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ABSTRACT. Given a II1-factor M with tracial state τ and given an M-bi-
module E(M, τ) of operators affiliated toM we show that traces on E(M, τ)
(namely, linear functionals that are invariant under unitary conjugation) are
in bijective correspondence with rearrangement-invariant linear functionals
on the corresponding symmetric function space E. We also show that, given a
positive trace ϕ on E(M, τ), the map detϕ : Elog(M, τ) → [0, ∞) defined by
detϕ(T) = exp(ϕ(log |T|)) when log |T| ∈ E(M, τ) and 0 otherwise, is multi-
plicative on the ∗-algebra Elog(M, τ) that consists of all affiliated operators T
such that log+(|T|) ∈ E(M, τ). Finally, we show that all multiplicative maps
on the invertible elements of Elog(M, τ) arise in this fashion.

KEYWORDS: Determinant, von Neumann algebra, II1-factor, noncommutative func-
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1. INTRODUCTION

Let M be a von Neumann algebra factor of type II1, with tracial state τ.
AssumeM has separable predual. The Fuglede–Kadison determinant [8], is the
multiplicative map ∆τ :M→ [0, ∞) defined by

(1.1) ∆τ(T) = lim
ε→0+

exp(τ(log(|T|+ ε))).

In this paper, we prove multiplicativity of analogous determinants corresponding
to arbitrary positive traces on arbitraryM-bimodules of affiliated operators.

Choose any normal representation ofM on a Hilbert space and let S(M, τ)
be the ∗-algebra of (possibly unbounded) operators on the Hilbert space affiliated
toM. This algebra, often called the Murray–von Neumann algebra ofM, is inde-
pendent of the representation. See, for example, Section 6 of [11] for an exposition
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of this theory. Let Proj(M) denote the set of projections (i.e., self-adjoint idem-
potents) inM. For A ∈ S(M, τ) and t ∈ (0, 1), µ(t, A) denotes the generalized
singular number of A, defined by

µ(t, A) = inf{‖A(1− p)‖ : p ∈ Proj(M), τ(p) 6 t},

where ‖ · ‖ is the operator norm. This goes back to Murray and von Neumann;
see, for example, Section 2.3 of [14] for some basic theory. We will write simply
µ(A) for the function t 7→ µ(t, A), which is nonincreasing and right continuous.

Let E be a complex vector space of measurable functions on [0, 1] with the
property that if f and g are measurable functions with f ∗ 6 g∗ and g ∈ E, then
f ∈ E, where f ∗ denotes the decreasing rearrangement of | f |. Following [14], we
will call such a space E a Calkin function space. Note that f ∈ E implies that the
dilation D2 f lies in E, where D2 f (t) = f ( t

2 ). In particular, every nonzero Calkin
function space contains L∞[0, 1]. The correspondingM-bimodule E(M, τ) is the
set of all A ∈ S(M, τ) such that µ(A) ∈ E. This correspondence, sometimes
called the Calkin correspondence in the setting of (M, τ), is a bijection from the
set of all Calkin function spaces onto the set of all operator M-bimodules, by
which we mean subspaces of S(M, τ) that are closed under left and right mul-
tiplication by elements of M, and it goes back to Guido and Isola [9]. See The-
orem 2.4.4 of [14] for the formulation used here. An equivalent version of this
is also described in [4]. Note that if A ⊆ M is any unital abelian von Neu-
mann subalgebra that is diffuse (i.e., has no minimal projections), then the ∗-
algebra S(A, τ�A) of affiliated operators is naturally embedded in S(M, τ) and,
upon identifying A with L∞(0, 1), the elements of S(A, τ�A) are naturally iden-
tified with measurable functions on (0, 1). Under these identifications, we have
E = S(A, τ�A) ∩ E(M, τ).

By a trace on E(M, τ), we mean a linear functional ϕ of E(M, τ) such that
ϕ(UAU∗) = ϕ(A) for every A ∈ E(M, τ) and every unitary U ∈ M. A func-
tional ϕ0 of E is said to be rearrangement-invariant if ϕ0( f ) = ϕ0(g) whenever
f , g ∈ E, f , g > 0 and f ∗ = g∗.

The difficult half of the following result is essentially proved in [13]. The
proof of the other half is similar to the proof of Lemma 9.4 of [6].

THEOREM 1.1. Let M be a II1-factor with separable predual. Let E be a Calkin
function space and let E(M, τ) be the correspondingM-bimodule. There is a bijection
from the set of all traces of E(M, τ) onto the set of all rearrangement-invariant function-
als of E, whereby a trace ϕ of E(M, τ) is mapped to a functional ϕ0 of E satisfying

(1.2) ϕ0(µ(A)) = ϕ(A) whenever A ∈ E(M, τ) and A > 0.

Proof. Suppose ϕ0 : E → C is a rearrangement-invariant linear functional.
By the proof of (part of) Theorem 5.2 of [13], there is a trace ϕ : E(M, τ) → C
satisfying (1.2). The statement of that theorem includes additional assumptions
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about E, namely, that it carries a rearrangement-invariant complete norm. How-
ever, the proof found in [13] is valid, verbatim, in the more general situation
considered here.

Suppose ϕ : E(M, τ) → C is a trace. We will now show that for any
A ∈ E(M, τ) that is positive, ϕ(A) depends only on µ(A). Indeed, let A1, A2 ∈
E(M, τ) be such that A1, A2 > 0 and µ(A1) = µ(A2). Set

Bk = ∑
n>0

n1[n,n+1)(Ak), Ck = Ak − Bk, k = 1, 2.

Clearly, positive operators B1 and B2 have discrete spectrum and µ(B1) = µ(B2).
Since M is a factor, one can choose a unitary element U ∈ M such that B1 =
UB2U−1. Clearly, ϕ(B1) = ϕ(UB2U−1) = ϕ(B2). By Theorem 2.3 in [7], we have
ϕ�M = cϕτ�M for a constant cϕ. For bounded positive operators C1 and C2, we
have µ(C1) = µ(C2) and also, therefore,

ϕ(C1) = cϕτ(C1) = cϕτ(C2) = ϕ(C2).

Thus, we get

ϕ(A1) = ϕ(B1) + ϕ(C1) = ϕ(B2) + ϕ(C2) = ϕ(A2).

LetA be any unital, diffuse, abelian von Neumann subalgebra ofM. As de-
scribed above, E is naturally identified with S(A, τ�A)∩E(M, τ), and restricting
ϕ to this subalgebra yields a linear functional ϕ0 on E, which is rearrangement-
invariant and satisfies (1.2), because of the fact that ϕ(A) depends only on µ(A)
for all A > 0. Using (1.2), we see that the functional ϕ0 does not depend on A,
namely, does not depend on which copy of E we chose in E(M, τ).

Finally, as ϕ is uniquely determined by ϕ0 and the condition (1.2), we see
that the map ϕ 7→ ϕ0 is the desired bijection.

For convenience, we will use also ϕ, instead of ϕ0, to denote the functional
on E corresponding to a trace ϕ on E(M, τ).

For example, taking E to be the function space L1 of complex-valued func-
tions on [0, 1] that are integrable with respect to Lebesgue measure, the corre-

sponding bimodule is L1(M, τ). Moreover, the functional f 7→
1∫

0
f (t)dt on L1

corresponds to the usual trace τ on L1(M, τ). Other examples of traces on bi-
modules are provided by the Dixmier traces on Marcinkiewicz bimodules, which
are of interest in noncommutative geometry. See, for example, [2], [3] and [12];
particularly, consider the treatment of functionals supported at zero, but adapted
to the case of a II1-factorM, namely, corresponding to function spaces on [0, 1].
A specific case (essentially, taken from [3]) is found in Example 3.3.

The Fuglede–Kadison determinant mentioned at the start of this introduc-
tion is actually naturally defined on the space, often denoted Llog(M, τ), of all
T ∈ S(M, τ) such that log+(|T|) ∈ L1(M, τ), where log+(t) = max(log(t), 0).
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See [10] for a development of ∆τ in this generality, including a proof of multi-
plicativity.

In the rest of this paper, we will for the most part consider only positive
traces ϕ, namely, those satisfying

A > 0⇒ ϕ(A) > 0

(the exception being Lemma 2.8). Positive traces correspond, under the rubric of
Theorem 1.1, to positive rearrangement-invariant linear functionals. In the fol-
lowing, we use the function log−(t) = −min(log(t), 0); thus, log = log+− log−.

DEFINITION 1.2. LetM be a II1-factor and consider a positive trace ϕ on an
M-bimodule E(M, τ). Let Elog(M, τ) be the set of all T ∈ S(M, τ) such that
log+(|T|) ∈ E(M, τ) and for such T let

detϕ(T) =


exp(ϕ(log(|T|))) ker T = {0} and log−(|T|) ∈ E,
0 ker T = {0} and log−(|T|) /∈ E,
0 ker T 6= {0}.

Thus, in the case E = L1 and ϕ = τ, we have the Fuglede–Kadison deter-
minant: detτ = ∆τ . The natural domain of this determinant by the above rubric
should be written L1,log(M, τ), but we will write Llog(M, τ) for this, in keeping
with earlier convention (cf. [5], [6]).

The main result of this paper is the following.

THEOREM 1.3. For an arbitrary Calkin function space E on [0, 1] and arbitrary
positive trace ϕ on the corresponding bimodule E(M, τ), the set Elog(M, τ) is a ∗-
subalgebra of S(M, τ) and, if A, B ∈ Elog(M, τ), then

(1.3) detϕ(AB) = detϕ(A)detϕ(B).

The proof, presented in the next section, relies on Fuglede and Kadison’s
result [8] that ∆τ is multiplicative onM and on the characterization from [4] of
sums of (E(M, τ)),M)-commutators. Thus, a special case of this proof yields an
alternative proof of Haagerup and Schultz’s result [10] about the extension of the
Fuglede–Kadison determinant to Llog(M, τ).

REMARK 1.4. It is immediate that detϕ(1) = 1 and, for T ∈ Elog(M, τ),
detϕ(T) = 0 if and only if T fails to be invertible in Elog(M, τ).

REMARK 1.5. In the case that ϕ = 0, we clearly have, for T ∈ Elog(M, τ),

detϕ(T) =

{
1 if T is invertible in Elog(M, τ),
0 otherwise.

However, if ϕ 6= 0, then detϕ is onto [0, ∞).

REMARK 1.6. It is not difficult to see, in the case ϕ = τ, that Definition 1.2
agrees with the definition by equation (1.1), in fact even for all T ∈ Llog(M, τ).
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However, the analoguous statement is not true for general traces ϕ. In fact, it
obviously fails when ϕ = 0, (see Remark 1.5, above). See Example 3.3 for specific
examples of this failure when ϕ 6= 0.

We are grateful to Amudhan Krishnaswamy-Usha for asking us a question
that led to the next result.

PROPOSITION 1.7. For an arbitrary Calkin function space E on [0, 1] and an ar-
bitrary map

m : Elog(M, τ)→ [0, ∞)

that is multiplicative, order-preserving and nonzero, there exists a positive trace ϕ on
E(M, τ) such that m(X) = detϕ(X) for every invertible element X in Elog(M, τ).

We will show (in Proposition 3.2) that we cannot hope for m to agree with
detϕ on all of Elog(M, τ).

The proofs of Theorem 1.3 and Proposition 3.2 are contained in the next two
sections.

2. PROOF OF THEOREM 1.3

Let us begin by describing some further notation and standard conventions.

(i) S(0, 1) will denote the set of all complex-valued Borel measurable functions
on [0, 1] and L∞ will denote the set of all essentially bounded elements of S(0, 1).
As usual, we consider functions that are equal almost everywhere to be the same.

(ii) We will apply the Borel functional calculus to self-adjoint elements T ∈
S(M, τ), and will also use the standard notation T+ = max(T, 0) and T− =
−min(T, 0).

(iii) For self-adjoint A ∈ S(M, τ), we consider its eigenvalue function (or spec-
tral scale), defined for t ∈ (0, 1) by

λ(t, A) = inf{s ∈ R : τ(1(s,∞)(A)) 6 t},

where, in accordance with notation for Borel functional calculus, 1(s,∞)(A) de-
notes the spectral projection of A associated to the interval (s, ∞). This also goes
back to Murray and von Neumann. We will write simply λ(A) for the func-
tion t 7→ λ(t, A), which is nonincreasing and right continuous. Note that, if
A > 0, then λ(A) = µ(A). Moreover, when a 6 b, with a 6 lim

t→0
λ(t, A) and

b > lim
t→1

λ(t, A), we have

τ(A 1[a,b](A)) =

d∫
c

λ(t, A)dt,(2.1)

τ(1[a,b](A)) = d− c,(2.2)
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where
c = inf{s : λ(s, A) 6 b}, d = sup{s : λ(s, A) > a}.

For any T ∈ S(M, τ), since µ(T) = µ(|T|) = λ(|T|), from (2.2), we get

(2.3) τ(1[0,µ(t,T)](|T|)) > 1− t.

(iv) The following inequalities are standard (see, for example, Corollary 2.3.16
of [14]): for all A, B ∈ S(M, τ), if s, t > 0 and s + t < 1, then

µ(s + t, A + B) 6 µ(s, A) + µ(t, B),(2.4)

µ(s + t, AB) 6 µ(s, A)µ(t, B).(2.5)

(v) If a function f on (0, 1) is right-continuous and monotone, then we will let
f̃ denote left-continuous version, namely,

(2.6) f̃ (x) = lim
t→x−

f (t).

LEMMA 2.1. Let T, S ∈ S(M, τ) be self-adjoint. Then for every t ∈ (0, 1
4 ), we

have ∣∣∣ 1−2t∫
2t

(
log(µ(u, eTeS))− λ(u, T)− λ(u, S)

)
du
∣∣∣ 6 8t(µ(t, T) + µ(t, S)).

Proof. Fix t ∈ (0, 1
4 ) and, using the continuous functional calculus, set

T0 = min{T+, µ(t, T)} −min{T−, µ(t, T)},
S0 = min{S+, µ(t, S)} −min{S−, µ(t, S)}.

We have

T − T0 = (T+ − µ(t, T))+ − (T− − µ(t, T))+,

|T − T0| = (T+ − µ(t, T))+ + (T− − µ(t, T))+ = (|T| − µ(t, T))+.

Thus, we have (T− T0)1[0,µ(t,T)](|T|) = 0 and, using (2.3), we get µ(t, T− T0) = 0;
similarly, we have µ(t, S− S0) = 0. Using (2.5), for every u ∈ (2t, 1) we have

µ(u, eTeS) = µ(u, eT−T0 · eT0eS0 · eS−S0)6µ(t, eT−T0)µ(u− 2t, eT0eS0)µ(t, eS−S0),

µ(u, eT0eS0) = µ(u, eT0−T · eTeS · eS0−S)6µ(t, eT0−T)µ(u− 2t, eTeS)µ(t, eS0−S),

Since µ(t, eT−T0) 6 1 and µ(t, eT0−T) 6 1 and similarly for S− S0, we get

µ(u, eTeS) 6 µ(u− 2t, eT0eS0), µ(u, eT0eS0) 6 µ(u− 2t, eTeS).

Thus, for u ∈ (2t, 1− 2t), we have

µ(u + 2t, eT0eS0) 6 µ(u, eTeS) 6 µ(u− 2t, eT0eS0).

It follows that

(2.7)
1∫

4t

log(µ(u, eT0eS0))du6
1−2t∫
2t

log(µ(u, eTeS))du6
1−4t∫
0

log(µ(u, eT0eS0))du.
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Since −µ(t, T) 6 T0 6 µ(t, T) and similarly for S0, we also have

e−µ(t,T)−µ(t,S) 6 µ(eT0eS0) 6 eµ(t,T)+µ(t,S).

Thus,
‖ log(µ(eT0eS0))‖∞ 6 µ(t, T) + µ(t, S).

In particular,∣∣∣ 4t∫
0

log(µ(u, eT0eS0))du
∣∣∣ 6 4t‖ log(µ(eT0eS0))‖∞ 6 4t(µ(t, T) + µ(t, S)),

∣∣∣ 1∫
1−4t

log(µ(u, eT0eS0))du
∣∣∣ 6 4t‖ log(µ(eT0eS0))‖∞ 6 4t(µ(t, T) + µ(t, S)).

Using (2.7), we get∣∣∣ 1−2t∫
2t

log(µ(u, eTeS))du−
1∫

0

log(µ(u, eT0eS0))du
∣∣∣ 6 4t(µ(t, T) + µ(t, S)).

Since the Fuglede–Kadison determinant ∆τ is multiplicative onM, we have
1∫

0

log(µ(u, eT0eS0))du = log(∆τ(eT0eS0))

= log(∆τ(eT0)) + log(∆τ(eS0)) = τ(T0) + τ(S0).

But using ∣∣∣τ(T0)−
1−2t∫
2t

λ(u, T)du
∣∣∣ 6 4tµ(t, T),

and the same also for S, the assertion follows.

In the following, we use the notation (2.6) for the left-continuous versions
of monotone functions. (Though, as elements of E, µ(T) and the left-continuous
version µ̃(T) are identified, these functions µ(T) and similarly λ(T) are of inter-
est aside from their membership in E, and for correctness at all points of (0, 1)
we must use their left-continuous versions in the following inequalities and else-
where below.)

LEMMA 2.2. If S, T ∈ S(M, τ) are self-adjoint, then for all u ∈ (0, 1), we have

(2.8) − µ̃( 1−u
2 , T)− µ̃( 1−u

2 , S) 6 log(µ(u, eTeS)) 6 µ( u
2 , T) + µ( u

2 , S).

Proof. Using (2.5), we get

µ(u, eTeS) 6 µ( u
2 , eT)µ( u

2 , eS) 6 µ( u
2 , eT+)µ( u

2 , eS+) = eµ( u
2 ,T+)+µ( u

2 ,S+)(2.9)

6 eµ( u
2 ,T)+µ( u

2 ,S),
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which yields the right-most inequality in (2.8). Replacing S with −T and T with
−S in (2.9), we get

(2.10) µ(u, e−Se−T) 6 eµ( u
2 ,T−)+µ( u

2 ,S−), µ̃(u, e−Se−T) 6 eµ̃( u
2 ,T−)+µ̃( u

2 ,S−).

As is well known and easy to show,

µ(u, eTeS) =
1

µ̃(1− u, e−Se−T)
.

Thus, replacing u with 1− u in (2.10), we get

µ(u, eTeS) > e−µ̃( 1−u
2 ,T−)−µ̃( 1−u

2 ,S−) > e−µ̃( 1−u
2 ,T)−µ̃( 1−u

2 ,S),

which yields the left-most inequality in (2.8).

The next lemma is a combination of Theorems 3.3.3 and 3.3.4 from [14].

LEMMA 2.3. If S, T ∈ M are positive, then

t∫
0

µ(u, T + S)du 6
t∫

0

(µ(u, T) + µ(u, S))du 6
2t∫

0

µ(u, T + S)du.

Proof. This follows easily from the fact that, for a positive operator, T, we
have

t∫
0

µ(u, T)du = sup{τ(pT) : p ∈ Proj(M), τ(p) 6 t}.

For every function f ∈ S(0, 1) that is bounded on compact subsets of (0, 1),
define

(Ψ f )(t) =


1
t

1−t∫
t

f (s)ds 0 < t < 1
2 ,

0 1
2 6 t 6 1.

Clearly, Ψ f is continuous on (0, 1] and Ψ is linear. Note that Ψ is defined on every
function arising as µ(A) or λ(A) for A ∈ S(M, τ).

LEMMA 2.4. Let S, T ∈ E(M, τ) be positive. Then

Ψ(µ(T + S)− µ(T)− µ(S)) ∈ E.

Proof. First suppose S, T ∈ M are positive. From Lemma 2.3 and the fact

that τ(T) =
1∫

0
µ(u, T)du, we have

(2.11)
1∫

2t

µ(u, T + S)du 6
1∫

t

(µ(u, T) + µ(u, S))du 6
1∫

t

µ(u, T + S)du.
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For arbitrary positive S, T ∈ S(M, τ), set Tn = min{T, n} and Sn = min{S, n}.
Since µ(Tn) ↑ µ(T), µ(Sn) ↑ µ(S) and µ(Tn + Sn) ↑ µ(T + S), it follows from the
monotone convergence principle that (2.11) also holds. From (2.11), we have∣∣∣ 1∫

t

(µ(u, T + S)− µ(u, T)− µ(u, S))du
∣∣∣ 6 2t∫

t

µ(u, T + S)du 6 tµ(t, T + S).

Thus, for t ∈ (0, 1
2 ), we have

g
∣∣∣ 1−t∫

t

(µ(u, T + S)− µ(u, T)− µ(u, S))du g
∣∣∣

6 g
∣∣∣ 1∫

t

(µ(u, T + S)− µ(u, T)− µ(u, S))du g
∣∣∣

+ g
∣∣∣ 1∫
1−t

(µ(u, T + S)− µ(u, T)− µ(u, S))du g
∣∣∣

6 tµ(t, T + S) + tµ(1− t, T + S) + tµ(1− t, T) + tµ(1− t, S) 6 4tµ(t, T + S).

This concludes the proof.

LEMMA 2.5. Let T ∈ S(M, τ) be self-adjoint. Then

Ψ(λ(T)− µ(T+) + µ(T−)) ∈ L∞.

Proof. If T+ = 0 or T− = 0, then λ(T) = µ(T+)− µ(T−). Suppose T+ 6= 0
and T− 6= 0. Let t0 be the trace of the support projection of T+. We have

λ(u, T) =

{
µ(u, T+) u ∈ (0, t0),
−µ̃(1− u, T−) u ∈ [t0, 1).

It follows that, for all sufficiently small t, we have

t(Ψλ(T))(t)=
t0∫

t

λ(u, T)du+
1−t∫
t0

λ(u, T)du=
t0∫

t

µ(u, T+)du−
1−t∫
t0

µ(1− u, T−)du

=

t0∫
t

µ(u, T+)du−
1−t0∫
t

µ(u, T−)du

=

1∫
t

(µ(u, T+)− µ(u, T−))du = t(Ψ(µ(T+)− µ(T−)))(t),

where the last equality holds because the integrand is zero when u is sufficiently
close to 1. Thus, Ψ(λ(T)− µ(T+) + µ(T−))(t) vanishes for all t sufficiently small.
Since this function is continuous on (0, 1], it is bounded.
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LEMMA 2.6. Let S, T ∈ E(M, τ) be self-adjoint. Then

Ψ(λ(T) + λ(S)− λ(T + S)) ∈ E.

Proof. We have

(T + S)+ − (T + S)− = T+ − T− + S+ − S−.

Therefore,
(T + S)+ + T− + S− = (T + S)− + T+ + S+.

Denote the above quantity by A. From Lemma 2.4, we obtain

Ψ(µ(A)− µ((T + S)+)− µ(T−)− µ(S−)) ∈ E,

Ψ(µ(A)− µ((T + S)−)− µ(T+)− µ(S+)) ∈ E.

Subtracting those formulae, we obtain

Ψ(µ((T + S)+)− µ((T + S)−)− µ(T+) + µ(T−)− µ(S+) + µ(S−)) ∈ E.

The assertion follows now from Lemma 2.5 as applied to the operators T, S and
T + S, and the fact that E contains L∞.

In the next result, the notation [E(M, τ),M] denotes the space spanned
by the set of all commutators of the form [S, T] = ST − TS, for S ∈ M and
T ∈ E(M, τ). It amounts to a reformulation of a special case of Theorem 4.6
in [4].

THEOREM 2.7. Let T ∈ E(M, τ) be self-adjoint. Then T ∈ [E(M, τ),M] if and
only if Ψλ(T) ∈ E.

Proof. By Theorem 4.6 of [4], T ∈ [E(M, τ),M] if and only if the function

r 7→ 1
r

τ(1[0,µ(r,T)](|T|)T)

belongs to E. Thus, it will suffice to show that the function

(2.12) r 7→ 1
r

τ(1[0,µ(r,T)](|T|)T)−Ψλ(T)(r)

belongs to E. First suppose T− = 0. Then, using λ(T) = µ(T) and (2.1), we have

τ(1[0,µ(r,T)](|T|)T) =
1∫

r′

µ(t, T)dt,

where r′ = inf{s : µ(s, T) 6 µ(r, T)}. Thus r′ 6 r and, for 0 < r < 1
2 ,

∣∣∣τ(1[0,µ(r,T)](|T|)T)−
1−r∫
r

λ(t, T)dt
∣∣∣ 6 (r− r′)µ(r, T) + rµ(1− r, T) 6 2rµ(r, T),

which implies that the function (2.12) belongs to E.
If T+ = 0, then we may of course replace T by −T and we are done.
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Suppose T+ 6= 0 and T− 6= 0. Letting, t0 = inf{t : λ(t, T+) > 0}, we have
0 < t0 < 1 and

λ(t, T) =

{
µ(t, T+) 0 < t < t0,
µ̃(1− t, T−) t0 6 t < 1.

For r < t0, we have

τ(1[0,µ(r,T)](|T|)T) = τ(1[−µ(r,T),µ(r,T)](T)T)

= τ(1[0,µ(r,T)](T+)T+)− τ(1[0,µ(r,T)](T−)T−)

=

t0∫
r′

λ(t, T)dt +
1−r′′∫
t0

λ(t, T)dt,

where

r′ = inf{s : µ(s, T+) 6 µ(r, T)}(2.13)

r′′ = inf{s : µ(s, T−) 6 µ(r, T)}.(2.14)

Since µ(r, T±) 6 µ(r, T), we have r′, r′′ 6 r. Thus, we have

∣∣∣τ(1[0,µ(r,T)](|T|)T)−
1−r∫
r

λ(t, T)dt
∣∣∣= ∣∣∣ r∫

r′

λ(t, T)dt +
1−r′′∫
1−r

λ(t, T)dt
∣∣∣

6

r∫
r′

µ(t, T+)dt +
r∫

r′′

µ(t, T−)dt

6 (r−r′)µ(r′, T+)+(r−r′′)µ(r′′, T−)62rµ(r, T),

where for the last inequality we used (2.13)–(2.14). This shows that the func-
tion (2.12) belongs to E and, thus, completes the proof.

LEMMA 2.8. Let ϕ : E(M, τ) → C be a trace. If T ∈ E(M, τ) is self-adjoint
and is such that Ψλ(T) ∈ E, then ϕ(T) = 0.

Proof. It follows from Theorem 2.7 that T ∈ [E(M, τ),M]. Since ϕ is a trace,
it follows that ϕ(T) = 0.

Proof of Theorem 1.3. For A ∈ S(M, τ), we have that A ∈ Elog(M, τ) if and
only if log+ µ(A) ∈ E, and this is, in turn, equivalent to log(1+ µ(A)) ∈ E. Using
the basic equalities (2.4)–(2.5), we easily see that for A, B ∈ Elog(M, τ), we have

log(1+µ(A+B))6 log(1+D2µ(A)+D2µ(B))6 log((1+D2µ(A))(1+D2µ(B))),

log(1 + µ(AB))6 log(1 + D2µ(A)D2µ(B)) 6 log((1 + D2µ(A))(1 + D2µ(B))),

where (D2 f )(t) = f ( t
2 ). But since log(1 + D2µ(A)) + log(1 + D2µ(B)) ∈ E,

these imply that A + B and AB belong to Elog(M, τ). From this, one easily sees
that Elog(M, τ) is a ∗-subalgebra of S(M, τ).
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It remains to show that detϕ is multiplicative. Letting A, B ∈ Elog(M, τ),
we will show (1.3). We may, without loss of generality, assume A, B > 0. Indeed,
we have µ(AB) = µ(|A||B∗|). Thus, if the assertion holds for positive operators,
then we will have

detϕ(AB) = detϕ(|A||B∗|) = detϕ(|A|)detϕ(|B∗|) = detϕ(A)detϕ(B).

Suppose first that log(A), log(B) ∈ E(M, τ). Denote, for brevity, T = log(A) and
S = log(B). It follows from Lemma 2.2 that log(|AB|) ∈ E.

Using Lemma 2.1 and replacing t with 1
2 t, for all t ∈ (0, 1

2 ), we get

∣∣∣ 1−t∫
t

(log(µ(u, eTeS))− λ(u, T)− λ(u, S))du
∣∣∣ 6 4t(µ( t

2 , T) + µ( t
2 , S)).

In particular, we have

Ψ(log(µ(eTeS))− λ(T)− λ(S)) ∈ E.

It follows from Lemma 2.6 that

Ψ(λ(log(|eTeS|)− T − S)) ∈ E.

Using Lemma 2.8, we conclude that

ϕ(log(|eTeS|)− T − S) = 0.

This implies (1.3) for our A, B.
If B has a nonzero kernel, then so does AB and (1.3) holds.
Suppose now that ker B is zero but log−(B) /∈ E. Then, of course, we have

lim
t→1

µ(t, B) = 0. If ker AB 6= {0}, then (1.3) holds, so suppose ker AB = {0}. We

have, from (2.5), for all t ∈ (0, 1
2 ),

µ(1− t, AB) 6 µ(t, A)µ(1− 2t, B)

and, thus,

log(µ(1− t, AB)) 6 log(µ(t, A)) + log(µ(1− 2t, B)).

So, for sufficiently small t > 0,

log− µ(1− t, AB) + log+ µ(t, A) > − log µ(1− t, AB) + log µ(t, A)

> − log µ(1− 2t, B) = log− µ(1− 2t, B).

Since the function t 7→ log− µ(1 − 2t, B) is not in E, while the function t 7→
log+ µ(t, A) does belong to E, we conclude that the function t 7→ log− µ(1 −
t, AB) does not belong to E. Therefore, the function log−(µ(AB)) does not be-
long to E and both left- and right-hand sides of (1.3) are zero. This concludes the
proof of (1.3) in the degenerate case.
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3. PROOF OF PROPOSITION 1.7 AND SOME EXAMPLES

LEMMA 3.1. Let m : Elog(M, τ) → R be multiplicative and order-preserving.
Then for every T ∈ Elog(M, τ), m(T) depends only on µ(T).

Proof. We may without loss of generality assume m is not identically zero.
Thus, m(1) = 1. By Theorem 1 of [1], every unitary element is a product of
multiplicative commutators of unitaries (in fact, of symmetries) and it follows
that m sends the entire unitary group of M to 1. Thus, by employing the polar
decomposition, we have

∀ T ∈ Elog(M, τ), m(T) = m(|T|).

It, therefore, suffices to prove the assertion for positive operators.
Let 0 6 T, S ∈ Elog(M, τ) be such that µ(T) = µ(S). Set

Tε = ∑
n∈Z

(1 + ε)n1((1+ε)n ,(1+ε)n+1)(T), Sε = ∑
n∈Z

(1 + ε)n1((1+ε)n ,(1+ε)n+1)(S).

For a given n, positive operators Tε and Sε have discrete spectrum and µ(Tε) =
µ(Sε). SinceM is a factor, one can choose a unitary operator Uε ∈ M such that
Sε = UεTεU−1

ε . Thus,

m(Sε) = m(UεTεU−1
ε ) = m(Uε)m(Tε)m(Uε)

−1 = m(Tε).

Clearly,
Sε 6 S 6 (1 + ε)Sε, Tε 6 T 6 (1 + ε)Tε.

Since m is order preserving, it follows that

m(S) 6 m(1 + ε)m(Sε) = m(1 + ε)m(Tε) 6 m(1 + ε)m(T).

Since m is order preserving, it follows that m(1 + ε)↘ 1 as ε↘ 0. Passing ε→ 0,
we obtain m(S) 6 m(T). Similarly, m(T) 6 m(S). Thus, m(S) = m(T) and the
proof is complete.

Proof of Proposition 1.7. Since the map m is multiplicative and not identically
zero, we must have m(1) = 1. By Lemma 3.1, m(T) depends only on µ(T) for all
T ∈ Elog(M, τ).

Let A be any unital, diffuse, abelian von Neumann subalgebra of M. As
in the proof of Theorem 1.3, E is naturally identified with S(A, τ�A) ∩ E(M, τ).
Given real-valued f ∈ E, let T ∈ S(A, τ�A)∩ E(M, τ) be the corresponding self-
adjoint operator. Note that eT is an invertible element of Elog(M, τ) and, thus,
m(eT) > 0. We define

(3.1) ϕ0( f ) = log m(eT).

We will show that ϕ0 is R-linear. First, given f1, f2 ∈ E and the corresponding
self-adjoint T1, T2 ∈ S(A, τ�A) ∩ E(M, τ), since T1 and T2 commute, we have

ϕ0( f1+ f2)= log m(eT1+T2)= log m(eT1eT2)= log(m(eT1)m(eT2))= ϕ0( f1)+ϕ0( f2),
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i.e., ϕ0 preserves addition. From this, we easily see that ϕ0(r f ) = rϕ0( f ) for every
rational number r and real-valued f ∈ E. This last fact is, of course, equivalent to

(3.2) m(erT) = m(eT)r

for every self-adjoint T ∈ S(A, τ�A) ∩ E(M, τ) and every rational number r.
When T > 0, using the order-preserving property of m, we obtain from this
that (3.2) holds for every r ∈ R, and similarly when T 6 0. For arbitrary self-
adjoint T ∈ S(A, τ�A) ∩ E(M, τ), writing T = T+ − T− for T+ and T− positive
elements of S(A, τ�A) ∩ E(M, τ), in the usual way, we get, for all r ∈ R,

m(erT) = m(erT++(−r)T−) = m(erT+)m(e(−r)T−) = m(eT+)rm(eT−)−r

= (m(eT+e−T−))r = m(eT)r.

Thus (3.2) holds for all self-adjoint T and all r ∈ R, and it follows that ϕ0(r f ) =
rϕ0( f ) for all real-valued f ∈ E and all r ∈ R. Thus, we have defined an R-linear
functional ϕ0 on the space of real-valued elements of E. Complexification extends
ϕ0 to a C-linear functional on E.

We now observe that ϕ0 is rearrangement-invariant. If f ∈ E and f > 0
and if T ∈ S(A, τ�A) ∩ E(M, τ) is the corresponding element, then µ(eT) = e f ∗ ,
where f ∗ is the nondecreasing rearrangement of f . Since m(eT) depends only on
µ(eT), we see that ϕ0( f ) = ϕ0( f ∗) and, thus, ϕ0 is rearrangement-invariant.

By Theorem 1.1, there is a unique trace ϕ on E(M, τ) such that ϕ(T) =
ϕ0(µ(T)) whenever T ∈ E(M, τ) is positive. Suppose X is an invertible element
of Elog(M, τ) and let us observe that m(X) = detϕ(X). Since m(X) = m(|X|) and
likewise for detϕ, we may without loss of generality assume X > 0. Thus, there
is a self-adjoint T = log(X) ∈ E(M, τ) such that X = eT . Thus, by (3.1), we have

m(X) = eϕ0(λ(T)) = eϕ(T) = detϕ(X),

as required.

The following shows that Proposition 1.7 cannot be improved to obtain m =
detϕ on all of Elog(M, τ).

PROPOSITION 3.2. Let E be a symmetric function space. Consider a strictly larger
symmetric function space F. If ψ is an arbitrary positive trace on F (M, τ), then

detψ�Elog(M,τ) 6= detϕ

for each positive trace ϕ on E(M, τ).

Proof. To see this, fix 0 6 T ∈ F (M, τ) such that T /∈ E(M, τ). Take X =
e−T . Then X is bounded, so belongs to Elog(M, τ). Moreover, X−1 = eT belongs
to Flog(M, τ), but X is not invertible in Elog(M, τ). Thus, we have

detψ(X) = e−ψ(T) 6= 0 = detϕ(X).

See Remark 1.6 for the relevance of the following example.
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EXAMPLE 3.3. We give a class of examples of a nonzero trace ϕ on a bimod-
ule E(M, τ) and T ∈ E(M, τ) such that ϕ 6= 0 but

(3.3) detϕ(T) 6= lim
ε→0+

detϕ(|T|+ ε).

Let ψ be an increasing, continuous, concave function on the interval [0, 1] satisfy-
ing

lim
t→0

ψ(2t)
ψ(t)

= 1.

For example, take ψ(t) = 1
2−log(t) . Let E = Mψ be the Marcinkiewicz space

E =
{

f ∈ S(0, 1) : sup
0<t<1

1
ψ(t)

t∫
0

f ∗(s)ds < ∞
}

,

where f ∗ is the decreasing rearrangement of | f |. Let E(M, τ) be the correspond-
ing M-bimodule. By Example 2.5(ii) of [3], there is a positive, rearrangement-
invariant, linear functional ϕ on E that vanishes on E ∩ L∞, but satisfies ϕ(ψ′) =
1. For f ∈ E with f > 0, ϕ( f ) is realized as a particular sort of generalized limit

as t → 0 of 1
ψ(t)

t∫
0

f ∗(s)ds. Let ϕ denote also the trace on E(M, τ), according to

Theorem 1.1. Thus, we have detϕ(T) = 1 whenever T ∈ M is bounded and has
bounded inverse. Consequently, if T ∈ M fails to be invertible in Elog(M, τ), for
example, because it has a nonzero kernel, then, by Definition 1.2, detϕ(T) = 0,
but the right-hand-side of (3.3) is equal to 1.

The class of examples considered above involved non-invertible elements
of Elog(M, τ). However, (3.3) can also fail when T is invertible in Elog(M, τ). For
example, take T > 0 such that µ(T)(t) = exp(−ψ′(1 − t)). In particular, T is
bounded. Then detϕ(T) = e−1 but again the right-hand-side of (3.3) is equal to 1.

Acknowledgements. The authors thank Amudhan Krishnaswamy-Usha for valuable
discussions.

REFERENCES

[1] M. BROISE, Commutateurs dans le groupe unitaire d’un facteur, J. Math. Pures Appl.
(9) 46(1967), 299–312.

[2] A.L. CAREY, F.A. SUKOCHEV, Dixmier traces and some applications to noncommu-
tative geometry [Russian], Uspekhi Mat. Nauk 61(2006), 45–110; English Russian Math.
Surveys 61(2006), 1039–1099.

[3] P.G. DODDS, B. DE PAGTER, E.M. SEMENOV, F.A. SUKOCHEV, Symmetric function-
als and singular traces, Positivity 2(1998), 47–75.



134 K. DYKEMA, F. SUKOCHEV AND D. ZANIN

[4] K.J. DYKEMA, N.J. KALTON, Sums of commutators in ideals and modules of type II
factors, Ann. Inst. Fourier (Grenoble) 55(2005), 931–971.

[5] K.J. DYKEMA, F.A. SUKOCHEV, D. ZANIN, Algebras of log-integrable functions and
operators, Complex Anal. Oper. Theory 10(2016), 1775–1787.

[6] K.J. DYKEMA, F.A. SUKOCHEV, D. ZANIN, An upper triangular decomposition the-
orem for some unbounded operators affiliated to II1-factors, Israel J. Math., to appear.

[7] T. FACK, P. DE LA HARPE, Sommes de commutateurs dans les algèbres de von Neu-
mann finies continues, Ann. Inst. Fourier (Grenoble) 30(1980), 49–73.

[8] B. FUGLEDE, R.V. KADISON, Determinant theory in finite factors, Ann. of Math.
55(1952), 520–530.

[9] D. GUIDO, T. ISOLA, Singular traces on semifinite von Neumann algebras, J. Funct.
Anal. 134(1995), 451–485.

[10] U. HAAGERUP, H. SCHULTZ, Brown measures of unbounded operators affiliated
with a finite von Neumann algebra, Math. Scand. 100(2007), 209–263.

[11] R.V. KADISON, Z. LIU, The Heisenberg relation — mathematical formulations,
SIGMA Symmetry Integrability Geom. Methods Appl. 10(2014), Paper 009, 40.

[12] N.J. KALTON, A.A. SEDAEV, F.A. SUKOCHEV, Fully symmetric functionals on a
Marcinkiewicz space are Dixmier traces, Adv. Math. 226(2011), 3540–3549.

[13] N.J. KALTON, F.A. SUKOCHEV, Rearrangement-invariant functionals with applica-
tions to traces on symmetrically normed ideals, Canad. Math. Bull. 51(2008), 67–80.

[14] S. LORD, F. SUKOCHEV, D. ZANIN, Singular Traces, de Gruyter Stud. Math., vol. 46,
Walter de Gruyter and Co., Berlin 2013.

K. DYKEMA, DEPARTMENT OF MATHEMATICS, TEXAS A AND M UNIVERSITY,
COLLEGE STATION, TX 77843-3368, U.S.A.

E-mail address: ken.dykema@math.tamu.edu

F. SUKOCHEV, SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NEW

SOUTH WALES, KENSINGTON, NSW 2052, AUSTRALIA

E-mail address: f.sukochev@math.unsw.edu.au

D. ZANIN, SCHOOL OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NEW

SOUTH WALES, KENSINGTON, NSW 2052, AUSTRALIA

E-mail address: d.zanin@math.unsw.edu.au

Received May 31, 2016; revised September 22, 2016.


	1. INTRODUCTION
	2. PROOF OF THEOREM 1.3
	3. PROOF OF PROPOSITION 1.7 AND SOME EXAMPLES
	REFERENCES

