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ABSTRACT. A family of representationsF of a C∗-algebra A is exhaustive if ev-
ery irreducible representation of A is weakly contained in some φ ∈ F . Such
an F has the property that “a ∈ A is invertible if and only if φ(a) is invertible
for any φ ∈ F”. The regular representations of amenable, second countable,
locally compact groupoids form an exhaustive family of representations. If A
is a separable C∗-algebra, a family F of representations of A is exhaustive if
and only if it is strictly spectral. We consider also unbounded operators. A
typical application is to parametric pseudodifferential operators.
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1. INTRODUCTION

A typical result in spectral theory of N-body Hamiltonians [15], [24], [25],
[35] associates to the Hamiltonian H a family of other operators Hφ, φ ∈ F , such
that the essential spectrum Specess(H) of H is obtained in terms of the usual spec-
tra Spec(Hφ) of Hφ as the closure of the union of the later:

(1.1) Specess(H) =
⋃

φ∈F
Spec(Hφ).

It was noticed that sometimes the closure is not necessary, and one of the moti-
vations of our paper is to clarify this issue. Our approach is based on the well
known fact that the operators Hφ are obtained as homomorphic images (in a suit-
able sense) of the operator H, that is Hφ = φ(H), where the morphisms φ are
part of a suitable family of representations F of a certain C∗-algebra associated to
H. This justifies the study of families of representations. See for example [25] for
an illustration of this approach. To simplify our terminology, by a morphism or a
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representation of a C∗-algebras, we shall always mean a ∗-morphism, respectively,
a ∗-representation of that C∗-algebra into another C∗-algebra.

Another, related, motivation comes from the characterization of Fredholm
integral operators [15], [38], [44], [49], [51], [52], [53] and of Toeplitz operators
[10]. We are especially interested in the approach to this question using groupoids
[17], [18], [30], [31], [54]. More precisely, for suitable manifolds M and for dif-
ferential operators D on M compatible with the geometry, there was devised a
procedure to associate to M the following data: (i) spaces Zα, α ∈ I; (ii) groups
Gα, α ∈ I; and (iii) Gα-invariant differential operators Dα acting on Zα × Gα. This
data can be used to characterize the Fredholm property of D as follows. Let m be
the order of D, then

(1.2) D : Hs(M)→ Hs−m(M) is Fredholm⇔ D is elliptic and

Dα is invertible for all α ∈ I.

Moreover, the spaces Zα and the groups Gα are independent of D. If M is compact
(without boundary), then the index I is empty (so there are no Dαs). In general,
for non-compact manifolds, the conditions on the operators Dα are, nevertheless,
necessary. The non-compact geometries to which this characterization of Fred-
holm operators applies include: asymptotically euclidean manifolds, asymptoti-
cally hyperbolic manifolds, manifolds with poly-cylindrical ends, and many oth-
ers (see [39], [40] for surveys). Again, the operators Dα are homomorphic images
of the operator D, which leads us again to the study of families of representations.

The results in [24], [25], [30] mentioned above are the main motivation for
this work, which is a purely theoretical one on the representation theory of C∗-
algebras, even though the applications are to spectral theory and pseudodifferen-
tial operators.

Our main results concern “exhaustive families of representations”, a con-
cept that we introduce and study in this paper. To explain our results, let us
discuss first the important, related concept of a “strictly spectral family of repre-
sentations”. Recall from [48] that a strictly spectral family of representations F of
a unital C∗-algebra A is a set of representations with the property that a ∈ A is
invertible if and only if φ(a) is invertible for all φ ∈ F . This concept is directly
applicable to the problems mentioned in the beginning of this introduction. It is
equivalent to the concept of a strictly norming family of representations [23], [48], a
concept that we recall in the main body of the paper. In practice, it is not straight-
forward to check that a family of representations is strictly spectral or strictly
norming. Motivated by this, we introduce an exhaustive family of representations
of A as a set F with the property that every irreducible representation of A is
weakly contained in a representation φ ∈ F . Exhaustive families of representa-
tions turn out to have many useful properties.

Here are the contents of the sections of the paper and our main results. In
the following section, the second section, we discuss some results on faithful
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family of representations in preparation and as motivation for the study of ex-
haustive families of representations, which is the main thrust of the third section.
Thus, in the third section, we discuss and prove various basic properties of ex-
haustive families. We also discuss their relation with strictly spectral families of
representations. We prove that the C∗-algebras of groupoids G that satisfy the
Effros–Hahn conjecture and have amenable isotropy groups have the property
that the family of regular representationsR = {πx} is exhaustive (here x is rang-
ing through the units of G). We notice that an example due to Voiculescu (private
communication) shows that this result is not true in general. In the fourth section
we provide a necessary and sufficient condition for a family of representations
of A to be exhaustive in terms of the topology on the primitive ideal spectrum
Prim(A) of A. In particular, we show that for a separable C∗-algebra, a set of
representations of A is strictly spectral if, and only if, it is exhaustive. We also
provide an example of a strictly spectral family that is not exhaustive in the non-
separable case. The fifth section contains some material that allows us to treat
also unbounded operators affiliated to a C∗-algebra. The last section, the sixth,
contains a typical application of our results to parametric families of differential
operators. This type of operators arises in the analysis on manifolds with corners
(more precisely, in the case of manifolds with poly-cylindrical ends). In that case,
we recover the fact that an operator compatible with the geometry is invertible if
and only if its Mellin transform is invertible. Due to the fact that the main appli-
cations are to areas other than the study of C∗-algebras, we have writen the paper
with an eye towards the non-specialist in C∗-algebras. In particular, in addition to
the relevant references, we have also included a few short proofs of some known
(or essentially known) results.

2. C∗-ALGEBRAS AND THEIR PRIMITIVE IDEAL SPECTRUM

We begin with a review of some needed general C∗-algebra results. Our
main reference is [20], but see also [14], [45], [49], [50], [55], [56]. Recall that a
C∗-algebra is a complex algebra A together with a conjugate linear involution ∗
and a complete norm ‖ · ‖ such that (ab)∗ = b∗a∗, ‖ab‖ 6 ‖a‖‖b‖, and ‖a∗a‖ =
‖a‖2, for all a, b ∈ A. (The fact that ∗ is an involution means that a∗∗ = a.) In
particular, a C∗-algebra is also a Banach algebra. Let H be a Hilbert space and
denote by L(H) the space of linear, bounded operators on H. One of the main
reasons why C∗-algebras are important in applications is that every norm-closed
subalgebra A ⊂ L(H) that is also closed under taking Hilbert space adjoints
is a C∗-algebra. Abstract C∗-algebras have many non-trivial properties that can
then be used to study the concretely given algebra A. Conversely, every abstract
C∗-algebra is isometrically isomorphic to a norm closed subalgebra of L(H) (the
Gelfand–Naimark theorem, see Theorem 2.6.1 of [20]). A representation of a C∗-
algebra A on the Hilbert space Hπ is a morphism π : A → L(Hπ) to the algebra
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of bounded operators on Hπ . (Recall that, in this paper, by a morphism of C∗-
algebras, we shall always mean a ∗-morphism.) We shall use the fact that every
morphism φ of C∗-algebras (and hence any representation of a C∗-algebra) has
norm ‖φ‖ 6 1. Consequently, every bijective morphism of C∗-algebras is an
isometric isomorphism, and, in particular

(2.1) ‖φ(a)‖ = ‖a + ker(φ)‖A/ ker(φ).

A two-sided ideal I ⊂ A is called primitive if it is the kernel of an irreducible
representation. We shall denote by Prim(A) the set of primitive ideals of A. For
any two-sided ideal J ⊂ A, we have that its primitive ideal spectrum Prim(J)
identifies with the set of all the primitive ideals of A not containing the two-sided
ideal J ⊂ A. It turns out then that the sets of the form Prim(J), where J ranges
through the set of two-sided ideals J ⊂ A, define a topology on Prim(A), called
the Jacobson topology on Prim(A). If A = C(K), the algebra of continuous func-
tions on a compact space K, then K and Prim(A) are canonically homeomorphic.
See Example 5.6 for a slightly more involved example.

Throughout this paper, we shall denote by A a generic C∗-algebra. Also, by
φ : A → L(Hφ) we shall denote generic representations of A. For any represen-
tation φ of A, we define its support, supp(φ) ⊂ Prim(A) as the complement of
Prim(ker(φ)), that is, supp(φ) := Prim(A) \ Prim(ker(φ)) is the set of primitive
ideals of A containing ker(φ).

REMARK 2.1. The irreducible representations of A do not form a set (there
are too many of them). The unitary equivalence classes of irreducible representa-
tions of A do form a set however, which we shall denote by Â. By π : A→ L(Hπ)
we shall denote an arbitrary irreducible representation of A. There exists then by
definition a surjective map

(2.2) can : Â→ Prim(A)

that associates to (the class of) each irreducible representation π ∈ Â its kernel
ker(π). For each a ∈ A and each irreducible representation π of A, the algebraic
properties of π(a) depend only on the kernel of π. That yields a well defined
function

(2.3) can : Â 3 π → ‖π(a)‖ ∈ [0, ‖a‖],
which descends to a well defined function

(2.4) na : Prim(A) 3 π → ‖π(a)‖ ∈ [0, ‖a‖], na(ker(π)) = ‖π(a)‖,
because if φ1 and φ2 are representations of A with the same kernel, then ‖φ1(a)‖ =
‖φ2(a)‖ for all a ∈ A.

A C∗-algebra is type I if and only if the surjection can : Â → Prim(A) of
equation (2.2) is, in fact, a bijection [20] (a deep result). Then the discussion of
Remark 2.1 becomes unnecessary and several arguments below will be (slightly)
simplified since we will not have to make distinction between equivalence classes
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of irreducible representations and their kernels. Fortunately, many (if not all)
of the C∗-algebras that arise in the study of pseudodifferential operators and of
other practical questions are type I C∗-algebras. In spite of this, it seems unnatural
at this time to restrict our study to type I C∗-algebras. Therefore, we will not
assume that A is a type I C∗-algebra, unless this assumption is really needed.
When A is a type I C∗-algebra, we will identify Â and Prim(A).

We shall need the following simple (and well known) lemma [20].

LEMMA 2.2. The map na : Prim(A) 3 I → ‖a + I‖A/I ∈ [0, ‖a‖] is lower
semi-continuous, that is, the set {I ∈ Prim(A) : ‖a + I‖A/I > t} is open for any
t ∈ R.

We include the simple proof for the benefit of the non-specialist.

Proof. Let us fix t ∈ R. Since na takes on non-negative values, we may as-
sume t > 0. Let then χ : [0, ∞) → [0, 1] be a continuous function that is zero on
[0, t2] but is > 0 on (t2, ∞) and let b = χ(a∗a), which is defined using the func-
tional calculus with continuous functions. If φ : A → L(Hφ) is a representation
of A, then we have that ‖φ(a)‖2 = ‖φ(a∗a)‖ 6 t2 if and only if

χ(φ(a∗a)) = φ(χ(a∗a)) = φ(b) = 0.

Let then J be the (closed) two sided ideal generated by b, that is, J := AbA. Then

{I ∈ Prim(A) : ‖a + I‖A/I 6 t} = {I ∈ Prim(A) : b ∈ I}
= {I ∈ Prim(A) : J ⊂ I} = Prim(A) \ Prim(J),

is hence a closed set. Consequently, {I ∈ PrimA : ‖a + I‖A/I > t} is open, as
claimed.

For any unital C∗-algebra A and any a ∈ A, we denote by SpecA(a) the
spectrum of a in A, defined by

SpecA(a) := {λ ∈ C : λ− a is not invertible in A}.
It is known that SpecA(a) is, in fact, independent of the C∗-algebra A [20]. (See
next.) It is also known classically that SpecA(a) is compact and non-empty, unlike
in the case of unbounded operators [20]. For A non-unital, we let Spec(a) :=
SpecÃ(a).

We shall need the following general property of C∗-algebras [20].

LEMMA 2.3. Let A1 ⊂ B be two C∗-algebras and a ∈ A1 be such that it has
an inverse in B, denoted a−1. Then a−1 ∈ A1. In particular, the spectrum of a is
independent of the C∗-algebra in which we compute it:

(2.5) SpecA1
(a) = SpecB(a) =: Spec(a).

We need the following general fact [20].

REMARK 2.4. Let A be a C∗-algebra and J ⊂ A be a two-sided ideal, then
we have that Prim(A) is the disjoint union of Prim(J) and Prim(A/J) [20]. This
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correspondence sends a primitive ideal I of A to I ∩ J, if I ∩ J 6= J, and otherwise
(i.e. if J ⊂ I) it sends I to I/J, which is an ideal of A/J.

3. FAITHFUL FAMILIES

Let F be a set of representations of A. We say that the family F is faithful if
the direct sum representation ρ :=

⊕
φ∈F

φ is injective. The results of this subsection

are for the most part very well-known, see for instance [48], but we include them
for the purpose of later reference and in order to compare them with the proper-
ties of exhaustive families and strictly norming families. We have the following
well known result that will serve us as a model for characterization of “strictly
norming families” of representations in the next subsection.

PROPOSITION 3.1. Let F be a family of representations of the C∗-algebra A. The
following are equivalent:

(i) The family F is faithful.
(ii) The union

⋃
φ∈F

supp(φ) is dense in Prim(A).

(iii) ‖a‖ = sup
φ∈F
‖φ(a)‖ for all a ∈ A.

Proof. (i)⇒ (ii) We proceed by contradiction. Let us assume that (i) is true,
but that (ii) is not true. That is, we assume that

⋃
φ∈F

supp(φ) is not dense in

Prim(A). Then there exists a non empty open set Prim(J) ⊂ Prim(A) that does
not intersect

⋃
φ∈F

supp(φ), where J ⊂ A is a non-trivial two-sided ideal. Then

J 6= 0 is contained in the kernel of
⊕

φ∈F
φ and hence F is not faithful. This is a

contradiction, and hence (ii) must be true if (i) is true.
(ii) ⇒ (iii) For a given a ∈ A, the map sending the kernel ker π of an ir-

reducible representation π to ‖π(a)‖ is a lower semi-continuous function from
Prim(A) to [0, ∞), by Lemma 2.2. Moreover, for any a ∈ A there exists an irre-
ducible representation πa such that ‖πa(a)‖ = ‖a‖ [20]. Hence, for every ε > 0,
{π ∈ Prim(A) : ‖π(a)‖ > ‖a‖ − ε} is a non empty open set (it contains ker πa)
and then it contains some π ∈ ⋃

φ∈F
supp(φ), since the later set was assumed to be

dense in Prim(A). Let φ ∈ F be such that ker(π) ⊃ ker(φ). Then

‖a‖ > ‖φ(a)‖ > ‖π(a)‖ > ‖a‖ − ε,

where the first inequality is due to the general fact that representations of C∗-
algebras have norm 6 1 and the second one is due to the fact that

‖φ(a)‖ = ‖a + ker(φ)‖A/ ker(φ) > ‖a + ker(π)‖A/ ker(π) = ‖π(a)‖,
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by equation (2.1). Consequently, ‖a‖ = sup
φ∈F
‖φ(a)‖, as desired.

(iii)⇒ (i) Let ρ :=
⊕

φ∈F
φ : A→ ⊕

φ∈F
L(Hφ). We need to show that ρ is injec-

tive. The norm on
⊕

φ∈F
L(Hφ) is the sup norm, ‖(Tφ)φ∈F‖ = sup

φ∈F
‖Tφ‖. Therefore

‖ρ(a)‖ = sup
φ∈F
‖φ(a)‖ = ‖a‖, since we are assuming (iii). Consequently, ρ is iso-

metric, and hence it is injective.

In the next proposition we shall need to assume that A is unital (that is,
that it has a unit 1 ∈ A). This assumption is not very restrictive since, given any
non-unital C∗-algebra A0, the algebra with adjoint unit A = Ã0 := A0 ⊕C has a
unique C∗-algebra norm.

We shall need the following remark on extensions of representations.

REMARK 3.2. Let B be a C∗-algebra and I ⊂ B be a closed two-sided ideal.
Recall from Proposition 2.10.4 in [20] that any representation π : I → L(H)

extends to a unique representation π : B → L(K) ⊂ L(H), K = π(I)H (the
closure is actually not needed by the Cohen–Hewitt factorization theorem). This
extension is an instance of the Rieffel induction [47] corresponding to I, regarded
as an A–I bimodule.

In particular, we shall use this remark in order to deal with non-unital alge-
bras as follows.

NOTATION 3.3. Let A be a C∗-algebra and let us denote by A′ := A if A
has a unit and by A′ := Ã := A⊕C if A does not have a unit. Let χ0 : Ã → C
be the canonical projection. Then, if F is a set of representations of A, we let
F ′ := F if A has a unit and F ′ := F ∪ {χ0} if A does not have a unit. By
implicitly extending the representations of A to A′, we have that F ′ is a set of
representations of Ã.

Using this notation, we have the following result.

PROPOSITION 3.4. Let F be a faithful family of nondegenerate representations of
a C∗-algebra A. An element a ∈ A′ is invertible if and only if φ(a) is invertible in
L(Hφ) for all φ ∈ F ′ and the set {‖φ(a)−1‖ : φ ∈ F ′} is bounded.

Proof. By replacing A with A′, we may assume that A is unital. Since each
φ ∈ F is nondegenerate, if a is invertible, φ(a) also is invertible and ‖φ(a)−1‖ =
‖φ(a−1)‖ 6 ‖a−1‖ is hence bounded.

Conversely, let ρ be the direct sum of all the representations φ ∈ F , that is,

(3.1) ρ :=
⊕
φ∈F

φ : A −→
⊕
φ∈F
L(Hφ).

If ‖φ(a)‖ is invertible for all φ ∈ F and there exists M independent of φ such
that ‖φ(a)−1‖ 6 M, then b := (φ(a)−1)φ∈F is a well defined element in B :=
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⊕
φ∈F
L(Hφ) and b is an inverse for ρ(a) in B. Let A1 := ρ(A). Then ρ(a) ∈ A1 is

invertible in B. Then observe that since ρ is continuous, injective, and surjective
morphism of C∗-algebras, it defines an isomorphism of algebras A → A1. We
then conclude that a is invertible in A as well.

The following is a converse of the above proposition. Recall that a ∈ A is
called normal if aa∗ = a∗a.

PROPOSITION 3.5. Let F be a family of representations of a unital C∗-algebra A
with the following property:

“If a ∈ A is such that φ(a) is invertible in L(Hφ) for all φ ∈ F and
the set {‖φ(a)−1‖ : φ ∈ F} is bounded, then a is invertible in A.”

Then the family F is faithful.

Proof. Clearly, the family F is not empty, since otherwise all elements of A
would be invertible, which is not possible. Let us assume, by contradiction, that
the family F is not faithful. Then, by Proposition 3.1(ii), there exists a non-empty
open set V ⊂ Prim(A) that does not intersect

⋃
φ∈F

supp(φ). Let J ⊂ A, J 6= 0,

be the (closed) two-sided ideal corresponding to V, that is, V = Prim(J). Since
F is non-empty, we have J 6= Prim(A). Then every φ ∈ F is such that φ = 0
on J. Let a ∈ J, a 6= 0. By replacing a with a∗a ∈ J, we can assume a > 0. Let
λ ∈ Spec(a), λ 6= 0. Such a λ exists since a is normal and non-zero. Let c := λ− a.
Then, for any φ ∈ F , φ(c) = λ ∈ C is invertible and ‖φ(c)−1‖ = λ−1 is bounded.
However, c is not invertible (in any C∗-algebra containing it) since it belongs to
the non-trivial ideal J.

Recall that C0(X) is the set of continuous functions on X that have vanishing
limit at infinity. Then C0(X) is a commutative C∗-algebra, and all commutative
C∗-algebras are of this form.

EXAMPLE 3.6. Let µα, α ∈ I, be a family of positive, regular Borel mea-
sures on a locally compact space X. Let φα be the corresponding multiplication
representation of the C∗-algebra C0(X) → L(L2(X, µα)). We have supp(φα) =
supp(µα) and the family F := {φα : α ∈ I} is faithful if and only if

⋃
α∈I

supp(µα)

is dense in X. In particular, if each µα is the Dirac measure concentrated at some
xα ∈ X, then φα( f ) = f (xα) =: evxα( f ) ∈ C and supp(µα) = {xα}. We shall
henceforth identify xα ∈ X with the corresponding evaluation irreducible repre-
sentation evxα . Then we have that

F = {evxα : α ∈ I} is faithful ⇔ {xα : α ∈ I} is dense in X.

This example extends right away to C∗-algebras of the form C0(X;K) of functions
with values compact operators on some given Hilbert space.
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We conclude our discussion of faithful families with the following result.
We denote by

⋃
Sα :=

⋃
α

Sα the closure of the union of the family of sets Sα.

PROPOSITION 3.7. Let F be a family of representations of a unital C∗-algebra A.
Then F is faithful if and only if for any normal a ∈ A,

(3.2) Spec(a) =
⋃

φ∈F
Spec(φ(a)).

Proof. Let us assume first that the family F is faithful and that a is normal.
Since we have that Spec(φ0(a)) ⊂ Spec(a) for any representation φ0 of A, it is
enough to show that Spec(a) ⊂ ⋃

φ∈F
Spec(φ(a)). Let us assume the contrary and

let λ ∈ Spec(a) \ ⋃
φ∈F

Spec(φ(a)). By replacing a with a − λ, we can assume

that λ = 0. We thus have that φ(a) is invertible for all φ ∈ F , but a is not
invertible (in A). Moreover, ‖φ(a)−1‖ 6 δ−1, where δ is the distance from λ = 0
to the spectrum of φ(a), by the properties of the functional calculus for normal
operators. This is however a contradiction by Proposition 3.4, which implies that
a must be invertible in A as well.

To prove the converse, let us assume that Spec(a) ⊂ ⋃
φ∈F

Spec(φ(a)), for all

normal elements a ∈ A. Let J be a non-trivial (closed selfadjoint) two-sided ideal
on which all the representations φ ∈ F vanish. We have to show that J = 0, which
would imply that F is faithful. Let a ∈ J be a normal element. Then Spec(a) ⊂⋃
φ∈F

Spec(φ(a)) = {0}. Since a is normal we deduce a = 0 and hence J has no

normal element other than 0. Then, for any a ∈ J, we can write a = 1/2(a +
a∗) + 1/2(a− a∗), the sum of two normal elements in J because J is selfadjoint.
Therefore 1/2(a + a∗) = 1/2(a− a∗) = 0, and hence a = 0 and J = 0.

We refer to [4], [11], [31], [39], [45], [54] for background material on
groupoids. The following is well known, but is useful in order to set up the
terminology and to introduce some concepts to be used below.

EXAMPLE 3.8. Let G be a locally compact groupoid with units M and with
Haar system (λx), x ∈ M. If d : G → M denotes the domain map G → M, then
we denote GA := d−1(A), A ⊂ M, and Gx := d−1(x), x ∈ M. We recall that λx
has support Gx (and is right invariant and continuous in a natural sense). The
regular representation πx of C∗(G) then acts on L2(Gx, λx) by left convolution. Let
R := {πx : x ∈ M} be the set of regular representations of C∗(G), the C∗-algebra
associated to G. Let I be the intersection of all the kernels of the representations
πx. Then the set R is a faithful set of representations of C∗r (G) ' C∗(G)/I, the
reduced C∗-algebra of G. In general, R will not be a faithful family of represen-
tations of C∗(G), unless the canonical projection C∗(G) → C∗r (G) is an isomor-
phism.
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4. EXHAUSTIVE AND STRICLTY NORMING FAMILIES

Let us notice that Example 3.6 shows that the “sup” in the relation ‖a‖ =
sup
φ∈F
‖φ(a)‖ (Proposition 3.1) may not be attained. It also shows that the closure of

the union in equation (3.2) is needed. Sometimes, in applications, one does obtain
however the stronger version of these results (that is, that the sup is attained and
that the closure is not needed), see [15], [25], for example. Moreover, the condition
that the norms of φ(a)−1 be uniformly bounded (in φ) for any fixed a ∈ A is
inconvenient and often not needed in applications. For this reason, we introduce
now a new class of sets of representations of A, the class of “exhaustive sets of
representations”, a class that has some additional properties. The concept of an
exhaustive set of representations turns out to be closely related to the concept
of a “strictly spectral set of representations”, introduced by Roch [48], which we
discus first.

4.1. STRICTLY SPECTRAL SETS OF REPRESENTATIONS. We now recall the concepts
of strictly spectral and strictly norming families of representations [23], [48]. See
also [44], [49].

DEFINITION 4.1 (Roch). Let F be a set of representations of a unital C∗-
algebra A.

(i) We shall say that F is strictly spectral if

“a ∈ A is invertible ⇔ φ(a) is invertible for any φ ∈ F ′′.

(ii) We shall say that F is strictly norming if, for any a ∈ A, there exists φ ∈ F
such that ‖a‖ = ‖φ(a)‖.

EXAMPLE 4.2. By classical results [20], the set of all irreducible represen-
tations of a C∗-algebra is strictly norming. A proof of this well-known fact is
contained in [23]. See also Theorem 4.4.

The classes of strictly spectral and strictly norming sets of representations
actually coincide (see Theorem 4.4 below). Before discussing that result, however,
we need to extend the above definitions to the non-unital case.

REMARK 4.3. Using the notation introduced in Notation 3.3, we obtain then
the following form of the definition of a strictly spectral family:

“The family F is strictly spectral if, for any a ∈ A, the element 1+
a is invertible in Ã := A⊕C if and only if 1 + φ(a) is invertible
for any φ ∈ F”.

Similarly, the definition of a strictly norming family becomes:

“F is strictly norming if, for any a ∈ A and λ ∈ C, either there
exists φ ∈ F such that ‖λ + a‖ = ‖λ + φ(a)‖ or ‖λ + a‖ = |λ|”.

The following result was proved in the unital case in [48]. See also [23].
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THEOREM 4.4 (Roch). LetF be a set of non-degenerate representations of a unital
C∗-algebra A. Then F is strictly norming if and only if it is strictly spectral.

Proof. The unital case was proved already. If A does not have a unit, then
we simply replace A with A′ and F with F ′ (see the notation introduced in No-
tation 3.3) to reduce to the unital case.

Clearly, a strictly spectral family of representations will consist only of non-
degenerate representations, but this does not hold true for a strictly norming fam-
ily.

We now give some examples of how exhaustive and strictly norming sets of
representations are useful for invertibility questions. The following characteriza-
tion of Fredholm operators is a consequence of the definitions.

COROLLARY 4.5. Let 1 ∈ A ⊂ L(H) be a sub-C∗-algebra of bounded operators
on the Hilbert space H containing the algebra of compact operators on H, K = K(H).
Let F be a strictly spectral family of representations of A/K. We then have the following
characterization of Fredholm operators a ∈ A:

a ∈ A is Fredholm if and only if φ(a) is invertible in for all φ ∈ F .

The following proposition is the analog of Proposition 3.7 in the framework
of strictly norming families.

THEOREM 4.6. Let F be a family of representations of a unital C∗-algebra A.
Then F is strictly spectral if and only if for any a ∈ A,

(4.1) Spec(a) =
⋃

φ∈F
Spec(φ(a)).

Proof. Let us assume first that the family F is strictly spectral. We proceed
in analogy with the proof of Proposition 3.7. Since Spec(φ0(a)) ⊂ Spec(a) for
any representation φ0 of A, it is enough to show that Spec(a) ⊂ ⋃

φ∈F
Spec(φ(a)).

Let us assume the contrary and let λ ∈ Spec(a) \ ⋃
φ∈F

Spec(φ(a)). By replacing a

with a − λ, we can assume that λ = 0. We thus have that φ(a) is invertible for
all φ ∈ F , but a is not invertible (in A), contradicting the assumption that F is
strictly spectral.

To prove the converse, let us assume that Spec(a) ⊂ ⋃
φ∈F

Spec(φ(a)) for all

a ∈ A. Let us assume that a ∈ A and that φ(a) is invertible for all φ ∈ F . Then
0 /∈ ⋃

φ∈F
Spec(φ(a)). Since Spec(a) ⊂ ⋃

φ∈F
Spec(φ(a)), we have that 0 /∈ Spec(a),

and hence a is invertible. Thus the family F is strictly spectral.

4.2. EXHAUSTIVE FAMILIES OF REPRESENTATIONS. It is not always easy to check
that a family of representations is strictly spectral (or strictly norming, for that



258 VICTOR NISTOR AND NICOLAS PRUDHON

matter). For this reason, we introduce a slightly more restrictive class of fami-
lies of representations, the class of exhaustive families of representations. It is
convenient to do this for ideals first.

DEFINITION 4.7. Let A be a C∗-algebra, possibly without unit, and let I a
set of (closed, two-sided) ideals I ⊂ A. We say that I is exhaustive if, by definition,
for any irreducible representation π of A, there exists I ∈ I such that I ⊂ ker(π).

We shall typically work with families of representations F . We consider,
nevertheless, the case of families of morphisms as well. We thus have the follow-
ing closely related definition.

DEFINITION 4.8. Let F be a set of morphisms φ : A → Bφ of a (not neces-
sarily unital) C∗-algebra A. The algebras Bφ are not fixed. We shall say that F
is exhaustive if the family of ideals {ker(φ) : φ ∈ F} is exhaustive. Similarly, a
set of unitary equivalence classes of representations F of A is exhaustive if the
corresponding set of kernels is exhaustive.

The following simple remark is sometimes useful.

REMARK 4.9. Let φ be a representation of A. Recall that supp(φ) is the set
of primitive ideals of A that contain ker(φ). Moreover, ker(φ) depends only on
the unitary equivalence class of φ. We then see that F is exhaustive if and only if
Prim(A) =

⋃
φ∈F

supp(φ).

Recall that we denote by A′ := A if A has a unit and A′ := Ã := A⊕C, the
algebra of adjoint unit, if A does not have a unit.

PROPOSITION 4.10. Let A be a possibly non-unital C∗-algebra and let F be a
family of representations of A. We denote by F ′ = F if A has a unit and by F ′ :=
F ∪ {χ0}, where χ0 : A′ = A⊕C→ C is the canonical projection (as in Notation 3.3).
Then we have:

(i) F is an exhaustive set of representations of A if and only if F ′ is an exhaustive set
of representations of A′.

(ii) F is a strictly spectral set of representations of A if and only if F ′ is a strictly
spectral set of representations of A′.

Proof. To prove (i), we only need to consider the case when A does not have
a unit. The result then follows from Remark 4.9 and from the relation Prim(A′) =
Prim(Ã) = Prim(A) ∪ {ker(χ0)}, where, we recall, ker(χ0) = A. The other
statement is really the corresponding definitions.

REMARK 4.11. Let Fi, i = 1, 2, be two families of representations of A. Let
denote by Ii := {ker(φ) : φ ∈ Fi}. We assume that I1 = I2. Then the families Fi
are at the same time exhaustive or not. The same is true for the properties of being
strictly norming, or strictly spectral. So these properties are really properties of a
family of ideals of A rather than of families of representations of A. Nevertheless,
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it is customary to work with families of representations rather than families of
ideals. In the same way, we can consider the analogous properties of families of
morphisms of C∗-algebras.

Let us record the following simple facts, for further use.

PROPOSITION 4.12. Let F be a set of representations of a C∗-algebra. If F is
exhaustive, then F is strictly spectral and hence also strictly norming. If F is strictly
norming, then it is also faithful.

Proof. Let A be the given C∗-algebra. Let us prove first that any exhaustive
family F is strictly norming. Indeed, let a ∈ A′. Then there exists an irreducible
representation πa of A′ such that ‖π(a)‖ = ‖a‖ [20]. Unless 1 /∈ A and π = χ0,
where χ0 : A′ = A⊕ C → C is the projection, there will exist φ ∈ F such that
π ∈ supp(φ). Then, as in the proof of (ii) ⇒ (iii) in Proposition 3.1, we have
that ‖a‖ = ‖π(a)‖ 6 ‖φ(a)‖ 6 ‖a‖. Hence ‖φ(a)‖ = ‖a‖. On the other hand,
if 1 /∈ A and π = χ0, then let a = λ + a0, with λ ∈ C and a0 ∈ A. Then
‖λ + a0‖ = ‖a‖ = ‖π(a)‖ = |λ|. Since any strictly norming family is invertibility
preserving, by Theorem 4.4, the first part of the proposition follows.

Let us prove first that any strictly norming family F is faithful. Indeed, let
us consider the representation ρ :=

⊕
φ∈F

φ : A → ⊕
φ∈F
L(Hφ). By the definition

of a strictly norming family of representations, the representation ρ is isometric.
Therefore it is injective and consequently F is faithful.

We summarize the above proposition in

F exhaustive ⇒ F strictly norming ⇒ F faithful.

In the next two examples we will see that there exist faithful families that
are not strictly norming and strictly norming families that are not exhaustive.

EXAMPLE 4.13. We consider again the framework of Example 3.6 and con-
sider only families of irreducible representations. Thus A = C0(X), for a locally
compact space X. The irreducible representations of A then identify with the
points of X, since X ' Prim(A) = Â. A family F of irreducible representations
of A thus identifies with a subset F ⊂ X. We then have that a family F ⊂ X
of irreducible representations of A = C0(X) is faithful if and only if F is dense
in X. On the other hand, a family of irreducible representations of A = C0(X) is
exhaustive if and only if F = X.

The relation between exhaustive and strictly norming families is not so sim-
ple. We begin with the following remark on the above example.

REMARK 4.14. If, in Example 4.13, X is moreover metrisable, then every
strictly norming family F ⊂ X is also exhaustive, because for any x ∈ X, there
exists a compactly supported, continuous function ψx : X → [0, 1] such that
ψx(x) = 1 and ψx(y) < 1 for y 6= x (we can do that by arranging that ψx(y) =
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1− d(x, y), for d(x, y) small, and use the Tietze extension theorem. In general,
however, it is not true that any strictly norming family is exhaustive. Indeed, let
I be an uncountable set and X = [0, 1]I . Let x ∈ X be arbitrary, then the family
F := X \ {x} is strictly norming but is not exhaustive. Indeed, let f : X → [0, 1]
be a continuous function such that f (x) = 1. Since f depends on a countable
number of variables, the set { f = 1} will not be reduced to x alone. See also
Theorem 5.4.

We conclude this subsection with the following result that is relevant for the
next subsection. See also [49] and the comment at the end of this subsection. The
results in that book can be used to give a proof of the following results for strictly
spectral families (which are essentially contained in that book). For the benefit
of the reader, we include nevertheless the short, direct proofs, since we are also
interested in exhaustive families.

PROPOSITION 4.15. Let I ⊂ A be an ideal of a C∗-algebra. Let FI be a set of
nondegenerate representations of I and FA/I be a set of representations of A/I. Let
F := FI ∪ FA/I , regarded as a family of representations of A. If FI and FA/I are both
exhaustive, then F is also exhaustive. The same result holds by replacing “exhaustive”
with ”strictly norming”.

Proof. We have that Prim(A) is the disjoint union of Prim(I) and Prim(A/I)
(Remark 2.4). Since we have

⋃
φ∈FI

supp(φ) ⊂ Prim(I) and
⋃

φ∈FA/I

supp(φ) ⊂

Prim(A/I), the result about exhaustive families follows from the definition.
Let us assume that both FI and FA/I are strictly norming and let a ∈ A.

By replacing A with Ã, if necessary, we may assume that A is unital. We want
to show that F is also strictly norming, that is, that there exists φ ∈ FI ∪ FA/I
such that ‖a‖ = ‖φ(a)‖. By replacing a with a∗a, we can assume that a > 0. Since
FA/I is strictly norming, there is φ ∈ FA/I such that ‖a + I‖A/I = ‖φ(a)‖. If
‖a + I‖A/I = ‖a‖, we are done. Otherwise, let ψ be a continuous function on
Spec(a) that is zero on SpecA/I(a + I) and such that ψ(‖a‖) = ‖a‖ and ψ(t) 6 t
for t > 0. Then ψ(a) ∈ I and ‖ψ(a)‖ = ‖a‖. Since the family FI is strictly
norming, there exists φ ∈ FI such that

‖a‖ = ‖ψ(a)‖ = ‖φ(ψ(a))‖ = ‖ψ(φ(a))‖ 6 ‖φ(a)‖.

This shows that the family F is strictly norming.

We have the following consequence that is sometimes useful in applications.

COROLLARY 4.16. Let I ⊂ A be a two-sided ideal in a C∗-algebra A. Let F be
an invertibility preserving family of representations of I. Then a ∈ A is invertible if and
only if a is invertible in A/I and φ(a) is invertible for all φ ∈ F .

Proof. Since F is an invertibility preserving set of representations of I, it
consists of non-degenerate representations, which will hence extend uniquely to
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A. Let π be an isometric representation of A/I. The result then follows from
Proposition 4.15 applied to FI := F and FA/I := {π}.

Results closely related to Proposition 4.15 and Corollary 4.16 were obtained
in [49] under the name of “lifting theorems”. See especially Section 6.3 of that
book. The results in that book were typically obtained in a more general setting:
often using ideals in a Banach algebra and sometimes using even general ideals
(and morphisms). The interested reader should consult that book as well.

4.3. GROUPOID ALGEBRAS AND THE EFFROS–HAHN CONJECTURE. We show in
this subsection how one can check in the framework of locally compact groupoids
(with additional properties) that certain families of representations are exhaus-
tive, thus generalizing some results of [23].

We refer to the Example 3.8 and, especially, to the references quoted before
that example, for notations and results pertaining to groupoids. In particular,
we shall denote by d and r the domain and range maps of a groupoid G and
by Gx

x := d−1(x) ∩ r−1(x) the isotropy group of x. This is the group of arrows
(or morphisms) of G that have domain and range equal to the unit x. Also, we
continue to denote by R := {πy : y ∈ M} the set of regular representations of a
locally compact groupoid G with Haar system and units M. Recall that we denote
GA := d−1(A), A ⊂ M, and Gx := d−1(x), x ∈ M.

We shall say that a locally compact groupoid G with a Haar system has the
generalized Effros–Hahn property if every primitive ideal of C∗(G) is induced from
an isotropy subgroup Gy

y of G [26], [46]. (This should not be confused with the
various “EH induction properties” introduced in [21].) We shall write IndGy (σ)
for the induced representation of C∗(G) from the representation σ of Gy

y . If G has
the generalized Effros–Hahn property and all the isotropy groups Gy

y , y ∈ M are
amenable, we say that G is EH-amenable.

THEOREM 4.17. Let G be a locally compact groupoid with a Haar system and units
M. If G is EH-amenable, then the familyR := {πy : y ∈ M} of regular representations
of C∗(G) is exhaustive. In particular, the family R is strictly spectral and the canonical
map C∗(G)→ C∗r (G) is an isomorphism.

Proof. Let I be any primitive ideal of C∗(G). Then I is induced from the
isotropy group Gy

y , y ∈ M, by the assumption that G has the generalized Effros–
Hahn property. Since Gy

y is amenable, every irreducible representation of Gy
y is

weakly contained in the regular representation ρy of Gy
y . But IndGy (ρy) is the reg-

ular representation πy of C∗(G) on L2(Gy). Since induction preserves the weak
containment of representations (see Proposition 6.26 of [47]), we obtain that I
contains ker(πy). This proves that the family R := {πy : y ∈ M} is exhaustive.
Therefore R is also faithful, and hence C∗(G) ' C∗r (G) (see Example 3.8). The
familyR is strictly spectral since it is exhaustive (see Proposition 4.12).
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We then obtain the following consequence.

THEOREM 4.18. Let G be a locally compact groupoid with a Haar system and
units M. If G is Hausdorff, second countable, and (topologically) amenable, then the
familyR := {πy : y ∈ M} is exhaustive.

Proof. Since G is an amenable, Hausdorff, second countable, locally compact
groupoid with a Haar system, we have that G satisfies the Effros–Hahn conjecture
by the main result in [26], that is, it has the generalized Effros–Hahn property.
Since G is amenable, all its isotropy groups Gx

x are amenable [2]. The result then
follows from Theorem 4.17.

This result extends a result of [23], who considered the special case of étale
groupoids. Let G be a locally compact groupoid with a Haar system and units M.
We notice, however, that the familyR := {πy : y ∈ M} of regular representations
of the reduced C∗-algebra C∗r (G) of G is not exhaustive in general, as can be seen
from the following example.

REMARK 4.19. Let G be the free group on two generators and let Kn ⊂ G,
n ∈ N, be a decreasing sequence of normal subgroups of G of finite index with

∞⋂
n=1

Kn = {1}. Let us consider the family of groups G :=
⋃
n
{n} × G/Kn, with

n ∈ N∪ {∞} and K∞ := {1}. It is a groupoid with units N∪ {∞}. Its domain and
range map are equal and equal to the projection onto the first component. The
topology on GN := d−1(N), the restriction of G to N, is discrete. A basis of the
system of neighborhoods of (∞, g) is given by the sets {(n, gKn) : n > N}, where
N > 1 is arbitrary (g ∈ G). We have that the trivial representation of G defines
a representation χ of C∗(G) supported at {∞}. The trivial representation of G is
the limit of the trivial representations of G/Kn, so it descends to a representation
of C∗r (G). However, the trivial representation of G is not contained in the support
of any of the representations λn, n ∈ N ∪ {∞}, since G is not amenable. Thus the
family of regular representations λn, n ∈ N∪{∞} is not exhaustive. This example
is due to Voiculescu and it answers (in the negative) a question of Exel [23].

We are ready to prove now that the class of EH-amenable groupoids is
closed under extensions and that suitable ideals and quotients of EH-amenable
groupoids are also EH-amenable.

PROPOSITION 4.20. Let G be a locally compact groupoid with a Haar system and
units M. Let U ⊂ M be an open G-invariant subset and F := M \U. We have that G is
EH-amenable if and only if GF and GU are EH-amenable.

Proof. It is clear that the isotropy groups Gx
x of G are given by the isotropy

groups of the restrictions GF and GU . This gives that all the isotropy groups of G
are amenable if and only if the same property is shared by all the isotropy groups
of the restrictions GF and GU .
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Let us turn now to proving the induction property for the primitive ideals.
We shall use th correspondence of Remark 2.4 as follows. Let I be primitive ideal
of C∗(G). Recall that C∗(GU) is an ideal of C∗(G) and C∗(G)/C∗(GU) ' C∗(GF),
by a result of Renault [45], [46]. We thus have that I corresponds uniquely to
either a primitive ideal of C∗(GF) or to a primitive ideal of C∗(GU). We shall
consider these two cases separately. Anticipating, the first case will correspond
to induced representations from isotropy groups Gy

y with y ∈ F := M \U and
the second case will correspond to induced representations from isotropy groups
Gy

y with y ∈ U. We first notice that the restriction of the induced representation
IndGy (σ) of C∗(G) (induced from the representation σ of Gy

y ) restricts to a non-zero
representation of C∗(GU) if and only if y ∈ U.

Let us then consider a primitive ideal I ⊃ C∗(GU) of C∗(G) and I/C∗(GU)
the corresponding ideal of C∗(GF) ' C∗(G)/C∗(GU). Then I is induced from the
irreducible representation σ of Gy

y if and only if y ∈ F and I/C∗(GU) is induced
from the irreducible representation σ of Gy

y . This follows directly from the defini-
tion of induced representations [47]; in fact, the inducing module is the same for
both ideals.

On the other hand, if the primitive ideal I of C∗(G) does not contain C∗(GU),
then again we notice that I is induced from the irreducible representation σ of Gy

y
if and only if y ∈ U and I ∩ C∗(GU) is induced from the irreducible represen-
tation σ of Gy

y . This again follows from the results in [47], more precisely, from
induction in stages Theorem 5.9 of that paper. Indeed, extending non-degenerate
representations of an ideal to the whole algebra is a particular case of induction
in stages (see the Remark 3.2). The inductions modules are again the same.

5. TOPOLOGY ON THE SPECTRUM AND STRICTLY NORMING FAMILIES

Let us discuss now in more detail the relation between the concept of strictly
spectral family and the simpler (to check) concept of an exhaustive family. The
following theorem studies C∗-algebras with the property that every strictly spec-
tral family is also exhaustive. It explains Example 4.13 and Remark 4.14.

LEMMA 5.1. Let A be a C∗-algebra, J a two-sided ideal, and π a representation of
A such that π is nondegenerate on J. Also let a ∈ A, 0 6 a 6 1, such that ‖π(a)‖ = 1
and choose η > 0. Then there exists c ∈ J, c > 0, ‖c‖ 6 η such that ‖π(a + c)‖ >
1 + η/2.

Proof. For any fixed ε > 0 there exists a unit vector ξ such that 〈π(a)ξ, ξ〉 >
1− ε. Let us consider then the positive linear form ϕ : A→ C defined by ϕ(b) : =
〈π(b)ξ, ξ〉. If (uλ) is an approximate unit in J, then

‖ϕ‖ > ‖ϕ|J‖ = lim ϕ(uλ) = ‖ξ‖ = 1.



264 VICTOR NISTOR AND NICOLAS PRUDHON

So ‖ϕ|J‖ = ‖ϕ‖ = 1. Hence there exists c0 ∈ J, c0 > 0, ‖c0‖ = 1, such that
ϕ(c0) > 1− ε. We then set c = ηc0 and indeed, for ε small enough

‖a + c‖ > ϕ(a + c) > 1− ε + η(1− ε) > 1 +
η

2
.

This completes the proof.

We shall use the above lemma in the form of the following corollary.

COROLLARY 5.2. Let π0 be an irreducible representation of a C∗-algebra A and
let I0 := ker(π0) ∈ Prim(A). We assume that we are given a decreasing sequence
V0 ⊃ · · · ⊃ Vn ⊃ Vn+1 · · · of open neighborhoods of I0 in Prim(A). Then there
exists a ∈ I0 such that ‖a‖ = ‖π0(a)‖ = 1 and ‖π(a)‖ 6 1− 2k for any irreducible
representation π such that ker(π) /∈ Vk.

Proof. To construct a ∈ A with the desired properties, let us consider the
ideals Jn defining the sets Vn, that is, Vn = Prim(Jn), n > 0. Since Vn ⊂ Vn−1 for
all n, we have that Jn ⊂ Jn−1 for all n.

The element a we are looking for will be the limit of a sequence (an), an ∈ A,
where the an are defined inductively to satisfy the following properties:

(i) 0 6 an 6 1;
(ii) ‖π0(an)‖ = 1;

(iii) ‖π(an)‖ 6 1− 2−k for all irreducible representations π such that ker(π) ∈
Prim(A) \ Prim(Jk) for k = 0, 1, . . . , n;

(iv) ‖an − an−1‖ 6 22−n for n > 1.

We define the initial term a0 as follows. We first choose b0 ∈ J0 such that
0 6 b0, and π0(b0) 6= 0. By rescaling b0 with a positive factor, we can assume that
‖π0(b0)‖ = 1. Let then χ0 : [0, ∞) → [0, 1] be the continuous function defined
by χ0(t) = t for t 6 1 and χ0(t) = 1 for t > 1. Then we define a0 = χ0(b0).
Conditions (i)–(iv) are then satisfied.

Next, an is defined in terms of an−1. In order to do that, we first define
auxiliary elements cn and bn = an−1 + cn as follows. By Lemma 5.1, there exists
cn ∈ Jn, cn > 0, ‖cn‖ 6 21−n, such that ‖π0(bn)‖ > 1 + 2−n. Let then χn :
[0, ∞) → [0, 1] be the continuous function defined by χn(t) = t for t 6 1− 21−n,
χn linear on [1− 21−n, 1] and on [1, 1 + 2−n], χn(1) = 1− 2−n, and χn(t) = 1 for
t > 1 + 2−n. Then we define an = χn(bn).

Claim. The sequence an ∈ A just constructed satisfies conditions (i)–(iv).

Indeed, we have checked our conditions for n = 0, so let us assume n > 1
and check our conditions for an ∈ A one by one.

(i) We have that an−1, cn > 0, hence bn := an−1 + cn > 0. Since 0 6 χn 6 1,
we obtain that 0 6 an := χn(bn) 6 1.

(ii) Since 0 6 χn 6 1, χn(t) = 1 for t > 1 + 2−n, and ‖π0(bn)‖ > 1 + 2−n,
we have that ‖π0(an)‖ = ‖π0(χn(bn))‖ = ‖χn(π0(bn))‖ = 1.
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(iii) Let π ∈ Â be such that ker(π) ∈ Prim(Jk)
c := Prim(A) \ Prim(Jk), for

some k, 0 6 k 6 n. We need to check that ‖π(an)‖ 6 1− 2−k.
We have that π vanishes on Jk, and hence π(cn) = 0 since cn ∈ Jn ⊂ Jk,

k 6 n. Therefore,

π(an) = π(χn(bn)) = χn(π(bn)) = χn(π(an−1)).

We shall consider now two cases: k < n and k = n.
Case 1. If k < n, then ‖π(an−1)‖ 6 1− 2−k 6 1− 21−n, by the induction

hypothesis. Since χn(t) = t for t 6 1− 21−n, we obtain π(an) = χn(π(an−1)) =
π(an−1), and hence ‖π(an)‖ = ‖π(an−1)‖ 6 1− 2−k for k < n.

Case 2. If k = n, we have ‖π(an)‖ = ‖χn(π(an−1))‖ 6 1− 2−n = 1− 2−k,
since π(an) = χn(π(an−1)), χn(t) 6 1− 2−n for t 6 1, and 0 6 an−1 6 1.

(iv) We have ‖bn‖ 6 ‖an−1‖+ ‖cn‖ 6 1 + 21−n. Since |χn(t)− t| 6 21−n for
all t 6 1 + 21−n, we have ‖an − bn‖ 6 21−n. Hence

‖an − an−1‖ 6 ‖an − bn‖+ ‖bn − an−1‖ 6 21−n + ‖cn‖ 6 22−n.

This completes the proof of our Claim, and hence the sequence an constructed
above satisfies conditions (i)–(iv).

Let us now show how to use the fact that the sequence an ∈ A satisfies
conditions (i)–(iv) to construct a as in the statement of this corollary. First of all,
condition (iv) allows us to define a := lim

n→∞
an. Let us show that a ∈ A satisfied

the desired conditions. Since conditions (i)–(iii) are compatible with limits, we
have:

(i) 0 6 a 6 1;
(ii) ‖π0(a)‖ = 1;

(iii) ‖π(a)‖ 6 1− 2−k for all irreducible representations π such that ker(π) ∈
Prim(A) \ Prim(Jk) for k > 0.

Thus a has the desired properties, which completes the proof.

PROPOSITION 5.3. Let A be a unital C∗-algebra. Let us assume that every I ∈
Prim(A) has a countable base for its system of neighborhoods. Then every strictly norm-
ing family F of representations of A is also exhaustive.

Let us assume that Prim(A) is a T1 space. Then the converse is also true, that is,
if every strictly norming family F of representations of A is also exhaustive, then every
I ∈ Prim(A) has a countable base for its system of neighborhoods.

We think that the condition that Prim(A) be T1 is not necessary. However,
as noticed by Roch, the proof below requires this assumption.

Proof. Let us prove first the first part of the statement, so let us assume that
every primitive ideal I ∈ Prim(A) has a countable base for its system of neigh-
borhoods and let F be a strictly norming family of representations of A. We need
to show that F is exhaustive. We shall proceed by contradiction. Thus, let us
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assume that the family F is not exhaustive. Then there exists a primitive ideal
I0 = ker(π0) ∈ Prim(A) \ ⋃

φ∈F
supp(φ). Let

V0 ⊃ · · · ⊃ Vn ⊃ Vn+1 ⊃ · · · ⊃ {I0} =
⋂
k

Vk

be a basis for the system of neighborhoods of I0 in Prim(A). We may assume
without loss of generality that the neighborhoods Vn consist of open sets. Corol-
lary 5.2 then yields a ∈ A such that ‖a‖ = ‖π0(a)‖ = 1, but ‖π(a)‖ 6 1− 2k for
any irreducible representation π of A such that ker(π) ∈ Prim(A) \Vk. Then, for
every φ ∈ F , we have that

Prim(A) \ supp(φ) = {I ∈ Prim(A) : ker(φ) 6⊂ I} = Prim(ker(φ))

is an open subset of Prim(A) containing I0, and hence it is a neighborhood of I0 in
Prim(A). Therefore there exists n such that Vn ⊂ Prim(A) \ supp(φ) and hence
‖π(a)‖ 6 1− 2−n for all π such that ker(π) ∈ supp(φ). This gives in particular
for π = φ that ‖φ(a)‖ 6 1− 2−n < 1, thus contradicting the fact that F is strictly
norming. This proves the first half of the statement.

Let us prove the converse, that is, the second half of the statement, which is
easier. Thus let us assume that every strictly norming family of representations
of A is also exhaustive and let us prove that every primitive ideal I0 := ker(π0) ∈
Prim(A) has a countable basis for its system of neighborhoods. Let us fix then
I0 := ker(π0) ∈ Prim(A) arbitrarily and show that it has a countable basis for its
system of neighborhoods. Also, we associate to each primitive ideal I ∈ Prim(A)
an irreducible representation φI with kernel I. By Remark 4.9, we have that the
family of representations F := {φI : I ∈ Prim(A), I 6= I0} is not exhaustive, since
Prim(A) is a T1 space (and hence its points are closed) and hence supp φI = I.
By our assumption, the family F is hence also not strictly norming. Therefore, by
the definition of a strictly norming family of representations, there exists a ∈ A,
such that ‖π(a)‖ < ‖a‖ for all irreducible π with ker(π) 6= I0. Note that since the
family Â is strictly norming (see Example 4.2), we have that ‖a‖ = max

π∈Â
‖π(a)‖,

and hence ‖a‖ = ‖π0(a)‖. By rescaling, we can assume ‖a‖ = ‖π0(a)‖ = 1. Then
the sets

Vn := {ker(π) ∈ Prim(A) : ‖π(a)‖ > 1− 2−n}
are open neighborhoods of I0 := ker(π0) in Prim(A) by Lemma 2.2. Let us show
that they form a basis for the system of neighborhoods of I0. Indeed, let G be
an arbitrary open subset of Prim(A) containing I0. Then there exists a two-sided
ideal J ⊂ A such that G = Prim(J). The set of irreducible representations of A/J
identifies with Prim(J)c := Prim(A) \ Prim(J), and hence it does not contain π0.
Hence ‖π(a)‖ < 1 for all π ∈ Prim(A/J). Since Â/J is a strictly norming family
of representations of A/J, we obtain that ‖a+ J‖A/J < 1 (the norm is in A/J). Let
n be such that ‖a + J‖A/J 6 1− 2−n. Then Vn ⊂ Prim(J) = G, which completes
the proof of the second half of this theorem. The proof is now complete.
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Clearly, there are C∗-algebras for which the spectrum is not T1, but for which
every strictly norming family of representations is also exhaustive. We do not
know, however, if the converse result is true in full generality (that is, for every
C∗-algebra). It is easy to show that separable C∗-algebras satisfy the assumptions
of Proposition 5.3.

THEOREM 5.4. Let A be a separable C∗-algebra. Then every primitive ideal I ∈
Prim(A) has a countable base for its system of neighborhoods. Consequently, if F is a
strictly norming set of representations of A, then F is exhaustive.

Proof. It is known [20] that Prim(A) is second countable. This gives the
result in view of Proposition 5.3. For the benefit of the reader, we now provide a
quick proof that every point in Prim(A), for A separable, has a countable base for
its system of neighborhoods. Indeed, we can replace A with Ã and thus assume
that A is unital. Let {an} be a dense subset of A and fix I0 := ker(π0) ∈ Prim(A).
Define

Vn :=
{

ker(π) ∈ Prim(A) : ‖π(an)‖ >
‖π0(an)‖

2

}
.

Then each Vn is open by Lemma 2.2. We claim that Vn is a basis of the system
of neighborhoods of I0 := ker(π0) in Prim(A). Indeed, let G ⊂ Prim(A) be an
open set containing I0. Then G = Prim(J) for some two-sided ideal of A such
that π0 6= 0 on J. Let a ∈ J such that π0(a) 6= 0. By the density of the sequence
an in A, we can find n such that ‖a− an‖ < ‖π0(a)‖/4. Then ‖π′(a)− π′(an)‖ <
‖π0(a)‖/4 for any irreducible representation π′, and hence

(5.1) ‖π′(a)‖ − ‖π0(a)‖
4

< ‖π′(an)‖ < ‖π′(a)‖+ ‖π0(a)‖
4

, ∀π′ ∈ Â.

To show that Vn ⊂ G, it is enough to show that Vn ∩ Gc = Vn ∩ Prim(J)c = ∅.
Suppose the contrary and let π ∈ Â be such that ker(π) ∈ Vn ∩ Prim(J)c. Then
‖π(an)‖ > ‖π0(an)‖/2, by the definition of Vn. Moreover, π(a) = 0 since a ∈ J
and π vanishes on J. Let us show that this is not possible. Indeed, using equation
(5.1) twice, for π′ = π0 and for π′ = π, we obtain

3
8
‖π0(a)‖ < 1

2
‖π0(an)‖ < ‖π(an)‖ <

1
4
‖π0(a)‖,

which is a contradiction. Consequently Vn ⊂ G and hence {Vn} is a basis for the
system of neighborhoods of π0 in Prim(A), as claimed. The last part follows from
the first part of Proposition 5.3.

Let K denote (as usual) the algebra of compact operators on some Hilbert
space.

COROLLARY 5.5. Let A be a separable C∗-algebra and F be a strictly spectral
family of representations of A. Then F ⊗ 1 := {π ⊗ 1} is a strictly spectral family of
representations of A⊗K.
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Proof. The ideals of A and A⊗K correspond to each other by induction in
such a way that primitive ideals correspond to primitive ideals and Prim(A) is
homeomorphic to Prim(A ⊗ K). Hence F is exhaustive if and only if F ⊗ 1 is
exhaustive. The result then follows from Theorem 5.4.

The next two basic examples illustrate the differences between the notions
of faithful and strictly norming families.

EXAMPLE 5.6. Let in this example A be the C∗-algebra of continuous func-
tions f on [0, 1] with values in M2(C) such that f (1) is diagonal, which is a type I
C∗-algebra, and thus we identify Â and Prim(A). Then the maps evt : f 7→ f (t) ∈
M2(C), for t < 1, together with the maps evi

1 : f 7→ f (1)ii (i = 0, 1) provide all
the irreducible representations of A (up to equivalence). The family

F = {evt : t < 1} ∪ {ev1
1}

is a faithful but not exhaustive family. In fact the function t 7→
(

1 0
0 1− t

)
is not

invertible in A but π( f ) is invertible for all π ∈ F . Of course, in this example,
every π ∈ Â = Prim(A) has a countable base for its system of neighborhoods, so
every strictly norming family of representations F of A is also exhaustive.

We now consider the Toeplitz algebra.

EXAMPLE 5.7. Let T be the Toeplitz algebra, which is again a type I C∗-
algebra, and thus we again identify T̂ and Prim(T ). The Toeplitz algebra T is
defined as the C∗-algebra generated by the operator defined by the unilateral shift
S. (Recall that S acts on the Hilbert space L2(N) by S : εk 7→ εk+1.) As S∗S = 1 and
SS∗− 1 is a rank 1 operator, one can prove that the following is an exact sequence

0→ K → T → C(S1)→ 0,

whereK is the algebra of compact operators. Extend the unique irreducible repre-
sentation π ofK to T as in [20]. Also, the irreducible characters χθ of S1 pull-back
to irreducible characters of T vanishing on K. Then the spectrum of T is

T̂ = {π} ∪ {χθ : θ ∈ S1},

with S1 embedded as a closed subset. A subset V ⊂ Prim(T ) will be open
if and only if it contains π and its intersection with S1 is open. We thus see
that the single element set {π} defines an exhaustive family. In other words
T̂ = {π} = supp(π). Since every exhaustive family is also strictly norming,
by Proposition 4.12, the family {π} consisting of a single representation is also
strictly norming. We can see also directly that the family F = {π} (consisting of
π alone) is strictly norming. Indeed, it suffices to notice that ‖x‖ = ‖π(x)‖ for
all x since π is injective. In this example again every π′ ∈ T̂ = Prim(T ) has a
countable base for its system of neighborhoods, so every strictly norming family
of representations F of T is also exhaustive.
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Here is one more example that shows that the condition that A be separa-
ble is not necessary for the classes of exhaustive families of representations and
strictly norming families of representations to coincide.

EXAMPLE 5.8. Let I be an infinite uncountable set. We endow it with the
discrete topology. Then the algebras A0 := C0(I) and A1 := K(`2(I)) (the algebra
of compact operators on `2(I)) are not separable. Fix i ∈ {0, 1} and let F be
a strictly norming family of representations of Ai, then F is also an exhaustive
family of representations of Ai.

6. UNBOUNDED OPERATORS

The results of the previous sections are relevant often in applications to
unbounded operators, so we now extend Theorem 4.4 to (possibly) unbounded
observables affiliated to C∗-algebras. We begin with an abstract setting. Recall
that our convention is that all morphisms (respectively, representations) of C∗-
algebras are ∗-morphisms (respectively, ∗-representations).

6.1. ABSTRACT AFFILIATED OPERATORS. The notion of an affiliated self-adjoint
operator to a C∗-algebra has been extensively and successfully studied due to its
connections with (non-compact) quantum groups [6], [7], [9], [28], [33], [57], [58]
and to its connections to the C∗-algebra approach to spectral theory [15], [24]. See
also [27], [42] for results on unbounded operators on Hilbert modules [13], [29],
[34], which are quite useful in defining the product in bivariant K-theory; see
[8], for instance. Although our use of affiliated operators is strictly technical and
our goals concerning them are very limited, let us briefly recall that in [57], an
unbounded operator affiliated to a C∗-algebra A is defined as a suitable unbounded
operator acting on A, by analogy with the similar concept in von Neumann al-
gebra theory. See also [5] for a thorough discussion of affiliated operators in the
framework of C∗-algebras.

In this paper, we shall use the related notion of an unbounded observable
affiliated to a C∗-algebra due to Damak and Georgescu (see Remark 6.8 for a brief
comparison of the two definitions).

DEFINITION 6.1 (Damak–Georgescu). Let A be a C∗-algebra. A self-adjoint
observable T affiliated to A is a morphism θT : C0(R) → A of C∗-algebras. The
observable T is said to be strictly affiliated to A if the space generated by elements
of the form θT(h)a, with a ∈ A and h ∈ C0(R), is dense in A.

Definition 6.1 provides an “integrated” form of the unbounded operators
considered by Damak and Georgescu, in the sense that we rather consider the
bounded functions that vanish at infinity of the operator, instead of the operator
itself, as in [24]. We however drop any reference to a particular Hilbert space and
or to any actual operator. The reason for using the term “affiliated observable”
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instead of “affiliated operator” is to better distinguish between the concepts in
[24] and [57].

As in the classical case, we found it useful to consider the Cayley transform
of an affiliated observable, which we introduce below. We first notice that an
observable affiliated to A extends to a morphism θ̃T : C̃0(R) → Ã (the algebra
obtained from A by adjunction of a unit). If moreover T is strictly affiliated to A,
then θT extends to a morphism from Cb(R) to the multiplier algebra of A [15],
but we shall not need this fact, except in Remark 6.8. See also [5], [6].

DEFINITION 6.2. Let T be an observable affiliated to A. The Cayley transform
uT ∈ Ã of T is

(6.1) uT := θ̃T(h0), where h0(z) := (z + i)(z− i)−1.

The Cayley transform allows us to reduce questions about the spectrum of
an observable to questions about the spectrum of its Cayley transform. Let us first
introduce, however, the spectrum of an affiliated observable. Let thus θT : C0(R)→ A
be a self-adjoint observable affiliated to a C∗-algebra A. The kernel of θT is then
of the form C0(U), for some open subset of R. We define the spectrum SpecA(T)
as the complement of U in R. Explicitly,

(6.2) SpecA(T) = {λ ∈ R : h(λ) = 0, ∀h ∈ C0(R) such that θT(h) = 0}.

We allow the case SpecA(T) = ∅, which corresponds to the case θT = 0, in
which case we shall write T = ∞, by definition. See also the discussion following
Theorem 1.2 in [24]. If σ : A → B is a morphism of C∗-algebras, then σ ◦ θT :
C0(R)→ A is an observable σ(T) affiliated to the C∗-algebra B and

(6.3) SpecB(σ(T)) ⊂ SpecA(T).

If σ is injective, then SpecB(σ(T)) = SpecA(T), which shows that the spectrum is
preserved by increasing the C∗-algebra A. Note that

(6.4) σ(uT) = uσ(T).

Let h0(z) := (z + i)(z− i)−1, as before.

LEMMA 6.3. The spectrum Spec(T) of the self-adjoint observable θT : C0(R) →
A affiliated to the C∗-algebra A and the spectrum Spec(uT) of its Cayley transform are
related by

Spec(T) = h−1
0 (Spec(uT)).

Proof. This follows from the fact that h0 is a homeomorphism of R onto its
image in S1 := {|z| = 1} and from the properties of the functional calculus.

Let us notice that the above lemma is valid also in the case when

T = ∞⇔ θT = 0⇔ Spec(T) = ∅⇔ uT = 1⇔ σ(uT) = {1}.
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One can make the relation in the above lemma more precise by saying that, for
bounded T, we have h0(Spec(T)) = Spec(uT), whereas for unbounded T we
have

(6.5) h0(Spec(T)) = h0(Spec(T)) ∪ {1} = Spec(uT),

where h0(z) := (z + i)(z− i)−1, as before.
Here is our main result on (possibly unbounded) self-adjoint operators af-

filiated to C∗-algebras.

THEOREM 6.4. Let A be a unital C∗-algebra and T a self-adjoint observable affili-
ated to A. Let F be a set of representations of A.

(i) If F is strictly norming, then

Spec(T) =
⋃

φ∈F
Spec(φ(T)).

(ii) If F is faithful, then

Spec(T) =
⋃

φ∈F
Spec(φ(T)).

Proof. The proofs of (i) and (ii) are similar, using the relation Spec(T) =

h−1
0 (Spec(uT)) of Lemma 6.3. We begin with (i), which is slightly easier. Since
F is strictly norming, we can then apply Theorem 4.6 to uT ∈ Ã and the family
σ ∈ F . We obtain

Spec(T) = h−1
0 [Spec(uT)] = h−1

0

[ ⋃
σ∈F

Spec(σ(uT))
]

= h−1
0

[ ⋃
σ∈F

Spec(uσ(T))
]
=

⋃
σ∈F

h−1
0 [Spec(uσ(T))] =

⋃
σ∈F

Spec(σ(T)).

If, on the other hand, F is faithful, we apply Proposition 3.7 after noting
that h0 is a homeomorphism of R onto its image in S1 := {|z| = 1} and hence
h−1

0 (S) = h−1
0 (S) for any S ⊂ S1. The same argument then gives

Spec(T) = h−1
0 [Spec(uT)] = h−1

0

[ ⋃
σ∈F

Spec(σ(uT))
]

= h−1
0

[ ⋃
σ∈F

Spec(uσ(T))
]
=

⋃
σ∈F

h−1
0 [Spec(uσ(T))] =

⋃
σ∈F

Spec(σ(T)).

The proof is now complete.

6.2. THE CASE OF “TRUE” OPERATORS. We now look at concrete (true) operators.
The following remark discusses the relation between affiliated observables and
unbounded operators.

REMARK 6.5. Let A ⊂ L(H) be a sub-C∗-algebra of L(H). A (possibly un-
bounded) self-adjoint operator T : D(T) ⊂ H → H is then an observable affiliated
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to A if, for every continuous functions h on the spectrum of T vanishing at infinity,
we have h(T) ∈ A. (This is the exact definition in [15].) The reason for consid-
ering our slight generalization is to make it easier to deal with homomorphic
images. We then have that T is affiliated to A if and only if (T − λ)−1 ∈ A for
one λ /∈ Spec(T) (equivalently for all such λ) [15]. We thus see that a self-adjoint
operator T affiliated to A defines a morphism θT : C0(R) → A, θT(h) := h(T)
such that Spec(T) = Spec(θT). By classical results, if (uT − 1) is injective, then
we can define a true self-adjoint operator T := i(uT + 1)(uT − 1)−1 ∈ A such
that θT(h) = h(T), h ∈ C0(R) [19]. This is the case, for instance, if Spec(T) is
a bounded subset of R, in which case we shall say that T is bounded. If θT is
non-degenerate, then uT − 1 is injective, and hence θT yields a true unbounded
operator, which can also be defined by T := θT(hn), where hn are continuous,
bounded, |hn(t)| 6 |t|, and hn(t)→ t for all t ∈ R.

Recall that a (possibly unbounded) operator T is invertible if and only if
it is bijective and T−1 is bounded. This is also equivalent to 0 /∈ Spec(T). The
following remark is then also useful.

REMARK 6.6. In any case, if T is a self-adjoint operator, then the definition
of Spec(T) in terms of θT coincides with the classical spectrum of T defined using
the resolvent, whether T is bounded or not: Spec(θT) = Spec(T). In view of the
remarks preceding it, Theorem 6.4 remains valid for true self-adjoint operators T.

We have the following analog of Proposition 3.4 and Theorem 4.4

THEOREM 6.7. Let A ⊂ L(H) be a unital C∗-algebra and T a self-adjoint opera-
tor that is an observable affiliated to A. Let F be a set of representations of A.

(i) Let F be strictly norming. Then T is invertible if and only if φ(T) is invertible
for all φ ∈ F .

(ii) Let F be faithful. Then T is invertible if and only if φ(T) is invertible for all
φ ∈ F and the set {‖φ(T)−1‖ : φ ∈ F} is bounded.

Proof. This follows from Theorem 6.4 as follows. First of all, we have that T
is invertible if and only if 0 /∈ Spec(T). Now, if F is strictly norming, we have

0 /∈ Spec(T)⇔ 0 /∈
⋃

φ∈F
Spec(φ(T))⇔ 0 /∈ Spec(φ(T)) for all φ ∈ F .

This proves (i). (Note that φ(T) may not be a true operator, but only an affiliated
observable.) To prove (ii), we proceed similarly, noticing also that the distance
from 0 to Spec(T) is exactly ‖T−1‖.

We now compare the notions of “affiliation” from [15] and [57]. It turns out
that neither concept implies in an obvious way the other.

REMARK 6.8. In [57], an operator affiliated to A was defined as an unbounded
map L on A such that there exists z ∈ A with the property that ‖z‖ 6 1 and Lx =
y if and only if x = (1− z∗z)1/2a and y = za for some a ∈ A. So, formally, one



EXHAUSTIVE FAMILIES OF REPRESENTATIONS AND SPECTRA OF PSEUDODIFFERENTIAL OPERATORS 273

could think of L as being the operator on A induced by left multiplication by z(1−
z∗z)−1/2. Similarly, if θT is an observable strictly affiliated to A, let χ : R→ R be
given by χ(t) = t(1 + t2)−1/2 and let z = θT(χ) ∈ M(A), the multiplier algebra
of A. Then we can formally think of θT(id) as the operator by left multiplication
with z(1− z2)−1/2, by the properties of the functional calculus. This is similar to
Woronowicz’s definition, except that in the case of an affiliated observable T one
has z = z∗. Another restriction in the case of an affiliated observable T is that its
Cayley transform uT ∈ Ã = A +C1, whereas for self-adjoint operators affiliated
to a C∗-algebra one allows the Cayley transform to be in the multiplier algebra
M(A). In particular, if θT is bounded, then T := θT(id) = z(1− z2)−1/2 is defined
and is self-adjoint (whereas T in Woronowicz’s definition T does not have to be
self-adjoint). This seems to imply that the definition in [57] is more general than
the one in [15], however, if A is unital and L is an operator affiliated to A, then
L ∈ A, by Proposition 1.3 in [57]. This is very far from being the case in [15]
(which is our framework as well).

7. PARAMETRIC PSEUDODIFFERENTIAL OPERATORS

Let M be a compact smooth Riemannian manifold and G be a Lie group (fi-
nite dimensional) with Lie algebra g := Lie(G). We let G act by left translations
on M× G. We denote by Ψ0(M× G)G the algebra of order 0, G-invariant pseu-
dodifferential operators on M × G and Ψ0(M× G)G be its norm closure acting
on L2(M× G). For any vector bundle E, we denote by S∗E the set of directions
in its dual E∗. If E is endowed with a metric, then S∗E can be identified with the
set of unit vectors in E∗. We shall be interested the quotient

S∗(T(M× G))/G = S∗(TM× TG)/G = S∗(TM× g).

We have that Ψ0(M× G)G ' C∗r (G)⊗K and then obtain the exact sequence

(7.1) 0→ C∗r (G)⊗K → Ψ0(M× G)G → C(S∗(M× g))→ 0,

[30], [31], [36], [54]. Note that the kernel of the symbol map will now have ir-
reducible representations parametrized by Ĝr the temperate unitary irreducible
representations of G. Let T ∈ Ψm(M× G)G and denote by T] ∈ Ψm(M× G)G its
formal adjoint (defined using the calculus of pseudodifferential operators). All
operators considered below are closed with minimal domain (the closure of the
operators defined on C∞

c (M× G)). We denote by T∗ the Hilbert space adjoint of
a (possibly unbounded) densely defined operator.

LEMMA 7.1. Let T ∈ Ψm(M × G)G be elliptic. Then T∗ = T]. Thus, if also
T = T], then T is self-adjoint and (T + i)−1 ∈ C∗r (G), and hence it is affiliated to
C∗r (G).
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Proof. This is a consequence of the fact that Ψ∞(M × G)G is closed under
multiplication and formal adjoints. See [30], [31], [54] for details, where the cal-
culus of pseudodifferential operators on groupoids is used, for the groupoid M×
M× G, which is the product of the pair groupoid M×M and of the group G.

In other words, any elliptic, formally self-adjoint T ∈ Ψm(M× G)G, m > 0,
is actually self-adjoint.

Let us assume G = Rn, regarded as an abelian Lie group. Then our exact
sequence (7.1) becomes

(7.2) 0→ C0(Rn)⊗K → Ψ0(M×Rn)Rn → C(S∗(TM×Rn))→ 0.

This shows that A := Ψ0(M×Rn)Rn is a type I C∗-algebra, and hence we can
identify Â and Prim(A). Then we use that, to each λ ∈ Rn, there corresponds
an irreducible representation φλ of C0(Rn)⊗K. Recalling that every irreducible
(bounded, ∗) representation of an ideal I in a C∗-algebra A extends uniquely to
a representation of A, we obtain that φλ extends uniquely to an irreducible rep-
resentation of Ψ0(M×Rn)Rn denoted with the same letter. It is customary to
denote by T̂(λ) := φλ(T) for T a pseudodifferential operator in Ψm(M×Rn)R

n
,

m > 0. To define T̂(λ) for m > 0, we can either use the Fourier transform or,
notice that ∆ is affiliated to the closure of Ψ0(M×Rn)R

n
. This allows us to define

∆̂(λ). In general, we write T = (1− ∆)kS, with S ∈ Ψ0(M × Rn)R
n

and define

T̂(λ)q = ̂(1−∆)(λ)kŜ(λ). (We consider the “analyst’s” Laplacian, so ∆ 6 0.)

LEMMA 7.2. Let A := Ψ0(M×Rn)Rn . Then the primitive ideal spectrum of
A, Prim(A), is in a canonical bijection with the disjoint union Rn ∪ S∗(TM × Rn),
where the copy of Rn corresponds to the open subset {φλ : λ ∈ Rn} and the copy of
S∗(TM×Rn) corresponds to the closed subset {ep : p ∈ S∗(TM×Rn)}. The induced
topologies on Rn and S∗(TM × Rn) are the standard ones. Let S∗M := S∗(TM) ⊂
S∗(TM×Rn) correspond to T∗M ⊂ T∗M×Rn. Then the closure of {φλ} in Prim(A)
is {φλ} ∪ S∗M.

Proof. By standard properties of C∗-algebras (the definition of the Jacobson
topology), the ideal C0(Rn) ⊗ K ⊂ A defines an open subset of Prim(A) with
complement Prim(A/I) with the induced topologies. This proves the first part
of the statement.

In order to determine the closure of {φλ} in Prim(A), let us notice that the
principal symbol of T̂(λ) can be calculated in local coordinate carts on M (more
precisely, on sets of the form U × Rn, with U a coordinate chart in M). This
gives that the principal symbol of T̂(λ) is given by the restriction of the principal
symbol of T to S∗M.

Indeed, let U = Rk. A translation invariant pseudodifferential P operator
on U × Rn = Rk+n is of the form P = a(x, y, Dx, Dy) with a independent of y:
a(x, y, ξ, η) = ã(x, ξ, η). With this notation, we have P̂(λ) = ã(x, Dx, λ). The
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principal symbol of P̂(λ) is then the principal symbol of the (global) symbol Rk 3
(x, ξ) → ã(x, ξ, λ), and is seen to be independent of the (finite) value of λ ∈ Rn

and is the restriction from S∗(TU ×Rn) to S∗(TU × {0}) of the principal symbol
of ã.

Returning to the general case, the same reasoning gives that the image of φλ

is Ψ0(M). The primitive ideal spectrum of this algebra is canonically homeomor-
phic to the closure of {φλ}, and this is enough to complete the proof.

By the exact sequence (7.1), in addition to the irreducible representations
φλ, λ ∈ Rn (or, more precisely, their kernels), Prim(A) contains also (the kernels
of) the irreducible representations ep(T) = σ0(T)(p), p ∈ S∗(TM×Rn).

PROPOSITION 7.3. Let F := {φλ : λ ∈ Rn} ∪ {ep : p ∈ S∗(TM × Rn) \
S∗M}.

(i) The family F is a strictly norming family of representations of Ψ0(M×Rn)Rn .
(ii) Let P ∈ Ψm(M×Rn)R

n
, then P : Hs(M×Rn)→ Hs−m(M×Rn) is invertible

if and only if P̂(λ) : Hs(M)→ Hs−m(M) is invertible for all λ ∈ Rn and the principal
symbol of P is non-zero on all rays not intersecting S∗M.

(iii) If T ∈ Ψm(M×Rn)R
n
, m > 0, is formally self-adjoint and elliptic, then we have

Spec(ep(T)) = ∅, and hence

Spec(T) =
⋃

λ∈Rn

Spec(T̂(λ)).

Proof. (i) follows from Lemma 7.2. To prove (ii), let us denote by ∆M 6 0 the
(non-positive) Laplace operator on M. Then the Laplace operator ∆ on M × Rn

is ∆ = ∆Rn + ∆M. Note that (1− ∆)m/2 : Hs(M × Rn) → Hs−m(M × Rn) and
(c− ∆M)m/2 : Hs(M) → Hs−m(M), c > 0, are isomorphisms. By [31], we have
that

P1 := (1−∆)(s−m)/2P(1−∆)−s/2 ∈ A := Ψ0(M×Rn)Rn .

It is then enough to prove that P1 is invertible on L2(M × Rn). Moreover from
part (i) we have just proved and Theorem 4.4 we know that P1 is invertible on
L2(M×Rn) if and only if P̂1(λ) := φλ(P1) is invertible on L2(M) for all λ ∈ Rn

and the principal symbol of P1 is non-zero on all rays not intersecting S∗M. But,
using also 1̂−∆(λ) = (1 + |λ|2 −∆M), we have

P̂1(λ) = (1 + |λ|2 −∆M)(s−m)/2P̂(λ)(1 + |λ|2 −∆M)−s/2,

which is invertible by assumption.
To prove (iii), we recall that T is affiliated to A, by Lemma 7.1. The result

then follows from Theorem 6.4(i).

Operators of the kind considered in this subsection were used also in [1],
[12], [16], [32], [37], [51], [52]. They turn out to be useful also for general topolog-
ical index theorems [22], [41]. A more class of operators than the ones considered
in this subsection were introduced in [3], [4]. The above result has turned out to
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be useful for the study of layer potentials [43]. There are, of course, many other
relevant examples, but developing them would require too much additional ma-
terials, so we plan to discuss these other examples somewhere else.
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