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ABSTRACT. The simplest and most natural examples of completely nonuni-
tary contractions on separable complex Hilbert spaces which have polynomial
characteristic functions are the nilpotent operators. The main purpose of this
paper is to prove the following theorem: let T be a completely nonunitary
contraction on a Hilbert space H. If the characteristic function ΘT of T is a
polynomial of degree m, then there exist a Hilbert spaceM, a nilpotent oper-
ator N of order m, a coisometry V1 ∈ L(ran(I − NN∗) ⊕M, ran(I − TT∗)),
and an isometry V2 ∈ L(ran(I − T∗T), ran(I − N∗N)⊕M), such that

ΘT = V1

[
ΘN 0

0 IM

]
V2.
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INTRODUCTION

This is a sequel to our paper [4], where we identified the structure of the
completely nonunitary contractions on a Hilbert space that have a polynomial
characteristic function. Namely, we proved that the characteristic function ΘT
of a completely nonunitary contraction T on a separable, infinite dimensional,
complex Hilbert space H is a polynomial if and only if there exist three closed
subspaces H1,H0,H−1 of H with H = H1 ⊕ H0 ⊕ H−1, a pure isometry S in
L(H1), a nilpotent N in L(H0), and a pure coisometry C in L(H−1), such that T
has the matrix representation

T =

S ∗ ∗
0 N ∗
0 0 C

 .
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Moreover, the multiplicities of S and C, in other words, dim ker S∗ and
dim ker C are unitary invariants of T, and the nilpotent operator is uniquely de-
termined by T up to a quasi-similarity. For earlier results on contractions with
constant characteristic functions see [1], [9] and [10].

Recall that a pure isometry is a unilateral shift of some multiplicity and a
pure coisometry is the adjoint of a pure isometry. Recall also that a contraction T
on a Hilbert space H, (i.e., ‖Th‖ 6 ‖h‖ for all h in H) is completely nonunitary
(c.n.u.) if there is no nontrivial reducing subspaceM ofH for T such that T|M is
unitary.

In this paper we shall adopt a second approach to prove the theorem stated
in the abstract, based essentially on new factorizations of characteristic functions
of upper triangular 3× 3 block contractions (see Theorem 1.3).

Before we continue we recall the notion of the characteristic function of a
contraction. Consider a contraction T on a Hilbert space H. The defect operators
DT and DT∗ and the defect spaces DT and DT∗ of T are defined by

DT = (IH − T∗T)1/2, DT∗ = (IH − TT∗)1/2, and

DT = RanDT , DT∗ = RanDT∗ ,

respectively. Then the characteristic function of the contraction T is theL(DT ,DT∗)-
valued contractive analytic function defined by

ΘT(z) = [−T + zDT∗(IH − zT∗)−1DT ]|DT (z ∈ D).

In particular, ΘT is an L(DT ,DT∗)-valued bounded analytic function on D (see
[8]). Moreover, the characteristic function ΘT is purely contractive, that is,

‖ΘT(0)η‖ < ‖η‖ (η ∈ DT , η 6= 0).

Let Θ : D → L(M,M∗) and Ψ : D → L(N ,N∗) be two operator valued
analytic functions on D. We say that Θ and Ψ coincide and write Θ ∼= Ψ if there
exist two unitary operators τ :M→ N and τ∗ :M∗ → N∗ such that

Θ(z) = τ−1
∗ Ψ(z)τ (z ∈ D),

or, equivalently, for all z ∈ D the following diagram commutes:

M Θ(z)−−−−→ M∗

τ

y τ∗

y
N Ψ(z)−−−−→ N∗

The characteristic function is a complete unitary invariant in the following
sense (see Theorem 3.4 of [8]): two c.n.u. contractions T on H and R on K are
unitarily equivalent (that is, there is a unitary operator U from H to K such that
T = U∗RU) if and only if

ΘT ∼= ΘR.
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Moreover, for a given L(E , E∗)-valued purely contractive analytic function Θ de-
fined on D, there exists a c.n.u. contraction T on some Hilbert space, explicitly
determined by Θ, such that ΘT coincides with Θ.

Contractive operator valued analytic functions play an important role in op-
erator theory and serve as a bridge between operator theory and function theory
in terms of systems theory and interpolation theory (cf. [2], [6], [8]).

The class of nilpotent contractions yields a natural set of examples of opera-
tors that have polynomial characteristic functions. Indeed, let N be a contraction
and a nilpotent operator of order m, m > 1, that is, ‖N‖ 6 1, Nm = 0, and
Nm−1 6= 0. The characteristic function ΘN of N is given by

ΘN(z) = [−N + zDN∗(IH − zN∗)−1DN ]|DN

=
[
− N +

∞

∑
p=0

zp+1DN∗N∗pDN

]∣∣∣
DN

=
[
− N +

m−1

∑
p=0

zp+1DN∗N∗pDN

]∣∣∣
DN

,

for all z ∈ D. Therefore ΘN is a polynomial in z of degree at most m with operator
coefficients.

From this viewpoint, it is important to understand, up to unitary equiva-
lence, the analytic structure of polynomial characteristic functions of contractions.
The main goal of the present paper is to address this issue. More specifically, in
Theorem 2.2 we prove: if the characteristic function ΘT of a c.n.u. contraction
T is a polynomial of degree m, then there exist a Hilbert space M, a nilpotent
operator N of order m, a coisometry V1 ∈ L(DN∗ ⊕M,DT∗), and an isometry
V2 ∈ L(DT ,DN ⊕M), such that

ΘT = V1

[
ΘN 0
0 IM

]
V2.

Along the way we prove the following factorization result for characteristic
functions (see Theorem 1.3): let H1,H0,H−1 be three Hilbert spaces and set H =
H1 ⊕H0 ⊕H−1. Let

T =

S ∗ ∗
0 N ∗
0 0 C


be any contraction on H with the above matricial form. Then the characteristic
function ΘT of T and[

ΘC 0
0 IE1

]
U1

[
ΘN 0
0 IM

]
U2

[
ΘS 0
0 IE2

]
coincide, where E1, E2 andM are Hilbert spaces, and U1 ∈ L(DN∗ ⊕M,DC⊕E1)
and U2 ∈ L(DS∗ ⊕ E2,DN ⊕M) are unitary operators.
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Our results rely on the upper triangular representation of operators with
polynomial characteristic functions (see Theorem 2.1) and a factorization of char-
acteristic functions of upper triangular 2× 2 block contractions due to Sz.-Nagy
and the first author (see Theorem 1.2).

The rest of this paper is organized as follows: in Section 2, we give the
factorization of the characteristic function of an upper triangular 3× 3 block con-
traction on Hilbert space. Our main result is given in Section 3, and provides
a complete analytic characterization of polynomial characteristic functions for
c.n.u. contractions on Hilbert space.

1. FACTORIZATIONS OF CHARACTERISTIC FUNCTIONS

We start by recalling some known facts about upper triangular 2× 2 block
contractions, since they will be frequently used in what follows.

The first is a classification of 2× 2 block contractions. This is the content of
Theorem 1 in [7] (also see Chapter IV, Lemma 2.1 in [3]).

THEOREM 1.1. Let H1 and H2 be Hilbert spaces and let T =

[
T1 X
0 T2

]
be a

bounded linear operator on H1 ⊕H2. Then T is a contraction if and only if T1 and T2
are contractions and

X = DT∗1
ΓDT2 ,

for some contraction Γ from DT2 to DT∗1
.

The second key tool used in our development is the factorization of charac-
teristic functions of 2× 2 block contractions (see Theorem 2 in [7]).

THEOREM 1.2. LetH1 andH2 be Hilbert spaces, let T =

[
T1 X
0 T2

]
be a contrac-

tion on H1 ⊕H2, and let X = DT∗1
ΓDT2 for some contraction Γ ∈ L(DT∗1

,DT2). Then
there exist unitary operators τ ∈ L(DT ,DT1 ⊕ DΓ) and τ∗ ∈ L(DT∗ ,DT∗2

⊕ DΓ∗)

such that

ΘT(z) = τ−1
∗

[
ΘT2(z) 0

0 IDΓ∗

]
J[Γ]

[
ΘT1(z) 0

0 IDΓ

]
τ (z ∈ D),

where

J[Γ] =
[

Γ∗ DΓ

DΓ∗ −Γ

]
∈ L(DT∗1

⊕DΓ,DT2 ⊕DΓ∗).

Recall that if A is a contraction fromH to K then

(1.1) J[A] =

[
A∗ DA

DA∗ −A

]
is a unitary operator from K⊕DA toH⊕DA∗ (see [5]).

We are now ready to prove our first factorization result.
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THEOREM 1.3. Let H1,H0,H−1 be Hilbert spaces, and let H = H1 ⊕ H0 ⊕
H−1. Let

T =

S ∗ ∗
0 N ∗
0 0 C


be a contraction on H. Then there exist three Hilbert spaces E1, E2 and M and two
unitary operators U1 ∈ L(DN∗ ⊕M,DC ⊕ E1) and U2 ∈ L(DS∗ ⊕ E2,DN ⊕M)
such that

ΘT ∼=
[

ΘC 0
0 IE1

]
U1

[
ΘN 0
0 IM

]
U2

[
ΘS 0
0 IE2

]
.

Proof. Set

K1 = H1 ⊕H0, T =

[
T1 X1
0 C

]
∈ L(K1 ⊕H−1), and

T1 =

[
S X
0 N

]
∈ L(H1 ⊕H0),

where X1 ∈ L(H−1,K1) and X ∈ L(H0,H1). Theorem 1.1 implies that there exist
contractions Γ1 ∈ L(DC,DT∗1

) and Γ ∈ L(DN ,DS∗) such that

X1 = DT∗1
Γ1DC, and X = DS∗ΓDN .

By Theorem 1.2 there exist unitary operators

τ1 : DT → DT1 ⊕DΓ1 , τ1∗ : DT∗ → DC∗ ⊕DΓ∗1
, and(1.2)

τ : DT1 → DS ⊕DΓ, τ∗ : DT∗1
→ DN∗ ⊕DΓ∗ ,(1.3)

such that

ΘT(z) = τ−1
1∗

[
ΘC(z) 0

0 IDΓ∗1

]
J[Γ1]

[
ΘT1(z) 0

0 IDΓ1

]
τ1, and

ΘT1(z) = τ−1
∗

[
ΘN(z) 0

0 IDΓ∗

]
J[Γ]

[
ΘS(z) 0

0 IDΓ

]
τ,

for all z ∈ D, where

J[Γ1] =

[
Γ∗1 DΓ1

DΓ∗1
−Γ1

]
∈ L(DT∗1

⊕DΓ1 ,DC ⊕DΓ∗1
), and

J[Γ] =
[

Γ∗ DΓ

DΓ∗ −Γ

]
∈ L(DS∗ ⊕DΓ,DN ⊕DΓ∗),

are unitary operators (see (1.1)). Now setting

ΦS(z) =
[

ΘS(z) 0
0 IDΓ

]
, ΦC(z) =

[
ΘC(z) 0

0 IDΓ∗1

]
, and

ΦN(z) =
[

ΘN(z) 0
0 IDΓ∗

]
,



286 CIPRIAN FOIAS, CARL PEARCY AND JAYDEB SARKAR

for all z ∈ D, we get

ΘT(z) = τ−1
1∗ ΦC(z)J[Γ1]

[
ΘT1(z) 0

0 IDΓ1

]
τ1

= τ−1
1∗ ΦC(z)J[Γ1]

[
τ−1
∗ ΦN(z)J[Γ]ΦS(z)τ 0

0 IDΓ1

]
τ1

= τ−1
1∗ ΦC(z)

(
J[Γ1]

[
τ−1
∗ 0
0 IDΓ1

] ) [ΦN(z)J[Γ]ΦS(z)τ 0
0 IDΓ1

]
τ1

= τ−1
1∗ ΦC(z)U1

[
ΦN(z)J[Γ]ΦS(z)τ 0

0 IDΓ1

]
τ1,

for all z ∈ D, where U1 ∈ L((DN∗ ⊕DΓ∗)⊕DΓ1 ,DC ⊕DΓ∗1
) is the unitary opera-

tor defined by

U1 = J[Γ1]

[
τ−1
∗ 0
0 IDΓ1

]
.

Hence

ΘT(z) = τ−1
1∗ ΦC(z)U1

[
ΦN(z)J[Γ]ΦS(z)τ 0

0 IDΓ1

]
τ1

= τ−1
1∗ ΦC(z)U1

[
ΦN(z) 0

0 IDΓ1

] [
J[Γ] 0

0 IDΓ1

] [
ΦS(z) 0

0 IDΓ1

] [
τ 0
0 IDΓ1

]
τ1

= τ−1
1∗ ΦC(z)U1

[
ΘN(z) 0

0 IDΓ∗⊕DΓ1

] [
J[Γ] 0

0 IDΓ1

]

×
[

ΘS(z) 0
0 IDΓ⊕DΓ1

] [
τ 0
0 IDΓ1

]
τ1,

for all z ∈ D. Let U2 ∈ L((DS∗ ⊕ DΓ) ⊕ DΓ1 , (DN ⊕ DΓ∗) ⊕ DΓ1) and τ̃1 ∈
L(DT , (DS ⊕DΓ)⊕DΓ1) be unitary operators defined by

U2 =

[
J[Γ] 0

0 IDΓ1

]
, and τ̃1 =

[
τ 0
0 IDΓ1

]
τ1,

respectively. Hence we obtain

(1.4) ΘT(z)=τ−1
1∗

([ΘC(z) 0
0 IDΓ∗1

]
U1

[
ΘN(z) 0

0 IDΓ∗⊕DΓ1

]
U2

[
ΘS(z) 0

0 IDΓ⊕DΓ1

])
τ̃1,

for all z ∈ D, and therefore

ΘT ∼=
[

ΘC 0
0 IDΓ∗1

]
U1

[
ΘN 0
0 IDΓ∗⊕DΓ1

]
U2

[
ΘS 0
0 IDΓ⊕DΓ1

]
,



CONTRACTIONS WITH POLYNOMIAL CHARACTERISTIC FUNCTIONS. II. ANALYTIC APPROACH 287

holds. Setting E1 = DΓ∗1
,M = DΓ∗ ⊕DΓ1 and E2 = DΓ ⊕DΓ1 in the above, we

conclude the proof of the theorem.

Of particular interest is the case when S and C∗ are pure isometries.

COROLLARY 1.4. With the hypotheses of Theorem 1.3, let us also assume that S
and C∗ are pure isometries. Then there exist a Hilbert space M, a coisometry V1 ∈
L(DN∗ ⊕M,DT∗), and an isometry V2 ∈ L(DT ,DN ⊕M), such that

ΘT = V1

[
ΘN 0
0 IM

]
V2.

Proof. Notice that since DC∗ = {0H−1} and DS = {0H1}, the characteris-
tic functions ΘC : D → L(DC,DC∗) of C and ΘS : D → L(DS,DS∗) of S are
identically zero, that is,

0C := ΘC ≡ 0 : DC → {0H−1}, and 0S := ΘS ≡ 0 : {0H1} → DS∗ .

Furthermore, the unitary operators in (1.2) and (1.3) become

τ1 : DT → DT1 ⊕DΓ1 , τ1∗ : DT∗ → {0H−1} ⊕DΓ∗1
, and(1.5)

τ : DT1 → {0H1} ⊕DΓ, τ∗ : DT∗1
→ DN∗ ⊕DΓ∗ .(1.6)

This along with (1.4) yields

ΘT =τ−1
1∗

[
0C 0
0 IDΓ∗1

]
U1

[
ΘN 0
0 IDΓ∗⊕DΓ1

]
U2

[
0S 0
0 IDΓ⊕DΓ1

]
τ̃1=V1

[
ΘN 0
0 IM

]
V2,

where

M=DΓ∗ ⊕DΓ1 , V1=τ−1
1∗

[
0C 0
0 IDΓ∗1

]
U1 ∈ L((DN∗ ⊕DΓ∗)⊕DΓ1 ,DT∗) and

V2 = U2

[
0S 0
0 IDΓ⊕DΓ1

]
τ̃1 ∈ L(DT , (DN ⊕DΓ∗)⊕DΓ1).

Now using 0C0∗C = IDC∗ = I{0H−1
} and 0∗S0S = IDS = I{0H1

} along with (1.5) and
(1.6) we readily see that V1V∗1 = IDT∗ and V∗2 V2 = IDT . This completes the proof
of the corollary.

2. POLYNOMIAL CHARACTERISTIC FUNCTIONS

For the reader’s convenience, we first state the main result of [4].

THEOREM 2.1. Let T be a c.n.u. contraction on a Hilbert space H. Then the cha-
racteristic function ΘT of T is a polynomial of degree m if and only if there exist three
closed subspaces H1,H0,H−1 of H with H = H1 ⊕H0 ⊕H−1, a pure isometry S in
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L(H1), a nilpotent N of order m in L(H0), and a pure coisometry C in L(H−1), such
that T has the matrix representation

T =

S ∗ ∗
0 N ∗
0 0 C

 .

We are now ready for the main theorem on analytic description of contrac-
tions which have polynomial characteristic functions.

THEOREM 2.2. Let T be a c.n.u. contraction on a Hilbert space H. If the char-
acteristic function ΘT of T is a polynomial of degree m, then there exist a Hilbert space
M, a nilpotent operator N of order m, a coisometry V1 ∈ L(DN∗ ⊕M,DT∗), and an
isometry V2 ∈ L(DT ,DN ⊕M), such that

ΘT = V1

[
ΘN 0
0 IM

]
V2.

Proof. Let T be a c.n.u. contraction such that the characteristic function ΘT of T is
a polynomial of degree m. According to Theorem 2.1 there exist closed subspaces
H1,H0,H−1 of H such that H = H1 ⊕H0 ⊕H−1 and such that with respect to
that decomposition, T admits the matrix representation

T =

S ∗ ∗
0 N ∗
0 0 C

 ,

where S ∈ L(H1) is a pure isometry, N ∈ L(H0) is a nilpotent operator of order
m, and C ∈ L(H−1) is a pure coisometry. The result now follows from Corol-
lary 1.4.

REMARK 2.3. The converse of the above theorem is not true in full general-
ity: letM be an infinite dimensional separable Hilbert space, and let T be a c.n.u.
contraction with infinite dimensional defect spaces (for example, one can con-
sider T = S⊕ S∗ on H2

E (D)⊕ H2
E (D), where E is an infinite dimensional Hilbert

space, H2
E (D) is the E -valued Hardy space, and S is the shift operator on H2

E (D)).
Let N be a nilpotent operator of order m and let

V2 =

[
V21
V22

]
: DT → DN ⊕M,

be an isometry, where

‖V21η‖ = ‖V22η‖ (η ∈ DT).

Also, let V1 : DN∗ ⊕M→ DT∗ be a coisometry with ker V1 = DN∗ . If

ΘT = V1

[
ΘN 0
0 IM

]
V2,

then ΘT is a polynomial of degree 0.
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However, it is easy to see that the following weak converse of Theorem 2.2 is true:
let T be a c.n.u. contraction on a Hilbert spaceH. Let

ΘT = V1

[
ΘN 0
0 IM

]
V2,

for some Hilbert space M, nilpotent operator N of order m, coisometry V1 ∈
L(DN∗ ⊕M,DT∗), and isometry V2 ∈ L(DT ,DN ⊕M). Then the characteristic
function ΘT of T is a polynomial of degree less than or equal to m.

It is important to note that the conclusion of Theorem 2.2 depends explicitly
on the decomposition of T as used in the proof of Theorem 1.3. With the same
setting as in Theorem 2.2, below we will show that the same conclusion holds for
the following decomposition of T:

T =

[
S X−1
0 T−1

]
=

[
S DS∗Γ−1DT−1

0 T−1

]
∈ L(H0 ⊕K−1),

where K−1 = H0 ⊕H−1,

T−1 =

[
N X
0 C

]
=

[
N DN∗ΓDC
0 C

]
∈ L(H1 ⊕H0), and

X−1 = DS∗Γ−1DT1 , X = DN∗ΓDC,

and Γ−1 in L(DT−1 ,DS∗) and Γ in L(DC,DN∗) are a pair of contractions. In this
case, again by Theorem 1.2, we have

ΘT = τ−1
−1∗

[
ΘT−1 0

0 IDΓ∗−1

]
J[Γ−1]

[
0S 0
0 IDΓ−1

]
τ−1, and(2.1)

ΘT−1 = τ−1
∗

[
0C 0
0 IDΓ∗

]
J[Γ]

[
ΘN 0
0 IDΓ

]
τ,(2.2)

where

τ−1 : DT → {0H1} ⊕DΓ−1 , τ−1∗ : DT∗ → DT∗−1
⊕DΓ∗−1

, and(2.3)

τ : DT−1 → DN ⊕DΓ, τ∗ : DT∗−1
→ {0H−1} ⊕DΓ∗ ,(2.4)

are unitary operators. Moreover

J[Γ−1] =

[
Γ∗−1 DΓ−1

DΓ∗−1
−Γ−1

]
∈ L(DS∗ ⊕DΓ−1 ,DT−1 ⊕DΓ∗−1

), and

J[Γ] =
[

Γ∗ DΓ

DΓ∗ −Γ

]
∈ L(DN∗ ⊕DΓ,DC ⊕DΓ∗).

By setting

Ψ0 =

[
0C 0
0 IDΓ∗

]
and ΨN =

[
ΘN 0
0 IDΓ

]
,
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and using (2.1) and (2.2) we obtain

ΘT = τ−1
−1∗

[
ΘT−1 0

0 IDΓ∗−1

]
J[Γ−1]

[
0S 0
0 IDΓ−1

]
τ−1

= τ−1
−1∗

[
τ−1
∗ Ψ0 J[Γ]ΨNτ 0

0 IDΓ∗−1

]
J[Γ−1]

[
0S 0
0 IDΓ−1

]
τ−1

= τ−1
−1∗

[
τ−1
∗ 0
0 IDΓ∗−1

] [
Ψ0 0
0 IDΓ∗−1

] [
J[Γ] 0

0 IDΓ∗−1

] [
ΨN 0
0 IDΓ∗−1

]

×
[

τ 0
0 IDΓ∗−1

]
J[Γ−1]

[
0S 0
0 IDΓ−1

]
τ−1

= Ṽ1

[
ΨN 0
0 IDΓ∗−1

]
Ṽ2 = Ṽ1

[
ΘN 0
0 IDΓ⊕DΓ∗−1

]
Ṽ2,

where

Ṽ1 = τ−1
−1∗

[
τ−1
∗ 0
0 IDΓ∗−1

] [
Ψ0 0
0 IDΓ∗−1

] [
J[Γ] 0

0 IDΓ∗−1

]

= τ−1
−1∗

[
τ−1
∗ 0
0 IDΓ∗−1

] [
0C 0
0 IDΓ∗⊕DΓ∗−1

] [
J[Γ] 0

0 IDΓ∗−1

]
, and

Ṽ2 =

[
τ 0
0 IDΓ∗−1

]
J[Γ−1]

[
0S 0
0 IDΓ−1

]
τ−1.

Hence

ΘT = Ṽ1

[
ΘN 0
0 IDΓ⊕DΓ∗−1

]
Ṽ2 = Ṽ1

[
ΘN 0
0 IM̃

]
Ṽ2,

where M̃ = DΓ ⊕DΓ∗−1
. Finally, by virtue of (2.3) and (2.4), we have that Ṽ∗1 and

Ṽ2 are isometric operators, that is, Ṽ1Ṽ∗1 = IDT∗ and Ṽ∗2 Ṽ2 = IDT . Yet, we do not
know if

dim M̃ = dimM,

whereM is as in Theorem 2.2.
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