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ABSTRACT. In our previous work, J. Operator Theory, 77(2017), 217–241, we
define a topological correspondence from a locally compact groupoid equipped
with a Haar system to another one and we show that a topological correspon-
dence, (X, λ), from a locally compact groupoid with a Haar system (G, α)
to another one, (H, β), produces a C∗-correspondence H(X) from C∗(G, α)
to C∗(H, β). In the present article, we describe how to form a composite of
two topological correspondences when the bispaces are Hausdorff and sec-
ond countable in addition to being locally compact.
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1. INTRODUCTION

Let (G, α) and (H, β) be locally compact groupoids with Haar systems. A
topological correspondence from (G, α) to (H, β) is a G-H-bispace X which is
equipped with a continuous family of measures λ along the momentum map
sX : X → H(0), and the action of H and the family of measures satisfy certain
conditions (see Definition 2.1 of [5]). We need that the action of H is proper,
and the condition on λ is that it is H-invariant and each measure in λ is (G, α)-
quasi-invariant. The groupoids G and H, and the space X are locally compact but
not necessarily Hausdorff. However, in the present work we assume that all the
locally compact spaces are Hausdorff.

The main result in [5] says that a topological correspondence (X, λ) from
(G, α) to (H, β) produces a C∗-correspondence H(X) from C∗(G, α) to C∗(H, β).
Section 3 of [5] discusses many examples of topological correspondences.

Two C∗-correspondences, K : A → B and F : B → C, may be composed
to get a correspondence K⊗̂BF : A → C. On similar lines, consider two topo-
logical correspondences (X, α) and (Y, β) from (G1, χ1) to (G2, χ2) and (G2, χ2)
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to (G3, χ3), respectively, where (Gi, χi) for i = 1, 2, 3 is a locally compact group-
oid with a Haar system. We describe the composite (Y, β) ◦ (X, α) : (G1, χ1) →
(G3, χ3) when X and Y are Hausdorff and second countable in addition to being
locally compact. In fact, our construction works when X and Y are Hausdorff
and the space (X ×sX ,G2

(0),rY
Y)/G2 is paracompact; here sX and rX denote the

momentum maps for the actions of G2 on X and Y, respectively, and the quotient
is taken for the diagonal action of G2 on X×sX ,G2

(0),rY
Y.

The composite (Y, β) ◦ (X, α) should be a pair (Ω, µ) where Ω is a G1-G3-
bispace, µ is a continuous family of measures along the momentum map

sΩ : Ω→ G3
(0),

and the conditions in Definition 2.1 of [5] are satisfied. Furthermore, we must
have an isomorphismH(Ω) ' H(X)⊗̂C∗(G2,χ2)

H(Y) of C∗-correspondences.
The construction of Ω is well-known — it is the quotient space (X×sX ,G2

(0),rY
Y)/G2 for the diagonal action of G2 on X ×sX ,G2

(0),rY
Y. The diagonal action is

proper, since the action of G2 on X is proper. Thus the quotient space inherits all
the nice properties of the fibred product such as Hausdorffness. The harder task
is to get the continuous family of measures µ satisfying the required conditions.

We need that µ := {µu}u∈G3
(0) is G3-invariant and each µu is (G1, χ1)-quasi-

invariant. We explain how to get one such family of measures. The reason to write
“one such family of measures” is that the family is not unique; it depends on the
choice of a certain continuous function on X ×sX ,G2

(0),rY
Y. However, for any two

such families of measures the corresponding C∗-correspondences are naturally
isomorphic toH(X) ⊗̂C∗(G2,χ2)

H(Y).
The construction of µ is one of the most technical parts of this article. To

explain the problem, motivation and idea of constructing the composite of fami-
lies of measures, we have to do a computation and discuss some technical ideas.
Denote the space X ×sX ,G2

(0),rY
Y by Z. Then Z carries a G3-invariant continuous

family of measures m := {mu}u∈G(0)
3

which is given by

(1.1)
∫
Z

f dmu =
∫
Y

∫
X

f (x, y) dαrY(y)(x) dβu(y)

for f ∈ Cc(Z). Let π : Z → Ω be the quotient map and λ the continuous family
of measures along it defined as

(1.2)
∫

π−1([x,y])

f dλ[x,y] :=
∫

G
rY (y)
2

f (xγ, γ−1y) dχ
rY(y)
2 (γ)

for f ∈ Cc(Z), and [x, y] ∈ Ω which is the equivalence class of (x, y) ∈ Z. A
very natural choice for µ is that it is the family of measures on Ω which gives
the disintegration m = µ ◦ λ. Furthermore, one may expect that the isomorphism
H(X)⊗̂C∗(G2,χ2)

H(Y) ' H(Ω) is induced by the map Ψ : Cc(Z) → Cc(Ω) where
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Ψ(F)([x, y]) =
∫

G2

F(xγ, γ−1y)dχ
sX(x)
2 (γ). To be more explicit, we view Cc(Z) and

Cc(Ω) as pre-Hilbert C∗(G3, χ3)-modules which complete to the Hilbert
C∗(G3, χ3)-modules H(X)⊗̂H(Y) and H(Ω). And the map Ψ : Cc(Z) → C(Ω)
is expected to induce the required isomorphism of Hilbert C∗(G3, χ3)-modules
which also gives the desired isomorphism of C∗-correspondence.

However, that is not exactly the case. Consider the following example: let G
be a group and H a closed proper subgroup of G. Let α and κ be the Haar mea-
sures on G and H, respectively. Then (G, α−1) is a topological correspondence
from (G, α) to (H, κ) which is called the induction correspondence in Example 3.13
of [5]. The constant function 1 is the adjoining function for this correspondence.

Let X be a left H-space carrying an (H, κ)-quasi-invariant measure β. Let
∆X denote the 1-cocycle on the transformation groupoid H n X that gives the
quasi-invariance. Assume that ∆X is continuous. Then (X, β) is a topological
correspondence from (H, κ) to the trivial group Pt, see Example 3.6 of [5]. The
adjoining function of this correspondence is ∆X . Furthermore, H(X) = L2(X, β)
and the action of H induces the representation of C∗(H) on L2(X, β). Thus we
have

(G, α)
(G,α−1)−−−−→ (K, κ)

(X,β)−−−→ Pt.

Let Z, Ω, π, m, λ and µ have the similar meaning as in the above discussion. Then
in this situation, Z = G × X, Ω = (G × X)/K, m = α−1 × β and π : G × X →
(G× X)/K the quotient map. For f ∈ Cc(Z) equation (1.2) now reads∫

π−1([γ,x])

f dλ[γ,x] =
∫
H

f (γη, η−1x)dκ(η).

What are the necessary and sufficient conditions to get a measure µ on (G×X)/K
satisfying α−1 × β = m = µ ◦ λ?

We may draw a square as in Figure 3 comprising the spaces, maps and mea-
sures discussed above. And then (i) of Proposition 3.1 implies that if there is
such a measure µ, then the equality m ◦ κ = m ◦ κ−1 must hold — this is the
necessary condition. Recall from the discussion above that m = α−1 × β. Thus
we must have (α−1 × β) ◦ κ = (α−1 × β) ◦ κ−1 on Z × K = G × X × K. Let
f ∈ Cc(G× X× K), then a direct computation gives that

(α−1 × β) ◦ κ( f ) =
∫
G

∫
X

∫
K

f (γ, x, η)dκ(η)dβ(x)dα−1(γ).

On the other hand,

(α−1 × β) ◦ κ−1( f ) =
∫
G

∫
X

∫
K

f (γ, x, η−1)dκ(η)dβ(x)dα−1(γ).
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Now (i) first apply Fubini’s theorem to dκ dβ, (ii) then change variable (γ, x, η−1)
to (γη, η−1x, η), (iii) then use the (H, κ)-quasi-invariance of β and the right in-
variance of α−1 and (iv) finally apply Fubini’s theorem to dβ dκ to see that the
last term equals∫

G

∫
X

∫
K

f (γ, η−1x, η)∆X(η, η−1x)dκ(η)dβ(x)dα−1(γ).

Thus the 1-cocycle ∆X on the transformation groupoid H n X is the obstruction
for the measures (α−1 × β) ◦ κ and (α−1 × β) ◦ κ−1 to be equal. (ii) of Proposi-
tion 3.1 says that equality of these measures, m ◦ κ = m ◦ κ−1, is also a sufficient
condition in our situation for the measure µ to exist.

A similar problem appears in the general setting; there the cocycle ∆X is
replaced by the adjoining function of the second correspondence involved in the
composition. How to overcome this obstruction?

Let (X, α) : (G1, χ1) → (G2, χ2) and (Y, β) : (G2, χ2) → (G3, χ3) be topo-
logical correspondences and let ∆2 be the adjoining function of (Y, β). Then we
realise ∆2 as a 1-cocycle on the proper groupoid Z o G2 and decompose it into a
quotient ∆2 = b ◦ sZoG2 /b ◦ rZoG2 for a continuous real-valued function b on the
unit space of the groupoid Z o G2; thus b is a 0-cochain. Here sZoG2 and rZoG2

denote the source and the range maps of the transformation groupoid Z o G2, re-
spectively. Using Proposition 3.1 we show that there is a unique measure µ which
gives the disintegration bm = µ ◦ λ. We modify the map Ψ : Cc(Z)→ Cc(Ω) dis-
cussed above (the discussion following equation (1.2) on page 90) to consider the
0-cochain b. Then this µ and modified Ψ produce the desired isomorphism of
C∗-correspondences.

In this construction, the function b defined on Z, the space of units of the
transformation groupoid Z o G2, is not unique. However, as mentioned earlier,
for any two such functions the C∗-correspondences associated with the compos-
ites are isomorphic to H(X) ⊗̂C∗(G2,χ2)

H(Y). Given two such functions b and b′

on Z which decompose ∆2 as above, with some slight work, one may show that
there is a positive continuous function c on Z with b = cb′. This explains the
isomorphism of C∗-correspondences associated with the two composites.

The elements of groupoid cohomology which we need are developed in Sec-
tion 1 of [5] and we prove the other necessary results in this article. The main re-
sult we need is Proposition 2.7 which asserts that the first R-valued cohomology
of a proper groupoid is trivial. Lemma 2.5 is the main tool to prove this proposi-
tion. This lemma says that a locally compact proper groupoid G equipped with a
Haar system and G\G(0) paracompact carries an invariant family of probability
measures.

As shown in Examples 3.10 and 3.7 of [5], the generalized morphism de-
fined by Buneci and Stachura in [3], and the topological correspondences for the
groupoids with Hausdorff space of units introduced by Tu in [9], respectively, are
topological correspondences. Our construction of composite matches the ones
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described by Tu [9], and Buneci and Stachura [3], see Examples 4.5 and 4.6, re-
spectively.

We discuss some examples at the end of the article. A continuous map f :
X → Y of spaces gives a topological correspondence (X, δX) from Y to X ([5],
Example 3.1). Here δX = {δx}x∈X is the family of measures where each δx is the
point mass at x ∈ X. A continuous group homomorphism φ : G → H gives
a topological correspondences (H, β−1) from G to H ([5], Example 3.4) where β
is the Haar measure on H. If g : Y → Z is a function, then Example 4.1 shows
that the composite of the topological correspondences (X, δX) and (Y, δZ) is the
correspondence obtained from the function g ◦ f : X → Z. Example 4.3 shows
that a similar result holds for group homomorphisms. Both these examples agree
with the well-known behaviour of the C∗-functor for spaces and groups.

Let G be a locally compact group, and let H and K be closed subgroups of G.
Example 4.7 shows how to use topological correspondences to induce a topological
representation of K to H.

Most of our terminology, definitions, hypotheses and notation are defined
in [5]. Now we describe the structure of the article briefly. In the first section,
we revise few definitions, notation and results in [5]. We prove that every lo-
cally compact proper groupoid equipped with a Haar system carries an invariant
continuous family of probability measures. Then using this result we prove that
every real valued 1-cocycle on a proper groupoid is a coboundary.

In the second section, we describe the composition of topological corre-
spondences and prove the main result, Theorem 3.14, which says that the C∗-
correspondence associated with a composite is isomorphic to the composite of
the C∗-correspondences.

The last section contains examples. Most of the examples are related to the
ones in [5].

2. PRELIMINARIES

2.1. REVISION. The symbols',≈, R+ and R+
∗ stand for isomorphic, homeomor-

phic, the set of positive real numbers and the multiplicative group of positive real
numbers, respectively. The symbols⊗C and ⊗̂ indicate the algebraic tensor prod-
uct of modules and the interior tensor product of Hilbert modules, respectively.
To denote elements in the algebraic tensor product we use ⊗ and for the ones in
the interior tensor product of Hilbert modules ⊗̂ is used.

We work with continuous families of measures and all the measures are
assumed to be positive, Radon and σ-finite. The families of measures are denoted
by small Greek letters and the corresponding integration function that appears in
the continuity condition is denoted by the Greek upper case letter used to denote
the family of measures. For example, if λ is a family of measures along a map
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f : X → Y, then Λ : Cc(X) → Cc(Y) is the function Λ( f )(y) =
∫
X

f dy. The

capitalisations of α, β, χ and µ are A, B, χ and M, respectively.
However, for a single measure on a space, which is a family of measures

along the constant map onto a point, we follow the traditional convention, that is,
the same letter is used to denote the measure and the corresponding integration
functional. For example, if α is a measure on X, then α( f ) =

∫
X

f dα for f ∈ Cc(X).

Let G be a groupoid, then rG, sG and invG denote the source, range and the
inversion maps for G. Given a left G-space X, we tacitly assume that the momen-
tum map for the action is rX . If X is a right G-space, then sX is the momentum
map for the action.

We denote G ×sG ,G(0),rX
X, the fibred product for G and X over G(0) along

sG and rX , by G ×G(0) X. If X is a right G-space, then X ×G(0) G has a similar
meaning. For a left G-space X, G n X is the transformation groupoid and its set
of arrows is the fibred product G ×G(0) X. Similar is the meaning of X o G for a
right G-space X.

For A, B ⊆ G(0) we define GA = r−1
G (A), GB = s−1

G (B) and GA
B = GA ∩ GB.

When A = {u} and B = {v} are singletons, we simply write Gu, Gv and Gu
v

instead of G{u}, G{v} and G{u}{v} , respectively. Let X and Y be left and right G-

spaces, respectively, and let A ⊆ G(0) and u ∈ G(0). Then XA, Xu, YB and Yu have
the similar obvious meanings.

Lance’s book [6] is our reference for Hilbert modules hence most of our
terminology comes from this book. We denote a C∗-correspondence only by the
Hilbert module involved in it; we do not write the representation of the left C∗-
algebra. Thus we say “H is a C∗-correspondence from a C∗-algebra A to B”, and
not “(H, φ) is a C∗-correspondence from a C∗-algebra A to B” where φ : A →
BB(H) is the nondegenerate ∗-representation involved in the definition of the
correspondence. We also write “H : A→ B is a C∗-correspondence”.

Now we sketch the process of composing the C∗-correspondences briefly
and explain a few notation along the way. Let A, B and C be C∗-algebras, and
let H : A → B and F : B → C be C∗-correspondences. Endow H ⊗C F with
the sesquilinear map 〈ζ ⊗ ξ , ζ ′ ⊗ ξ ′〉 = 〈ξ , 〈ζ , ζ ′〉ξ ′〉. Then H⊗C F becomes a
semi-inner product C-module, see page 3 of [6] for the definition of a semi-inner
product C∗-module.

Let N ⊆ H⊗C F be the closed vector subspace of the vectors of zero norm,
that is, N = {z ∈ H ⊗C F : 〈z , z〉 = 0}. The proof of Proposition 4.5 in [6]
shows that the subspace N is the same as the subspace spanned by the elements
of the form ζb ⊗ ξ − ζ ⊗ bξ where ζ ∈ H, ξ ∈ F and b ∈ B. The C-module
(H ⊗C F )/N carries a well-defined inner product induced by 〈· , ·〉 which we
denote by [〈· , ·〉]. The C-module (H⊗C F )/N equipped with the inner product
[〈· , ·〉] is a pre-Hilbert C-module. The Hilbert C-moduleH⊗̂BF is the completion
of (H⊗C F )/N in the norm induced by [〈· , ·〉].
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The notation [〈· , ·〉] is used in the above discussion for the sake of clarity;
in the rest of the article we will not use this notation. We prefer writing 〈· , ·〉.
We denote the equivalence class of an elementary tensor ζ ⊗ ξ ∈ H ⊗C F in
H⊗̂BF by ζ⊗̂ξ. The action of A on H⊗̂BF is a(ζ⊗̂ξ) = aζ⊗̂ξ where a ∈ A
and ζ⊗̂ξ ∈ H⊗̂F . We call the map ξ ⊗C ζ 7→ ξ⊗̂ζ, H ⊗C F → H⊗̂F , the
obvious map of Hilbert C∗-modules which, clearly, has a dense image. It can be
easily checked that the obvious map is a map of A-modules, that is, a(ξ ⊗C ζ) =
(aξ)⊗C ζ 7→ (aξ)⊗̂ζ = a(ξ⊗̂ζ) for all a ∈ A, ξ ∈ H and ζ ∈ F .

Finally, it is worth mentioning that the polarisation identity holds for a
Hilbert module. That is, if H is a Hilbert B-module over a C∗-algebra B, then
for every ξ, ζ ∈ H we have

(2.1) 〈ξ , ζ〉= 1
4
(〈ξ+ζ , ξ+ζ〉−〈ξ−ζ , ξ−ζ〉−i〈ξ+iζ , ξ+iζ〉+i〈ξ−iζ , ξ−iζ〉).

Equation (2.1) follows from a direct computation.

DEFINITION 2.1 (Topological correspondence). A topological correspondence
from a locally compact groupoid G with a Haar system α to a locally compact
groupoid H equipped with a Haar system β is a pair (X, λ), where:

(i) X is a locally compact G-H-bispace,
(ii) the action of H is proper,

(iii) λ = {λu}u∈H(0) is an H-invariant proper continuous family of measures
along the momentum map sX : X → H(0),

(iv) there exists a continuous function ∆ : G n X → R+ such that for each
u ∈ H(0) and F ∈ Cc(G×G(0) X),∫
Xu

∫
GrX (x)

F(γ−1, x)dαrX(x)(γ)dλu(x)=
∫

Xu

∫
GrX (x)

F(γ, γ−1x)∆(γ, γ−1x)dαrX(x)(γ)dλu(x).

The function ∆ is unique and is called the adjoining function of the correspon-
dence.

For φ ∈ Cc(G), f ∈ Cc(X) and ψ ∈ Cc(H) define the functions φ · f and f ·ψ
on X as follows:

(2.2)


(φ · f )(x) :=

∫
GrX (x)

φ(γ) f (γ−1x)∆1/2(γ, γ−1x) dαrX(x)(γ),

( f · ψ)(x) :=
∫

HsX (x)

f (xη)ψ(η−1) dβsX(x)(η).

For f , g ∈ Cc(X) define the function 〈 f , g〉 on H by

〈 f , g〉(η) :=
∫

XrH (η)

f (x)g(xη) dλrH(η)(x).(2.3)
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Very often we write φ f and f ψ instead of φ · f and f · ψ, respectively. Lemma 2.10
of [5] proves that φ f , f ψ ∈ Cc(X) and 〈 f , g〉 ∈ Cc(H).

THEOREM 2.2 ([5], Theorem 2.39). Let (G, α) and (H, β) be locally compact
groupoids with Haar systems. Then a topological correspondence (X, λ) from (G, α) to
(H, β) produces a C∗-correspondenceH(X) from C∗(G, α) to C∗(H, β).

2.2. COHOMOLOGY OF PROPER GROUPOIDS. In this subsection, we show that
the first continuous cohomology group with real coefficients is trivial. It can be
readily checked that the result is valid for the groupoid equivariant continuous
cohomology introduced in Section 1 of [5], and also for the (equivariant) Borel
cohomology of a proper (topological) groupoid.

LEMMA 2.3 ([2], Lemma 1, Appendix I). Let X be a locally compact Hausdorff
space, R an open equivalence relation in X, such that the quotient space X/R is paracom-
pact; let π be the canonical mapping of X onto X/R. There is a continuous real-valued
function F > 0 on X such that:

(i) F is not identically zero on any equivalence class with respect to R;
(ii) for every compact subset K of X/R, the intersection of π−1(K) with supp(F) is

compact.

A continuous map f : X → Y is proper, if for each y ∈ Y, f−1(y) ⊆ X is
quasi-compact. We call a locally compact groupoid proper if the map (rG, sG) : G
→ G(0) × G(0), (rG, sG)(γ) = (rG(γ), sG(γ)), is proper.

PROPOSITION 2.4 ([9], Proposition 2.10). Let G be a locally compact groupoid.
Then the following assertions are equivalent:

(i) G is proper;
(ii) the map (rG, sG) : G → G(0) × G(0) is closed and for each u ∈ G(0), Gu

u ⊆ G is
quasi-compact;

(iii) for all quasi-compact subsets K, L ⊆ G(0), GL
K is quasi-compact;

(iv) for all compact subsets K, L ⊆ G(0), GL
K is compact;

(v) for every quasi-compact subsets K ⊆ G(0), GK
K is quasi-compact;

(vi) for all x, y ∈ G(0), there are compact neighbourhoods Kx and Ly of x and y,
respectively, such that GKx

Ly
is quasi-compact.

Proposition 2.10 of [9] is stated for groupoids which do not, necessarily,
have Hausdorff space of units in which case (i)–(v) are equivalent and (v)⇒ (vi).

LEMMA 2.5. Let (G, α) be a locally compact proper groupoid with a Haar sys-
tem. If G\G(0) is paracompact then there is a continuous invariant family of probability
measures on G. Furthermore, each measure in this family has a compact support.

Proof. Since G has a Haar system, the range map of G is open, hence the
quotient map π : G(0) → G\G(0) is open. Since G is proper, G\G(0) is locally
compact and Hausdorff. By hypothesis G\G(0) is paracompact. Now we apply
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Lemma 2.3 to get a function F on G(0) such that F is not identically zero on any
G-orbit in G(0) and for every compact K ⊆ G\G(0) the intersection supp(F) ∩
π−1(K) is compact. Define h : G(0) → R+ by

h(u) =
∫

Gu

F ◦ sG(γ) dαu(γ).

Property (ii) of F from Lemma 2.3 and the full support condition of αu imply that
h(u) > 0. To see that h(u) < ∞, notice that supp(F ◦ sG) ∩ Gu ⊆ G is compact:

γ ∈ supp(F ◦ sG) ∩ Gu ⇒ sG(γ) ∈ supp(F) and rG(γ) = u.

Thus if ũ ⊆ G(0) denotes the orbit of u, then supp(F ◦ sG)∩Gu ⊆ (rG, sG)
−1({u}×

supp(F|ũ)). Property (ii) of F from Lemma 2.3 says that supp(F|ũ) is compact. As
G is a proper groupoid, the set (rG × sG)

−1({u} × supp(F|ũ)) is compact which
implies that supp(F ◦ sG) ∩ Gu is compact.

Using the invariance of α, it is not hard to see that the function h is constant
on the orbits of G(0). Put F′ = (F/h) ◦ sG, then

(2.4)
∫

Gu

F′(γ) dαu(γ) = 1.

Denote F′αu by pu, then p := {pu}u∈G(0) is a family of probability measures on G.
Explicitly, p is given by ∫

Gu

f dpu =
∫

Gu

f (γ) F′(γ) dαu(γ)

for f ∈ Cc(G). It follows from the definition of measure pu, where u ∈ G(0), that
the compact set supp(F ◦ sG) ∩ Gu is the support of pu.

To check that p is invariant, let f ∈ Cc(G) and η ∈ G; by the definition of p
we have ∫

GsG(η)

f (ηγ) dpsG(η)(γ) =
∫

GsG(η)

f (ηγ) F′(γ) dαsG(η)(γ).

Now change the variable ηγ 7→ γ so that the previous term equals∫
GrG(η)

f (γ) F′(η−1γ) dαrG(η)(γ).

Use the invariance of α and the fact that

F′(η−1γ) :=
F ◦ sGη−1γ

h ◦ sG(η−1γ)
=

F ◦ sGγ

h ◦ sG(γ)
= F′(γ)

and compute further:∫
GrG(η)

f (γ)F′(η−1γ)dαrG(η)(γ)=
∫

GsG(η)

f (γ)F′(γ)dαrG(η)(γ)=
∫

GsG(η)

f (γ)dprG(η)(γ).
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REMARK 2.6. Anantharaman-Delaroche and Renault define topological ame-
nability for a locally compact topological groupoid ([1], Definition 2.2.7). Lem-
ma 2.5 says that every proper groupoid G with a Haar system and G\G(0) para-
compact is topologically amenable.

The following proposition, namely Proposition 2.7, appears as Lemma 2.5
in [7] with the same proof.

PROPOSITION 2.7. Let G be a locally compact proper groupoid and α be a Haar
system on G. Then every R-valued 1-cocycle is a coboundary, that is, H1(G;R) = 0.

Proof. Let p = {pu}u∈G(0) be an invariant family of probability measures on
G which is obtained using Lemma 2.5. We claim that for a 1-cocycle c : G → R,
the function

b(u) =
∫
G

c(γ)dpu(γ) for u ∈ G(0)

satisfies c = b ◦ s− b ◦ r. Lemma 2.5 says that the support of each measure in p
is compact, hence the above integral is well-defined. To see that b is the desired
cochain, let η ∈ G and compute:

(b ◦ s− b ◦ r)(η) =
∫

GsG(η)

c(γ)dps(η)(γ)−
∫

GrG(η)

c(γ)dpr(η)(γ)

=
∫

GsG(η)

c(γ)dps(η)(γ)−
∫

GsG(η)

c(ηγ)dps(η)(γ)

=
∫

GsG(η)

(c(γ)− c(η) + c(γ))dps(η)(γ)= c(η)
∫

dps(η)(γ)= c(η).

We used the invariance of p to get the second equality above.

3. COMPOSITION OF CORRESPONDENCES

3.1. PREPARATION FOR COMPOSITION. Let G be a locally compact proper group-
oid with G/G(0) paracompact. Since G is proper the action of G on G(0) given by
γ · sG(γ) = rG(γ) for γ ∈ G is proper. Let λ be a Haar system on G. Then λ

induces a family of measures [λ] along π : G(0) → G/G(0). And [λ] is defined as

(3.1)
∫

G(0)

f d[λ][u] =
∫
G

f (γ−1 · u)dλu(λ) =
∫
G

f ◦ sG(γ)dλu(γ)

for f ∈ Cc(G(0)). Note that in equation (3.1), γ−1 · u does not stand for the com-
posite of γ−1 and u but for the action of G on G(0), that is, γ−1 · u = rG(γ

−1) =
sG(γ). We draw Figure 1 which contains all this data.
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G G(0)

G(0) G/G(0)

λ−1

sG

rGλ [λ]π

[λ]

π

FIGURE 1.

A measure m on G(0) induces measures m ◦ λ and m ◦ λ−1 on G. For f ∈
Cc(G) ∫

G

f d(m ◦ λ−1) :=
∫

G(0)

∫
G

f (γ−1)dλu(γ)dm(u).

The measure m ◦ λ is defined similarly. We call the measure m on G(0) invariant
with respect to (G, λ) if m ◦ λ = m ◦ λ−1 and the measure m ◦ λ on G is called
symmetric.

PROPOSITION 3.1. Let G be a proper groupoid with G/G(0) paracompact, let λ

be a Haar system for G and π : G(0) → G/G(0) be the quotient map.
(i) Let µ be a measure on G/G(0) and let m denote the measure µ ◦ [λ] on G(0). Then

m is an invariant measure.
(ii) Let m be a measure on G(0). If m is invariant, then there is a measure µ on G/G(0)

with µ ◦ [λ] = m.
(iii) The measure µ in (ii), with µ ◦ [λ] = m, is unique.

Proof. (i) Let f ∈ Cc(G), then∫
G

f d(m ◦ λ) =
∫
G

f d(µ ◦ [λ] ◦ λ) =
∫

G/G(0)

∫
G(0)

Λ( f )(u) d[λ][u](u)dµ([u])

=
∫

G/G(0)

∫
Gu

Λ( f ) ◦ sG(γ) dλu(γ)dµ([u])

=
∫

G/G(0)

∫
Gu

( ∫
GsG(γ)

f (η)dλsG(γ)(η)
)

dλu(γ)dµ[u].

We know that sG(γ) = rG(γ
−1). Now change the variable η 7→ γ−1η, and use

the left invariance of λ to see that the previous term equals∫
G/G(0)

∫
G

∫
G

f (γ−1η)dλrG(γ)(η)dλu(γ)dµ([u]).

We have removed the superscripts of G in the above equation for simplicity. Now
apply Fubini’s theorem to dλrG(γ)(η)dλu(γ) which is allowed since rG(γ) = u,
and f is a compactly supported continuous function. Moreover, note that u =
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rG(γ) = sG(γ
−1), use the right invariance of λ−1 and compute further:∫

G/G(0)

∫
G

∫
G

f (γ−1η)dλsG(γ
−1)(γ)dλu(η)dµ([u])

=
∫

G/G(0)

∫
G

∫
G

f (γ−1)dλsG(η)(γ)dλu(η)dµ([u])

=
∫

G/G(0)

∫
G

Λ−1( f ) ◦ sG(η)dλu(η)dµ([u])

=
∫

G/G(0)

f d(µ ◦ [λ] ◦ λ−1) =
∫
G

f d(m ◦ λ−1).

To be precise, in the last line, the first equality is obtained by using the right
invariance of λ−1.

(ii) Let e be a function on G(0) which is similar to function F/h in Lemma 2.5,
and thus Λ(e ◦ sG) = 1. Function e ◦ sG is like function F′ in equation (2.4). Let
µ be the measure on G/G(0) which is defined as µ(g) = m((g ◦ π) · e) for g ∈
Cc(G/G(0)). Let [Λ] denote the integration function corresponding to [λ]. For
f ∈ Cc(G(0))∫

G(0)

f d(µ ◦ [λ]) =
∫

G/G(0)

[Λ]( f )([u])dµ([u]) =
∫

G(0)

[Λ]( f ) ◦ π(u) e(u)dm(u)

=
∫

G(0)

∫
G

f ◦ sG(γ) e(rG(γ)) dλu(γ)dm(u).

We change γ 7→ γ−1, then use the symmetry of the measure m ◦ λ and continue
the computation:∫
G(0)

∫
G

f ◦ rG(γ) e(sG(γ)) dλu(γ)dm(u) =
∫

G(0)

f (u)Λ(e ◦ sG)(γ)dm(u) =
∫

f dm.

The last equality is due to the property of e that Λ(e ◦ sG) = 1.
(iii) Let µ′ be another measure on G/G(0) which satisfies the condition µ′ ◦

[λ] = m. Since the integration map [Λ] : Cc(G(0)) → Cc(G/G(0)) is surjective,
µ ◦ [λ] = µ′ ◦ [λ] implies µ = µ′.

Now we study the case when the measure m is not invariant, but strongly
quasi-invariant; m is called quasi-invariant with respect to (G, λ) if m ◦λ ∼ m ◦λ−1.
Following Folland, see Chapter 2, Section 6, page 58 of [4], we call m strongly
quasi-invariant with respect to (G, λ) if there is a continuous homomorphism ∆ :
G → R+

∗ with m ◦ λ = ∆ · (m ◦ λ−1), that is, m is quasi-invariant with respect to
(G, λ) and the Radon–Nikodym derivative implementing the equivalence of the
measures m ◦ λ and m ◦ λ−1 is continuous. Very often, when there is no chance
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of confusion, we drop the phrase “with respect to (G, λ)” while talking about a
(strongly) quasi-invariant measure. The cohomology theory of groupoids tells us
that a homomorphism from G to an abelian group R is the same as an R-valued
1-cocycle (see Section 1 of [5]).

Let (G, λ) be as in Proposition 3.1. Let m be a strongly quasi-invariant
measure on G(0), and let ∆ be the R+

∗ -valued continuous 1-cocycle which imple-
ments the quasi-invariance. Then ∆ gives an R-valued 1-cocycle log ◦∆ : G → R.
Proposition 2.7 says that log ◦∆ = b ◦ sG − b ◦ rG for some continuous function
b : G(0) → R. Thus

∆ =
eb◦sG

eb◦rG
.

Write b = eb, then b > 0 and it can be checked that

∆ =
eb◦sG

eb◦rG
=

eb ◦ sG

eb ◦ rG
=

b ◦ sG
b ◦ rG

.

Rewriting the definition of (G, λ)-quasi-invariance of m using the above value
of ∆ gives that m ◦ λ = ((b ◦ sG)/(b ◦ rG))m ◦ λ−1 which is equivalent to (b ◦
rG)(m ◦ λ) = (b ◦ sG)(m ◦ λ−1). A straightforward calculation shows that (b ◦
rG)(m ◦ λ) = (bm) ◦ λ and (b ◦ sG)(m ◦ λ−1) = (bm) ◦ λ−1. Thus we get the
following proposition.

PROPOSITION 3.2. Let (G, λ) be a locally compact proper groupoid with a Haar
system. Assume that G/G(0) is paracompact. Let m be a strongly (G, λ)-quasi-invariant
measure on G(0). Let ∆ be the R+

∗ -valued continuous 1-cocycle which implements the
quasi-invariance. Then there is a continuous function b : G(0) → R+ with

(i) (b ◦ sG(γ))/(b ◦ rG(γ)) = ∆(γ) for all γ ∈ G;
(ii) the measure bm on G(0) is (G, λ)-invariant, that is, bm ◦ λ = bm ◦ λ−1.

3.2. COMPOSITION OF TOPOLOGICAL CORRESPONDENCES. Let (X, α) and (Y, β)
be correspondences from (G1, χ1) to (G2, χ2) and from (G2, χ2) to (G3, χ3), re-
spectively. Let ∆1 and ∆2 be the adjoining functions of (X, α) and (Y, β), respec-
tively. Additionally, assume that X and Y are Hausdorff, and second countable.
We draw Figure 2 that comprises this data.

X Y

(G1, χ1) (G2, χ2) (G3, χ3)

∆1
α

∆2
β

FIGURE 2.

We need to create a G1-G3-bispace Ω equipped with a G3-invariant continu-
ous family of measures µ = {µu}u∈H(0)

3
with each µu G1-quasi-invariant. And the
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C∗(G1, χ1)-C∗(G3, χ3)-Hilbert moduleH(Ω) should be isomorphic to the Hilbert
moduleH(X)⊗̂C∗(G2,χ2)

H(Y).
Denote the fibred product X ×G2

(0) Y by Z. Then Z carries the diagonal
action of G2. Since the action of G2 on X is proper, its action on Z is proper.
Thus the transformation groupoid Z o G2 is proper. We define the space Ω =

Z/G2 = (Z o G2)
(0)/(Z o G2). Since Z is locally compact, Hausdorff and second

countable, so is Ω. Being a locally compact, Hausdorff and second countable
space, Ω is paracompact.

The following discussion in this section goes through under a milder hy-
pothesis, namely, X and Y are locally compact Hausdorff and Ω is paracompact.

OBSERVATION 3.3. The space Z is a G1-G3-bispace. The momentum maps
are rZ(x, y) = rX(x) and sZ(x, y) = sY(y). For (γ1, (x, y)) ∈ G1 ×G1

(0) Z and
((x, y), γ3) ∈ Z ×

G(0)
3

G3, the actions are γ1 · (x, y) = (γ1x, y) and (x, y) · γ3 =

(x, yγ3), respectively. These actions descend to Ω and make it a G1-G3-bispace.
Thus rΩ([x, y]) = rX(x) and sΩ([x, y]) = sY(y) and γ1[x, y]γ3 = [γ1x, yγ3] for
appropriate γ1 ∈ G1, [x, y] ∈ Ω and γ3 ∈ G3.

LEMMA 3.4. The right action of G3 on Ω defined in Observation 3.3 is proper.

The proof follows from Lemma 2.33 of [9].
For each u ∈ G(0)

3 define a measure mu on the space Z as follows: for
f ∈ Cc(Z) ∫

Z

f dmu =
∫
Y

∫
X

f (x, y) dαrY(y)(x) dβu(y).

LEMMA 3.5. The family of measures {mu}u∈G(0)
3

is a G3-invariant continuous
family of measures on Z.

Proof. It is a routine computation to check that the G3-invariance of the fam-
ily of measures β makes {mu}u∈G(0)

3
G3-invariant. The computation is similar to

that in Proposition 3.10. To check the continuity, let f ∈ Cc(X) and g ∈ Cc(Y),
then ∫

Z

f ⊗ g dmu = B((A( f ) ◦ rY) g)(u)

which is in Cc(G3
(0)). Now use the theorem of Stone–Weierstraß to see that the set

{ f ⊗ g : f ∈ Cc(X), g ∈ Cc(Y)} ⊆ Cc(Z) is dense which concludes the lemma.

The Haar system χ2 of G2 induces a Haar system χ on Z o G2; for f ∈
Cc(Z o G2) and (x, y) ∈ Z∫

(ZoG2)
(x,y)

f dχ(x,y) :=
∫

GsX (x)
2

f ((x, y), γ)dχ
sX(x)
2 (γ).
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The quotient map π : Z → Ω carries the family of measures [χ]; the definition
of which is similar to the one in equation (3.1). We write λ instead of [χ], and λω

instead of [χ]ω for all ω ∈ Ω. Recall from Subsection 3.1 that for f ∈ Cc(Z) and
ω = [x, y] ∈ Ω ∫

π−1(ω)

f dλω :=
∫

G
rY (y)
2

f (xγ, γ−1y) dχ
rY(y)
2 (γ).

We wish to prove that, up to equivalence, {mu}u∈G3
(0) can be pushed down

from Z to Ω to a G3-invariant family of measures {µu}u∈G3
(0) . We use λ to achieve

this. To be precise, we find a continuous function b : Z → R+ and a family of
measures µ on Ω which gives a disintegration bm = µ ◦ λ. Before we proceed we
prove a small lemma.

LEMMA 3.6. Let (X, α) and (Y, β) be correspondences from (G1, χ1) to (G2, χ2)
and from (G2, χ2) to (G3, χ3), respectively, with ∆1 and ∆2 as their adjoining functions.
Then for each u ∈ G(0)

3 there is a function bu on Z such that the measure bumu on
Z = (Z o G2)

(0) is an invariant measure with respect to (Z o G2, χ). Furthermore, bu
satisfies the relation b(xγ, γ−1y)b(x, y)−1 = ∆2(γ

−1, y).

We work with a single µu at a time, so we prefer to drop the suffix u of bu and
simply write b. Using Lemma 3.6 we define the function ∆ : Z×G2

(0) G2 → R+ as

∆((x, y), γ) = ∆2(γ
−1, y).

Proof. The proof follows the steps below.
Step 1. Firstly, we show that for each u ∈ G(0)

3, mu is strongly quasi-
invariant with respect to (Z o G2, χ) and ∆((x, y), γ) := ∆2(γ

−1, y) is the cocycle
which implements the quasi-invariance.

Step 2. Since Z o G2 is proper, we appeal to Proposition 3.2 to get a function
b : Z = (Z o G2)

(0) → R+ having the desired properties.
(i) We draw Figure 3 which is similar to Figure 1.

Z o G2 Z

Z Ω

χ−1

sZoG2

χ rZoG2 λπ

λ
π

FIGURE 3.

Let f ∈ Cc(Z o G2), then∫
ZoG2

f d(mu ◦ χ) =
∫
Z

∫
G2

f ((x, y), γ) dχ
sX(x)
2 (γ)dmu(x, y)
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=
∫
Y

∫
X

∫
G2

f ((x, y), γ) dχ
sX(x)
2 (γ)dαrY(y)(x)dβu(y).

Change variable ((x, y), γ) 7→ ((xγ, γ−1y), γ−1). Then use the fact that the family
measures α is G2-invariant and each measures in β is G2-quasi-invariant to see
that the previous term equals∫

Y

∫
X

∫
G2

f ((xγ, γ−1y), γ−1)∆2(γ, γ−1y) dχ
sX(x)
2 (γ)dαrY(y)(x)dβu(y).

The function

∆ : Z o G2 → R+, ∆((x, y), γ) = ∆2(γ
−1, y),

is clearly continuous. Furthermore, ∆ is an R+
∗ -valued 1-cocycle; for a composable

pair ((x, y), γ), ((xγ, γ−1y), η) ∈ Z o G2 a small routine computation shows that

∆((x, y), γ)∆((xγ, γ−1y), η) = ∆((x, y), γη).

Thus ∆ implements the (Z o G2, χ)-quasi-invariance of the measure mu.
(ii) Since ZoG2 is a proper groupoid, we apply Proposition 3.2 which gives

a function b : Z → R+
∗ such that bmu is an invariant measure on Z (with respect

to (Z o G2, χ)). The function b also satisfies the relation b ◦ sZoG2 /b ◦ rZoG2 = ∆,
that is, b(xγ, γ−1y)b(x, y)−1 = ∆((x, y), γ) for all ((x, y), γ) ∈ Z o G2.

REMARK 3.7. For the cocycle ∆ : Z o G2 → R+
∗ , ∆((x, y), γ) = ∆2(γ

−1, y),
we observe:

(i) since ∆ does not depend on x, ∆ is G1-invariant;
(ii) ∆2 is G3-invariant ([5], Remark 2.5). Hence

∆(((x, y), γ)γ3) = ∆2(γ
−1, yγ3) = ∆2(γ

−1, y) = ∆((x, y), γ)

for all ((x, y), γ) ∈ Z o G2 and appropriate γ3 ∈ G3.
Thus ∆ depends only on γ and [y] ∈ Y/G3.

The function b appearing in Lemma 3.6 can be computed explicitly. Let
p = {pz}z∈Z be a family of probability measures on Z o G2 as in Lemma 2.5.
Then Propositions 2.7 and 3.2 give

(3.2) b(x, y) = (exp ◦ b)(x, y) = exp
( ∫

ZoG2

log ◦∆((x, y), γ) dp(x,y)((x, y), γ)
)

.

This implies that b is a continuous positive function on Z.

REMARK 3.8. (i) The G1-invariance of ∆ from Remark 3.7 along with equa-
tion (3.2) imply that b is G1-invariant.
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(ii) The G3-invariance of ∆ (Remark 3.7 and equation (3.2)) implies that b is
G3-invariant. Indeed, for composable ((x, y), γ3) ∈ Z× G3

b(x, yγ3) = b((x, y)γ3) = exp
( ∫

log ◦∆((x, yγ3), γ) dp(x,yγ3)((x, yγ3), γ)
)

= exp
( ∫

log ◦∆((x, yγ3), γ) F′((x, y), γ) dχ
rY(yγ3)
2 (γ)

)
where F′ is a function as in equation (2.4) for groupoid ZoG2 used to get the fam-
ily of probability measures p. The G3 invariance of ∆ and the fact that rY(yγ3) =
rY(y) give that the previous term equals

exp
( ∫

log ◦∆((x, y), γ) F′((x, y), γ) dχ
rY(y)
2 (γ)

)
= b(x, y).

The last equality is obtained from a computation similar to the one we started
with, but in reverse order.

REMARK 3.9. Once we have bmu ◦ χ = bmu ◦ χ−1, (ii) of Proposition 3.1
gives a measure µu on Ω with bmu = µu ◦ λ. And, as we shall see, {µu}u∈G3 is
the required family of measures. For f ∈ Cc(Ω)

(3.3)
∫
Ω

f dµu =
∫
Z

( f ◦ π) · e · bdmu =
∫
Y

∫
X

f ◦ π(x, y)e(x, y)b(x, y)dαrY(y)(x)dβu(y)

where π : Z → Ω is the quotient map, and e is the function on Z with
∫

e ◦
sZoG2 dχz = 1 for all z ∈ Z. In the discussion that follows, the letter e will
always stand for such a function. Due to (iii) of Proposition 3.1 the measure µu is
independent of the choice of the function e.

Recall that Ω is a G1-G3-bispace (Observation 3.3), and the action of G3 is
proper (Lemma 3.4).

PROPOSITION 3.10. The family of measures {µu}u∈G(0)
3

is a G3-invariant con-
tinuous family of measures on Ω along the momentum map sΩ.

Proof. We check the invariance first and then check the continuity. Let f ∈
Cc(Ω) and γ ∈ G3, then∫
Ω

f ([x, yγ]) dµrG3 (γ)
[x, y] =

∫
Y

∫
X

f ([x, yγ])e(x, yγ)b(x, y) dαrY(y)(x)dβrG3 (γ
′)(y).

Change yγ → y, then use the G3-invariance of the family β and that of the
function b to see that the last term in the above computation equals∫

Y

∫
X

f ([x, y])e(x, y)b(x, y)dαrY(y)(x)dβsG3 (γ)
(y) =

∫
Z

f · e · bdmsG3 (γ)

=
∫
Ω

f [x, y]dµsG3 (γ)
[x, y].

Thus {µu}u∈G3
(0) is G3-invariant.
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Now we check that µ is a continuous family of measures. Let M, µ and
Λ denote the integration maps which the families of measures m, µ and λ induce
between the corresponding spaces of continuous compactly supported functions,
respectively. Remark 3.9 says that M : Cc(Z) → Cc(G(0)

3) is the composite of

Cc(Z) Λ−→ Cc(Ω)
µ−→ Cc(G(0)

3), that is, Figure 4 commutes.

Cc(Z)

Cc(Ω)

Cc(G(0)
3).

Λ

M

µ

FIGURE 4.

Lemma 3.5 shows that M is continuous, Example 1.8 of [5] shows that Λ is
continuous and surjective. Hence µ is continuous.

The family of measures µ on Ω is the required family of measures for the
composite correspondence. We still need to show that each µu is G1-quasi-inva-
riant. The following computation shows this quasi-invariance and also yields the
adjoining function. Let f ∈ Cc(G1 ×G1

(0) Ω) and u ∈ G(0)
3, then∫

Ω

∫
G1

f (η−1, [x, y]) dχ
rΩ([x,y])
1 (η)dµu[x, y]

=
∫
Y

∫
X

∫
G1

f (η−1, [x, y]) e(x, y) b(x, y)dχ
rX(x)
1 (η)dαrY(y)(x)dβu(y).

Now we change variable (η−1, [x, y]) 7→ (η, [η−1x, y]). Then the (G1, χ1)-
quasi-invariance of α changes

dχ
rX(x)
1 (η)dαrY(y)(x) 7→ ∆1(η, η−1x)dχ

rX(x)
1 (η)dαrY(y)(x).

We incorporate this change and continue the computation further:

R. H. S. =
∫
Y

∫
X

∫
G1

f (η, [η−1x, y]) e(η−1x, y) b(η−1x, y)

·∆1(η, η−1x)dχ
rX(x)
1 (η)dαrY(y)(x)dβu(y)

=
∫
Y

∫
X

∫
G1

f (η, [η−1x, y])
b(η−1x, y)

b(x, y)
∆1(η, η−1x)

· e(η−1x, y)b(x, y)dχ
rX(x)
1 (η)dαrY(y)(x)dβu(y).
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We transfer the integration on Ω where the previous term equals∫
Ω

∫
G1

f (η, [η−1x, y])
b(η−1x, y)

b(x, y)
∆1(η, η−1x)dχ

rΩ([x,y])
1 (η)dµu[x, y].

Define ∆1,2 : G1 n Ω→ R+
∗ by

(3.4) ∆1,2(η, [x, y]) = b(ηx, y)−1∆1(η, x)b(x, y),

then the above computation gives∫
Ω

∫
G1

f (η−1, [x, y]) dχ1(η) dµu[x, y]

=
∫
Ω

∫
G1

f (η, [η−1x, y]) ∆1,2(η, η−1[x, y]) dχ1(η) dµu[x, y]

for u ∈ G(0)
3. To announce that µu is G1-quasi-invariant and ∆1,2 is the adjoining

function, we must check that the function ∆1,2 is well-defined which the next
lemma does.

LEMMA 3.11. The function ∆1,2 defined in equation (3.4) is a well-defined R+
∗ -

valued continuous 1-cocycle on the groupoid G1 n Ω.

Proof. Let (xγ, γ−1y) ∈ [x, y], then

∆1,2(η
−1, [xγ, γ−1y]) = b(η−1xγ, γ−1y)−1∆1(η

−1, xγ)b(xγ, γ−1y).

We multiply and divide the last term by b(η−1x, y)−1b(x, y), and use the G2-
invariance of ∆1, then re-write the term as

b(η−1x, y)−1∆1(η
−1, x)b(x, y)

( b(η−1x, y)
b(η−1xγ, γ−1y)

b(xγ, γ−1y)
b(x, y)

)
.

Now use the last claim in Lemma 3.6 which relates b and ∆2, use the definition of
∆1,2, and compute the above term further:

∆1,2(η
−1, [x, y]) (∆2(γ

−1, y)∆2(γ, γ−1y)) = ∆1,2(η
−1, [x, y]).

To get the equality above, observe that (γ−1, y)−1 = (γ, γ−1y) and use the fact
that ∆2 is a homomorphism.

Due to the continuity of b and ∆1, the cocycle ∆1,2 is continuous. Using
a computation as above, it can be checked that ∆1,2 is a groupoid homomor-
phism.

PROPOSITION 3.12. The family of measures {µu}u∈G(0)
3
, described above, is

G1-quasi-invariant. The adjoining function for the quasi-invariance is given by equa-
tion (3.4).

The proof is clear from the discussion above.
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DEFINITION 3.13 (Composition). Let

(X, α) : (G1, χ1)→ (G2, χ2) and (Y, β) : (G2, χ2)→ (G3, χ3)

be topological correspondences with ∆1 and ∆2 as the adjoining functions, re-
spectively. A composite of these correspondences (Ω, µ) : (G1, χ1) → (G3, χ3) is
defined by:

(i) the space Ω := (X×G2
(0) Y)/G2;

(ii) a family of measures µ = {µu}u∈G(0)
3

such that:
(a) let ∆ ∈ C1

G3
((X ×G2

(0) Y)o G2,R+
∗ ) be the 1-cocycle ∆((x, y), γ) =

∆2(γ
−1, y),

(b) let b ∈ C0
G3
((X×G2

(0) Y)o G2,R+
∗ ) be a cochain with d0(b) = ∆,

(c) then µ disintegrates the family of measures {b(α × βu)}u∈G3
(0) on

X ×G2
(0) Y along the quotient map π : X ×G2

(0) Y → Ω using λ, that is, b(α ×
βu) = µu ◦ λ for each u ∈ G3

(0).

In Definition 3.13, Cn
G3
((X ×G2

(0) Y) o G2,R+
∗ ) denotes the n-th cochain

group consisting of G3-invariant R+
∗ -valued continuous cochains on groupoid

(X×G2
(0) Y)o G2. For the composite (Ω, µ) as above, the adjoining function ∆1,2

is given by equation (3.4).

THEOREM 3.14. Let (X, α) : (G1, χ1) → (G2, χ2) and (Y, β) : (G2, χ2) →
(G3, χ3) be topological correspondences of locally compact groupoids with Haar sys-
tems. In addition, assume that X and Y are Hausdorff, and second countable. Let
(Ω, µ) : (G1, χ1) → (G3, χ3) be a composite of the correspondences. Then H(Ω) and
H(X) ⊗̂C∗(G2,χ2)

H(Y) are isomorphic C∗-correspondences from C∗(G1, χ1) to
C∗(G3, χ3).

Proof. The symbols Z, Ω and the families of measures m, λ and µ continue
to have the same meaning as in the earlier discussion. Let b be a fixed zeroth
cochain on Z o G2 with ∆ = d0(b) as in Definition 3.13. In the calculations below,
the subscripts to 〈· , ·〉 indicate the Hilbert module on which the inner product is
defined. We write H(X)⊗̂H(Y) instead of H(X)⊗̂C∗(G2,χ2)

H(Y) in this proof to
reduce the complexity in writing.

Recall the process of composing two C∗-correspondences in Section 2.1 on
page 94. Since Cc(X) ⊆ H(X) and Cc(Y) ⊆ H(Y) are, respectively, pre-Hilbert
C∗(G2, χ2) and C∗(G3, χ3)-modules, the image of Cc(X) ⊗C Cc(Y) → H(X) ⊗̂
H(Y) under the obvious map is dense. Here the topologies on Cc(X), Cc(Y)
and the image of Cc(X)⊗C Cc(Y) in H(X) ⊗̂ H(Y) are obtained by considering
them as normed linear subspaces of the complete normed linear vector spaces
H(X), H(Y) and H(X) ⊗̂ H(Y), respectively (later, for certain arguments, we
shall bestow the function spaces with the inductive limit topology to exploit a
basic and vital fact that the inductive limit topology on the function spaces is finer
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than the topologies the functions spaces inherit as subspaces of normed linear
spaces; we shall specify the topologies wherever it is necessary).

Recall from the same discussion of composing two C∗-correspondences in
Section 2.1 on page 94 that the obvious map sends f ⊗ g ∈ Cc(X)⊗C Cc(Y) to its
equivalence class in

Cc(X)⊗C Cc(Y)
Cc(X)⊗C Cc(Y) ∩ N

where N ⊆ H(X)⊗C H(Y) is the subspace of vectors of zero norm. The semi-
norm on Cc(X) ⊗C Cc(Y) that defines the subspace N is induced by the inner
product

(3.5) 〈 f ⊗ g , f ′ ⊗ g′〉H(X)⊗̂H(Y) := 〈g , 〈 f , f ′〉H(X)g
′〉H(Y)

for f ⊗ g, f ′ ⊗ g′ ∈ Cc(X)⊗C Cc(Y).
The same discussion on page 94 says that when equipped with the sesqui-

linear form in equation (3.5), Cc(X) ⊗C Cc(Y) becomes a semi-inner product
C∗(G3, χ3)-module which completes to the Hilbert C∗(G3, χ3)-module H(X) ⊗̂
H(Y).

On the other hand, Cc(Ω) ⊆ H(Ω) is a pre-Hilbert C∗(G3, χ3)-module. We
define an inner product preserving Cc(G3)-module map W ′ : Cc(X)⊗C Cc(Y)→
Cc(Ω) which has a dense image when Cc(Ω) is equipped with the inductive limit
topology. Hence W ′ induces a unitary isomorphism W : H(X)⊗̂H(Y) → H(Ω)
of Hilbert C∗(G3, χ3)-modules. This finishes the first part of the proof. Figure 5
shows a commutative triangle which comprises all of the important maps we
need.

Cc(X)⊗C Cc(Y)

H(Ω)

H(X)⊗̂H(Y)

the obvious map

W ′

'
W

FIGURE 5.

In the latter half of the proof, we show that W ′ intertwines the representa-
tions of Cc(G) on Cc(X)⊗C Cc(Y) and Cc(Ω) which implies that W intertwines
the representations of the pre-C∗-algebra Cc(G) onH(X)⊗̂H(Y) andH(Ω). Then
a standard argument can be used to conclude that W intertwines the represen-
tations of C∗(G, α) on H(X)⊗̂H(Y) and H(Ω) which completes the proof of
the claim that W ′ induces an isomorphism W : H(X)⊗̂H(Y) → H(Ω) of C∗-
correspondences.

Before starting the main proof, we sketch an argument to shows that if W ′

intertwines the representations, then so does W. Firstly, note that in Figure 5,
Cc(X)⊗C Cc(Y) is a Cc(G1)-module and the obvious map from it toH(X)⊗̂H(Y)
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is a map of Cc(G1)-modules, indeed, the representation Cc(G1) on Cc(X) ⊗C
Cc(Y) is given by ζ( f ⊗C g) = (ζ · f ) ⊗C g where ζ ∈ Cc(G1) and f ⊗C g ∈
Cc(X)⊗C Cc(Y).

Let ρ′1 be the representation of the pre-C∗-algebra Cc(G) on Cc(X)⊗C Cc(Y)
discussed above. Let ρ1 and ρ2 denote the representations of C∗(G1, χ1) on
H(X) ⊗̂H(Y) andH(Ω), respectively, that is, ρ1 : C∗(G1, χ1)→ B(H(X) ⊗̂H(Y))
and ρ2 : C∗(G1, χ1) → B(H(Ω)) are the nondegenerate ∗-representations that
give the C∗-correspondences from C∗(G1, χ1) to C∗(G3, χ3).

Assume that we have shown that W ′ intertwines the representations ρ′1 and

ρ2, this result is proved in the second part of the proof. Let a vector
n
∑

i=1
fi⊗̂gi in the

image of the obvious map (see Figure 5) and φ ∈ Cc(G1) be given. Now choose
l

∑
j=1

f ′j ⊗ g′j ∈ Cc(X)⊗C Cc(Y) which maps to
n
∑

i=1
fi⊗̂gi via the obvious map. Then,

since the obvious map is a map of Cc(G1)-modules, we see that the image of

ρ′1(φ)
l

∑
j=1

f ′j ⊗ g′j =
l

∑
j=1

ρ′1(φ)( f ′j ⊗ g′j) under the obvious map is
n
∑

i=1
ρ1(φ)( fi⊗̂gi) =

ρ1(φ)
n
∑

i=1
fi⊗̂gi. Now using the commutativity of Figure 5 we see that

W
(

ρ1(φ)
n

∑
i=1

fi⊗̂gi

)
= W

( n

∑
i=1

ρ1(φ)( fi⊗̂gi)
)
= W ′

( l

∑
j=1

ρ′1(φ)( f ′j ⊗ g′j)
)

= W ′
(

ρ′1(φ)
l

∑
j=1

f ′j ⊗ g′j
)
= ρ2(φ)W ′

( l

∑
j=1

f j ⊗ gj

)
= ρ2(φ)W

( n

∑
i=1

fi⊗̂gi

)
.

Since the image of Cc(X)⊗C Cc(Y) in the Hilbert C∗(G3, χ3)-moduleH(X)⊗̂H(Y)
is a dense normed subspace, we may conclude that W intertwines the represen-
tations of the pre-C∗-algebra Cc(G) ⊆ C∗(G3, χ3), hence it can be concluded that
W intertwines the desired representations of C∗(G3, χ3).

Thus the proof is divided into two parts, the first one proves the isomor-
phism of Hilbert modules and the other proves the isomorphism of the represen-
tations.

The strategy of the proof is explained and we start the proof by defining
W ′. Map f ⊗ g ∈ Cc(X) ⊗C Cc(Y) to its restriction ( f ⊗ g)|Z ∈ Cc(Z) where
( f ⊗ g)|Z(x, y) = f (x)g(y) for (x, y) ∈ Z. Then the Stone–Weierstraß theorem
says that the complex vector subspace of Cc(Z) spanned by the set {( f ⊗ g)|Z :
f ⊗ g ∈ Cc(X)⊗C Cc(Y)} is dense in the inductive limit topology on Cc(Z). For
an elementary tensor f ⊗ g in Cc(X)⊗C Cc(Y), define

W ′( f ⊗ g)[x, y] = Λ(( f ⊗ g)|Z b−1/2)[x, y]
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=
∫
G2

( f ⊗ g)|Z(xγ, γ−1y) b−1/2(xγ, γ−1y)dχ
sX(x)
2 (γ)

and then extend W ′ linearly to a map W ′ : Cc(X)⊗C Cc(Y)→ Cc(Ω).
Since b is a positive function, the multiplication by b−1/2 is an isomorphism

from Cc(Z) to itself. As λ is a continuous family of measure with full support,
Λ : Cc(Z) → Cc(Ω) is a continuous C-linear surjection when Cc(Z) and Cc(Ω)
are equipped with the inductive limit topologies. Thus when Cc(Ω) is bestowed
with the inductive limit topology, the image of W ′, that is, the image of the com-

posite Cc(X)⊗C Cc(Y)
f⊗g 7→( f⊗g)|Z−−−−−−−−→ Cc(Z)

multiplication by b−1/2

−−−−−−−−−−−−→ Cc(Z) Λ−→ Cc(Ω),
is dense in Cc(Ω).

Let z ∈ C, f , f ′ ∈ Cc(X) and g, g′ ∈ Cc(Y). Then it is a straightforward
computation to check that W ′(z f ⊗ g + f ′ ⊗ g′) = zW ′( f ⊗ g) +W ′( f ′ ⊗ g′). Fur-
thermore, if ψ ∈ Cc(G3), then a computation using Fubini’s theorem shows that
W ′(( f ⊗ g)ψ) = W ′( f ⊗ g)ψ. These C and Cc(G3)-linearity results extend to a
finite linear combinations of elementary tensors. Thus W ′ is a homomorphism of
Cc(G3)-modules.

3.3. THE ISOMORPHISM OF THE HILBERT MODULES. In this part, we show that
W ′ preserves C∗(G3, χ3)-valued inner products. Let f ⊗ g ∈ Cc(X)⊗C Cc(Y) be
an elementary tensor and γ ∈ G3, then

〈 f ⊗ g , f ⊗ g〉H(X)⊗̂H(Y)(γ)

:= 〈g , 〈 f , f 〉H(X)g〉H(Y)(γ)

=
∫
Y

g(y) (〈 f , f 〉H(X) g)(yγ) dβrG3 (γ)
(y)

=
∫
Y

∫
G2

g(y) 〈 f , f 〉H(X)(γ) g(γ−1yγ)∆1/2
2 (γ, γ−1yγ) dχ

rY(y)
2 (γ)dβrG3 (γ)

(y)

=
∫
Y

∫
G2

g(y)
( ∫

X

f (x) f (xγ)dαrG2 (γ)
(x)
)

· g(γ−1yγ)∆1/2
2 (γ, γ−1yγ)dχ

rY(y)
2 (γ)dβrG3 (γ)

(y).

We rearrange the functions, note that rG2(γ) = rY(y), and write the last term as

(3.6)
∫
Y

∫
G2

∫
X

f (x) g(y) f (xγ)g(γ−1yγ)

·∆1/2
2 (γ, γ−1yγ) dαrY(y)(x) dχ

rY(y)
2 (γ) dβrG3 (γ)

(y).
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Now we calculate the norm of W ′( f ⊗ g) ∈ Cc(Ω):

〈W ′( f ⊗ g) , W ′( f ⊗ g)〉H(Ω)(γ)

:=
∫
Ω

W ′( f ⊗ g)[x, y] W ′( f ⊗ g)[x, yγ] dµrG3 (γ)
[x, y].

We plug the value of the first W ′( f ⊗ g) and continue computing further:∫
Ω

( ∫
G2

f (xγ∗)g(γ−1
∗ y)b−1/2(xγ∗, γ−1

∗ y) dχ
rY(y)
2 (γ∗)

)
·W ′( f ⊗ g)[x, yγ]dµrG3 (γ)

[x, y]

=
∫
Ω

∫
G2

f (xγ∗)g(γ−1
∗ y)b−1/2(xγ∗, γ−1

∗ y)

·W ′( f ⊗ g)[x, yγ]dχ
rY(y)
2 (γ∗) dµrG3 (γ)

[x, y]

=
∫
Y

∫
X

f (x) g(y)b−1/2(x, y)W ′( f ⊗ g)[x, yγ]b(x, y)dαrY(y)(x) dβrG3 (γ)
(y).

The last equality above is due to Remark 3.9, which says that

dχ
rY(y)
2 (γ∗) dµrG3 (γ)

[x, y] = b(x, y) dαrY(y)(x) dβrG3 (γ)
(y).

After adjusting the powers of the function b, the last term in the previous compu-
tation equals∫

Y

∫
X

f (x) g(y)W ′( f ⊗ g)[x, yγ] b1/2(x, y)dαrY(y)(x) dβrG3 (γ)
(y).

Now, firstly, we plug in the value of W ′( f ⊗ g) in the above term, and then com-
pute further:∫

Y

∫
X

f (x) g(y)
( ∫

G2

f (xγ)g(γ−1yγ)b−1/2(xγ, γ−1yγ) dχ
rY(y)
2 (γ)

)
· b1/2(x, y) dαrY(y)(x) dβrG3 (γ)

(y)

=
∫
Y

∫
X

∫
G2

f (x) g(y) f (xγ)g(γ−1yγ)

·
( b(x, y)

b(xγ, γ−1yγ)

)1/2
dχ

rY(y)
2 (γ) dαrY(y)(x) dβrG3 (γ)

(y).

First we use the G3-invariance of b (Remark 3.8) to write b(x, y) = b(x, yγ). Then
we use Lemma 3.2 to relate the factors of b and get a factor of ∆ which can be
written in terms of ∆2 using Remark 3.7. At the end of these computations, the
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last term of the previous equation becomes∫
Y

∫
X

∫
G2

( f (x) g(y) f (xγ)g(γ−1yγ))

·∆2
1/2(γ, γ−1yγ) dχ

rY(y)
2 (γ)dαrY(y)(x)dβrG3 (γ)

(y).

Finally, we apply Fubini’s theorem to χ
rY(y)
2 and αrY(y) to get

(3.7) 〈W ′( f ⊗ g) , W ′( f × g)〉H(Ω)(γ)

=
∫
Y

∫
G2

∫
X

( f (x) g(y) f (xγ)g(γ−1yγ))

·∆2
1/2(γ, γ−1yγ) dαrY(y)(x) dχ

rY(y)
2 (γ) dβrG3 (γ)

(y).

Comparing the values of both inner products, that is, equations (3.6) and
(3.7), we conclude that

(3.8) 〈 f ⊗ g , f ⊗ g〉H(X)⊗̂H(Y) = 〈W
′( f ⊗ g) , W ′( f ⊗ g)〉H(Ω).

Equation (3.8) says that W ′ is an isometry on the elementary tensors. Now let
m
∑

j=1
f j ⊗ gj be a general element in Cc(X) ⊗C Cc(Y) where m is a natural num-

ber. Then a standard argument that uses the polarisation identity (that is, equa-
tion (2.1)) and the principle of mathematical induction shows that〈 m

∑
j=1

f j ⊗ gj ,
m

∑
j=1

f j ⊗ gj

〉
H(X)⊗̂H(Y)

=
〈

W ′
( m

∑
j=1

f j ⊗ gj

)
, W ′

( m

∑
j=1

f j ⊗ gj

)〉
H(Ω)

.

Thus W ′ is an inner-product preserving Cc(G3)-linear map. Now the discus-
sion on page 110 (the strategy of the proof) allows us to conclude that W ′ in-
duces a unitary isomorphisms W : H(X)⊗̂H(Y) → H(Ω) of Hilbert C∗(G3, χ3)-
modules.

3.4. THE ISOMORPHISM OF REPRESENTATIONS. Let ρ′1, ρ1 and ρ2 have the same
meaning as in the beginning of the proof, see page 110. Now we show that W ′

intertwines ρ′1 and ρ2.
Let ∆1,2 be the adjoining function of (Ω, µ) which is given by equation (3.4).

Let φ ∈ Cc(G1) and f ⊗ g ∈ Cc(X)⊗C Cc(Y), then

(ρ2(φ)W ′)( f ⊗ g)[x, y]

= (φ ∗W ′( f ⊗ g))[x, y]

=
∫
G1

(φ(η)W ′( f ⊗ g))[η−1x, y]∆1/2
1,2 (η, [η−1x, y])dχ

rX(x)
1 (η)
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=
∫
G1

∫
G2

φ(η) f (η−1xγ)g(γ−1y) b−1/2(η−1xγ, γ−1y)(3.9)

·∆1/2
1,2 (η, [η−1x, y])dχ

sX(x)
2 (γ)dχ

rX(x)
1 (η).

Lemma 3.11 and equation (3.4) allows us to write

∆1,2(η, [η−1x, y]) = ∆1,2(η, [η−1xγ, γ−1y]) = ∆1(η, η−1xγ)
b(η−1xγ, γ−1y)

b(xγ, γ−1y)
.

Substitute this value of ∆1,2(η, [η−1x, y]) in equation (3.9). Then apply Fubini’s
theorem and continue computing further:∫
G2

( ∫
G1

φ(η) f (η−1xγ)∆1/2
1 (η, η−1xγ)dχ

rX(x)
1 (η)

)
g(γ−1y)b−1/2(xγ, γ−1y)dχ

sX(x)
2 (γ)

=
∫
G2

(φ ∗ f )(xγ)g(γ−1y) b−1/2(xγ, γ−1y)dχ
sX(x)
2 (γ)

= W ′((φ ∗ f )⊗ g)[x, y] = W ′(ρ′1(φ)( f ⊗ g))[x, y].

Due to the linearity of W ′, ρ′1 and ρ2, this result holds for finite linear combina-
tions of elementary tensors also. The strategy discussion on page 110 explains
how does this result extend to the representations ρ1 and ρ2 of C∗(G1, χ1).

4. EXAMPLES

EXAMPLE 4.1. Let X, Y and Z be locally compact Hausdorff spaces and let
f : X → Y and g : Y → Z be a continuous functions. Then Example 3.1 of [5]
shows that (X, δX) is a topological correspondence from Y to X and (Y, δY) is the
one from Y to Z. Here δX = {δx}x∈X is the family of measures consisting of point
masses along the identity map X → X. Similar is the meaning of δY. The constant
function 1 is the adjoining function for both correspondences.

The space involved in the composite of (Y, δY) and (X, δX) is (Y ×IdY ,Y, f
X) ≈ X, and the homeomorphism (Y ×IdY ,Y, f X) → X is implemented by the
function ( f (x), x) 7→ x. The inverse of this function is x 7→ ( f (x), x). The left
momentum map Y×IdY ,Y, f X → Z is ( f (x), x) 7→ g( f (x)) which we identify with
g ◦ f : X → Z. Thus the composite of the topological correspondences related to
continuous maps is the same as the topological correspondence related to the
composite of the maps. The reader may check that the C∗-algebraic counterpart
of this example agrees with Theorem 3.14.

EXAMPLE 4.2. Let V, W, X, Y and Z be locally compact Hausdorff spaces
and let f : X → Z, g : X → Y, k : V → Y and l : V → W be continuous maps.
Let λ1 and λ2 be continuous families of measures along g and l, respectively (see
Figure 6 on page 115). Then (X, λ1) is a topological correspondence from Z to Y
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and (V, λ2) is one from Y to W ([5], Example 3.3). The composite correspondence

X V

Z Y W

f g

λ1

k l
λ2

FIGURE 6.

is (X×g,Y,k V, λ1 ◦ λ2) where (λ1 ◦ λ2)w is defined by∫
X×g,Y,kV

f d(λ1 ◦ λ2)w =
∫
V

∫
X

f (x, v)dλ1k(v)(x)dλ2w(v)

for w ∈W and f ∈ Cc(X×g,Y,k V). Note that in this example λ1 ◦ λ2 is the family
of measures m in Lemma 3.5 and, since there are only the trivial actions, it is the
same as the family of measures µ in Proposition 3.10.

EXAMPLE 4.3. Let G, H and K be locally compact groups, ψ : K → H and
φ : H → G continuous homomorphisms. Let α, β and λ be the Haar measures on
G, H and K, respectively. Then (G, α−1) is a correspondence from (H, β) to (G, α),
and (H, β−1) is one from (K, λ) to (H, β) ([5], Example 3.4). Let δG, δH and δK
denote the modular functions of G, H and K, respectively. Then (δG ◦ φ)/δH and
(δH ◦ φ)/δK are the adjoining function for these correspondences, respectively.

The K-G-bispace in the composite of these correspondences is (H×G)/H ≈
G. The map a : γ 7→ [eH , γ], G → (H × G)/H, gives the homeomorphism where
eH is the unit in H. The inverse of this map a−1 is a−1 : [η, γ] 7→ φ(η)γ, (H ×
G)/H → G.

We figure out the action of K on this K-G-bispace: if κ ∈ K then κγ =
a−1(κ[eH , γ]) := a−1([ψ(κ), γ]) = φ(ψ(κ))γ. Thus K acts on G via the homomor-
phism φ ◦ ψ : K → G. Similarly, the right action of G on the composite space
(H × G)/H ≈ G is identified with the right multiplication action of G on itself.
A computation as in Example 3.4 of [5] gives that (δG ◦ φ ◦ ψ)/δK is the adjoining
function for the composite correspondence.

This shows that the composite of (H, β−1) and (G, α−1) is the same as the
correspondence associated with the homomorphism φ ◦ ψ : K → G.

EXAMPLE 4.4. Let (G, α), (H, β) and (K, λ) be locally compact groups with
Haar measures, and let φ : H → G and ψ : K → G be continuous homomor-
phisms. Assume the ψ is a proper map. Then φ gives a correspondence (G, α−1)
from (H, β) to (G, α) as in Example 3.4 of [5] and ψ gives a correspondence
(G, α−1) from (G, α) to (K, λ) as in Example 3.5 of [5]. The adjoining function
of the topological correspondence associated with ψ is the constant function 1.
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The composite of these correspondences is a correspondence (H, β)→ (K, λ).
On similar lines as of Example 4.3, one may show that the space involved in the
composite is homeomorphic to G, the actions of H and K are identified with
the left and right multiplication via φ and ψ, the K-invariant family of mea-
sures on G is α−1. From Example 3.4 of [5] we know that the α−1 is (H, β)-
quasi-invariant and the function (δG ◦ φ)/δH is the cocycle involved in the quasi-
invariance. Hence (δG ◦ φ)/δH is the adjoining function for the composite.

An interesting situation is when H, K ⊆ G are closed subgroups, and φ and
ψ are the inclusion maps. Then the composite correspondence from (H, β) to
(K, λ) is (G, α−1) where G is made into an H-K bispace using the left and right
multiplication actions, respectively. The adjoining function in this case is δG/δH .

EXAMPLE 4.5. Example 3.7 in [5] shows that the correspondences defined
by Macho Stadler and O’uchi in [8] are topological correspondences. The same
example shows that the topological correspondences defined by Tu in Proposi-
tion 7.5 of [9] are also topological correspondences provided that the spaces of
the units of the groupoids are Hausdorff. The composition of correspondences of
Macho Stadler and O’uchi defined by Tu ([9]) is the same as the composition we
define.

Recall from Definition 1.2 of [8] or Definition 7.3 of [9] that a correspondence
(G1, χ1)→ (G2, χ2) is a G1-G2-bispace, and the actions and the quotient G1\X sat-
isfy certain conditions. Since the correspondences of Macho Stadler and O’uchi or
Tu do not involve explicit families of measures, the construction of the composite
in this is purely topological. If Y is a correspondence in the sense from (G2, χ2) to
(G3, χ3), then Tu shows ([9]) the space Ω in Definition 3.13 is the composite.

EXAMPLE 4.6. Example 3.10 in [5] shows that the generalized morphisms
defined by Buneci and Stachura are topological correspondences in our sense.
Though it is not as straightforward as in Example 4.5 above, but it may be checked
that the composition of the generalized morphisms of Buneci and Stachura de-
fined in Section 2.2 of [5] match our definition of composition.

EXAMPLE 4.7. Let G be a locally compact group, let H and K be closed sub-
groups of G, and let α, β and λ be the Haar measures on G, H and K, respectively.
Let δG and δH be the modular functions of G and H, respectively. Then (G, α−1)
is a correspondence from H to K with δG/δH as the adjoining function, see Exam-
ple 4.4.

Let X be a left K-space carrying a strongly (K, λ)-quasi-invariant measure
κ, that is, κ is a (K, λ)-quasi-invariant measure on X and the Radon–Nikodym
derivative for the quasi-invariance, say ∆ : KnX → R+

∗ , is a continuous function.
Then (X, κ) is a correspondence from K to Pt with ∆ as adjoining function. Here
Pt stands for the trivial group(oid) which consists of the unit only.
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We discuss the composite of these two correspondences. The space in the
composite is (G×X)/K, which we denote by Z. In this example, writing the mea-
sure ν on Z concretely is not always possible. However, when (X, κ) = (K, λ),
we get Z ≈ G and ν = α−1.

The correspondence (X, κ) gives a representation of K on L2(X, κ) and the
composite correspondence is the representation of H induced by this representa-
tion of K.
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