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ABSTRACT. Given a Calderón–Zygmund operator T, a classic result of Coif-
man, Rochberg and Weiss relates the norm of the commutator [b, T] with the
BMO norm of b. We focus on a weighted version of this result, obtained by
Bloom and later generalized by Lacey and the authors, which relates ‖[b, T] :
Lp(Rn; µ) → Lp(Rn; λ)‖ to the norm of b in a certain weighted BMO space
determined by Ap weights µ and λ. We extend this result to higher iterates of
the commutator and recover a one-weight result of Chung, Pereyra and Perez
in the process.
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1. INTRODUCTION

A Calderón–Zygmund operator associated to a kernel K(x, y) is an integral
operator:

T f (x) :=
∫
Rn

K(x, y) f (y)dy, x /∈ supp f ,

where the kernel satisfies the standard size and smoothness estimates

|K(x, y)| 6 C
|x− y|n ,

|K(x + h, y)− K(x, y)|+ |K(x, y + h)− K(x, y)| 6 C
|h|δ

|x− y|n+δ
,

for all |x− y| > 2|h| > 0 and a fixed δ ∈ (0, 1]. We say such a kernel is δ-standard
kernel. The prototypes for this important class of operators are the Hilbert trans-
form, in the one-dimensional case, and the Riesz transforms, in the multidimen-
sional case.
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Recall that the commutator [S, T] of two operators S and T is defined as
[S, T] ··= ST − TS. We are interested in commutators of multiplication by a sym-
bol b with Calderón–Zygmund operators T, denoted [b, T] and defined as:

[b, T] f ··= bT f − T(b f ).

In the foundational paper [7] Coifman, Rochberg, and Weiss provided a connec-
tion between the norm of the commutator [b, T] : Lp(Rn) → Lp(Rn) and the
norm of the function b in BMO. This result was later extended to the case when
the commutator acts between two different weighted Lebesgue spaces Lp(λ) :=
Lp(Rn; λ) and Lp(µ) := Lp(Rn; µ). In 1985, Bloom [2] showed that, if µ and λ are
Ap weights, then ‖[b, H] : Lp(µ) → Lp(λ)‖ is equivalent to ‖b‖BMO(ν), where H
is the Hilbert transform and BMO(ν) is the weighted BMO space associated with
the weight ν = µ1/pλ−1/p. Here,

‖b‖BMO(ν) ··= sup
Q

1
ν(Q)

∫
Q

|b− 〈b〉Q|dx < ∞,

where ν(Q) =
∫
Q

dν, and the supremum is over all cubes Q. When there is no

weight involved, we will simply denote this space by BMO, which is the clas-
sical space of functions with bounded mean oscillation. A new dyadic proof of
Bloom’s result was given in [11]. This was then generalized to all Calderón–
Zygmund operators in [12], where one of the main results is the following theo-
rem.

THEOREM 1.1. Let T be a Calderón–Zygmund operator on Rn and µ, λ ∈ Ap

with 1 < p < ∞. Suppose b ∈ BMO(ν), where ν = µ1/pλ−1/p. Then

‖[b, T] : Lp(µ)→ Lp(λ)‖ 6 c‖b‖BMO(ν),

where c is a constant depending on the dimension n, the operator T, and µ, λ, and p.

A natural extension of this is to consider higher iterates of this commutator.
To see how these arise naturally, we follow an argument of Coifman, Rochberg,
and Weiss, [7]. For b ∈ BMO and r sufficiently small, consider the operator:

Sr( f ) = erbT(e−rb f )

Then it is easy to see that d
dr Sr( f )|r=0 = [b, T]( f ) and similarly that we have

dn

drn Sr( f )|r=0 = [b, . . . , [b, [b, T]], . . .] with the function b appearing n times. For
some Calderón–Zygmund operator T, let C1

b(T) ··= [b, T], and

Ck
b(T) ··= [b, Ck−1

b (T)] for all integers k > 1.

Using weighted theory and the connection between the space BMO and A2
weights, it is then easy to see that the norm of the operator Ck

b(T) on L2(Rn)
depends on the number of iterates and the norm of the function b ∈ BMO. At this
point, a few natural questions arise: (1) What is the norm of the kth iterate as a
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function of the norm of b ∈ BMO? (2) What happens if we attempt to compute
the norm of this operator when it acts on Lp(Rn; w) for a weight w ∈ Ap? (3) Is
there an extension of Theorem 1.1 for the iterates?

In the paper [6] Chung, Pereyra, and Perez provide answers to questions (1)
and (2) and show that

‖Ck
b(T) : L2(w)→ L2(w)‖ 6 c‖b‖k

BMO[w]k+1
A2

,

where c is a constant depending on n, k and T. In fact, they show that, more
generally, if T is any operator bounded on L2(Rn; w) with norm ϕ([w]A2) then

‖Ck
b(T) : L2(w)→ L2(w)‖ 6 ϕ([w]A2)[w]kA2

‖b‖k
BMO,

a result which they then extend to the Lp case using Rubio de Francia extrapola-
tion. However, the two weight extension of Theorem 1.1 lies outside the scope of
the results in [6]. Additionally, in pag. 1166 of [6] they ask if it is possible to pro-
vide a proof of the norm of the iterates of commutators with Calderón–Zygmund
operators via the methods of dyadic analysis. The main goal of this paper is to
extend Theorem 1.1 to the case of iterates, addressing question (3), and in the pro-
cess show how to answer the question raised in [6]. This leads to the main result
of the paper.

THEOREM 1.2. Let T be a Calderón–Zygmund operator on Rn and µ, λ ∈ Ap

with 1 < p < ∞. Suppose b ∈ BMO ∩ BMO(ν), where ν = µ1/pλ−1/p. Then for all
integers k > 1,

‖Ck
b(T) : Lp(µ)→ Lp(λ)‖ 6 c‖b‖k−1

BMO‖b‖BMO(ν),

where c is a constant depending on n, k, T, µ, λ, and p.
In particular, if µ = λ = w ∈ A2,

‖Ck
b(T) : L2(w)→ L2(w)‖ 6 c‖b‖k

BMO[w]k+1
A2

,

where c is a constant depending on n, k and T.

The paper is structured as follows. In Section 2 we discuss the necessary
background and notation, such as the Haar system, dyadic shifts, and weighted
BMO spaces. Note that most of these concepts were also needed in [12], and are
treated in more detail there. In Section 3 we show how, through the Hytönen
representation theorem, it suffices to prove our main result for dyadic shifts Sij.
The rest of the paper is dedicated to this. In Section 4 we revisit the two-weight
proof for the first commutator [b,Sij] in [12], making some definitions which will
be useful later, and obtaining the one-weight result. In Section 5 we look at the
second iteration [b, [b,Sij]] — this will provide the intuition behind the general
case of k iterations, and also establish the final tools needed for this. In Section 6
we prove the general result.
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2. BACKGROUND AND NOTATION

2.1. THE HAAR SYSTEM. Let D0 = {2−k([0, 1)n + m) : k ∈ Z, m ∈ Zn} be the
standard dyadic grid on Rn. For any ω = (ωj)j∈Z ∈ ({0, 1}n)Z, we let Dω ··=
{Q

·
+ ω : Q ∈ D0} be the translate of D0 by ω, where

Q
·
+ ω ··= Q + ∑

j:2−j<l(Q)

2−jωj,

where l(Q) denotes the side length of any cube Q in Rn. Every dyadic grid Dω is
characterized by two fundamental properties, namely: (1) For every P, Q ∈ Dω,
P ∩Q ∈ {P, Q, ∅}, and (2) For every fixed k ∈ Z, the cubes Q ∈ Dω with l(Q) =
2−k partition Rn. Let D be a fixed dyadic grid, Q ∈ D, and k be a non-negative
integer. We let Q(k) denote the kth ancestor of Q in D, i.e. the unique element of
D with side length 2kl(Q) that contains Q, and Q(k) denote the collection of kth

descendants of Q in D, i.e. the 2kn disjoint subcubes of Q in D with side length
2−kl(Q).

The Haar system on D is defined by associating 2n Haar functions to every
Q = I1 × · · · × In ∈ D, where each Ii is a dyadic interval in R with length l(Q),

hε
Q(x) ··=

n

∏
i=1

hεi
Ii
(xi),

for all x = (x1, . . . , xn) ∈ Rn, where ε ∈ {0, 1}n is called the signature of hε
Q, and

hεi
Ii

is one of the one-dimensional Haar functions:

h0
I ··=

1√
|I|

(1I− − 1I+), h1
I ··=

1√
|I|
1I .

We write ε = 1 when εi = 1 for all i. In this case, h1
Q = |Q|−1/2

1Q is said to
be non-cancellative, while all the other 2n − 1 Haar functions associated with Q
are cancellative. Moreover, the cancellative Haar functions on a fixed dyadic grid
form an orthonormal basis for L2(Rn). We then write for any f ∈ L2(Rn),

f = ∑
Q∈D, ε 6=1

f̂ (Q, ε)hε
Q,

where f̂ (Q, ε) ··= 〈 f , hε
Q〉 and 〈·, ·〉 denotes the usual inner product in L2(Rn).

Then

〈 f 〉Q = ∑
R∈D, R)Q; ε 6=1

f̂ (R, ε)hε
R(Q),

where 〈 f 〉Q ··= |Q|−1
∫
Q

f dx denotes the average of f over Q.
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2.2. Ap WEIGHTS. By a weight on Rn we mean an almost everywhere positive,
locally integrable function w. For some 1 < p < ∞ with Hölder conjugate q, we
say that a weight w belongs to the Muckenhoupt Ap class if

[w]Ap
··= sup

Q
〈w〉Q〈w1−q〉p−1

Q < ∞,

where the supremum is over all cubes in Rn. We let w′ ··= w1−q, the “conjugate”
weight to w. Then w ∈ Ap if and only if w′ ∈ Aq, with [w′]Aq = [w]

q−1
Ap

.
For a weight w and 1 < p < ∞, let Lp(w) denote the usual Lp-space with

respect to the measure dw = w dx, i.e. the space of all functions f such that
‖ f ‖p

Lp(w)
=
∫
Rn
| f |p dw < ∞. If w ∈ Ap, we then have the duality (Lp(w))∗ ≡

Lq(w′), in the sense that

‖ f ‖Lp(w) = sup{|〈 f , g〉| : g ∈ Lq(w′), ‖g‖Lq(w′) 6 1}.

We review some of the crucial properties of Ap weights, starting with the
maximal function

M f ··= sup
Q

(〈| f |〉Q1Q),

where again the supremum is over all cubes Q in Rn. If w ∈ Ap, then the follow-
ing bound is sharp [3] (as the referee pointed out, while the sharp inequality first
appeared in [3], this result is implicit in the proof of Christ and Fefferman [4]) in
the exponent of [w]Ap :

(2.1) ‖M‖Lp(w) . [w]
1/(p−1)
Ap

,

where for some quantities A and B, “A . B” denotes A 6 CB for some constant
C. This constant will usually depend on the dimension, the exponent p, and the
Ap characteristics of the weights involved. Another important tool is the dyadic
square function

(SD f )2 ··= ∑
Q∈D, ε 6=1

| f̂ (Q, ε)|2
1Q

|Q| ,

for which we have the sharp [8] one-weight inequality

(2.2) ‖SD‖Lp(w) . [w]
max(1/2, 1/(p−1))
Ap

.

For a dyadic grid D on Rn and a pair (i, j) of non-negative integers, define a
shifted dyadic square function

(2.3) (S̃ i,j
D f )2 ··= ∑

Q∈D, ε 6=1

(
∑

P∈(Q(j))(i)

| f̂ (P, ε)|
)2 1Q

|Q| .

The following was proved in Lemma 2.2 of [12]:

(2.4) ‖S̃ i,j
D ‖L2(w) . 2(n/2)/(i+j)[w]A2 .
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Lastly, we recall the extrapolation property of Ap weights [10]. Suppose an
operator T satisfies

‖T f ‖L2(w) . A[w]αA2
‖ f ‖L2(w),

for all w ∈ A2, for some fixed A > 0 and α > 0. Then,

‖T f ‖Lp(w) . A[w]
α max(1, 1/(p−1))
Ap

‖ f ‖Ap ,

for all 1 < p < ∞ and all w ∈ Ap.

2.3. WEIGHTED BMO. Let w be a weight on Rn. The weighted BMO space
BMO(w) is the space of all locally integrable functions b such that

‖b‖BMO(w) ··= sup
Q

1
w(Q)

∫
Q

|b− 〈b〉Q|dx < ∞,

where w(Q) =
∫
Q

dw, and the supremum is over all cubes Q. Note that if we take

w = 1 we obtain the usual space of functions with bounded mean oscillation,
which we simply denote by BMO. If w ∈ Ap, it was shown in [19] that ‖ · ‖BMO(w)

is equivalent to the norm ‖ · ‖BMOq(w), defined as

‖b‖q
BMOq(w)

··= sup
Q

1
w(Q)

∫
Q

|b− 〈b〉Q|q dw′.

Given a dyadic grid D, we define the dyadic versions of these spaces, BMOD(w)

and BMOq
D(w), by taking the supremum over Q ∈ D instead.

Now suppose µ, λ ∈ Ap and define ν ··= µ1/pλ−1/p. As shown in [12], ν is
then an A2 weight. The following inequality will be very useful:

(2.5) |〈b, Φ〉| . [ν]A2‖b‖BMO2
D(ν)
‖SDΦ‖L1(ν).

This in fact holds for all A2 weights w, and comes from a duality relationship
between BMO2

D(w) and the dyadic weighted Hardy spaceH1
D(w). See Section 2.6

of [12] for details.

2.4. PARAPRODUCTS. Recall the paraproducts with symbol b on R:

Πb f = ∑
I∈D

b̂(I)〈 f 〉IhI and Π∗b f = ∑
I∈D

b̂(I) f̂ (I)|I|−1
1I .

These are most useful in dyadic proofs due to the identity b f = Πb f + Π∗b f +
Π f b. To generalize this property to Rn, we define the multidimensional para-
products below.
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DEFINITION 2.1. For a fixed dyadic gridD on Rn, define the following para-
product operators with symbol b:

Πb f ··= ∑
Q∈D, ε 6=1

b̂(Q, ε)〈 f 〉Qhε
Q, Π∗b f ··= ∑

Q∈D, ε 6=1
b̂(Q, ε) f̂ (Q, ε)

1Q

|Q| , and

Γb f ··= ∑
Q∈D

∑
ε,η 6=1; ε 6=η

b̂(Q, ε) f̂ (Q, η)
1√
|Q|

hε+η
Q ,

where for every ε, η ∈ {0, 1}n, ε + η is defined by letting (ε + η)i be 0 if εi 6= ηi
and 1 otherwise.

Then b f = Πb f + Π∗b f + Γb f + Π f b. Note that, while the first two para-
products above reduce to the standard one-dimensional ones when n = 1, the
third paraproduct Γb vanishes in this case. This third paraproduct comes from
the fact that hε

Qhη
Q = |Q|−1/2 hε+η

Q .
For ease of notation later, we denote

‖T‖Lp(w;v) ··= ‖T : Lp(w)→ Lp(v)‖,

the operator norm between two weighted Lp-spaces. And, when w = v we will
frequently write

‖T‖Lp(w) ··= ‖T : Lp(w)→ Lp(w)‖.
The following two-weight result was proved in Theorem 3.1 of [12]. We

recall first that the adjoints of Πb, Π∗b , and Γb as Lp(µ)→ Lp(λ) operators are Π∗b ,
Πb, and Γb as Lq(λ′)→ Lq(µ′) operators, respectively.

THEOREM 2.2. Let µ, λ ∈ Ap for some 1 < p < ∞, ν = µ1/pλ−1/p, and suppose
b ∈ BMO2

D(ν) for a fixed dyadic grid D on Rn. Then:

‖Πb‖Lp(µ;λ) = ‖Π∗b ‖Lq(λ′ ;µ′) . c‖b‖BMO2
D(ν)

,(2.6)

‖Π∗b ‖Lp(µ;λ) = ‖Πb‖Lq(λ′ ;µ′) . c‖b‖BMO2
D(ν)

,(2.7)

‖Γb‖Lp(µ;λ) = ‖Γb‖Lq(λ′ ;µ′) . c‖b‖BMO2
D(ν)

,(2.8)

where, in each case, c denotes a constant depending on µ, λ, and p.

2.5. DYADIC SHIFTS. Let i, j be non-negative integers and D a dyadic grid on Rn.
A dyadic shift operator with parameters (i, j) is an operator of the form

(2.9) Sij
D f ··= ∑

R∈D
∑

P∈R(i), Q∈R(j)

∑
ε,η∈{0,1}n

aεη
PQR f̂ (P, ε)hη

Q,

where aεη
PQR are coefficients with aεη

PQR 6 |R|−1
√
|P||Q|. The shift is said to be

cancellative if all Haar functions in its definition are cancellative, that is aεη
PQR = 0

whenever ε = 1 or η = 1. Otherwise, it is called non-cancellative.
The following weighted inequality for dyadic shifts, which can be found in

[15], [17], [20], will be extremely useful.
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THEOREM 2.3. Let Sij
D be a dyadic shift operator. Then for any weight w ∈ A2,

(2.10) ‖Sij
D‖L2(w) . κij[w]2,

where κij ··= max{i, j, 1} is the complexity of the shift.

As a first application of this result, we observe that all paraproducts in Def-
inition 2.1 can be expressed in terms of dyadic shifts with parameters (0, 0), that
is, shifts of the form

S00 f = ∑
Q∈D; ε,η∈{0,1}n

aεη
Q f̂ (Q, ε)hη

Q |aεη
Q | 6 1.

For instance, we may write Πb = ‖b‖BMO2
D
S00, where aεη

Q = 0 if ε 6= 1 or η = 1,

and aεη
Q = b̂(Q, η)|Q|−1/2‖b‖−1

BMO2
D

if ε = 1 and η 6= 1. Similar expressions can be

obtained for the other two paraproducts. Then, if Pb is any one of Πb, Π∗b , or Γb,
it follows from (2.10) that

(2.11) ‖Pb‖L2(w) . ‖b‖BMO2
D
[w]A2 ,

for any w ∈ A2. These one-weight inequalities for paraproducts were obtained in
[1] for the one-dimensional case n = 1, and, using the Wilson–Haar basis, in [5]
for n > 1.

We can also use dyadic shifts to recover the one-weight bound for the mar-
tingale transform:

Tσ f ··= ∑
Q∈D, ε 6=1

σQ,ε f̂ (Q, ε)hε
Q,

where |σQ,ε| 6 1 for all Q ∈ D and ε 6= 1. For w ∈ A2, all martingale transforms
Tσ are uniformly bounded on L2(w). In particular, there is a universal constant C
such that

(2.12) ‖Tσ‖L2(w) 6 C[w]A2 ,

for all σ. This result, obtained in [21] for the one-dimensional case, trivially
follows from the observation that Tσ = S00, where aεη

Q is defined to be σQ,ε if
ε = η 6= 1 and 0 otherwise.

The following simple consequence of this fact will come in handy later.

PROPOSITION 2.4. Let w ∈ A2, b ∈ BMO2
D(w), and Tσ be a martingale trans-

form. Then Tσb ∈ BMO2
D(w), with

(2.13) ‖Tσb‖BMO2
D(w) . [w]A2‖b‖BMO2

D(w).

Proof. It is easy to observe that 1Q(Tσb−〈Tσb〉Q)=Tσ(1Q(b−〈b〉Q)), and so

‖Tσb‖BMO2
D(w)= sup

Q∈D

1
w(Q)1/2 ‖Tσ(1Q(b−〈b〉Q))‖L2(w−1). [w]A2‖b‖BMO2

D(w).
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3. PROOF OF THE MAIN RESULT

As in the proof of Theorem 1.1 in [12], the backbone of our proof of Theo-
rem 1.2 is the celebrated Hytönen representation theorem [13], [14], [16], which
we state below.

THEOREM 3.1. Let T be a Calderón–Zygmund operator associated with a δ-stan-
dard kernel. Then there exist dyadic shift operators Sij

ω with parameters (i, j) for all
non-negative integers i, j such that

〈T f , g〉 = cEω

∞

∑
i,j=0

2−κi,j(δ/2)〈Sij
ω f , g〉,

for all bounded, compactly supported functions f and g, where c is a constant depending
on the dimension n and on T. Here all Sij

ω with (i, j) 6= (0, 0) are cancellative, but the
shifts S00

ω may not be cancellative.

It is easy to see that

(3.1) 〈Ck
b(T) f , g〉 = cEω

∞

∑
i,j=0

2−κi,j(δ/2)〈Ck
b(S

ij
ω) f , g〉,

for all integers k > 1. Thus it suffices to show that Ck
b(S

ij
ω) are uniformly bounded,

regardless of ω, with bounds that depend at most polynomially on κij. Since
our arguments will be independent of choice of ω, we fix a dyadic grid D and
suppress the ω subscript in what follows. We claim the following.

THEOREM 3.2. Let µ, λ ∈ Ap for some 1 < p < ∞ and b ∈ BMO2
D(ν) ∩

BMO2
D , where ν = µ1/pλ−1/p. For any pair (i, j) of non-negative integers, let Sij ··=

Sij
D be a dyadic shift as in the Hytönen representation theorem. Then for any integer

k > 1,

(3.2) ‖Ck
b(S

ij)‖Lp(µ;λ) 6 cκk
ij‖b‖k−1

BMO2
D
‖b‖BMO2

D(ν)
,

where c is a constant depending on n, p, µ, λ, and k. In particular, if µ = λ = w ∈ A2,

(3.3) ‖Ck
b(S

ij)‖L2(w) 6 cκk
ij‖b‖k

BMO2
D
[w]k+1

A2
,

where c is a constant depending on n and k.

Then for all ω,

‖Ck
b(S

ij
ω)‖Lp(µ;λ)6 tcκk

ij‖b‖k−1
BMO‖b‖BMO(ν), and ‖Ck

b(S
ij
ω)‖L2(w)6 cκk

ij‖b‖k
BMO[w]k+1

A2
,

where we used the equivalence of BMO(ν) and BMO2(ν) norms. Then (3.1) gives
that

‖Ck
b(T)‖Lp(µ;λ) 6 c‖b‖k−1

BMO‖b‖BMO(ν)

∞

∑
i,j=0

2−κi,j(δ/2)κk
ij 6 c′‖b‖k−1

BMO‖b‖BMO(ν).
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The one-weight result in Theorem 1.2 follows similarly. The rest of the paper is
dedicated to proving Theorem 3.2.

4. THE COMMUTATOR [b,Sij] REVISITED

Recall that the product of two functions can be formally decomposed in
terms of the paraproducts in Definition 2.1 as b f = Pb f + Π f b, where

Pb ··= Πb + Π∗b + Γb.

Consequently, the commutator [b, T] with an operator T can be expressed as

C1
b(T) f = [b, T] f = [Pb, T] f + (ΠT f b− TΠ f b).

Proving inequalities for [b, T] via dyadic methods usually involves proving some
appropriate bounds for the paraproducts — from which the boundedness of the
first term [Pb, T] usually follows — and then treating the “remainder term” R1 f
= ΠT f b− TΠ f b separately.

Now, remark that if we consider the second iteration

C2
b(T) f = [b, C1

b(T)] f = [Pb, C1
b(T)] f + (ΠC1

b (T) f b− C1
b(T)Π f b),

we will encounter the term ΠR1 f b−R1Π f b. We can already see that more com-
pact notation for repeatedly performing the operation T 7→ ΠT·b− TΠ·b would
be useful.

DEFINITION 4.1. Given an operator T on some function space and a func-
tion b, define the operator Θb(T) by

Θb(T) f ··= ΠT f b− TΠ f b.

More generally, let Θ0
b(T) ··= T, and

Θk
b(T) ··= Θb(Θ

k−1
b (T)),

for all integers k > 1.

Using this notation, for an operator T,

(4.1) [b, T] = [Pb, T] + Θb(T).

In particular,

(4.2) C1
b(S

ij) = [Pb,Sij] + Θb(Sij),

so

‖C1
b(S

ij)‖Lp(µ;λ) 6 ‖Pb‖Lp(µ;λ)(‖Sij‖Lp(µ) + ‖Sij‖Lp(λ)) + ‖Θb(Sij)‖Lp(µ;λ)

. κijC(µ, λ, p)‖b‖BMO2
D(ν)

+ ‖Θb(Sij)‖Lp(µ;λ),(4.3)
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where the first term is bounded using Theorem 2.2 and (2.10). Letting µ = λ =
w ∈ A2 in (4.3) and using the one-weight bounds (2.11) for the paraproducts we
have

‖C1
b(S

ij)‖L2(w) 6 2‖Pb‖L2(w)‖Sij‖L2(w) + ‖Θb(Sij)‖L2(w)

. κij‖b‖BMO2
D
[w]2A2

+ ‖Θb(Sij)‖L2(w).

So it remains to bound the remainder term. And, based on analysis that will come
later, we in fact need to control certain iterates of the remainder term, leading to
the following claim.

PROPOSITION 4.2. Under the same assumptions as in Theorem 3.2, for all integers
k > 1,

(4.4) ‖Θk
b(S

ij)‖Lp(µ;λ) 6 cκk
ij‖b‖k−1

BMO2
D
‖b‖BMO2

D(ν)
,

where c is a constant depending on n, p, µ, λ, and k, and

(4.5) ‖Θk
b(S

ij)‖L2(w) 6 cκk
ij‖b‖k

BMO2
D
[w]k+1

A2
,

where c is a constant depending on n and k.

Obviously, letting k = 1 in this proposition yields the results in Theorem 3.2
with k = 1. The first result (4.4) was proved for k = 1 in [12]. In this section
we revisit this proof in order to obtain the one-weight result. The latter will fol-
low directly from the two-weight proof in the case of cancellative shifts Sij with
(i, j) 6= (0, 0), but the case (i, j) = (0, 0) will require some care. However, as we
shall see in the next section, the tools we introduce here lay most of the ground-
work for the iterated commutators.

4.1. THE CANCELLATIVE SHIFTS. We showed in [12] that

(4.6) Θb(Sij) = ∑
R∈D; ε,η 6=1

∑
P∈R(i), Q∈R(j)

aεη
PQR f̂ (P, ε)(〈b〉Q − 〈b〉P)h

η
Q,

whenever (i, j) 6= (0, 0) and the dyadic shift is cancellative. Then, assuming i 6 j,
we expressed Θb(Sij) as

Θb(Sij) =
j

∑
l=1

Al −
i

∑
m=1

Bm,

for some certain operators Al , Bm. Using the weighted H1-BMO duality state-
ment in (2.5), we showed that these operators satisfy

‖Al‖Lp(µ;λ) 6 [ν]A2‖b‖BMO2
D(ν)

2−(n/2)(i+j−l)‖M‖Lq(λ′)‖S̃
i,j−l
D ‖Lp(µ),(4.7)

‖Bm‖Lp(µ;λ) 6 [ν]A2‖b‖BMO2
D(ν)

2−(n/2)(i+j−m)‖M‖Lp(µ)‖S̃
j,i−m
D ‖Lq(λ′),(4.8)

for all integers 1 6 l 6 j and 1 6 m 6 j, where S̃ i,j
D is the shifted dyadic square

function in (2.3). From here, (4.4) follows easily from (2.1) and (2.4).
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Now, if we let µ = λ = w ∈ A2, (4.7) becomes:

‖Al‖L2(w) 6 ‖b‖BMO2
D

2−(n/2)(i+j−l)‖M‖L2(w−1)‖S̃
i,j−l
D ‖L2(w)

. ‖b‖BMO2
D

2−(n/2)(i+j−l)[w−1]A22(n/2)(i+j−l)[w]A2 = ‖b‖BMO2
D
[w]2A2

.

Similarly, we obtain ‖Bm‖L2(w) . ‖b‖BMO2
D
[w]2A2

from (4.8), and (4.5) follows. The
proof for i > j is symmetrical.

4.2. THE CASE i = j = 0. As shown in [14], the non-cancellative shift S00 is of the
form

(4.9) S00 = S00
c + Πa + Π∗d ,

where S00
c is a cancellative shift with parameters (0, 0), and Πa, Π∗d are paraprod-

ucts with symbols a, d ∈ BMOD and ‖a‖BMOD 6 1, ‖d‖BMOD 6 1.
In Section 5.2 of [12] we show that Θb(S00

c ) = 0 and

Θb(Πa) = ΠaΠb + ΠaΓb + Λa,b − Λ̃a,b,(4.10)

Θb(Π
∗
a ) = Λb,a −Π∗b Π∗a − ΓbΠ∗a −ΠbΠ∗a ,(4.11)

where

Λa,b f ··= ∑
Q∈D; ε,η 6=1

â(Q, ε) ∑
R∈D, R⊃Q

b̂(R, η) f̂ (R, η)
1
|R|h

ε
Q,(4.12)

and Λ̃a,b ··= ∑
Q∈D; ε,η 6=1

â(Q, ε)b̂(Q, η) f̂ (Q, η)
1
|Q|h

ε
Q.(4.13)

We remark to the reader, that we are using a slightly different definition of Λa,b
than in [12]. The Λa,b defined in (4.12) corresponds to Λ∗b,a in [12]. However, we
shall see later that it is more advantageous for our purposes to work with the
definitions above.

We claim the following lemma.

LEMMA 4.3. Let µ, λ ∈ Ap for some 1 < p < ∞. Suppose a ∈ BMO2
D and

b ∈ BMO2
D(ν), where D is a fixed dyadic grid on Rn and ν = µ1/pλ−1/p. If T is any

one of the operators

Λa,b, Λ̃a,b, Λb,a, Λ̃b,a, Θb(Πa), or Θb(Π
∗
a ),

then

(4.14) ‖T‖Lp(µ;λ) . C(µ, λ, p)‖a‖BMO2
D
‖b‖BMO2

D(ν)
.

In particular, if µ = λ = w ∈ A2,

(4.15) ‖T‖L2(w) . ‖a‖BMO2
D
‖b‖BMO2

D
[w]2A2

.
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Proposition 4.2 with i = j = 0 and k = 1 follows from this immedi-
ately, by the assumptions on the BMO norms of a and d. Before we proceed
with the proof, we remark that, while (4.14) was proved in some form for the Λ
operators in [12], we need a slight modification of that proof in order for it to
yield the one-weight result. Roughly speaking, the original proof boils down to
‖SD‖Lp(µ)‖MΠ∗a ‖Lq(λ′), which in the one-weight case gives a factor of [w]3A2

.

Proof of Lemma 4.3. It suffices to prove the result for the Λ operators. For
then, from the decomposition in (4.10) we have

‖Θb(Πa)‖Lp(µ;λ) 6 ‖Πa‖Lp(λ)‖Πb + Γb‖Lp(µ;λ) + ‖Λa,b − Λ̃a,b‖Lp(µ;λ)

. C(µ, λ, p)‖a‖BMO2
D
‖b‖BMO2

D(ν)
,

where we used (2.11) for the Πa term, and Theorem 2.2 for the paraproducts with
symbol b. Similarly, we can see from (4.11) that Θb(Π

∗
a ) obeys the same bound. If

µ = λ = w ∈ A2,

‖Θb(Πa)‖L2(w) 6 ‖Πa‖L2(w)‖Πb + Γb‖L2(w) + ‖Λa,b + Λ̃a,b‖L2(w)

. ‖a‖BMO2
D
‖b‖BMO2

D
[w]2A2

,

and the same holds for Θb(Π
∗
a ).

Now let us look at Λa,b. Let f ∈ Lp(µ) and g ∈ Lq(λ′). Then

〈Λa,b f , g〉 = ∑
Q∈D, ε 6=1

â(Q, ε)ĝ(Q, ε) ∑
R∈D, R⊃Q; η 6=1

b̂(R, η) f̂ (R, η)
1
|R| .

Let aτ = Tτa and bσ = Tσb, where Tτ and Tσ are martingale transforms with
τQ,ε = ±1 and σQ,ε = ±1 chosen for every pair (Q ∈ D, ε 6= 1) such that

τQ,ε â(Q, ε)ĝ(Q, ε) > 0 and σQ,ε b̂(Q, ε) f̂ (Q, ε) > 0.

Then

|〈Λa,b f , g〉| 6 ∑
Q∈D; ε 6=1

âτ(Q, ε)ĝ(Q, ε) ∑
R∈D, R⊃Q; η 6=1

b̂σ(R, η) f̂ (R, η)
1
|R|

6 ∑
Q∈D; ε 6=1

âτ(Q, ε)ĝ(Q, ε)〈Π∗bσ
f 〉Q,(4.16)

where the last inequality follows from

〈Π∗bσ
f 〉Q = ∑

P∈D, P(Q; ε 6=1
b̂σ(P, ε) f̂ (P, ε)

1
|Q| + ∑

R∈D, R⊃Q; η 6=1
b̂σ(R, η) f̂ (R, η)

1
|R| .
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By the assumptions on σ and τ and the monotone convergence theorem, (4.16)
becomes

∑
Q∈D, ε 6=1

∫
âτ(Q, ε)ĝ(Q, ε)(Π∗bσ

f )(x)
1Q(x)
|Q| dx

=
∫

∑
Q∈D, ε 6=1

âτ(Q, ε)ĝ(Q, ε)(Π∗bσ
f )(x)

1Q(x)
|Q| dx = 〈Π∗aτ

g, Π∗bσ
f 〉.

Therefore, by (2.11) and Theorem 2.2,

‖Λa,b‖Lp(µ;λ) 6 ‖Π∗aτ
‖Lq(λ′)‖Π∗bσ

‖Lp(µ;λ)

. C(µ, λ, p)‖aτ‖BMO2
D
‖bσ‖BMO2

D(ν)
.C(µ, λ, p)‖a‖BMO2

D
‖b‖BMO2

D(ν)
,(4.17)

where the last inequality follows from Proposition 2.4. Letting µ = λ = w ∈ A2
in (4.17),

‖Λa,b‖L2(w) . ‖aτ‖BMO2
D
[w]A2‖bσ‖BMO2

D
[w]A2 . ‖a‖BMO2

D
‖b‖BMO2

D
[w]2A2

,

which proves the result for Λa,b. An identical argument proves the result for Λ̃a,b.
As for Λb,a or Λ̃b,a, the argument follows similarly, with a few modifications:

‖Λb,a‖Lp(µ;λ) 6 ‖Π∗aτ
‖Lp(µ)‖Π∗bσ

‖Lq(λ′ ;µ′).

5. THE SECOND ITERATION [b, [b, Sij]]

In this section we take a closer look at what happens when k = 2, and
develop the rest of the tools we need for the general case. From (4.2) we have:

C2
b(S

ij) = [b, C1
b(S

ij)] = [Pb, C1
b(S

ij)] + Θb(C1
b(S

ij)).

We show that each term obeys the bounds in Theorem 3.2. The first term can be
bounded using (2.11) and Theorem 3.2 with k = 1. In order to analyze the second
term, we look at some simple properties of Θb that will be useful. Suppose S
and T are some operators. Obviously Θb is linear, that is Θb(S + cT) = Θb(S) +
cΘb(T). Moreover,

(5.1) Θb(ST) = Θb(S)T + SΘb(T).

To see this, note that we can write Θb(ST) f = ΠS(T f )b − SΠT f b + SΠT f b −
STΠ f b. In turn, this yields

(5.2) Θb([S, T]) = [Θb(S), T] + [S, Θb(T)].

Then

(5.3) Θb(C1
b(S

ij)) = [Θb(Pb),Sij] + [Pb, Θb(Sij)] + Θ2
b(S

ij).

The second term in the expression is easily controlled using Proposition 4.2 with
k = 1. For the first term, remark that

(5.4) Θb(Γb) = 0,
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which is easily seen by verifying that

ΠΓb f b = ΓbΠ f b = ∑
R∈D

∑
ε, η 6=1; ε 6=η

b̂(R, η) f̂ (R, η)〈b〉R
1√
|R|

hε+η
R .

So Θb(Pb) = Θb(Πb) + Θb(Π
∗
b ), and both these terms can be bounded using

Lemma 4.3 with a = b. To analyze Θ2
b(S

ij) and prove Proposition 4.2 for k = 2,
we again need to look at the cancellative and non-cancellative cases separately.

5.1. THE CANCELLATIVE CASE. Using the expression for Θb(Sij) in (4.6), we find
that

ΠΘb(Sij) f b = ∑
R∈D; ε, η 6=1

∑
P∈R(i), Q∈R(j)

aεη
PQR f̂ (P, ε)(〈b〉Q − 〈b〉P)〈b〉Qhη

Q, and

Θb(Sij)Π f b = ∑
R∈D; ε, η 6=1

∑
P∈R(i), Q∈R(j)

aεη
PQR f̂ (P, ε)(〈b〉Q − 〈b〉P)〈b〉Phη

Q.

Therefore

Θ2
b(S

ij) f = ∑
R∈D; ε, η 6=1

∑
P∈R(i), Q∈R(j)

aεη
PQR f̂ (P, ε)(〈b〉Q − 〈b〉P)2hη

Q.

Now consider the operator

U(j) f ··= ∑
Q∈D; η 6=1

(〈b〉Q − 〈b〉Q(j)) f̂ (Q, η)hη
Q,

for a non-negative integer j. Then

U(j)Θb(Sij) f = ∑
R∈D; ε, η 6=1

∑
P∈R(i), Q∈R(j)

aεη
PQR f̂ (P, ε)(〈b〉Q−〈b〉P)(〈b〉Q−〈b〉R)h

η
Q, and

Θb(Sij)U(i) f = ∑
R∈D; ε, η 6=1

∑
P∈R(i), Q∈R(j)

aεη
PQR f̂ (P, ε)(〈b〉Q − 〈b〉P)(〈b〉P − 〈b〉R)h

η
Q.

So

Θ2
b(S

ij) = U(j)Θb(Sij)−Θb(Sij)U(i).

We claim that for any A2 weight w:

(5.5) ‖U(j)‖L2(w) . j[w]A2‖b‖BMO2
D

.

To see this, remark that

|〈b〉Q − 〈b〉Q(j) | 6 j2n‖b‖BMO2
D

,

so U(j) can be expressed as

U(j) = j2n‖b‖BMO2
D

Tσ,
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where Tσ is a martingale transform. Then (5.5) follows from (2.12). Finally, this
and Proposition 4.2 with k = 1 give that

‖Θ2
b(S

ij)‖Lp(µ;λ) 6 ‖Θb(Sij)‖Lp(µ;λ)(‖U(i)‖Lp(µ) + ‖U(j)‖Lp(λ))

. κ2
ijC(µ, λ, p)‖b‖BMO2

D(ν)
‖b‖BMO2

D
,

and, in the one-weight case,

‖Θ2
b(S

ij)‖L2(w) . κ2
ij‖b‖2

BMO2
D
[w]3A2

.

5.2. THE CASE i = j = 0. From (4.9) we have:

Θ2
b(S

00) = Θ2
b(Πa) + Θ2

b(Π
∗
d ).

Using the expression in (4.10) and the properties of Θb in (5.1) and (5.4),

(5.6) Θ2
b(Πa) = Θb(Πa)Πb + ΠaΘb(Πb) + Θb(Πa)Γb + Θb(Λa,b)−Θb(Λ̃a,b).

Lemma 4.3 and the paraproduct norms immediately control the first three terms,
showing that their norms as operators Lp(µ)→ Lp(λ) are bounded (up to a con-
stant) by ‖a‖BMO2

D
‖b‖BMO2

D
‖b‖BMO2

D(ν)
, and their norms as operators L2(w) →

L2(w) are bounded (up to a constant) by ‖a‖BMO2
D
‖b‖2

BMO2
D
[w]3A2

. For the last two

terms, we look at an interesting property of the Λa,b operators.

PROPOSITION 5.1. For all locally integrable functions a, b, c, the operator Λa,b
satisfies:

Θc(Λa,b) = ΠaΛc,b,(5.7)

Θc(Λ̃a,b) = 0.(5.8)

Proof. To prove the first statement, note that

〈Λa,b f 〉Q = ∑
Q,R∈D; R)Q

η 6=1

b̂(R, η) f̂ (R, η)
1
|R| ∑

P∈D;Q(P⊂R
ε 6=1

â(P, ε)hε
P(Q)

= ∑
Q,R∈D; R)Q

η 6=1

b̂(R, η) f̂ (R, η)
1
|R| (〈a〉Q − 〈a〉R).(5.9)

A quick calculation shows that

Θc(Λa,b) f = ∑
Q∈D, ε 6=1

â(Q, ε)
[

∑
Q,R∈D;R⊃Q

η 6=1

b̂(R, η) f̂ (R, η)
1
|R| (〈c〉Q − 〈c〉R)

]
hε

Q.

From (5.9), we recognize the term in parentheses as 〈Λc,b f 〉Q, and so

Θc(Λa,b) f = ∑
Q∈D, ε 6=1

â(Q, ε)〈Λc,b f 〉Qhε
Q = ΠaΛc,b f .
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The second statement follows by

ΠΛ̃a,b f c = Λ̃a,bΠ f c = ∑
Q∈D; ε, η 6=1

â(Q, ε)b̂(Q, η) f̂ (Q, η)
1
|Q| 〈c〉Qhε

Q.

Returning to (5.6), we can now see that the last two terms in the expression
become simply ΠaΛb,b, which is controlled exactly as the other terms. The result
for Θ2

b(Π
∗
a ) follows similarly, after noting that Θb(Λb,a) = ΠbΛb,a. Finally, recall

the assumptions on the BMO norms of a and d in (4.9) and see that the results in
this section prove Proposition 4.2 for k = 2 and i = j = 0.

6. THE GENERAL CASE OF HIGHER ITERATIONS

In this section we prove Theorem 3.2. A closer look at recursively expanding
the formula

Cm+1
b (T) = [Pb, Cm

b (T)] + Θb(Cm
b (T)),

for some operator T, shows that, in order to control Cm+1
b (T), we need not only

bound the previous iterations Cm+1−k
b (T), but really

Cm−k
b (T), Θb(Cm−k

b (T)), Θ2
b(C

m−k
b (T)), . . . , Θk

b(C
m−k
b (T)),

for every 0 6 k 6 m− 1. So, it makes sense to instead prove the following more
general statement.

THEOREM 6.1. Under the same assumptions as Theorem 3.2, for any integer k>1,

(6.1) ‖ΘM
b (Ck

b(S
ij))‖Lp(µ;λ) 6 cκM+k

ij ‖b‖M+k−1
BMO2

D
‖b‖BMO2

D(ν)
for all M > 0,

where c is a constant depending on n, µ, λ, p, M, and k. In particular, if µ=λ=w∈A2,

(6.2) ‖ΘM
b (Ck

b(S
ij))‖L2(w) 6 cκM+k

ij ‖b‖M+k
BMO2

D
[w]M+k+1

A2
for all M > 0,

where c is a constant depending on n, M, and k.

Theorem 3.2 will then follow as a special case of the above result, with M =
0. We begin by completing the proof of Proposition 4.2.

Proof of Proposition 4.2. So far, this result has been proved for k = 1 and
k = 2. In case (i, j) 6= (0, 0), we generalize the argument in Subsection 5.1. We
claim that for all k > 2 and (i, j) 6= (0, 0),

Θk
b(S

ij) f = ∑
R∈D; ε, η 6=1

∑
P∈R(i), Q∈R(j)

aεη
PQR f̂ (P, ε)(〈b〉Q − 〈b〉P)khη

Q(6.3)

= U(j)Θ
k−1
b (Sij)−Θk−1

b (Sij)U(i).(6.4)
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Then, assuming Proposition 4.2 holds for some k > 1, the result for k + 1 follows
from (5.5). To see this, assume (6.3) holds for some k > 2. Then

ΠΘk
b(S

ij) f b = ∑
R∈D; ε, η 6=1

∑
P∈R(i), Q∈R(j)

aεη
PQR f̂ (P, ε)(〈b〉Q − 〈b〉P)k〈b〉Qhη

Q, and

Θk
b(S

ij)Π f b = ∑
R∈D; ε, η 6=1

∑
P∈R(i), Q∈R(j)

aεη
PQR f̂ (P, ε)(〈b〉Q − 〈b〉P)k〈b〉Phη

Q.

Since Θk+1
b (Sij) f = ΠΘk

b(S
ij) f b − Θk

b(S
ij)Π f b, we see that (6.3) holds for k + 1.

Similarly,

U(j)Θ
k
b(S

ij) f = ∑
R∈D; ε, η 6=1

P∈R(i), Q∈R(j)

aεη
PQR f̂ (P, ε)(〈b〉Q − 〈b〉P)k(〈b〉Q − 〈b〉R)h

η
Q, and

Θk
b(S

ij)U(i) f = ∑
R∈D; ε, η 6=1

P∈R(i), Q∈R(j)

aεη
PQR f̂ (P, ε)(〈b〉Q − 〈b〉P)k(〈b〉P − 〈b〉R)h

η
Q,

from which (6.4) with k + 1 follows.
For the case i = j = 0,

Θk
b(S

00) = Θk
b(Πa) + Θk

b(Π
∗
d ),

with ‖a‖BMO2
D

. 1 and ‖d‖BMO2
D

. 1. Proposition 4.2 for i = j = 0 therefore
follows trivially from the next result.

PROPOSITION 6.2. Under the same assumptions as Theorem 3.2, let Pa denote
either one of the operators Πa and Π∗a , and Λ denote either one of the operators Λa,b or
Λb,a. Then for any integer k > 1,

‖Θk
b(Pa)‖Lp(µ;λ) 6 c‖a‖BMO2

D
‖b‖k−1

BMO2
D
‖b‖BMO2

D(ν)
,(6.5)

‖Θk
b(Λ)‖Lp(µ;λ) 6 c‖a‖BMO2

D
‖b‖k

BMO2
D
‖b‖BMO2

D(ν)
,(6.6)

where c is a constant depending on n, p, µ, λ, and k. In particular, if µ = λ = w ∈ A2,

‖Θk
b(Pa)‖L2(w) 6 c‖a‖BMO2

D
‖b‖k

BMO2
D
[w]k+1

A2
,(6.7)

‖Θk
b(Λ)‖L2(w) 6 c‖a‖BMO2

D
‖b‖k+1

BMO2
D
[w]k+2

A2
,(6.8)

where c is a constant depending on n and k.

Proof. This result with k = 1 was proved in Lemma 4.3 for Θb(Pa), and in
Subsection 5.2 for Θb(Λ). We proceed by (strong) induction. Fix m > 1 and
suppose Proposition 6.2 holds for all 1 6 k 6 m. We show that it then holds for
k = m + 1.

Let us look at the case Pa = Πa:

Θm+1
b (Πa) = Θm

b (Θb(Πa)) = Θm
b (Πa(Πb + Γb)) + Θm

b (Λa,b).
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Remark that the last term is already controlled by the induction assumption. To
analyze the first term, we use the binomial formula

(6.9) Θm
b (ST) =

m

∑
k=0

(
m
k

)
Θm−k

b (S)Θk
b(T),

which follows from (5.1) by a simple induction argument. Then

‖Θm
b (Πa(Πb + Γb))‖Lp(µ;λ)

6
m

∑
k=0

(
m
k

)
‖Θm−k

b (Πa)‖Lp(λ)‖Θk
b(Πb + Γb)‖Lp(µ;λ).(6.10)

The statement

(6.11) ‖Θm−k
b (Πa)‖L2(w) . C(m− k)‖a‖BMO2

D
‖b‖m−k

BMO2
D
[w]m−k+1

A2
0 6 k 6 m,

for all w ∈ A2, follows from the induction assumption on Pa for 0 6 k 6 m− 1,
and from (2.11) for k = m. Then, by Ap extrapolation,

(6.12) ‖Θm−k
b (Πa)‖Lp(λ) . C(λ, p, m− k)‖a‖BMO2

D
‖b‖m−k

BMO2
D

0 6 k 6 m.

On the other hand, noting that Θ0
b(Πb + Γb) = Πb + Γb and Θk

b(Πb + Γb) =

Θk
b(Πb) for 1 6 k 6 m, we have

‖Θk
b(Πb + Γb)‖Lp(µ;λ) . C(µ, λ, p, k)‖b‖k

BMO2
D
‖b‖BMO2

D(ν)
0 6 k 6 m,

which follows from Theorem 2.2 for k = 0, and from the induction assumption
on Pa with a = b for 1 6 k 6 m. Similarly,

‖Θk
b(Πb + Γb)‖L2(w) . C(k)‖b‖k+1

BMO2
D
[w]k+1

A2
0 6 k 6 m.

From these estimates and (6.10), we obtain

‖Θm
b (Πa(Πb + Γb))‖Lp(µ;λ) . C(µ, λ, p, m)‖a‖BMO2

D
‖b‖m

BMO2
D
‖b‖BMO2

D(ν)
, and

‖Θm
b (Πa(Πb + Γb))‖L2(w) . C(m)‖a‖BMO2

D
‖b‖m+1

BMO2
D
[w]m+2

A2
,

which proves the result for k = m + 1 and Pa = Πa. The case Pa = Π∗a follows
similarly.

Now suppose Λ = Λa,b. Then, by (5.7),

Θm+1
b (Λa,b) = Θm

b (Θb(Λa,b)) = Θm
b (ΠaΛb,b).

Using the binomial formula again,

(6.13) ‖Θm+1
b (Λa,b)‖Lp(µ;λ) 6

m

∑
k=0

(
m
k

)
‖Θm−k

b (Πa)‖Lp(λ)‖Θk
b(Λb,b)‖Lp(µ;λ).
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The statements

‖Θk
b(Λb,b)‖Lp(µ;λ) . C(µ, λ, p, k)‖b‖k+1

BMO2
D
‖b‖BMO2

D(ν)
0 6 k 6 m,

‖Θk
b(Λb,b)‖L2(w) . C(k)‖b‖k+2

BMO2
D
[w]k+2

BMO2
D

0 6 k 6 m,

follow from the induction assumption on Λ with a = b for 1 6 k 6 m, and from
Lemma 4.3 for k = 0. Combining these with (6.11) and (6.12), we have from (6.13),

‖Θm+1
b (Λa,b)‖Lp(µ;λ) . C(µ, λ, p, m + 1)‖a‖BMO2

D
‖b‖m+1

BMO2
D
‖b‖BMO2

D(ν)
,

‖Θm+1
b (Λa,b)‖L2(w) . C(m + 1)‖a‖BMO2

D
‖b‖m+2

BMO2
D
[w]m+3

A2
,

which proves the result for k = m + 1 and Λ = Λa,b. Since the case Λ = Λb,a
follows similarly, Proposition 6.2 is proved.

We now have all the tools needed to prove Theorem 6.1.

Proof of Theorem 6.1. We prove the result for k = 1, so we look at

ΘM
b (C1

b(S
ij)) = ΘM

b ([Pb,Sij] + Θb(Sij)),

for some integer M > 0. At this point, we use another easily deduced binomial
formula:

(6.14) ΘM
b ([S, T]) =

M

∑
m=0

(
M
m

)
[ΘM−m

b (S), Θm
b (T)].

Then

‖ΘM
b (C1

b(S
ij))‖Lp(µ;λ)

6
M

∑
m=0

(
M
m

)
‖ΘM−m

b (Pb)‖Lp(µ;λ)(‖Θm
b (S

ij)‖Lp(µ) + ‖Θm
b (S

ij)‖Lp(λ))

+ ‖ΘM+1
b (Sij)‖Lp(µ;λ).

Applying Proposition 6.2 with a = b and Proposition 4.2, we obtain the result
for k = 1. Finally, suppose Theorem 6.1 holds for some k > 1 and let an integer
M > 0. Then

ΘM
b (Ck+1

b (Sij)) = ΘM
b ([Pb, Ck

b(S
ij)] + Θb(Ck

b(S
ij))),

and the result for k + 1 again follows from Propositions 6.2 and 4.2.
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