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ABSTRACT. Let A be an unbounded operator on a Banach space X. It is some-
times useful to improve the operator A by extending it to an operator B on
a larger Banach space Y with smaller spectrum. It would be preferable to do
this with some estimates for the resolvent of B, and also to extend bounded
operators related to A, for example a semigroup generated by A. When X is
a Hilbert space, one may also want Y to be Hilbert space. Results of this type
for bounded operators have been given by Arens, Read, Müller and Badea,
and we give some extensions of their results to unbounded operators and we
raise some open questions. A related problem is to improve properties of a C0-
semigroup satisfying lower bounds by extending it to a C0-group on a larger
space or by finding left-inverses. Results of this type for Hilbert spaces have
been obtained by Louis and Wexler, and by Zwart, and we give some addi-
tional results.
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1. INTRODUCTION

Let U be a bounded operator on a Banach space X, and suppose that there
is a constant c > 0 such that

(1.1) ‖Ux‖ > c‖x‖ (x ∈ X).

Then U can be extended to a bounded invertible operator on a Banach space Y
which contains X as a closed subspace; see Proposition 3.1, for example. One
may wish to preserve various properties of U. For this to be most effective it is
desirable that bounded operators which commute with U can also be extended to
Y. This property is closely related to a result of Arens [2] for commutative Banach
algebras. The following theorem is a formulation of Arens’s result for a bounded
operator U, and {U}′ denotes the commutant of {U} in B(X). It can be proved in
a similar way to Arens’s result (see Theorem 3.2). A slightly weaker version with
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{U}′ replaced by any commutative subalgebra can be deduced from the result
for Banach algebras, as in [22].

THEOREM 1.1. Let U ∈ B(X) and assume that (1.1) holds for some c > 0.
Then there exist a Banach space Y ⊇ X and a unital isometric algebra homomorphism
ϕ : {U}′ → B(Y) such that:

(i) ϕ(U) is invertible and ‖ϕ(U)−1‖ 6 c−1;
(ii) for each V ∈ {U}′, ϕ(V) is an extension of V.

In general, one cannot simultaneously extend two commuting operators
each of which satisfy a lower bound so that both operators have inverses with
the optimal norm (see Theorem 2.1 of [7] and Example 2.3 of [5]). Nevertheless
Read extended Arens’s result firstly in the context of commutative Banach alge-
bras [24] and then for operators [26] in the form of Theorem 1.2 below. Again a
slightly weaker version for operators can be quickly deduced from the version
for Banach algebras (see Chapter 2, Theorem 22 of [23]). The full statement about
the homomorphism ϕ is not included in these references, but it can be seen from
the proof in [26].

THEOREM 1.2. Let U ∈ B(X). There is a Banach space Y ⊇ X and a unital
isometric algebra homomorphism ϕ : {U}′ → B(Y), such that ϕ(W) is an extension of
W for all W ∈ {U}′ and σ(ϕ(U)) = σap(U).

Arens’s theorem provides the optimal estimate for the norm of ϕ(U)−1

whereas Read’s theorem and its proof do not provide estimates for the resolvent
of ϕ(U). The following result of Badea and Müller ([3], Theorem 3.1) concerns
the norms of the powers of the inverse of the extension of a bounded operator.

THEOREM 1.3. Let c : N → (0, ∞) be a submultiplicative sequence. A bounded
operator U ∈ B(X) has an invertible extension V on a Banach space Y ⊇ X with
‖V−j‖ 6 cj for all j > 1 if and only if

‖x‖ 6 cn‖x0‖+ cn−1‖x1‖+ · · ·+ c1‖xn−1‖

whenever n ∈ N, x, xj ∈ X and Unx = x0 + Ux1 + · · ·+ Un−1xn−1.
When these conditions are satisfied, one may choose Y and V in such a way that the

following hold:
(i) ‖V j‖ = ‖U j‖ and ‖V−j‖ 6 cj for all j > 1; and

(ii) there is a unital isometric algebra homomorphism ϕ : {U}′ → B(Y) with
ϕ(U) = V and ϕ(W) is an extension of W for all W ∈ {U}′.

In this paper we consider questions of this type in two further contexts,
firstly replacing the single bounded operator U by an unbounded operator A,
and secondly replacing U by a C0-semigroup. The common theme is that the op-
erators should satisfy lower bounds, and they should be extended to operators on
a larger Banach space with corresponding inverses, and preserving other proper-
ties as far as possible. There is an elementary construction in [21] which extends
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many bounded operators which are bounded below and it can be extended to
unbounded operators (see Proposition 3.1). However we seek to extend opera-
tors in the commutant of A and/or to remove large parts of the spectrum, and to
obtain estimates for the norms of associated bounded operators on the extended
space, similarly to the theorems stated above. The homomorphisms on {A}′ will
be used to show that the constructions of Arens and Read can be carried through
for generators of C0-semigroups (Sections 3 and 4, respectively).

For a C0-semigroup T on X we consider lower bounds on the semigroup, of
the form

‖T(t)x‖ > c(t)‖x‖ (x ∈ X, t > 0).

In this context we seek an extension to a C0-group S on a larger space Y, as a natu-
ral analogue of the discrete case. Alternatively one might look for a C0-semigroup
L of left inverses on Y, or even on X itself, so that L(t)T(t)x = x for all x ∈ X and
t > 0. There are existing results in the literature for the case when c(t) = 1 (see
Proposition 5.1) and for a more general case which is a continuous analogue of
Theorem 1.3 (see Theorem 5.2). When c(t) is a constant in (0, 1) we show that one
can obtain S with the exponential growth bound of ‖S(−t)‖ arbitrarily small (see
Proposition 5.3), but in general not with ‖S(−t)‖ bounded (see Example 5.6). We
also characterise when −A is dissipative in an equivalent norm on X (see Theo-
rem 5.4).

In Sections 6 and 7 we consider questions of the same type in the context of
operators on Hilbert spaces. Most of the theorems above have versions in which
both X and Y are Hilbert spaces, although some changes of detail are needed.
In addition the Hilbert space structure allows different approaches. For exam-
ple in Proposition 6.1 we present a construction, via polar decomposition, of an
extension of any closed, densely defined operator on Hilbert space satisfying a
lower bound. In Theorem 7.1 we show that many dissipative operators A on
Hilbert space X have extensions to generators B of contraction semigroups on
larger Hilbert spaces with D(B) ∩ X = D(A). Lower bounds for an operator
semigroup on Hilbert space, and the possibility of finding a left-inverse semi-
group on the same space, have already been considered in the literature relating
to the Weiss conjecture on admissibility of observation operators in control the-
ory [20], [28], [29], [31]. In Theorem 7.3 we show how our results on extensions
of semigroups with lower bounds relate to some of those results.

2. PRELIMINARIES

In this paper, X, Y and Z will denote complex Banach spaces, and B(X)
will denote the space of bounded linear operators on X. We shall write X ⊆ Y,
or Y ⊇ X, to mean that X is a closed subspace of Y with the same norm. We
shall also consider embeddings π : X → Y. When π is isometric we regard X as
being a subspace of Y by identifying X with π(X). Occasionally we will allow
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embeddings which are isomorphisms, or continuous injections, and we will say
this explicitly whenever it arises.

Given Banach spaces Xn (n ∈ N), we may consider their `p-direct sum for
1 6 p < ∞, or their c0-direct sum, in the usual way. In the special case when
Xn = X for all n, we will denote this space by `p(X) or c0(X).

An operator A on X should be taken to be unbounded unless specified oth-
erwise. Thus the domain of A is a subspace of X and A is a linear mapping into X.
We denote the domain, kernel, range, spectrum and resolvent set of A by D(A),
Ker A, Ran A, σ(A) and ρ(A) respectively, and we put R(λ, A) = (λ− A)−1 for
λ ∈ ρ(A). Recall that a pseudo-resolvent on X is a function R : Ω ⊆ C → B(X)
which satisfies the resolvent identity

R(λ)− R(µ) = (µ− λ)R(λ)R(µ) (λ, µ ∈ Ω).

Then Ker R(λ) and Ran R(λ) are both independent of λ. Moreover, R is the
resolvent of some operator A on X if and only if Ker R(λ) = {0}, and then
D(A) = Ran R(λ). If R(λ) = R(λ, A) for some λ ∈ Ω, then Ω ⊆ ρ(A) and
Rλ = R(λ, A) for all λ ∈ Ω ([30], Section VIII.4).

We will say that A is bounded below if there exists c > 0 such that

(2.1) ‖Ax‖ > c‖x‖ (x ∈ D(A)).

We denote by {A}′ the commutator algebra of A in B(X) defined in the
following way:

{A}′ = {U ∈ B(X) : for all x ∈ D(A), Ux ∈ D(A) and AUx = UAx}.
If λ ∈ ρ(A), then {A}′ = {R(λ, A)}′ ([1], Proposition B.7).

Let A be an operator on X and Y be a Banach space with X ⊆ Y. An operator
B on Y is an extension of A if D(A) ⊆ D(B) and Bx = Ax for all x ∈ D(A). We
shall say that B is an outer extension of A if D(A) = D(B)∩ X and Bx = Ax for all
x ∈ D(A).

Let T be a C0-semigroup on X, so that T : [0, ∞)→ B(X) is continuous in the
strong operator topology, with T(0) = I and T(s)T(t) = T(s + t) (s, t > 0), and
let A be the generator of T. We refer the reader to Section 3.1 of [1] or Chapter 2
of [13] for standard properties of C0-semigroups and their generators. It is easily
seen that

{A}′ = {U ∈ B(X) : T(t)U = UT(t) for all t > 0}.
If S is a C0-semigroup on Y ⊇ X and T is a C0-semigroup on X, we shall say

that S is an extension of T if S(t)x = T(t)x for all x ∈ X and t > 0.
We note the following elementary facts.

PROPOSITION 2.1. Let A be the generator of a C0-semigroup T on a Banach space
X and B be the generator of a C0-semigroup S on a Banach space Y ⊇ X.

(i) The following are equivalent:
(a) B is an extension of A;
(b) S(t)x = T(t)x for all x ∈ X, t > 0;
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(c) B is an outer extension of A.
(ii) The following are equivalent:

(a) B is an extension of −A;
(b) S(t)T(t)x = x for all x ∈ X, t > 0.

Proof. (i) Suppose that B is an extension of A, and let x ∈ D(A), t > 0. Then,
for 0 6 s 6 t,

d
ds

S(t− s)T(s)x = −S(t− s)BT(s)x + S(t− s)AT(s)x = 0.

Hence S(t)x = T(t)x for all x ∈ D(A) and then for all x ∈ X by density of D(A)
in X. Thus (a)⇒ (b). The proofs of (b)⇒ (c)⇒ (a) are very simple.

(ii) The proof that (a) ⇒ (b) is similar to (i), showing that S(t)T(t)x has
derivative 0 when x ∈ D(A), and then using the density of D(A). Now assume
(b), and let x ∈ D(A) and τ > 0. Then for 0 < t < τ,

t−1(S(t)T(τ)x− T(τ)x) = t−1(T(τ − t)x− T(τ)x)→ −T(τ)Ax

as t → 0+. Hence T(τ)x ∈ D(B) and BT(τ)x = −T(τ)Ax. Letting τ → 0+, and
using that B is closed, it follows that x ∈ D(B) and Bx = −Ax.

PROPOSITION 2.2. Let A be the generator of a C0-semigroup T on a Banach space
X, let Y be a Banach space with X ⊆ Y, and let ϕ : {A}′ → B(Y) be an isometric unital
algebra homomorphism such that ϕ(U) extends U for all U ∈ {A}′. Then there exists a
Banach space Y0 with X ⊆ Y0 ⊆ Y and a C0-semigroup S on Y0, with generator B, such
that:

(i) S extends T;
(ii) Y0 is invariant under ϕ(U) for all U ∈ {A}′, and hence the map ϕ0 : U 7→

ϕ(U)|Y0 is an isometric unital homomorphism of {A}′ into B(Y0);
(iii) σ(ϕ0(U)) ⊆ σ(ϕ(U)) for all U ∈ {A}′;
(iv) σ(B) ⊆ σ(A) and R(λ, B) = ϕ0(R(λ, A)) for all λ ∈ ρ(A).

Proof. For t > 0, T(t) ∈ {A}′. Let S̃(t) = ϕ(T(t)). Then S̃ satisfies the
semigroup property and is locally bounded. Let

Y0 =
{

y ∈ Y : lim
t→0+

‖S̃(t)y− y‖ = 0
}

.

Then Y0 is a closed S̃-invariant subspace of Y, containing X. For U ∈ {A}′, ϕ(U)

commutes with S̃(t), so Y0 is invariant under ϕ(U) and under R(λ, ϕ(U)) for
all λ ∈ ρ(ϕ(U)). Define ϕ0(U) = ϕ(U)|Y0 , and S(t) = ϕ0(T(t)). Then ϕ0 is a
homomorphism and S is a C0-semigroup on Y0. Moreover, λ ∈ ρ(ϕ0(U)) and
R(λ, ϕ0(U)) = R(λ, ϕ(U))|Y0 .

Now, take λ ∈ ρ(A) and let Rλ = ϕ0(R(λ, A)). Now

‖t−1(e−λtS(t)− I)R2
λ+Rλ‖=‖t−1(e−λtT(t)− I)R(λ, A)2 + R(λ, A)‖
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=
∥∥∥1

t

t∫
0

(I−e−λsT(s))R(λ, A)ds
∥∥∥→0 as t→0+.

This shows that Rλ = (λ− B)R2
λ on Y0, and hence y = (λ− B)Rλy for y in the

range of Rλ and then for y ∈ Y0, since B is closed. Hence R(λ, B) = ϕ0(R(λ, A))
for all λ ∈ ρ(A).

In the notation of the proof above, for sufficiently large real λ,

‖S̃(t)ϕ(R(λ, A))−ϕ(R(λ, A))‖=‖T(t)R(λ, A)−R(λ, A)‖6
t∫

0

‖e−λsT(s)‖ds→0

as t → 0+. It follows that Y0 contains the range of ϕ(R(λ, A)). On the other
hand, Y0 is the closure of the range of R(λ, B) which is contained in the range of
ϕ(R(λ, A)). So Y0 is the closure of the range of ϕ(R(λ, A)) for any λ ∈ ρ(A).

3. LOWER BOUNDS FOR UNBOUNDED OPERATORS

There is an elementary construction which gives an invertible extension of
a closed operator A which is bounded below and has complemented range, but
it lacks the homomorphism of the commutant. For bounded operators this con-
struction has been given in Theorem 3 of [21] (see also [6] and [10]). Our context is
different and we shall need some additional properties of the construction which
are not explicit in those references, so we give the details in Proposition 3.1.

When A is closed and bounded below, Ran A is a closed subspace of X. We
assume also that Ran A is complemented in X, so that there is a closed subspace
Y of X such that X = Ran A ⊕ Y. Equivalently there is a left-inverse operator
L ∈ B(X) such that L maps X into D(A) and LAx = x for all x ∈ X. Then let Z
be the `p-direct sum, or the c0-direct sum, of X and countably many copies of Y.
Thus Z consists of appropriate sequences

z = (x, y1, y2, . . . )

where x ∈ X and yn ∈ Y, and

‖z‖ = ‖(‖x‖, ‖y1‖, ‖y2‖, . . . )‖`p .

Then X ⊆ Z, via the isometric embedding π : x 7→ (x, 0, 0, . . . ).

PROPOSITION 3.1. Let A be a closed operator on a Banach space X, satisfying
(2.1), and assume that Ran A is complemented in X. Let Y and Z be as above, and define
an operator B on Z by

D(B) = {(x, y1, y2, . . . ) : x ∈ D(A), yj ∈ Y},
B(x, y1, y2, . . . ) = (Ax + cy1, cy2, cy3, . . . ).

Then B has the following properties:
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(i) B is an outer extension of A.
(ii) B is invertible.

(iii) σ(B) ⊆ σ(A).
(iv) If A generates a C0-semigroup on X, then B generates a C0-semigroup on Z.
(v) If A is bounded, then B is bounded.

(vi) If |λ| = c, the following hold:
(a) Ker(λ− A) = Ker(λ− B);
(b) Ran(λ− A) = Ran(λ− B) ∩ X;
(c) Ran(λ− B) is dense in Z if Ran(λ− A) is dense in X.

Moreover, B is a minimal invertible extension of A in the sense that there is no proper
closed subspace of Z which contains X and is invariant under B−1.

Proof. By replacing A by c−1 A, we may assume that c = 1. If A is invertible
then Y = {0} and all properties are trivial.

Properties (i) and (v) are immediate. For (ii), B−1 is given by

B−1(Ax + y0, y1, y2, . . . ) = (x, y0, y1, y2, . . . ).

The assumption (2.1) implies that any point λ with |λ| < 1 is not in σap(A)
and hence is not in the boundary of σ(A). If A is not invertible, it follows that
any point λ ∈ ρ(A) satisfies |λ| > 1. Then R(λ, B) is given by

R(λ, B)(x, y1, y2, . . . )

=
(

R(λ, A)
(

x +
∞

∑
n=0

λ−(n+1)yn

)
,

∞

∑
n=0

λ−(n+1)yn+1,
∞

∑
n=0

λ−(n+1)yn+2, . . .
)

.

This establishes (iii).
For (vi), consider λ with |λ| = 1. If z = (x, y1, y2, . . . ) ∈ D(B), and (λ −

B)z ∈ π(X) then |yn| = |yn+1| for all n > 1. This implies that yn = 0, z = π(x)
and (λ− B)z = π((λ− A)x). In particular, if (λ− B)z = 0 then (λ− A)x = 0.
For any vector in Z of the form

(x, y1, y2, . . . , yk, 0, 0, . . . ),

let y′n = 0 for n > k, and define y′n ∈ Y recursively for n = k, k − 1, . . . , 1 by
λy′n = y′n+1 + yn. If Ran(λ− A) is dense we may then choose x′ ∈ D(A) such
that ‖λx′ − Ax′ − y′1 − x‖ is arbitrarily small. Hence Ran(λ− B) is dense in Z.

If A generates a C0-semigroup on X, then the operator z 7→ (Ax, 0, 0, . . . )
generates a C0-semigroup on Z. Since B is a bounded perturbation of this opera-
tor, B also generates a C0-semigroup.

Finally, the span of the union of {B−k(X) : k > 0} contains all vectors
(x, y1, y2, . . . ) where yn = 0 for all except finitely many n. These vectors are
dense in Z, and the minimality follows.

The following is a version of Theorem 1.1 for semigroup generators. The
proof here is an adaptation of Arens’s proof in the context of Banach algebras.
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THEOREM 3.2. Let A be the generator of a C0-semigroup on X, and assume that
A satisfies (2.1) for some c > 0. Then there exist a Banach space Y ⊇ X and an operator
B on Y with the following properties:

(i) B is the generator of a C0-semigroup on Y;
(ii) B is an outer extension of A;

(iii) B is invertible with ‖B−1‖ 6 c−1, and σ(B) ⊆ σ(A);
(iv) there is a unital isometric algebra homomorphism ϕ : {A}′ → B(Y) such that

ϕ(U) is an extension of U for all U ∈ {A}′ and ϕ(R(λ, A)) = R(λ, B) for all λ ∈
ρ(A).

Proof. Replacing A by c−1 A we may assume that c = 1. Let T be the C0-
semigroup generated by A. We first lift T to the space `1(X).

Define
T̃(t) f = (T(t)xn) ( f = (xn) ∈ `1(X), t > 0).

Then T̃ is a C0-semigroup on `1(X) and its generator C is given by

D(C) = { f = (xn) ∈ `1(X) : xn ∈ D(A) (n ∈ N), (Axn) ∈ `1(X)},
C f = (Axn).

Moreover, σ(C) = σ(A) and the resolvent of C is given by

R(λ, C) f = (R(λ, A)xn) (λ ∈ ρ(A), f = (xn) ∈ `1(X)).

Let R be the right shift on `1(X), and note that R ∈ {C}′. Let J be the closure of
{ f − CR f : f ∈ D(C)} in `1(X). Then J is invariant under T̃, R and R(λ, C).

Let Y = `1(X)/J and define π : X → Y by π(x) = xe0 + J. Here xe0 is the
sequence f with f (0) = x and f (n) = 0 for n > 1. It is clear that ‖π(x)‖ 6 ‖x‖.
Using the triangle inequality and the lower bound (2.1) for A repeatedly, for any
f = (xn) ∈ D(C), we have

‖x‖ 6 ‖x− x0‖+ ‖Ax0‖ 6 ‖x− x0‖+ ‖x1 − Ax0‖+ ‖Ax1‖ 6 · · ·

6 ‖x− x0‖+
∞

∑
n=1
‖xn − Axn−1‖ = ‖xe0 − (I − CR) f ‖`1(X).

Thus ‖x‖ 6 ‖π(x)‖ and π is isometric.
Let q : `1(X) → Y be the quotient map q( f ) = f + J. Since J is invariant

under T̃(t), there are operators on Y defined by

S(t)q( f ) = q(T̃(t) f ) ( f ∈ `1(X), t > 0).

Then S is a C0-semigroup and its generator B is given by D(B) = q(D(C)),
Bq( f ) = q(C f ) for f ∈ D(C). Moreover, σ(B) ⊆ σ(C) = σ(A) and R(λ, B)q( f ) =
q(R(λ, C) f ) for f ∈ `1(X) (see I.5.13, II.2.4 and IV.2.15 of [13]). For x ∈ X, we
have

S(t)π(x) = π(T(t)x).
When we identify X with its image under π, this shows that B is an outer exten-
sion of A (Proposition 2.1(i)).
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Next we show that B has a bounded inverse. Define V on Y by

Vq( f ) = q(R f ) ( f ∈ `1(X)).

Since J is invariant under R, the operator V is well-defined and ‖V‖ 6 ‖R‖ = 1.
Let y ∈ D(B) and choose f ∈ D(C) such that y = q( f ). Since V commutes with
S(t), Vy ∈ D(B) and

BVy = VBy = q(CR f ) = q( f )− q( f − CR f ) = y.

Since B is closed, D(B) is dense in Y and V is bounded, we deduce that Vy ∈ D(B)
and BVy = y for all y ∈ Y, and V is the inverse of B.

For U ∈ {A}′ and f = (xn) ∈ `1(X), define

ϕ(U)q( f ) := q((Uxn)).

Since J is invariant under the map f 7→ (Uxn), ϕ(U) is a well-defined, bounded
operator on Y with ‖ϕ(U)‖ 6 ‖U‖ and ϕ(U)π(x) = π(Ux) for x ∈ X, so ϕ(U)
is an extension of U when we identify X with π(X) ⊆ Y. Moreover, ϕ is a unital
algebra homomorphism. For λ ∈ ρ(A) and f ∈ `1(X), we have

ϕ(R(λ, A))q( f ) = q((R(λ, A)xn)) = q(R(λ, C) f ) = R(λ, B)q( f ).

So ϕ(R(λ, A)) = R(λ, B).

It is plausible that Theorem 3.2 can be extended to larger classes of un-
bounded operators than generators of C0-semigroups, but this is not straight-
forward. In trying to extend the proof of Theorem 3.2, one can define an operator
C on `1(X) and the corresponding space J. Then the resolvent of A induces op-
erators Rλ on `1(X)/J which form a pseudo-resolvent. The technical problem
which arises is to show that Rλ is injective so that the pseudo-resolvent is the re-
solvent of an operator. This can be achieved in the proof of Theorem 3.2, because
C generates a C0-semigroup which leaves J invariant, so that if f ∈ D(C)∩ J then
C f ∈ J (Proposition 2.1). A similar problem arises if one assumes that ρ(A) is
non-empty and applies Theorem 1.1 to U := µ−1 − R(µ, A) where µ ∈ ρ(A).

In seeking extensions it is natural to consider the class of generators of inte-
grated semigroups, but we are able to obtain only a weak result (Proposition 3.5)
for once integrated semigroups, with a weaker conclusion giving a continuous
embedding of X in Y.

Let k > 1. A function T : [0, ∞) → B(X) which is continuous in the strong
operator topology, is said to be a k-times integrated semigroup if T(0) = 0 and there
exist ω > 0 and M > 1 such that

∥∥∥ t∫
0

T(s)x ds
∥∥∥ 6 Meωt‖x‖ (x ∈ X, t > 0),
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and the (improper) integral

R(λ)x := λk
∞∫

0

e−λtT(t)x dt (x ∈ X, λ > ω)

defines a pseudo-resolvent. These integrals may be improper, but the integrals
over [0, τ] converge in operator-norm (i.e., uniformly for ‖x‖ 6 1), as τ → ∞
([1], Remark 1.4.6). Then T is non-degenerate if any one or all of the following
equivalent conditions is satisfied:

(i) R(λ) is injective;
(ii) there is an operator A such that R(λ, A) = R(λ);

(iii) if x ∈ X and T(t)x = 0 for all t > 0 then x = 0.

See Proposition 3.2.9 of [1]. Then A is the generator of the integrated semigroup.
When A generates a non-degenerate (once) integrated semigroup T on X

and Y is a closed T-invariant subspace of X, there may exist y ∈ Y ∩ D(A) with
Ay /∈ Y, and the induced integrated semigroup on X/Y is then degenerate. This
causes the proof of Theorem 3.2 to break down for integrated semigroups. In the
special case of once integrated semigroups we can partially avoid this obstruction
as shown in Proposition 3.5.

Let S be a (degenerate) k-times integrated semigroup on X, and N be its
degeneration space

N := {y ∈ X : S(t)y = 0 for all t > 0}.

This is a closed subspace of X, invariant under S(t). Let S̃(t) be the operator on
X/N induced by S(t). It is readily verified that S̃ is a k-times integrated semi-
group.

LEMMA 3.3. If S is a once integrated semigroup on X, then S̃ is a non-degenerate
once integrated semigroup on X/N.

Proof. We have to show that S̃ is non-degenerate, that is, if x ∈ X and
S(t)x ∈ N for all t > 0, then x ∈ N. Since S(t)x ∈ N, S(s)S(t)x = 0 for all
s, t > 0. By Proposition 3.2.4 of [1],

s+t∫
s

S(r)x dr =
t∫

0

S(r)x dr.

Differentiation at t = 0 gives S(s)x = S(0)x = 0 for all s, so x ∈ N.

Lemma 3.3 does not extend to k-times integrated semigroups, where k > 2.

EXAMPLE 3.4. Let k > 2, X = C2 and

S(t) =
(

0 tk−1

0 0

)
(t > 0).
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Then S(0) = 0 and

R(λ) = λk
∞∫

0

e−λtS(t)dt =
(

0 (k− 1)!
0 0

)
(λ > 0).

This is a pseudo-resolvent, so S is a k-times integrated semigroup. The degenera-
tion space N is spanned by (1, 0). The induced integrated semigroup on X/N is
0, so it is degenerate.

PROPOSITION 3.5. Let A be the generator of a non-degenerate once integrated
semigroup on X, and assume that (2.1) holds for some c > 0. Then there exist a Banach
space Z, a continuous embedding π : X → Z and an operator B on Z with the following
properties:

(i) B is the generator of a non-degenerate once integrated semigroup on Z;
(ii) B is invertible with ‖B−1‖ 6 c−1, and σ(B) ⊆ σ(A);

(iii) if x ∈ D(A) then π(x) ∈ D(B) and Bπ(x) = π(Ax).

Proof. The proof initially follows the lines of Theorem 3.2. Let T be the once
integrated semigroup generated by A. Define Y, C, R, J, T̃(t) and S(t) as in the
proof of Theorem 3.2. They have the same properties as in Theorem 3.2, except
that T̃ and S are now once integrated semigroups, T̃ is non-degenerate with gen-
erator C, and S may be degenerate. Nevertheless there exist bounded operators
Rλ (λ ∈ ρ(A)) on Y such that Rλ( f + J) = (R(λ, A)xn) + J for f = (xn) ∈ `1(X).
They form a pseudo-resolvent, but they are not necessarily injective.

Let N be the degeneration space of S, and let Z = Y/N. Since Rλ commutes
with S(t), N is invariant under Rλ, and therefore Rλ induces a bounded operator
R̃λ on Z, and {R̃λ : λ ∈ ρ(A)} is a pseudo-resolvent. By Lemma 3.3, S induces
a non-degenerate once integrated semigroup S̃ on Z. Let q( f ) = ( f + J) + N for
f ∈ `1(X), and π(x) = q(xe0) for x ∈ X. Let x ∈ Ker π, so S(t)(xe0 + J) = 0
for all t > 0. This means that T(t)xe0 ∈ J, and then T(t)x = 0 for all t > 0 since
y → ye0 + J is injective on X. Since T is non-degenerate, this implies that x = 0.
Thus π is a continuous embedding of X into Z.

Define V : Z → Z by

Vq( f ) = q(R f ) ( f ∈ `1(X)).

This is well-defined and contractive, since f + J ∈ N implies that T̃(t) f ∈ J for
all t > 0, and then T̃(t)R f = RT̃(t) f ∈ J, so R f + J ∈ N. Let B be the generator
of S̃, take λ > ω, and consider z ∈ D(B). Then

z = R(λ, B)y = λ

∞∫
0

e−λtS̃(t)y dt
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for some y ∈ Z. Take g ∈ `1(X) such that y = q(g), and let f = R(λ, C)g. Then
z = q( f ) and

VBz = λVz−Vy = λVz− qRg = λVz− qR(λ− C) f = qCR f = q( f ).

Moreover, for any z = q( f ) and λ > ω,

R(λ, B)(λVz−z)=qR(λ, C)(λR f− f )=λqRR(λ, C) f−qRCR(λ, C) f =qR f =Vz.

Hence Vz ∈ D(B) and BVz = z. So B is invertible with B−1 = V. Moreover, for
f ∈ `1(X) and λ > ω,

qR(λ, C) f = q
(

lim
τ→∞

(
λ

τ∫
0

e−λtT̃(t) f dt
))

= λ lim
τ→∞

τ∫
0

S̃(t)q( f )dt = R(λ, B)q( f ).

Since {R̃λ : λ ∈ ρ(A)} is a pseudo-resolvent, it follows that σ(B) ⊆ σ(A).
For x ∈ D(A), we have x = R(λ, A)(λx− Ax), so

π(x) = R̃λπ(λx− Ax) = R(λ, B)π(λx− Ax).

It follows that π(x) ∈ D(B) and Bπ(x) = π(Ax).

4. REDUCING THE SPECTRUM

Here we adapt Read’s theorem (Theorem 1.2) itself to the case of the gener-
ator of a C0-semigroup.

THEOREM 4.1. Let A be the generator of a C0-semigroup on X. Then there exist a
Banach space Y ⊇ X and an operator B on Y with the following properties:

(i) B is the generator of a C0-semigroup on Y;
(ii) B is an outer extension of A;

(iii) σ(B) = σap(A).
Furthermore there is a unital isometric algebra homomorphism

ϕ : {A}′ → B(Y)

such that ϕ(U) is an extension of U for all U ∈ {A}′ and ϕ(R(λ, A)) = R(λ, B) for
all λ ∈ ρ(A).

Proof. Let T be the C0-semigroup generated by A, and take µ > ω0(T), the
growth bound of T, so µ ∈ ρ(A). By applying Theorem 1.2 to R(µ, A), and then
applying Proposition 2.2, there exist a Banach space Y ⊇ X and a C0-semigroup
S on Y, extending T, such that the generator B of S satisfies

σ(R(µ, B)) ⊆ σap(R(µ, A)).

Since R(µ, B) extends R(µ, A), we have

σ(R(µ, B)) = σap(R(µ, A)).
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By a standard spectral property ([1], Proposition B.2),

σap(A) = {λ ∈ C : (µ− λ)−1 ∈ σap(R(µ, A))}

= {λ ∈ C : (µ− λ)−1 ∈ σ(R(µ, B))} = σ(B).

A class of “uniformly expansive” operators was introduced in [12] and [19],
and the following slightly larger class was considered in [4]. An operator U ∈
B(X) is said to be quasi-hyperbolic if the following equivalent conditions are satis-
fied. Here, T denotes the unit circle in C:

(i) There exists n ∈ N such that max(‖U2nx‖, ‖x‖) > 2‖Unx‖ for all x ∈ X.
(ii) σap(U) ∩T = ∅.

(iii) There exists c > 0 such that

(4.1) ‖(U − λ)x‖ > c‖x‖ (x ∈ X, λ ∈ T).

(iv) U is the restriction of an operator V ∈ B(Y) on a Banach space Y ⊇ X with
T ⊆ ρ(V) (i.e., V is hyperbolic).

The implication (ii)⇒ (i) was essentially shown in [19], and (ii)⇒ (iv) is a special
case of Theorem 1.2. The other implications are very elementary.

Although the proof of Read’s theorem is substantially simpler in the re-
stricted form needed here than in its full generality, it does not appear to give
any estimate for ‖R(λ, V)‖. Nevertheless it is possible to show that there exists
K depending only on ‖U‖ and c, such that V can be constructed as in (iv) and
‖R(λ, V)‖ 6 K for all λ ∈ T. To see this, we argue by contradiction.

Let M > 1 and c > 0. Assume that for each n ∈ N, there is an operator
Un on a Banach space Xn such that Un satisfies (4.1), ‖Un‖ 6 M and for every
extension V of Un with T ⊆ ρ(V), there exists λ ∈ C such that ‖R(λ, V)‖ > n.
Let X be the c0-direct sum X =

⊕
n>1

Xn and U =
⊕

n>1
Un. Then ‖U‖ 6 M and

‖(U − λ)(xn)‖ > c‖(xn)‖ ((xn) ∈ X, λ ∈ T).

By Theorem 1.2 there is an extension V of U with T ⊆ ρ(V). Since T is compact
there exists K such that ‖R(λ, V)‖ 6 K for all n > 1. Now Xn is isometrically
embedded in X and V is an extension of Un. For each n > 1, n < ‖R(λn, V)‖ 6 K
for some λn ∈ T. This is a contradiction.

This raises the following problem.

OPEN QUESTION 4.2. Find K : (0, 1) × (1, ∞) → (1, ∞) such that the fol-
lowing holds. If U is a bounded operator satisfying (4.1), there is an extension V
of U with ‖V‖ = ‖U‖, T ⊆ ρ(V) and

sup
λ∈T
‖R(λ, V)‖ 6 K(c, ‖U‖).

Weighted shift operators provide examples of quasi-hyperbolic operators
which are not hyperbolic. The following gives an explicit description of exten-
sions of weighted shifts on `1(Z) to hyperbolic operators.
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EXAMPLE 4.3. Let X = `1(Z) and Tw ∈ B(X) be the weighted shift given by

Tw(en) = wnen+1 (n ∈ Z),
where en are the standard basis vectors and 0 < wn 6 M for all n. We assume
that

wn > 1 (n > 0), wn < 1 (n < 0), 0 6 r−(Tw) < 1 < i+(Tw).

Here

i+(Tw) = lim
n→∞

inf
k>0

(wk · · ·wk+n−1)
1/n, r−(Tw) = lim

n→∞
sup
k<0

(wk−n · · ·wk−1)
1/n.

For the corresponding operator on `2(Z), Ridge [27] (see also Proposition 2.5 of
[4]) showed that σap(Tw) consists of two (possibly degenerate) annuli centred at
0, one with outer radius r−(Tw), and the other with inner radius i+(Tw), while
σ(Tw) is the smallest annulus containing σap(Tw). In particular, Tw is quasi-
hyperbolic, but T ⊆ σ(Tw).

In Section 3.6.1 of [14] an isomorphic embedding π : X → Y := `1(Z) ⊕
`1(Z), and weights α and β on Z, are constructed such that

(4.2) π ◦ Tw = S ◦ π

where S = Tα ⊕ Tβ. Moreover, the weights α and β are chosen so that σ(Tα) is
inside the open unit disc and σ(Tβ) is outside the closed unit disc. In particular,
σ(S) ∩ T is empty. Furthermore it is shown that if c > 0 is chosen so that Tw
satisfies (4.1) then

(4.3) ‖R(λ, S)‖ 6 eM̃2/c+1 log M̃
c

(λ ∈ T),

where M̃ = max(2, ‖Tw‖).
The embedding π of X in Y here is not isometric but ‖x‖∗ := ‖π(x)‖Y is a

weighted `1- norm satisfying ‖x‖X 6 ‖x‖∗ 6 2‖x‖X . One may vary the definition
of π so that it becomes isometric. Then one can vary the definition of α and β in
order to satisfy (4.2).

Other constructions or calculations may provide sharper estimates than (4.3).
On the other hand, it is plausible that weighted shifts will have the worst be-
haviour for this type of problem. Thus we conjecture that there exist positive
constants a, b such that

K(c, τ) := aτb/c

has the properties required in Open Question 4.2.
There is a related question for generators of quasi-hyperbolic C0-semigroups

as defined in [4]. A C0-semigroup T is quasi-hyperbolic if and only if T(t) is
quasi-hyperbolic for some, or equivalently all, t > 0.

Let A be the generator of a C0-semigroup T. When T is quasi-hyperbolic, it
was shown in Proposition 3.2 of [4] that

(4.4) ‖(A− is)x‖ > c‖x‖ (x ∈ D(A), s ∈ R)
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for some c > 0. On the other hand, the full converse is not true, as (4.4) does
not imply that T is quasi-hyperbolic in general. A possible partial converse was
raised as a question in Section 4 of [4]; it remains an open question whether (4.4)
implies that there is a continuous injection of X into a Banach space Y such that
π ◦ T(t) = S(t) ◦ π for some hyperbolic semigroup S on Y.

The following question asks about another possible partial converse prop-
erty of a different type.

OPEN QUESTION 4.4. Let A be the generator of a C0-semigroup on a Banach
space X, and assume that (4.4) holds for some c > 0. Does A have an extension
B which is the generator of a C0-semigroup on a Banach space Y ⊇ X, with iR ⊆
ρ(B) and sup

s∈R
‖R(is, B)‖ < ∞?

This question has a positive answer on Hilbert spaces. For a C0-semigroup
T on a Hilbert space, the following properties are equivalent:

(i) (4.4) holds;
(ii) T is quasi-hyperbolic;

(iii) T is the restriction of a hyperbolic C0-semigroup on a Hilbert space to a
closed invariant subspace;

(iv) A has an extension B which is the generator of a C0-semigroup on a Hilbert
space Y ⊇ X, with iR ⊆ ρ(B) and sup

s∈R
‖R(is, B)‖ < ∞.

The implication (i)⇒ (ii) was shown in Corollary 3.1 of [4]. Read’s theorem may
be applied as in Theorem 2.2 of [4] to show that (ii)⇒ (iii). Elementary theory of
hyperbolic semigroups as in Section V.1c of [13] shows that (iii)⇒ (iv), and (iv)
⇒ (i) is elementary.

5. LOWER BOUNDS FOR SEMIGROUPS

Let T be a C0-semigroup on a Banach space X, and assume that, for some
τ > 0, there exists c(τ) > 0 such that

‖T(τ)x‖ > c(τ)‖x‖ (x ∈ X).

Using the semigroup property and local boundedness of ‖T(t)‖, it is easy to see
that

(5.1) ‖T(t)x‖ > c(t)‖x‖ (x ∈ X, t > 0),

where c : (0, ∞)→ (0, ∞). The function

γT(t) := (inf{‖T(t)x‖ : x ∈ X, ‖x‖ = 1})−1,

is submultiplicative, i.e., γT(s + t) 6 γT(s)γT(t), and locally bounded, and it
satisfies γT(t) 6 Meαt for some M > 0 and α ∈ R. Now (5.1) holds if and only if
c(t) > 1/γT(t).
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In some parts of the literature, a C0-semigroup is said to be “left-invertible”
if (5.1) holds with c(t) > 0, but such terminology for semigroups might be inter-
preted in several different ways for semigroups. For greater precision, we shall
say that T satisfies lower bounds when (5.1) holds, with c(t) > 0. Now we describe
various notions of left-inverse for T.

If each operator T(t) has a bounded left-inverse on X, then T satisfies lower
bounds. When T satisfies lower bounds, each T(t) is injective with closed range,
so there is a bounded left-inverse operator L0(t) : Ran T(t) → X such that
L0(t)T(t) = I. In many cases, L0(t) can be extended to a bounded operator
L(t) on X, and then L(t)T(t) = I. However this extension process may be quite
arbitrary, and L may not satisfy the semigroup property on X.

We shall say that a C0-semigroup L on X is a left-inverse semigroup on X for
T if L(t)T(t)x = x for all x ∈ X, t > 0. More generally, a C0-semigroup L on a
Banach space Y ⊇ X is a left-inverse semigroup on Y for T if L(t)T(t)x = x for all
x ∈ X, t > 0. Proposition 2.1 shows that L is a left-inverse semigroup for T if and
only if the generator B of L is an extension of −A, where A is the generator of T.
It is known that any C0-semigroup satisfying lower bounds on a Hilbert space X
has a left-inverse semigroup on X (see Theorem 7.3).

A particular case of a left-inverse semigroup occurs when T extends to a C0-
group S on Y ⊇ X in the sense that X is invariant under S(t) and T(t) = S(t)|X ,
for all t > 0. In this case, we shall say that S is a C0-group extension of T on Y. Then
L(t) := S(−t) is a left-inverse semigroup for T on Y, and the generator of S is an
extension of A. However X will not be invariant under S(−t) for t > 0 unless
T is itself a C0-group. We shall see in Proposition 5.3 that every C0-semigroup
satisfying lower bounds has a C0-group extension on a larger Banach space.

When constructing left-inverse C0-semigroups L or C0-group extensions S
for T, it is desirable also to keep control on their growth. Ideally the growth
of ‖L(t)‖ would be comparable with the growth of γT(t), but this cannot be
achieved precisely in general (see Proposition 5.3 and Example 5.6). In the case of
group extensions, it would also be desirable that ‖S(t)‖ is comparable to ‖T(t)‖
for large t > 0.

We now recall some known results, beginning with the case when c(t) = 1
for all t. In the following proposition the equivalence of (i) and (ii) is a counterpart
of the Lumer–Phillips theorem, from pp. 419, 420 of [15], and the equivalence of
(i) and (iii) is from Proposition 2.2, Theorem 3.3 of [5].

PROPOSITION 5.1. Let A be the generator of a C0-semigroup T on a Banach space
X. The following are equivalent:

(i) T is expansive, i.e., ‖T(t)x‖ > ‖x‖ for all x ∈ X, t > 0.
(ii) −A is dissipative.

(iii) There is a C0-group extension S of T on a Banach space Y containing X such that
‖S(−t)‖ 6 1 for all t > 0.
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The following theorem is a compilation of known results giving a version of
Proposition 5.1 allowing arbitrary (submultiplicative) growth of the left-inverses.
The property (i) of Theorem 5.2 implies (5.1) for c(t) = γ(t)−1, by putting n = 1
and t1 = 0. The converse (that (5.1) implies (i)) holds when c(t) = 1, or c(t) =
e−αt (see Proposition 5.1), but not in general (see Example 5.6). The implication
(i)⇒ (ii) was noted in Remarks 3.2(iv) of [3], where details of the discrete coun-
terpart were given. For (iii)⇒ (i), applying L(t) to (5.2) gives

x = L(t− t1)x1 + · · ·+ L(t− tn)xn,

and (i) follows.

THEOREM 5.2. Let γ : R+ → (0, ∞) be a submultiplicative function. Let T be a
C0-semigroup on X. The following properties are equivalent:

(i) Whenever x, x1, . . . , xn ∈ X, 0 6 t1 6 t2 6 · · · 6 tn 6 t, and

(5.2) T(t)x = T(t1)x1 + · · ·+ T(tn)xn,

we have

(5.3) ‖x‖ 6 γ(t− t1)‖x1‖+ · · ·+ γ(t− tn)‖xn‖.
(ii) There is a C0-group extension S of T on a Banach space Y containing X such that

‖S(−t)‖ 6 γ(t) for all t > 0.
(iii) There is a left-inverse semigroup L for T on a Banach space Y containing X such

that ‖L(t)‖ 6 γ(t) for all t > 0.

Zwart ([31], Section 3) has asked whether every C0-semigroup satisfying
lower bounds on a Banach space X has a left-inverse semigroup on X. The fol-
lowing new result shows that any semigroup satisfying lower bounds has a C0-
group extension S on a larger Banach space such that the exponential growth
bound of {S(−t) : t > 0} is arbitrarily close to the exponential growth bound of
γT . In Example 5.6 we show that it may not be possible to arrange that ‖S(−t)‖ =
O(cT(t)−1) as t→ ∞.

PROPOSITION 5.3. Let T be a C0-semigroup on a Banach space X satisfying lower
bounds, and let c > 0 and α ∈ R be such that

‖T(t)x‖ > ce−αt‖x‖ (x ∈ X, t > 0).

For each ω > α, there exist a C0-group extension S on a Banach space Y containing X
and M > 1 such that ‖S(t)‖ = ‖T(t)‖ and ‖S(−t)‖ 6 Meωt for all t > 0.

Proof. By replacing T(t) by eαtT(t) and ω by ω − α, we may assume that
α = 0. Let ω > 0 and τ = ω−1 log(c−1). By Theorem 1.1, there exist Y ⊇ X
and an isometric homomorphism ϕ : {T(τ)}′ → B(Y) such that ϕ(T(t)) is an
extension of T(t) for all t, ϕ(T(τ)) is invertible and ‖(ϕ(T(τ)))−1‖ 6 c−1. By
applying Proposition 2.2 and changing Y if necessary, we may arrange that there
is a C0-semigroup S on Y given by

S(t) = ϕ(T(t)) (t > 0).
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Since S(τ) is invertible, S is a C0-group on Y extending T. Moreover

‖S(−τn)‖ 6 c−n = eωτn (n > 1).

This implies that
‖S(−t)‖ 6 Meωt (t > 0),

where M > 1 is chosen suitably.

Xu and Shang ([29], Theorem 2.4) have stated the following theorem.

THEOREM 5.4. Let T be a C0-semigroup on a Banach space X, with generator A.
The following properties are equivalent:

(i) T satisfies lower bounds;
(ii) there exists an equivalent norm ‖ · ‖∗ on X such that, for some ω ∈ R,−(A+ω)

is dissipative on (X, ‖ · ‖∗).
The proof of (i) ⇒ (ii) in [29] appears to be incomplete, as the equivalent

norm is taken to be

(5.4) ‖x‖∗ = inf
t>0
‖eαtT(t)x‖ (x ∈ X),

where

(5.5) ‖T(t)x‖ > ce−αt‖x‖ (x ∈ X).

The authors then take ω = α in (ii). However the definition of ‖ · ‖∗ in (5.4) may
not satisfy the triangle inequality. So we give here a proof that (i) implies (ii),
based on Proposition 5.3. This proof shows that when (5.5) holds for some c and
α, then ω in (ii) can be any number with ω > α. We shall see in Example 5.6 that
it may not be possible to take ω = α.

Proof. (i) ⇒ (ii) Let c and α be as in (5.5), and ω > α. Let S be a C0-group
extension of T on Y ⊇ X as in Proposition 5.3. By a standard renorming in semi-
group theory ([13], Lemma II.3.10), there is an equivalent norm on Y given by

‖y‖∗ = sup{e−ωt‖S(−t)y‖ : t > 0} (y ∈ Y),

and e−ωtS(−t) is a C0-semigroup of contractions on (Y, ‖ · ‖∗), so its generator is
dissipative in that space. The generator is −(B + ω), where B is the generator of
the C0-semigroup S. By Proposition 2.1, B is an extension of A. Hence −(A + ω)
is dissipative on (X, ‖ · ‖∗).

When A generates a C0-semigroup T, the following result gives extension
properties of T which characterise when there is an equivalent norm for which
−A is dissipative.

THEOREM 5.5. Let T be a C0-semigroup on a Banach space X, with generator A.
The following are equivalent:

(i) There is an equivalent norm ‖ · ‖∗ on X such that −A is dissipative with respect
to (X, ‖ · ‖∗).
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(ii) There is a Banach space Y in which X is isomorphically embedded, and a C0-group
S on Y such that ‖S(−t)‖B(Y) 6 1 and S(t)x = T(t)x for all x ∈ X, t > 0.

(iii) There is a C0-group extension S of T on a Banach space Z ⊇ X and a constant κ
such that ‖S(−t)‖B(Z) 6 κ for all t > 0.

(iv) There exists κ such that

‖x‖ 6 κ(‖x1‖+ · · ·+ ‖xn‖)

whenever x1, . . . , xn ∈ X, 0 6 t1 6 t2 6 · · · 6 tn 6 t and

T(t)x = T(t1)x1 + · · ·+ T(tn)xn.

Proof. (i)⇒ (ii) Apply Proposition 5.1 in the space (X, ‖ · ‖∗).
(ii)⇒ (i) Let ‖ · ‖∗ be the norm of Y restricted to X. The generator of {S(−t) :

t > 0} is an extension of −A, and it is dissipative with respect to ‖ · ‖Y.
(ii)⇒ (iii) Take κ1, κ2 > 0 such that κ1‖x‖Y 6 ‖x‖X 6 κ2‖x‖Y for all x ∈ X.

For y ∈ Y, let

‖y‖Z = inf{‖x‖X + κ2‖y− x‖Y : x ∈ X}.

It is readily verified that ‖ · ‖Z is a norm on Y, equivalent to ‖ · ‖Y, and ‖x‖Z =
‖x‖X for all x ∈ X. Then we can take Z = (Y, ‖ · ‖Z).

(iii)⇒ (ii) Let Y = (Z, ‖ · ‖Y) where

‖y‖Y = sup{‖S(−t)y‖Z : t > 0}.

This norm is equivalent to ‖ · ‖Z on Z, and hence equivalent to ‖ · ‖X on X, and
S(−t) is contractive with respect to ‖ · ‖Y.

(iii) ⇔ (iv) This follows from Theorem 5.2, taking γ(t) = κ > 1 for all
t > 0.

The following example shows that (5.1) for c(t) = c does not imply the
equivalent conditions of Theorem 5.5. Consequently, (5.1) for c(t) = c does not
imply that T is expansive in an equivalent norm on X, and one cannot take ω = α
in Proposition 5.3.

EXAMPLE 5.6. Let c ∈ (0, 1) and M > 1 be given. There exists a C0-
semigroup T on a Hilbert space X with the following properties:

(i) c‖x‖ 6 ‖T(t)x‖ 6
√

2Mt‖x‖ for all t > 0, x ∈ X;
(ii) if L is any left-inverse semigroup for T on a Banach space Y ⊇ X then

{‖L(t)‖ : t > 0} is unbounded.
We begin by presenting examples satisfying a weaker version of (ii).
Given M > 1 and c ∈ (0, 1), take ε ∈ (0, c). Take kε > 0 and ε′ > 0 such that

ck < ε,
Mk(ε− ck)

2
>

Mc
1− c

,
ε− ck

2
<

M
1− c

ε′ < ε− ck.
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Then let

Ω = {(x, y) ∈ R2
+ : x = 0 or y ∈ kεN},

w(x, y) =

{
cdy/kεe−1 if 0 6 x 6 t < x + y,
cy/kε Mxε′ if x > 0.

Let µ be one-dimensional Hausdorff measure on Ω, and let Xε be the Hilbert
space L2(Ω, w, µ) of all f for which

‖ f ‖2 :=
∫
Ω

| f |2w2 dµ < ∞.

Let

(Tε(t) f )(x, y) =


f (x− t, y) if 0 6 t < x,
f (0, y− t + x) if 0 6 x 6 t < x + y,
0 otherwise.

Then Tε is a C0-semigroup with ‖Tε(t)‖ 6
√

2Mt and ‖Tε(t) f ‖ > c‖ f ‖ for all
f ∈ X and t > 0. Take f ∈ X which is supported on {0} × (0, kε), with ‖ f ‖ = 1.
Then there exist g, fi ∈ X with

Tε(k2
ε ) f = g +

kε

∑
i=1

Tε(kε(kε − i)) fi, ‖g‖+
kε

∑
i=1
‖ fi‖ 6 ε.

We refer the reader to Section 3.2 of [14] for the detailed justification of these
properties. It follows that for any left-inverse C0-semigroup L on a Banach space
Y ⊇ Xε,

sup
06t6k2

ε

‖L(t)‖ > ε−1.

To complete the construction, take the `2-direct sum X of the spaces Xn−1 [3]
(n > 1/c) as constructed above with ε = n−1, and kε = dlog(2n)/ log(1/c)e and
let T be the direct sum of the C0-semigroups Tn−1 . Any left-inverse semigroup
for T on Y ⊇ X is then a left-inverse semigroup for Tn−1 on Xn−1 (regarded as a
subspace of X in the natural way), so there exist tn such that

0 6 tn 6
(

1 +
log(2n)
log(1/c)

)2
, ‖L(tn)‖ > n (n >

1
c
).

This implies that

lim sup
t→∞

e−
√

t‖L(t)‖ > 0.

In particular ‖L(t)‖ is not polynomially bounded in t.
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6. OPERATORS ON HILBERT SPACES

In this section we give results for operators on Hilbert spaces, where the
extensions should also be operators on Hilbert spaces. We start by reformulating
Proposition 3.1 in a form which is specific to Hilbert spaces.

When X is a Hilbert space, we may take Y = X 	 Ran A and p = 2 in the
construction of Proposition 3.1. Then Z is also a Hilbert space, and the extension
B constructed there satisfies ‖B−1‖ 6 c−1 and ‖B‖ = ‖A‖ if A is bounded (note
that ‖A‖ > c). If in addition A is densely defined we can construct the same (up
to unitary equivalence) invertible extension of A via the polar decomposition of
A, A = PU where P = (A∗A)1/2 is self-adjoint and U is a partial isometry. When
A is bounded below as in (2.1), P is invertible and U is a unitary operator of X
onto the closed subspace Ran A.

PROPOSITION 6.1. Let A be a closed, densely defined operator on a Hilbert space
X, and assume that (2.1) holds for some c > 0. Let A = UP be the polar decomposition
of A. Let Z̃ be the Hilbert space X× X, and B̃ be the operator on Z̃ given by

B̃ =

(
A c(I −UU∗)
0 cU∗

)
,

with domain D(B̃) = D(A)× X. Then B̃ has the following properties:
(i) B̃ is an outer extension of A (when X is identified with X× {0});

(ii) B̃ is invertible and ‖B̃−1‖ 6 c−1;
(iii) if A is not invertible, then σ(B̃) ⊆ σ(A);
(iv) if A generates a C0-semigroup on X, then B̃ generates a C0-semigroup on Z;
(v) if A is bounded, then B̃ is bounded and ‖B̃‖ = ‖A‖.

Proof. Replacing A by c−1 A we will assume that c = 1, which simplifies the
presentation.

It is clear that (x, 0) ∈ D(B̃) if and only if x ∈ D(A) and then B̃(x, 0) =

(Ax, 0). Moreover, B̃ is invertible with

B̃−1 =

(
P−1U∗ 0

I −UU∗ U

)
,

and ‖B̃−1‖ 6 1 because

‖B̃(x1, x2)‖2 = ‖Ax1 + (I −UU∗)x2‖2 + ‖U∗x2‖2

= ‖Ax1‖2 + ‖(I −UU∗)x2‖2 + ‖UU∗x2‖2

= ‖Ax1‖2 + ‖x2‖2 > ‖x1‖2 + ‖x2‖2.

Assume that A is not invertible. The assumption (2.1) on A implies that the
approximate point spectrum of A is contained in {λ ∈ C : |λ| > 1}. Since the
boundary of σ(A) consists of approximate eigenvalues and 0 ∈ σ(A) by assump-
tion, it follows that the closed unit disc is contained in σ(A). Thus if λ ∈ ρ(A)
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then |λ| > 1, so λ ∈ ρ(U∗), R(λ, U∗) =
∞
∑

j=0
λ−(j+1)(U∗)j and the operator

(6.1) R(λ, B̃) =
(

R(λ, A) R(λ, A)(I −UU∗)R(λ, U∗)
0 R(λ, U∗)

)
is a two-sided inverse of λ− B̃. Thus λ ∈ ρ(B̃). So σ(B̃) ⊆ σ(A).

The proof of (iv) is essentially the same as in Proposition 3.1, as the operator
B̃ is a bounded perturbation of (

A 0
0 0

)
.

If A is bounded, then

‖B̃(x1, x2)‖2 = ‖Ax1‖2 + ‖x2‖2 6 ‖A‖2 ‖(x1, x2)‖2,

since (2.1) for c = 1 implies that ‖A‖ > 1.

The extension of A to B̃ in Proposition 6.1 is not necessarily minimal. In
order to achieve the minimal extension B, we should replace Z̃ by the closure of⋃
k>0

B̃−k(X× {0}). This space is identified in the following way.

PROPOSITION 6.2. Let X, Z̃, A, c and B̃ be as in Proposition 6.1, and identify X
with the subspace X× {0} of Z̃. Let Z be the closure of

⋃
k>0

B̃−k(X) in Z̃.

For k > 0, let

Z̃k = Ran(Uk(I −UU∗)), Zk = {0} × Z̃k.

The subspaces Z̃k of X are closed and pairwise orthogonal. Moreover

(6.2) Z = X⊕
∞⊕

k=0

Zk,

as an orthogonal direct sum.

Let B be the restriction of B̃ to D(B) := D(A)⊕
∞⊕

k=0
Zk, considered as an operator

on Z. The following properties hold:
(i) B satisfies the properties (i)–(vi) of Proposition 3.1, when X is identified with

X× {0}, and ‖B−1‖ 6 c−1.
(ii) c−1B is a unitary operator of Zk onto Zk−1 for each k > 0, where Z−1 = (X 	

Ran A) ⊆ X.
(iii) Let W ⊇ X be a Hilbert space with closed subspaces Wk such that

W = X⊕
∞⊕

k=0

Wk,

as an orthogonal direct sum, and let C be an invertible operator on W such that ‖C−1‖ 6
c−1, C extends A, D(C) = D(A)⊕ (W 	 X), and C maps Wk onto Wk−1 for k > 0,
where W−1 = X 	 Ran A. Then there is a contraction π : Z → W which acts as
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the identity on X, maps D(B) into D(C), and satisfies C ◦ π = π ◦ B on D(B). If
c−1C : Wk →Wk−1 is unitary for each k > 0, then π : Z →W is unitary.

Proof. We again assume that c = 1.
It is elementary that the spaces Z̃k are closed and orthogonal in X and so

the spaces Zk are closed and orthogonal in Z̃. It is easily seen that B̃ maps Zk
isometrically onto Zk−1 for k > 0, and B̃−k(X × {0}) = X × Z̃k−1, for all k > 1.
This establishes that (6.2) and property (ii) hold. Moreover, Z is invariant under
B̃ and B̃−1, and under R(λ, B̃) for |λ| > 1. So properties (i)–(v) established in
Proposition 6.1 for B̃ transfer to B. To see (vi), one may use (iii), proved in the
next paragraph, to deduce that the extension (Z, B) is unitarily equivalent to the
extension (Z, B) obtained from Proposition 3.1 with p = 2 and Y = Z−1, so (vi)
transfers from the corresponding statement in Proposition 3.1. Alternatively one
may carry out the calculations directly in the space Z (see [14]).

Let W, Wk and C be as in (iii). For each k > 0 the map C−(k+1)Bk+1 is
a contraction of Zk onto Wk. Together with the identity map on X these maps
define a contraction π of Z into W. The property that C ◦ π = π ◦ B is easily seen
to hold on X and each Zk. If C : Wk → Wk−1 is isometric and surjective for each
k, then so is π. So (iii) is established.

As in the case of Banach spaces, it would be most useful to have a Hilbert
space construction in which a given operator A is extended to an invertible oper-
ator with preservation of its spectrum and of norms of associated bounded oper-
ators, and also including the existence of a suitable homomorphism ϕ from {A}′.
This would be similar to Theorem 1.1 but with X and Y both Hilbert spaces. By
adapting Arens’s method, Badea and Müller ([3], Corollary 4.8) obtained the fol-
lowing result for bounded operators. It has most of the desired features but the
estimates for the norms of the powers of the inverse are not as sharp as one might
expect.

THEOREM 6.3. Let U be a bounded operator on a Hilbert space X and assume that

‖Ux‖ > c‖x‖ (x ∈ X)

for some c > 0. Then there exists a Hilbert space Y ⊇ X and a unital homomorphism
ϕ : {U}′ → B(Y) such that:

(i) ϕ(U) is invertible and ‖ϕ(U)−k‖ 6 c−k2(k+1)/2 for all k > 1;
(ii) for each V ∈ {U}′, ϕ(V) is an extension of V and ‖ϕ(V)‖ 6

√
2‖V‖.

We note also that Read [25] gave a version of Theorem 1.2 for bounded oper-
ators on Hilbert space, in which the norm of the extensions was almost preserved.

OPEN QUESTION 6.4. For which bounded operators U on a Hilbert space
satisfying (2.1) do there exist an invertible extension V of U on a Hilbert space
Y⊇X and an isometric unital homomorphism ϕ : {U}′→B(Y) with ϕ(U)=V?



496 CHARLES J.K. BATTY AND FELIX GEYER

7. SEMIGROUPS ON HILBERT SPACES

Recall that a densely defined operator A on a Hilbert space X generates a C0-
semigroup of contractions if and only if A is a maximal dissipative operator, i.e.,
A is dissipative and it has no proper extension which is a dissipative operator on
X ([9], Theorem 10.4.2). Moreover, any dissipative operator on X has a maximal
dissipative extension on X (see Theorem 3.1.2 of [16] for a simple proof).

The following result gives a different type of extension, by showing that any
dissipative operator on a Hilbert space has an outer extension which generates a
contraction semigroup on a larger Hilbert space.

THEOREM 7.1. Let A be a closed, densely defined, dissipative operator on a Hilbert
space X, and assume that there exists µ ∈ C such that Re µ < 0 and µ /∈ σp(A). Then
there exist a Hilbert space Y ⊇ X and an outer extension B of A such that B generates a
C0-semigroup of contractions on Y.

Proof. Substituting A by aA + ib for some a > 0 and b ∈ R if necessary, we
may assume that −1 /∈ σp(A). Consider the Cayley transform of −A:

C := (I − A)(I + A)−1, D(C) = Ran(I + A).

Then C is closed, I + C = 2(I + A)−1 is injective with dense range D(A), and
A = (I − C)(I + C)−1 on D(A). Moreover, ‖Cx‖ > ‖x‖ for all x ∈ X, by putting
y = (I + A)−1x in

‖(I − A)y‖2 − ‖(I + A)y‖2 = −4 Re〈Ay, y〉 > 0.

We apply Proposition 6.2 to the operator C, putting c = 1 and λ = −1 in the
statement of Proposition 3.1(vi). Then C has an extension to a bounded invertible
operator G with ‖G−1‖ 6 1 on some Hilbert space Y ⊇ X, Ker(I + G) = {0} and
Ran(I + G) is dense in Y, and Ran(I + G) ∩ X = Ran(I + C). Thus the operator

B := (I − G)(I + G)−1, D(B) = Ran(I + G),

is well-defined with dense domain. Moreover

I + B = 2(I + G)−1, I − B = 2G(I + G)−1,

so 1 ∈ ρ(B), (I − B)−1 = (1/2)(G−1 + I), and the Cayley transform of B is

(I + B)(I − B)−1 = G−1.

Since the Cayley transform of B is contractive, B is dissipative. Thus B generates
a C0-semigroup of contractions on Y, by the Lumer–Phillips theorem.

To show that B extends A, we have

D(B) ∩ X = Ran(I + G) ∩ X = Ran(I + C) = D(A).



LOWER BOUNDS FOR UNBOUNDED OPERATORS AND SEMIGROUPS 497

For x ∈ D(A), x = (I + C)x′ for some x′ ∈ X and

(I + G)(x + Bx) = (I + G)(2x′) = 2x = (I + C)(2x′)

= (I + C)(x + Ax) = (I + G)(x + Ax).

Since I + G is injective, Bx = Ax.

Now we turn to lower bounds for semigroups on Hilbert space. The follow-
ing is a Hilbert space version of Proposition 5.1, in which the left inverses act on
the same space as the original operator.

PROPOSITION 7.2. Let A be the generator of a C0-semigroup T on a Hilbert space
X. The following are equivalent:

(i) T is expansive, i.e., ‖T(t)x‖ > ‖x‖ for all x ∈ X, t > 0;
(ii) −A is dissipative;

(iii) there is a left-inverse semigroup for T consisting of contractions on X.

Proof. The equivalence of (i) and (ii) was established in Proposition 5.1, and
it is elementary that (iii) implies (i).

Assume that −A is dissipative. Then −A has a maximal dissipative ex-
tension B which generates a C0-semigroup L of contractions on X. By Proposi-
tion 2.1(ii), L is a left-inverse semigroup for T.

We do not know whether the properties in Proposition 7.2 are also equiva-
lent to the existence of a C0-group extension S of T on a Hilbert space Y ⊇ X such
that ‖S(−t)‖ 6 1 for all t > 0.

The following includes results of Louis and Wexler ([20], Corollary, p. 260)
and Zwart [31].

THEOREM 7.3. Let T be a C0-semigroup on a Hilbert space X, with generator A.
The following are equivalent:

(i) T satisfies lower bounds;
(ii) there is a left-inverse semigroup for T on X;

(iii) there is a C0-group extension S of T on a Hilbert space Y ⊇ X;
(iv) there exists Q ∈ B(X) and an equivalent inner product on X such that the C0-

semigroup generated by A + Q is isometric in the equivalent norm.
If c > 0 and α ∈ R are such that ‖T(t)x‖ > ce−αt‖x‖ for all x ∈ X and t > 0,
and ω > α, then Y and S in (iii) may be chosen so that ‖S(t)‖ 6

√
2‖T(t)‖ and

‖S(−t)‖ 6 Meωt for all t > 0, for some constant M.

Proof. (i)⇒ (ii) This was proved in Corollary, p. 260 of [20], and an alterna-
tive proof was given in Theorem 1 of [31].

(i)⇒ (iii) This can be proved in a very similar way to Proposition 5.3, using
Theorem 6.3 instead of Theorem 1.1.

(i)⇒ (iv) This was proved in Theorem 3 of [31].
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(iv) ⇒ (iii) Let X̃ be the space X with the equivalent inner product and T̃
be the isometric semigroup generated by A + Q on X̃. By a result originally due
to Cooper [8] (see also [11]), T̃ has an extension to a unitary group S̃ on a Hilbert
space Ỹ ⊇ X̃. Let ‖ · ‖Ỹ be the norm on Ỹ and P be the orthogonal projection of Y
onto X̃. Define

‖y‖2
Y = ‖Py‖2

X + ‖(I − P)y‖2
Ỹ

(y ∈ Ỹ).

This is an equivalent norm on Ỹ and it coincides with ‖ · ‖X on X. The space Y :=
(Ỹ, ‖ · ‖Y) is a Hilbert space in the norm ‖ · ‖Y. Let B̃ be the generator of S̃ and
let S be the C0-group on Y generated by the bounded perturbation B := B̃−QP.
Then B extends A and S extends T.

As in Section 5 either of (ii) or (iii) implies (i).

The proofs in [20] and [31] use ideas from control theory. In contrast to
Proposition 5.3, these arguments give little information about the norm of ‖S(t)‖
for either t > 0 or t < 0.

We conclude with some remarks concerning the relations between Zwart’s
result ([31], Theorem 3) (the implication (i)⇒ (iv) in Theorem 7.3) and a similar
result of Haase ([17], Theorem 3.1; [18], Theorem 7.2.8). Haase’s result says that
if B is the generator of a C0-group on a Hilbert space Y then B is a bounded
perturbation of the generator of a group of unitaries with respect to an equivalent
inner product on Y. In an earlier version of this paper, we raised the question
whether the two results are logically related, and we are grateful to Abraham Ng
for providing the key to the following arguments.

First, we assume Zwart’s result, and we will show that Haase’s result fol-
lows. Let B generate a C0-group on a Hilbert space X. Then the semigroup
generated by B satisfies lower bounds, so Zwart’s result implies that there ex-
ist Q ∈ B(X) and an equivalent inner product on X such that B − Q generates
a semigroup of isometries in the new norm. In addition, B− Q generates a C0-
group, so it generates a C0-group of unitaries in the new norm. This gives Haase’s
result.

Now, we assume Haase’s result, and we will use it to show the implication
(iii) ⇒ (iv) in Theorem 7.3. Let A be the generator of a C0-semigroup T on a
Hilbert space X, with a C0-group extension S on a Hilbert space Y ⊇ X, with
generator B. By Haase’s result, there exists Q ∈ B(Y) such that B− Q generates
a C0-group of unitaries for an equivalent inner product on Y. Let Ỹ and X̃ be the
spaces Y and X with the equivalent inner product, and let P be the orthogonal
projection of Ỹ onto X̃. For x ∈ D(A) = D(B) ∩ X,

Ax = PAx = P(B−Q)x + PQx.

Let Q1 ∈ B(X) be the restriction of PQ to X, and let A1 be the restriction of
P(B − Q) to the domain D(A). Then A1 = A − Q1 is the generator of a C0-
semigroup on X. Since B−Q is skew-symmetric on Ỹ, A1 is skew-symmetric on
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X̃. Hence the semigroup generated by A1 is a semigroup of isometries on X̃. This
establishes (iv).

Finally, suppose that ω > α as in Theorem 7.3 and in addition ω is greater
than the exponential growth bound of T. Then the equivalent inner product and
the bounded operator Q in (iv) can be chosen so that Q is self-adjoint on X̃ and
‖Q‖B(X̃) 6 ω. This follows from the corresponding statements in Haase’s result
combined with the proof in the paragraph above.
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