2| H P‘_l)
Htato jefilc !

- 11 (1_1). 1 (1_3>,

JEF:G Pi’  jérnc Pj
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where F = G = (F\ G) U (G \ F) denotes the symmetrical difference of F and G.

Hence
1

2
TeG = H — =1 H 1——).
jEF:G (PJ' ) JEFNG ( PJ'>
Conditions and then unify the characterizations of p-dilations of single
contractions and of regular unitary dilations of n-tuples.

4.6. The previous conditions get simplified if p; = -- - = p, = 1: this is the case
of regular unitary dilations. Another interesting case is for p; = --- = p, = 2. In
thiscaserpc =0if FNG # @. If FN G = @ then

1 1\ [FUG|
TF,G = H ——1) = — = .
jEFUG <PJ' ) ( 2)
Condition then becomes
1\ |FUG|
(=3)  {E)eh (T)h) >0
F,GC[Lu],FNG=0

forallh € Hand e € T".

47. Letpy,...,pn >0,letcpg =0if F# @ # G,and crp = [1] pj_l. Then

jeF
F|+|G _ F -1 el -1
() *Clree = ¥ () [T+ X (-1 [T o 1
F'CF jeF G'cG jeG’
1 1
=[J(1-—=)+]](1—=) -1
jeP< PJ') jeG< Pi)
Condition becomes simpler if p; = - -+ = p, = 1 (note that this is not

the case of regular unitary dilations). Then rgg = (—1)/FI+ICH1if F £ @ £ G,
rrp = 0if F # @ and rp o = 1. For details see Subsection 4.10 below.

48. Letp >0andcrg=p !forall ;G C [1,n],FNG=Q®,FUG # @. Then
() g =p7t 3, ()P (1= p7h),

F/CF,G'cG
F'NnG'=0

IfFF\G # @or G\F # Qthenrpg = (1—p ) (~1)FIHICL If F # @ then
rep =p (=)l 4+ (1 —p~1). Then
2

Y rec(Ten Toh)=(1=p71)|| 2 (=0)FITe|| 07" 35 (—1)F1) T
F,GC[1,n] FC[1,n] FC[1,n]
Condition then becomes

. 2 IE| 2
A-o)| T e +o7 ¥ ()FTen|2 > 0
FC[1,n] FC[1n]

forallh € Hand e € T".
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In particular, if p = 1 then this reduces to
Y ()T > 0
FC[1n]
for all h € H, which is again condition for regular unitary dilations.
49. Letp>0andcrp=p ' (F#®),crc=0(F #@ # G). Then
(~1)/FH e =t 3 (=)ot 3 ()9 (12071
F'CF G'CcG

IfF # @ # Gthen (—1)/FIHClrp g = 12071 If F # @ then (—1)/Flrpp =
1 — p~ L. Finally, r¢ = 1 as in all cases.
Hence condition (3.1)) becomes

hF+201—p") Y (=1)FIRe ((eT)ph, h)
@#FC[1,1]
+(1-20"Y Y (=1)FFICH(eT)ph, (eT)ch) > 0,
gy

or, equivalently,
2 -1 -1 2
@4) [InP+201-p " Re (Y (eT)ehh)+(1-207N)|| Y (T)eh >0
@#FC[1,n] FC[1,n],F#£0
forallh € H and € € T". Clearly is the multivariable analogy of the charac-

terization of p-dilations of single operators.

4.10. Condition becomes simpler for p = 1and p = 2.
For p = 1 we have the following characterization.

THEOREM 4.1. Let T = (Ty,...,Ty) € B(H)" be a commuting n-tuple of oper-

ators. The following conditions are equivalent:

(i) there exists a unitary dilation U = (U, ..., U,) € B(K)", K D H such that

T =PyU% g (x€Z)
and
PyUPU |y =0 (a,B € Z",suppaNsuppp =@, |a| #0 # |B|);
(ii) H Y (sT)th < ||| forallh € Hand e € T".
FC[1n],F£D

Clearly (ii) is equivalent to H Y (zT)th < ||h|| forallh € Hand z € D",
FC[1,n],F#0

so it is possible to omit the condition T}‘ — 0(SOT) forj=1,...,n.
For p = 2 condition (4.4) becomes

Ih>+ Y Re((eT)eh,h) >0
FC[1,n],F£D
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forall h € H and e € T". Equivalently,
Re((I+¢&Ty) - (I+€exTu)h,h) >0
forallh € H and € € T". Similarly, becomes
Re((I+2z1Ty) - (I+zyT)h,h) >0

forall h € H and z € D", which is equivalent to the previous condition.

This condition seems to be the proper generalization of operators with 2-
dilation, i.e., with numerical radius < 1.

Thus we have the following theorem.

THEOREM 4.2. Let T = (Ty,...,Ty) € B(H)" be a commuting n-tuple of oper-
ators. The following conditions are equivalent:
(i) there exists a unitary dilation U = (Uy, ..., U,) € B(K)", K D H such that

T* = 2P4U% |y  (x € Z7)
and
PyU*PU |y =0 (a,p € Z'{,suppansupp p =, [a| # 0 # |B|);
(i) Re((I+&1T1) - (I+exTyu)h,h) > 0forallh € Hande € T".

5. CONCLUDING REMARKS

REMARK 5.1. It is possible to consider complex values of numbers cr g,
such that cp)» = 1 and cgr = cr for all F,G. One can show that in this case
rG,r = 7r,c. Conditions (3.1) and (3.3) remain unchanged.

REMARK 5.2. The vanishing conditions T]l‘ — 0 (SOT) appear frequently in
the dilation theory and usually simplify the situation. In our situation, without
this assumption we proved that conditions are sufficient for the existence of
the unitary dilation satisfying (I.2). We do not know whether is also neces-
sary. Equivalently, suppose that T = (Ty, ..., T,) has a dilation U satisfying
and r = (r1,...,7,) € [0,1]". Does it follow that T = (r1Ty,...,,Ty) has also a
unitary dilation satisfying (I.2)? This is the case for p-dilations of single operators
as well as for regular unitary dilations. We do not know if it is true in general in
our setting.

Another possibility is to consider condition forall subsets of {1,...,n},
ie,

(5.1) Y reG((eT)eh, (eT)gg) =0

F,GCB
forall BC {1,...,n},h € H,e € T". Such a condition is usually considered for
regular unitary dilations. Condition is clearly necessary. We do not know if
it is also sufficient.
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