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ABSTRACT. A commuting d-tuple T = (T1, . . . , Td) is called a spherical m-

isometry if
m
∑

j=0
(−1)j(m

j )Q
j
T(I)=0, where QT(A)=

d
∑

i=1
T∗i ATi for every bounded

linear operator A on a Hilbert space H. Under some assumptions we prove
that every power of T is a spherical m-isometry. Also, we study the products of
spherical m-isometries when they remain spherical n-isometries, for a suitable
n. Besides, we prove that the spherical m-isometries are power regular and for
every proper spherical m-isometry there are linearly independent operators

A0, . . . , Am−1 such that Qn
T(I) =

m−1
∑

i=0
Aini for every n > 0.
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1. INTRODUCTION

Let H be a Hilbert space and B(H) be the space of all bounded linear oper-
ators on H. An operator T ∈ B(H) is called an m-isometry (m ∈ N), if it satisfies
the following property:

(1.1) (yx− 1)m(T) :=
m

∑
k=0

(−1)m−k
(

m
k

)
T∗kTk = 0.

Since (yx− 1)m(T) is a self-adjoint operator, we observe that T is an m-isometry
if and only if for each x ∈ H,

(1.2)
m

∑
k=0

(−1)m−k
(

m
k

)
‖Tkx‖2 = 0.

It is clear that the notions of 1-isometry and isometry coincide.
These operators have been introduced by Agler in [3] and their applications

to differential operators, disconjugacy, and Brownian motion have been obtained
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in [4], [5], [6]. In recent years, the m-isometric operators have received substan-
tial attention. Patton and Robbins [44] studied which composition operators are
m-isometries. Furthermore, m-isometry weighted shift operators have been dis-
cussed in [1], [19], [22], [36], [41]. In addition, it has been proved in [17], [21] that
the powers of an m-isometry are m-isometries and some products of m-isometries
are again m-isometries. On the other hand, the perturbation of m-isometries by
nilpotent operators has been considered in [20], [23], [37] and the dynamics of m-
isometries has been explored in [15], [16], [18], [35]. Furthermore, Duggal studied
the tensor product of m-isometries in [31], [32]. Gleason and Richter in [38] ex-
tended the notion of m-isometric operator to the case of commuting d-tuple of
bounded linear operators on a Hilbert space. Then Hoffmann and Mackey in [43]
generalized the definition of m-isometric operators tuple on a normed space.

In this paper, we establish some properties of spherical m-isometries which
are natural generalizations of m-isometries. Indeed, they are tuples that extend
the notion of an isometry in two directions from a single operator T to a tuple
of operators (T1, . . . , Td) and in the degree of a ∗-algebra identity satisfied, from
I − T∗T = 0 in the single operator case where as usual I denotes the identity
operator. When m = 1, it is called a spherical isometry, which is a commuting
subnormal tuple, thus, the theory of commutative subnormal tuples is applicable
to spherical isometries. In particular, any spherical isometry can be uniquely
decomposed as a direct sum of a normal tuple with joint spectrum in the unit
sphere and a completely non-normal or pure spherical isometry. For some more
interesting facts on spherical isometries one can see [34]. The behavior of d-tuple
of operators which are near to spherical isometries has been much studied. For
some recent papers one can see [7], [8], [13], [27], [28], [29], [45]. We also wish to
mention that the spherical m-isometries have attracted additional interest from
their relation with a moment problem [7]. Thus, we have enough motivation to
seek some basic and non-trivial properties of spherical m-isometries.

When we talk about a property related to operators, a natural question is
whether it is stable under powers or not. For example, it is interesting to consider
under what extra hypotheses the basic concepts such as reflexivity, hypercyclic-
ity, or supercyclicity of tuple of operators are stable under powers. One of our
motivations is to discuss this question for spherical m-isometries. Notice that to
find sufficient conditions in order to give a positive answer to this question, we
offer ways of obtaining new spherical m-isometries. Indeed, in Section 3 we give
a sufficient condition under which every power of a spherical m-isometry is again
a spherical m-isometry.

Recall that an operator S in B(H) is power regular if lim
n→∞

‖Snx‖1/n exists for

every x ∈ H. It is known that compact operators, hyponormal operators, decom-
posable operators and isometric N-Jordan operators are power regular. The back-
ward shift operator is an example of an operator that is not power regular. Power
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regularity helps us to find a non-trivial invariant subspace of an operator. For ex-
ample, if S is hyponormal and lim

n→∞
‖Snx‖1/n < ‖S‖ for some non-zero vector x

then x is not a cyclic vector for S; i.e.,
∨

n>0
{Snx} is a non-trivial invariant subspace

of S [25]. For some information on power regularity of operators one can see [14]
and references therein. In Section 4, we define the concept of power regularity
for commuting tuples of operators and prove that the spherical m-isometries are
power regular. Moreover, we provide conditions on a right invertible spherical
isometry making it a spherical unitary. Finally, in the last section we show that
the d-tuple T is a spherical m-isometry but not a spherical (m− 1)-isometry if and
only if there are linearly independent operators A0, A1, . . . , Am−1 in B(H) such

that Qn
T(I) =

m−1
∑

i=0
Aini for all n > 0. This extends and improves a recent result of

[23].

2. PRELIMINARIES

In this section, we refer to some of the well known facts which will be used
in the next sections. A few comments are in order. Given α = (α1, . . . , αd) ∈ Nd

we set |α| =
d
∑

j=1
αj, α! = α1! · · · αd! and further Tα = Tα1

1 · · · T
αd
d . For every

d-tuple of commuting operators T = (T1, . . . , Td) ∈ B(H)d, there is a function

QT : B(H) −→ B(H) defined by QT(A) =
d
∑

i=1
T∗i ATi. It is easy to see that

Qj
T(I) = ∑

|α|=j
(j!/α!)T∗αTα (j > 1) where T∗ = (T∗1 , . . . , T∗d ). For each m > 0, let

Pm(T) = (I −QT)
m(I) =

m

∑
j=0

(−1)j
(

m
j

)
Qj

T(I).

A commuting tuple, T = (T1, . . . , Td) is said to be a spherical m-isometry, if
Pm(T) = 0. An example of a spherical m-isometry is the Drury–Arverson m-
shift which has played a role in the dilation of the row contraction. ([10], [30],
Theorem 4.2 of [38]). The Drury–Arverson m-shift is the m-tuple operator Mz =
(Mz1 , . . . , Mzm) in the reproducing kernel Hilbert space associated with the posi-
tive definite kernel

1
1− z1w1 − · · · − zmwm

where z and w are in the open unit ball of Cm. For some more examples of spher-
ical m-isometries one can see [28]. The d-tuple T is called a proper spherical m-
isometry, if it is a spherical m-isometry but it is not a spherical (m− 1)-isometry.
Note that

(2.1) Pn+1(T) = (I −QT)(Pn(T)) = Pn(T)−QT(Pn(T))
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for all n > 0. Observe that if T is a commuting tuple of operators on H and
Pm(T) = 0, then Pm+n(T) = 0, for all n > 0. Hence if T is a spherical m-isometry,
then T is a spherical (m + n)-isometry, for all n > 0. For a spherical m-isometry
T, define

∆T,m := (−1)m−1Pm−1(T).
It is proved that if T is a spherical m-isometry for some m > 0, then ∆T,m is a
positive operator (see Proposition 2.3 of [38]). For T ∈ B(H), we define β`(T) =
(1/`!)(yx − 1)`(T) for ` > 0. Using the notion β`(T), if T ∈ B(H) is an m-

isometry, ‖Tkx‖2 =
m−1
∑
`=0

k(`)〈β`(T)x, x〉, where k(`) = k · (k− 1) · · · (k− `+ 1) for

` > 1, k > 0 and k(0) = 1.

LEMMA 2.1 ([38], Lemma 2.1). If T = (T1, . . . , Td) is a commuting tuple of
operators on a Hilbert spaceH, then

Pm(T) =
m

∑
j=0

(−1)j
(

m
j

)
∑
|α|=j

j!
α!
(Tα)∗Tα

and for all x ∈ H

〈Pm(T)x, x〉 =
m

∑
j=0

(−1)j
(

m
j

)
∑
|α|=j

j!
α!
‖Tαx‖2.

LEMMA 2.2 ([38], Lemma 2.2). For k > 0,

Qk
T(I) =

∞

∑
j=0

( (−1)j

j!
Pj(T)

)
k(j).

In the next proposition we provide a condition on a spherical m-isometry
which ensure it to be a spherical isometry.

PROPOSITION 2.3. Suppose that T = (T1, . . . , Td) is a spherical m-isometric
commuting tuple of operators on a Hilbert space H and ak(x) := 〈Qk

T(I)x, x〉, x ∈ H.
If for each x ∈ H, there is a strictly increasing sequence {ki}∞

i=0 of positive integers and
a constant M such that |aki

(x)| 6 M for i = 1, 2, . . ., then T is a spherical isometry.

Proof. Since Pk(T) = 0 for all k > m, Lemma 2.2 shows that

0 6
(−1)m−1

(m− 1)!
〈Pm−1(T)x, x〉 = lim

i→∞

〈Qki
T (I)x, x〉
km−1

i

6 lim
i→∞

M
km−1

i

= 0.

Hence
1

(m− 1)!
〈∆T,mx, x〉 =

〈 (−1)m−1

(m− 1)!
Pm−1(T)x, x

〉
= 0.

It follows that T is a spherical (m − 1)-isometry. Continuing this process and
applying the same argument, it can be seen that T is a spherical isometry.

Recall that an operator A in B(H) is power bounded if sup
n
‖An‖ < ∞.
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COROLLARY 2.4. Suppose that T = (T1, . . . , Td) is a spherical m-isometric com-
muting tuple of operators on a Hilbert space H. If one of the following conditions holds
then T is a spherical isometry:

(i) A subsequence of {〈Qk
T(I)·, ·〉}∞

k=1 is bounded.
(ii) Each Ti is idempotent.

(iii) Each Ti is power bounded and TiTj = 0, i 6= j.

3. POWERS AND PRODUCTS

In this section, we consider the following question. Is the class of spherical
m-isometries stable under products and powers? To achieve our goal we need
two lemmas. We borrow the first one from [33].

LEMMA 3.1 ([33], Corollary 2.5). If (ai,j)
∞
i,j=0 is a double sequence of complex

numbers satisfying
m

∑
i=0

(−1)i
(

m
i

)
ak+i,` = 0 and

n

∑
j=0

(−1)j
(

n
j

)
ak,`+j = 0,

then
m+n−1

∑
s=0

(−1)s
(

m + n− 1
s

)
as,s = 0.

LEMMA 3.2. If Pm(k) = a0 + a1k + · · ·+ amkm, m > 1 then

(3.1)
m

∑
k=0

(−1)m−k
(

m
k

)
Pm(k) = m!am.

Proof. An easy induction argument on m shows that
m

∑
k=0

(−1)m−k
(

m
k

)
ki = 0, 0 6 i 6 m− 1,

so we can assume that Pm(k) = km, m > 1. We prove (3.1) by induction on m.
Clearly the result is true for m = 1. Assume that the result holds for m. Therefore,

m

∑
k=0

(−1)m−k
(

m
k

)
q(k) = m!

where q(k) =
m
∑

n=0
(m

n)k
n. Thus

m+1

∑
k=0

(−1)m+1−k
(

m + 1
k

)
Pm+1(k) =

m+1

∑
k=1

(−1)m+1−k
(

m + 1
k

)
Pm+1(k)

=
m

∑
k=0

(−1)m−k
(

m + 1
k + 1

)
Pm+1(k + 1)
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= (m + 1)
m

∑
k=0

(−1)m−k
(

m
k

)
(k + 1)m

= (m + 1)
m

∑
k=0

(−1)m−k
(

m
k

)
q(k) = (m + 1)!.

Hence the proof is completed.

A sufficient condition that we use in this section, on a spherical m-isometry
T = (T1, . . . Td) is the orthogonality condition TiTj = 0 for i 6= j. For example,
if H = M1 ⊕ · · · ⊕Md, then T = (PM1 , . . . , PMd) is a spherical isometry on H
and PMi PMj = 0, i 6= j where PMi is the projection onto Mi. To see that this
additional assumption is not strong we will find a way to show that orthogonal
spherical m-isometries are as many as m-isometries. Note that the orthogonality
condition on the commuting d-tuple T = (T1, . . . , Td) implies that

(3.2) Qk
T(A) =

d

∑
j=1

T∗j
k ATk

j

for every A in B(H). Let H be a Hilbert space and K = H⊕ · · · ⊕H︸ ︷︷ ︸
d−times

. For m-

isometric operators Si : H −→ H, i = 1, . . . , d, it is straightforward to verify

that T = (T1, . . . , Td) is a spherical m-isometry on K where Ti =
d⊕

j=1
δijSj and δij

is the Kronecker delta; moreover, TiTj = 0 for i 6= j. Suppose that one of the
Sis is a proper m-isometry, then T is also a proper spherical m-isometry. Indeed,
assuming that T is a spherical (m− 1)-isometry, for every x1 ⊕ · · · ⊕ xd ∈ K we
have

0 =
〈 m−1

∑
j=0

(−1)j
(

m− 1
j

)
Qj

T(I)(x1 ⊕ · · · ⊕ xd), x1 ⊕ · · · ⊕ xd

〉
=

m−1

∑
j=0

d

∑
i=1

(−1)j
(

m− 1
j

)
‖T j

i (x1 ⊕ · · · ⊕ xd)‖2 =
d

∑
i=1

m−1

∑
j=0

(−1)j
(

m− 1
j

)
‖Sj

i xi‖2.

Since every Si is an m-isometry,

〈∆Si ,mxi, xi〉 =
m−1

∑
j=0

(−1)j
(

m− 1
j

)
‖Sj

i xi‖2 > 0, (i = 1, . . . , d);

hence
m−1

∑
j=0

(−1)j
(

m− 1
j

)
‖Sj

i xi‖2 = 0,

for each i = 1, . . . , d and each xi in H. But this contradicts the fact that one of the
Sis is a proper m-isometry.
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REMARK 3.3. Note that an infinite dimensional separable Hilbert space H
is isometrically isomorphic to the Hilbert space K = H⊕ · · · ⊕H︸ ︷︷ ︸

d−times

. Let U : H →

K be an isometric isomorphism and (T1, . . . , Td) be an orthogonal spherical m-
isometry on K. It can easily be verified that (U−1T1U, . . . , U−1TdU) is an orthog-
onal spherical m-isometry onH.

Roughly speaking we have found a way to get orthogonal proper spherical
m-isometries from a single proper m-isometry. In what follows, we produce some
non-trivial orthogonal spherical m-isometries.

EXAMPLE 3.4. Let H denote the Hilbert space obtained by taking the com-
pletion of the continuously differentiable functions on [0, 1] with the norm in-
duced by the inner product

〈 f , g〉 =
1∫

0

( f ′g ′ + f g)(t)dt

and let A be the operator of the multiplication by t on H, i.e., (A f )(t) = t f (t).
Therefore A∗3 − 3A∗2 A + 3A∗A2 − A3 = 0, and consequently the operator S =
exp(irA) is a 3-isometry for every real number r. So the d-tuple T = (T1, . . . , Td)

is an orthogonal spherical 3-isometry where Ti =
d⊕

j=1
δijS.

REMARK 3.5. We can replace the multiplication operator A in the preceding
example by any operator A on a Hilbert space with A∗3 − 3A∗2 A + 3A∗A2 −
A3 = 0. Note that this notion can be generalized in a natural way to m-self-

adjoint operators by
m
∑

k=0
(−1)k(m

k )A∗k Am−k = 0.

EXAMPLE 3.6. If c 6= 0 then the matrix S =

(
1 c
0 1

)
defines a proper 3-

isometric operator on C2 [44]. Thus, the d-tuple (T1, . . . , Td) is an orthogonal

proper spherical 3-isometry where Ti =
d⊕

j=1
δijS.

EXAMPLE 3.7. For z and ω in the open unit disc D, define κ−1(z, ω) = − log(1− zω),

κ−m(z, ω) =
∞
∑

n=1

zn+m−1ωn+m−1

n(n+1)···(n+m−1) (m > 2).

It is well-known that corresponding to any κ−m there exists a functional Hilbert
space H(κ−m) such that κ−m serves as a reproducing kernel for H(κ−m) [9]. In
fact, H(κ−m) may be identified with the space of all analytic functions f (z) =
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∞
∑

n=m
anzn on D so that

‖ f ‖2
−m =

1
π(m− 1)!

∫
D

| f (m)(z)|2(1− |z|2)m−1dA(z) < ∞.

Note that {zn}∞
n=m generatesH(κ−m) and we get

‖zn‖2
−m =

1
(m− 1)!

(n(n− 1) · · · (n−m + 1))2 Γ(n−m + 1)Γ(m)

Γ(n + 1)
= n(n− 1) · · · (n−m + 1).

Taking en = zm+n−1/‖zm+n−1‖−m, for all n > 1, a simple computation shows
that {en}∞

n=1 forms an orthonormal basis forH(κ−m). Let M(κ−m) denote the op-
erator of multiplication by z on H(κ−m). Then M(κ−m)(en) =

√
(n + m)/n en+1.

Athavale in [12] showed that for every positive integer m, the operator M(κ−m) is
a proper (m + 1)-isometry. Hence the d-tuple (T1 . . . , Td) is an orthogonal proper

spherical (m + 1)-isometry where Ti =
d⊕

j=1
δij M(κ−m).

REMARK 3.8. In the above example, M(κ−1) is the Dirichlet shift which is a
proper 2-isometry.

We are now in a position to get into the main subject of this section. For
a positive integer r, a commuting tuple T = (T1, . . . , Td) is called a spherical m-
isometry of order r, if

m

∑
k=0

(−1)k
(

m
k

)
Qrk

T (I) = 0.

THEOREM 3.9. Suppose that T = (T1, . . . , Td) and S = (S1, . . . , Sd) are com-
muting tuples of operators on a Hilbert space H such that T is a spherical m-isometry, S
is a spherical n-isometry and TS = ST. Then T is a spherical m-isometry of order r for
every r > 1. Moreover, if TiTj = SiSj = 0 for i 6= j, then

m+n−1

∑
t=0

(−1)t
(

m + n− 1
t

)
Qt

TQt
S(I) = 0.

Proof. Since Pj(T) = 0 for j > m, Lemma 2.2 can be invoked to give

〈Qk
T(I)x, x〉 =

m−1

∑
j=0

(−1)j

j!
〈pj(T)x, x〉k(j), k = 1, 2, . . .

for every x ∈ H. This shows that 〈Qk
T(I)x, x〉 is a polynomial in k of degree at

most m− 1. Therefore, Lemma 3.2 implies that
m

∑
k=0

(−1)k
(

m
k

)
〈Qrk

T (I)x, x〉 = 0.
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Now as
m
∑

k=0
(−1)k(m

k )Q
rk
T (I) is a self-adjoint operator, the result holds.

For the proof of the second part, let x ∈ H and put ai,j = 〈Qi
T(Q

j
S(I))x, x〉.

Then

ai+k,` = 〈Q`
SQi+k

T (I)x, x〉 =
〈 d

∑
p=1

S∗p
`Qi+k

T (I)S`
px, x

〉
=

d

∑
p=1
〈Qi+k

T (I)S`
px, S`

px〉

=
d

∑
p=1

〈( d

∑
q=1

T∗q
kQi

T(I)Tk
q

)
S`

px, S`
px
〉
=

d

∑
p=1

d

∑
q=1
〈Qi

T(I)Tk
q S`

px, Tk
q S`

px〉.

Since T is a spherical m-isometry, 〈Qi
T(I)Tk

q S`
px, Tk

q S`
px〉 is a polynomial in i of

degree at most m− 1, and so is ai+k,`. Therefore, by Lemma 3.2
m

∑
i=0

(−1)i
(

m
i

)
ai+k,` = 0.

On the other hand, since S is a spherical n-isometry, applying a similar argument
one can show that

n

∑
j=0

(−1)j
(

n
j

)
ak,`+j = 0.

Putting these facts together, Lemma 3.1 implies that

m+n−1

∑
t=0

(−1)t
(

m + n− 1
t

)
at,t = 0;

hence we obtain the desired assertion.

PROPOSITION 3.10. Suppose that T = (T1, . . . , Td) and S = (S1, . . . , Sd) are
commuting tuples of operators on a Hilbert spaceH such that T is a spherical m-isometry,
S is a spherical n-isometry, TS = ST and TiTj = SiSj = TiSj = 0, f or i 6= j.
Then Tr = (Tr

1 , . . . , Tr
d) is a spherical m-isometry for each positive integer r. Moreover,

TS = (T1S1, . . . , TdSd) is a spherical (m + n− 1)-isometry.

Proof. The preceding theorem implies that
m

∑
k=0

(−1)k
(

m
k

)
Qk

Tr (I) =
m

∑
k=0

(−1)k
(

m
k

)
QTrk (I) =

m

∑
k=0

(−1)k
(

m
k

)
Qrk

T (I) = 0,

hence Tr is a spherical m-isometry.
The second part holds because

(3.3) Qk
TQk

S(I) = QTk QSk (I) = QTkSk (I) = Q(TS)k (I) = Qk
TS(I).

Now apply the second part of the previous theorem.

The following example shows that in the previous proposition the orthogo-
nality condition TiTj = 0, i 6= j is essential.
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EXAMPLE 3.11. Let H be a Hilbert space with orthonormal basis {en}∞
n=1

and A ∈ B(H) be the unilateral shift operator defined by Aen = en+1. Put T1 =

T2 = A/
√

2. Then it is easily seen that T = (T1, T2) is a spherical isometry but
T2 = (T2

1 , T2
2 ) is not.

An immediate corollary of Proposition 3.10 is the following result obtained
in [17], [21].

COROLLARY 3.12. LetH be a Hilbert space and S, T in B(H) commute with each
other. Then

(i) if T is an m-isometry, then so is any power of T;
(ii) if T is an m-isometry and S is an n-isometry, then TS is an (m+ n− 1)-isometry.

COROLLARY 3.13. Let T = (T1, . . . , Td) ∈ B(H)d be a spherical isometry such
that TiTj = 0 for i 6= j, then S = (Tn1

1 , . . . , Tnd
d ) is also a spherical isometry for every

d-tuple (n1, . . . , nd) of positive integers.

Proof. Suppose that n1 = min{n1, n2, . . . , nd}. As (Tn1
1 , . . . , Tn1

d ) is a spheri-

cal isometry,
d
∑

i=1
T∗i

n1 Tn1
i = I. Thus,

I −QS(I) =
d

∑
i=2

T∗i
n1 Tn1

i −
d

∑
i=2

T∗i
ni Tni

i =
d

∑
i=2

ni 6=n1

T∗i
n1(I − T∗i

ni−n1 Tni−n1
i )Tn1

i

=
d

∑
i=2

ni 6=n1

T∗i
n1
( d

∑
j=1
j 6=i

T∗j
ni−n1 Tni−n1

j

)
Tn1

i = 0.

The next-to-last equality holds because (Tni−n1
1 , . . . , Tni−n1

d ) is a spherical isome-
try for every ni 6= n1.

It is natural to suspect the correctness of the above corollary for a spherical
m-isometry. To prove it let p(z1, . . . , zd, z1, . . . , zd) be a 2d-variable polynomial of
the form

p(z1, . . . , zd, z1, . . . , zd) =
d

∑
i=1

m

∑
ki=0

m

∑
`i=0

cki`i
z `i

i zki
i cki`i

∈ C,

and suppose that T1, . . . , Td are in B(H). Define

p(T1, . . . , Td) =
d

∑
i=1

m

∑
ki=0

m

∑
`i=0

cki`i
T∗i

`i Tki
i cki`i

∈ C,

and note that if p(z1, z1) is a polynomial in two variables then the definition of
p(T1) is the classical definition of hereditary functional calculus for operators in
[2], [4] and [42]. Keeping this in mind, we have the following theorem. The idea
of the proof is taken from Corollary 2.4 of [40].
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THEOREM 3.14. Suppose that T = (T1, . . . , Td) is a spherical m-isometry on H
such that TiTj = 0, i 6= j. Then the d-tuple (Tn1

1 , . . . , Tnd
d ) is a spherical m-isometry for

every d-tuple (n1, . . . , nd) of positive integers.

Proof. Put p(z1, . . . , zd, z1, . . . , zd) =
d
∑

i=1
(1− zizi)

m − (d − 1). It is straight-

forward to verify that T is a spherical m-isometry if and only if p(T1, . . . , Td) = 0.
On the other hand, since

(1− zni
i zni

i )m = ∑
m1+···+mni=m

(
m

m1, . . . , mni

)
z
(0·m1+1·m2+···+(ni−1)mni )

i

· (1− zizi)
mzi

(0·m1+1·m2+···+(ni−1)mni )

for i = 1, . . . , d if we assume that zizj = 0, i 6= j then

d

∑
i=1

(1−zni
i zni

i )m−(d−1)=
d

∑
i=1

∑
m1+···+mni=m

(
m

m1, . . . , mni

)
z
(0·m1+1·m2+···+(ni−1)mni )

i

· p(z1, . . . , zd, z1, . . . , zd)zi
(0·m1+1·m2+···+(ni−1)mni )

− (d− 1)p(z1, . . . , zd, z1, . . . , zd).

Now, substituting Ti for zi and T∗i for zi ultimately, we get q(T1, . . . , Td) = 0,

where q(z1, . . . , zd, z1, . . . , zd) =
d
∑

i=1
(1− zni

i zni
i )m − (d− 1). So (Tn1

1 , . . . , Tnd
d ) is a

spherical m-isometry.

Before stating the next result, we are first going to state an independently
interesting lemma about complex numbers. The proof is taken from the proof of
Theorem 3.6 of [17] with a small modification. For the benefit of the reader and
the sake of completeness we include its proof.

LEMMA 3.15. If (an)n is a sequence of complex numbers and r, s, m, ` are positive
integers satisfying

m

∑
k=0

(−1)k
(

m
k

)
ark+n = 0, and(3.4)

`

∑
k=0

(−1)k
(
`

k

)
ask+n = 0,(3.5)

for all n > 0, then

(3.6)
h

∑
k=0

(−1)k
(

h
k

)
atk = 0

where t is the greatest common divisor of r and s, and h is the minimum of m and `.
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Proof. Let V1 and V2 be the vector space of all sequences (an)n satisfying
(3.4) and (3.5), respectively. Then dim V1 = mr and dim V2 = sl. Indeed,

(nk)n>0, (nkei2πn/r)n>0, (nkei4πn/r)n>0, . . . , (nkei2π(r−1)n/r)n>0 for 06k6m− 1

is a basis for V1 and

(nk)n>0, (nkei2πn/s)n>0, (nkei4πn/s)n>0, . . . , (nkei2π(s−1)n/s)n>0 for 06k6`− 1

is a basis for V2. Therefore,

(nk)n>0, (nkei2πn/t)n>0, (nkei4πn/t)n>0, . . . , (nkei2π(t−1)n/t)n>0 for 06k6h− 1

is a basis for V1 ∩V2. It is sufficient to prove that the basis of V1 ∩V2 satisfies (3.6).
Suppose that (nkei2π jn/t)n>0, 0 6 j 6 t− 1, 0 6 k 6 h− 1 is an element of the
basis for V1 ∩V2. Hence

h

∑
q=0

(−1)q
(

h
q

)
(tq)kei2π jtq/t = tk

h

∑
q=0

(−1)q
(

h
q

)
qk = 0,

by Lemma 3.2.

PROPOSITION 3.16. Suppose that T = (T1, . . . , Td) is a commuting tuple of op-
erators on a Hilbert space H and r, s, m, ` be positive integers. Moreover, let t be the
greatest common divisor of r and s, and h be the minimum of m and `.

(i) If T is a spherical m-isometry of order r and T is a spherical `-isometry of order s,
then T is a spherical h-isometry of order t.

(ii) Suppose that TiTj = 0, for i 6= j. If Tr is a spherical m-isometry and Ts is a
spherical `-isometry, then Tt is a spherical h-isometry.

Proof. (i) Let x ∈ H and put an := 〈Qn
T(I)x, x〉. Since

m

∑
k=0

(−1)k
(

m
k

)
Qrk+n

T (I) = Qn
T

( m

∑
k=0

(−1)k
(

m
k

)
Qrk

T (I)
)
= 0,

we observe that
m

∑
k=0

(−1)k
(

m
k

)
ark+n = 0,

for all n > 0. Similarly, we get

`

∑
k=0

(−1)k
(
`

k

)
ask+n = 0

for all n > 0. Applying Lemma 3.15, we observe that

h

∑
k=0

(−1)k
(

h
k

)
Qtk

T (I) = 0.
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(ii) The orthogonality condition implies that

m

∑
k=0

(−1)k
(

m
k

)
Qrk

T (I) =
m

∑
k=0

(−1)k
(

m
k

)
Qk

Tr (I) = 0, and

`

∑
k=0

(−1)k
(
`

k

)
Qsk

T (I) =
`

∑
k=0

(−1)k
(
`

k

)
Qk

Ts(I) = 0.

Therefore, the result follows from the part (i).

If T = (T1, . . . , Td) is a spherical isometry of orders r and r + 1, then it is a
spherical isometry. Indeed,

I = Qr+1
T (I) = QT(Qr

T(I)) = QT(I).

In the following, we give sufficient conditions ensuring that a spherical m-
isometry of some order is a spherical m-isometry. The following corollaries are
direct consequences of preceding proposition.

COROLLARY 3.17. Suppose that T = (T1, . . . , Td) is a commuting tuple of oper-
ators on a Hilbert spaceH and r, s, m are positive integers.

(i) If T is a spherical m-isometry and T is a spherical isometry of order s, then T is a
spherical isometry.

(ii) If T is a spherical m-isometry of orders r and r + 1, then T is a spherical m-
isometry.

(iii) If T is a spherical m-isometry of order r and T is a spherical n-isometry of order
r + 1 with m < n, then T is a spherical m-isometry.

The tuple T is called a proper spherical m-isometry of order r if it is a spheri-
cal m-isometry of order r but not a spherical (m− 1)-isometry of order r. Note that
every proper spherical m-isometry of order 1 is a proper spherical m-isometry.

COROLLARY 3.18. If T = (T1, . . . , Td) is a proper spherical m-isometry and r is
a positive integer, then T is a proper spherical m-isometry of order r.

Proof. By Theorem 3.9, T is a spherical m-isometry of order r. Assume that T
is a spherical (m− 1)-isometry of order r, then by Proposition 3.16, T is a spherical
(m− 1)-isometry which is a contradiction.

4. POWER REGULARITY

Let F(k, d) be the set of all functions from the set {1, 2, . . . , k} to the set
{1, 2, . . . , d}. For f in F(k, d), let

A f = A f (1)A f (2) · · · A f (k).
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For a commuting d-tuple T = (T1, . . . , Td) ∈ B(H)d, the algebraic joint
spectral radius is defined by

r(T) := inf
k

{∥∥∥ ∑
f∈F(k,d)

(Tf )
∗Tf

∥∥∥1/2k}
.

Since ∑
f∈F(k,d)

(Tf )
∗Tf = Qk

T(I), the above formula can be rewritten as

r(T) := inf
k
‖Qk

T(I)‖1/2k.

It is proved in [26] that

r(T) = lim
k→∞
‖Qk

T(I)‖1/2k.

For d = 1, r(T) is the usual spectral radius of T. The joint approximate point
spectrum of T denoted by σπ(T) is defined by

σπ(T) =

 λ = (λ1, . . . , λd) ∈ Cd : lim
k→∞

d
∑

j=1
‖(Tj − λj)xk‖ = 0,

for some sequence of unit vectors {xk}k

 .

This is equivalent to lim
k→∞

(Tj − λj)xk = 0 for all j = 1, . . . , d.

In this section, we define the power regularity of the tuple of the operators
and prove that spherical m-isometries are power regular.

The d-tuple T = (T1, . . . , Td) is power regular if for each x ∈ H,

r(x, T) := lim
k→∞

(
∑
|α|=k

k!
α!
‖Tαx‖2

)1/2k
= lim

k→∞
‖〈Qk

T(I)x, x〉‖1/2k

exists.

PROPOSITION 4.1. Let T = (T1, . . . , Td) be in B(H)d and suppose that x, y ∈ H
such that r(x, T), r(y, T), r(x + y, T) exist. Then r(x + y, T) 6 max{r(x, T), r(y, T)}.
Moreover, if TiTj = 0, for i 6= j, then r(x, Tk) = r(x, T)k for all positive integers k,
where Tk = (Tk

1 , . . . , Tk
d ).

Proof. Note that for any positive operator A ∈ B(H),

|||x||| = |〈QT(A)x, x〉|1/2

is a seminorm on H. Indeed, the fact that A = B∗B for some B ∈ B(H) and the
Cauchy–Schwarz inequality show that |||x + y||| 6 |||x|||+ |||y|||. Also, clearly
|||αx||| = |α| |||x||| for every α ∈ C. Now, for any ε > 0 there is natural number
k0 such that |〈Qk

T(I)x, x〉|1/2 6 (r(x, T) + ε)k and |〈Qk
T(I)y, y〉|1/2 6 (r(y, T) + ε)k

for all k > k0. Then for A = Qk−1
T (I) we have∣∣∣〈Qk

T(I)
x + y

2
,

x + y
2

〉∣∣∣1/2
=
∣∣∣∣∣∣∣∣∣ x + y

2

∣∣∣∣∣∣∣∣∣ 6 1
2
|||x|||+ 1

2
|||y|||
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=
1
2
|〈Qk

T(I)x, x〉|1/2 +
1
2
|〈Qk

T(I)y, y〉|1/2

6
1
2
(r(x, T) + ε)k +

1
2
(r(y, T) + ε)k

6 (max{(r(x, T) + ε)k, (r(y, T) + ε)k})

6 (max{r(x, T), r(y, T)}+ ε)k

for all k > k0. Therefore, r(x + y, T) = r((x + y)/2, T) 6 max{r(x, T), r(y, T)}+
ε, for each ε > 0. Hence the result holds. For the next part observe that

r(x, Tk) = lim
n→∞

|〈Qn
Tk (I)x, x〉|1/2n =

(
lim

n→∞
|〈Qnk

T (I)x, x〉
∣∣∣1/2kn)k

= r(x, T)k.

THEOREM 4.2. Every spherical m-isometry T = (T1, . . . , Td) is power regular.
Moreover, for every non-zero vector x ∈ H the spectral radius of the restriction of the
d-tuple T to the subspace M :=

∨{Tn1
1 Tn2

2 · · · T
nd
d x : n1>0, n2>0, . . . , nd>0} is one.

Proof. By Lemma 3.2 of [38], σπ(T) is in the boundary of the unit ball. There-
fore, for every sequence of unit vectors (xk)k, there is j with 1 6 j 6 d such that

lim
k→∞

Tjxk 6= 0

and this implies that there is a positive constant c such that

(4.1) |〈QT(I)x, x〉| > c‖x‖2 for all x ∈ H.

To prove the existence of r(x, T) note that r(0, T) = 0. So let x be a non-zero
element in H. Since T is a spherical m-isometry, then Pj(T) = 0 for j > m. Thus
Lemma 2.2 implies that

〈Qk
T(I)x, x〉 =

m−1

∑
j=0

(−1)j

j!
〈Pj(T)x, x〉k(j) k = 1, 2, . . . .

Note that QT(I) is a positive operator. Moreover, Pj(T)s are self-adjoint opera-
tors; therefore, 〈Qk

T(I)x, x〉 is a polynomial in k with real coefficients of degree at
most m− 1 with non-negative leading coefficient

(−1)m−1

(m− 1)!
〈Pm−1(T)x, x〉.

Suppose that 〈Qk
T(I)x, x〉 = a0 + a1k + · · · + am−1km−1. Now, (4.1) implies that

there exists 0 6 i 6 m− 1 so that ai 6= 0. Let ar be the largest non-zero coefficient.
Hence lim

k→∞
|〈Qk

T(I)x, x〉|1/2k = lim
k→∞

(arkr)1/2k = 1. Therefore, T is power regular.

Moreover, for a non-zero vector x inH we have

1 = r(x, T) = lim
k→∞

(
∑
|α|=k

k!
α!
‖Tαx‖2

)1/2k
= lim

k→∞

(
∑
|α|=k

k!
α!
‖Tα|Mx‖2

)1/2k

= lim
k→∞

(|〈Qk
T|M (I)x, x〉|)1/2k 6 lim

k→∞
‖Qk

T|M (I)‖1/2k‖x‖1/k = r(T|M);
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hence the spectral radius of the restriction of the tuple T to the subspace M is in
the closed interval [r(x, T), r(T)]. Now since for every spherical m-isometry T,
r(T) = 1 (see Proposition 3.1 of [38]) we get the result.

COROLLARY 4.3. Every m-isometry is power regular. Moreover, for every non-
zero vector x ∈ H the spectral radius of the restriction of the operator T to the subspace
M =

∨
n>0
{Tnx} is one.

Recall that the d-tuple T = (T1, . . . , Td) is right invertible if there are op-
erators A1, . . . , Ad in B(H) such that T1 A1 + · · · + Td Ad = I. Moreover, it is
spherical unitary if T and T∗ are spherical isometries. Since every spherical isom-
etry is subnormal ([11], Proposition 2), T is a spherical unitary if and only if T is a
normal spherical isometry. It is known that every spherical isometry on a finite-
dimensional Hilbert space is necessarily a spherical unitary. On the other hand,
there are examples of Taylor invertible spherical isometries which are not spheri-
cal unitaries ([34], Theorem 3.1). The question is under what conditions a Taylor
invertible spherical isometry is a spherical unitary. In the next part of this section,
we give sufficient conditions under which a right invertible spherical isometry is
a spherical unitary.

PROPOSITION 4.4. Let T = (T1, . . . , Td) be a d-tuple of operators in B(H),
(i) If T is a spherical m-isometry then QT(I) is invertible. Moreover, if TiTj = 0, for

i 6= j then Q
(T

n1
1 ,...,T

nd
d )

(I) is invertible for every d-tuple (n1, . . . , nd) of positive integers.

In particular, Qk
T(I) is invertible for every k > 1.

(ii) If T is a right invertible spherical isometry such that T∗i Tj = TjT∗i = 0 for all
i 6= j, then T is a spherical unitary.

Proof. (i) As we have seen in the proof of Theorem 4.2, there is a positive
constant c such that

|〈QT(I)x, x〉| > c‖x‖2 for all x ∈ H.

Therefore,

c‖x‖2 6 |〈QT(I)x, x〉| 6 ‖QT(I)x‖‖x‖

and so QT(I) is a bounded below operator. Now since every bounded below
operator on the Hilbert space has closed range, we have

ranQT(I) = ranQT(I) = kerQT(I)∗⊥ = kerQT(I)⊥ = H.

Hence QT(I) is invertible. Moreover, if TiTj = 0, for i 6= j, then in light of Theo-
rem 3.14, (Tn1

1 , . . . , Tnd
d ) is a spherical m-isometry. So the results hold.

(ii) Since T is right invertible, T∗ is left invertible; hence there is a constant
c > 0 such that

〈QT∗(I)x, x〉 = ‖T∗1 x‖2 + · · ·+ ‖T∗d x‖2 > c‖x‖2
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for all x ∈ H. Therefore, QT∗(I) is a self-adjoint bounded below operator which
in turn implies that it is invertible. On the other hand,

(QT∗(I))2 =
( d

∑
i=1

TiT∗i
)( d

∑
i=1

TiT∗i
)
=

d

∑
i=1

TiT∗i TiT∗i

=
d

∑
i=1

Ti

(
I −

d

∑
j=1, j 6=i

T∗j Tj

)
T∗i = QT∗(I).

Therefore, QT∗(I) = I and the proof is completed.

Note that the condition T∗i Tj = TjT∗i = 0, i 6= j is not a necessary condition
in part (ii) of the above proposition. For example (I/

√
2, I/
√

2) is a spherical
unitary.

5. PROPER SPHERICAL m-ISOMETRIES

Now we give a basic result about spherical m-isometries which is the multi-
variable analog of Theorem 1 in [23].

THEOREM 5.1. Let H be a Hilbert space. Then the d-tuple T = (T1, . . . , Td) ∈
B(H)d is a proper spherical m-isometry if and only if there are Am−1, Am−2, . . . , A1, A0
in B(H) such that Am−1 6= 0 and for every n = 0, 1, 2, . . .

Qn
T(I) =

m−1

∑
i=0

Aini.

Moreover, the sets {Ai : i = 0, . . . , m− 1} and {Qn−i
T (Ai) : i = 0, . . . , m− 1} when

n > m are linearly independent.

Proof. If T = (T1, . . . , Td) ∈ B(H)d is a proper spherical m-isometry then
from Lemma 2.2 we have

Qn
T(I) =

m−1

∑
j=0

( (−1)j

j!
Pj(T)

)
n(j) =

m−1

∑
j=0

j

∑
i=0

α(i,j)
(−1)j

j!
Pj(T)ni

=
m−1

∑
i=0

( m−1

∑
j=i

α(i,j)
(−1)j

j!
Pj(T)

)
ni =

m−1

∑
i=0

Aini

where Ai =
m−1
∑
j=i

α(i,j)((−1)j/j!)Pj(T) for suitable α(i,j)s when α(m−1,m−1) = 1.

Conversely, assume that there are Am−1 6= 0, Am−2, . . . , A0 so that

Qn
T(I) =

m−1

∑
i=0

Aini for all n > 0.
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By applying Lemma 3.2 we observe that

Pm(T) =
m

∑
n=0

(−1)n
(

m
n

)
Qn

T(I) =
m

∑
n=0

(−1)n
(

m
n

) m−1

∑
i=0

Aini

=
m−1

∑
i=0

Ai

m

∑
n=0

(−1)n
(

m
n

)
ni = 0.

Moreover,

Pm−1(T) =
m−1

∑
i=0

Ai

m−1

∑
n=0

(−1)n
(

m− 1
n

)
ni = (−1)m−1(m− 1)!Am−1 6= 0.

To prove the next part, suppose that
m−1
∑

i=0
xi Ai = 0 for some scalars x1, . . . , xm−1.

Therefore

0 =
m−1

∑
i=0

xi Ai =
m−1

∑
i=0

xi

m−1

∑
j=i

α(i,j)
(−1)j

j!
Pj(T)

=
m−1

∑
j=0

j

∑
i=0

xiα(i,j)
(−1)j

j!
Pj(T) =

m−1

∑
j=0

[ (−1)j

j!

j

∑
i=0

xiα(i,j)

]
Pj(T).

Now it is sufficient to show that {Pj(T) : j = 0, . . . , m− 1} is a linearly indepen-

dent set. Indeed, in this case
j

∑
i=0

xiα(i,j) = 0 for j = 0, . . . , m − 1, and since the

matrix of the coefficients of this system is lower triangular with diagonal compo-
nents α(j,j) = 1, j = 0, . . . , m − 1, we get xi = 0 for i = 0, . . . , m − 1. To finish

the proof of this part suppose that
m−1
∑

k=0
αkPk(T) = 0 for some complex numbers

α1 , . . . , αm−1. Then
m−1
∑

k=0
αkQT(Pk(T)) = 0. On the other hand, by (2.1) we have

m−1

∑
k=0

(Pk(T)−QT(Pk(T))) =
m−1

∑
k=0

Pk+1(T);

consequently,
m−1

∑
k=0

αkPk+1(T) = 0.

By continuing this way we get
m−1

∑
k=0

αkPk(T) =
m−1

∑
k=0

αkPk+1(T) =
m−1

∑
k=0

αkPk+2(T) = · · · =
m−1

∑
k=0

αkPk+m−1(T) = 0.

Moreover, since Pm−1(T) 6= 0 and

0 =
m−1

∑
k=0

αkPk+m−1(T) = α0Pm−1(T),
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we conclude that α0 = 0. In the next step we have

0 =
m−1

∑
k=0

αkPk+m−2(T) = α1Pm−1(T);

thus α1 = 0. Continuing this process we obtain αk = 0 for all k = 0, 1, . . . , m− 1.
To prove the last part of the theorem, suppose that there are x1, . . . , xm−1

such that

0 =
m−1

∑
i=0

xiQn−i
T (Ai) =

m−1

∑
i=0

xi

m−1

∑
j=i

α(i,j)
(−1)j

j!
Qn−i

T (Pj(T)).

Since T is a proper spherical m-isometry, there is x ∈ H such that Pm−1(T)x 6=
0. But

〈Qn−i
T (Pj+1(T))x, Pm−1(T)x〉

= 〈Qn−i
T (Pj(T))x, Pm−1(T)x〉 − 〈Qn−i+1

T (Pj(T))x, Pm−1(T)x〉.
So

m−1

∑
i=0

xi

m−1

∑
j=i

α(i,j)
(−1)j

j!
〈Qn−i

T (Pj+1(T))x, Pm−1(T)x〉

= −
m−1

∑
i=0

xi

m−1

∑
j=i

α(i,j)
(−1)j

j!
〈QT(Qn−i

T (Pj(T)))x, Pm−1(T)x〉

= −
d

∑
k=1

m−1

∑
i=0

xi

m−1

∑
j=i

α(i,j)
(−1)j

j!
〈Qn−i

T (Pj(T)Tk)x, TkPm−1(T)x〉 = 0.

Applying this process, we will have
m−1

∑
i=0

xi

m−1

∑
j=i

α(i,j)
(−1)j

j!
〈Qn−i

T Pj+k(T)x, Pm−1(T)x〉 = 0

for all 0 6 k 6 m− 1. Take k = m− 1 and note that by (2.1)

Qn
T(Pm−1(T)) = Pm−1(T)

for all n > m; thus x0 = 0. In the next step taking k = m− 2 we get

x1α(1,1)‖Pm−1(T)x‖2 = 0

then x1=0. Continuing this process we will have xi =0 for all i=0, . . . , m−1.

As an immediate consequence of Theorem 5.1, we have the following corol-
lary.

COROLLARY 5.2 ([38], Proposition 2.3). If T = (T1, . . . , Td) is a proper spheri-
cal m-isometry then

0 6 lim
n→∞

Qn
T(I)

nm−1 =
(−1)1−mPm−1(T)

(m− 1)!
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The next result is the multivariable setting of Proposition 3 in [39].

PROPOSITION 5.3. Let T = (T1, . . . , Td) be a proper spherical m-isometry. Then
the following sets are linearly independent:

(i) {Pk(T) : k = 0, 1, . . . , m− 1};
(ii) {Qk

T(I) : k = 0, 1, . . . , m− 1};
(iii) {Qn−k

T (Pk(T)) : k = 0, 1, . . . , m− 1} when n > m.

Proof. From the proof of the preceding theorem, it follows that (i) is linearly
independent. Moreover, the proof of the part (iii) is on the same lines as the last
part of the above theorem.

(ii) Assume that α0, α1, . . . , αm−1 are complex numbers such that

m−1

∑
k=0

αkQk
T(I) = 0.

Thus in light of Lemma 2.2, we obtain

m−1

∑
k=0

m−1

∑
j=0

(
αk

(−1)j

j!
k(j)
)

Pj(T) =
m−1

∑
j=0

( m−1

∑
k=0

αk
(−1)j

j!
k(j)
)

Pj(T) = 0.

On the other hand, (i) implies that

m−1

∑
k=0

αkk(j) = 0, j = 0, 1, . . . , m− 1.

Now, since the matrix of coefficients of the above system is an upper triangular

matrix with determinant
m−1
∏
i=0

i!, we conclude that αk = 0, k = 0, . . . , m− 1.

Now, the following result due to Botelho, Jamison and Zheng is a conse-
quence of the preceding proposition.

COROLLARY 5.4 ([24], Theorem 3.1). If A ∈ B(H) is a proper m-isometry then
the set {I, A∗A, . . . , A∗m−1 Am−1} is linearly independent.

For the proof put d = 1 in part (ii) of the previous proposition.

COROLLARY 5.5. If T = (T1, . . . , Td) is a proper spherical m-isometry such that
m

∑
k=0

ckQk
T(I) = 0,

then ck = cm(−1)m−k(m
k ), k = 0, 1, . . . , m.

Proof. Note that

m−1

∑
k=0

ckQk
T(I) = −cmQm

T (I) =
m−1

∑
k=0

cm(−1)m−k
(

m
k

)
Qk

T(I).
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As {Qk
T(I) : k = 0, 1, . . . , m− 1} is a linearly independent set, ck = cm(−1)m−k(m

k )
for k = 0, . . . , m− 1.
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