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ABSTRACT. We study the set C consisting of pairs of orthogonal projections
P, Q acting in a Hilbert space H such that PQ is a compact operator. These
pairs have a rich geometric structure which we describe here. They are parti-
tioned in three subclasses: C0 consists of pairs where P or Q have finite rank,
C1 of pairs such that Q lies in the restricted Grassmannian (also called Sato–
Grassmannian) of the polarization H = N(P) ⊕ R(P), and C∞. We charac-
terize the connected components of these classes: the components of C0 are
parametrized by the rank, the components of C1 are parametrized by the Fred-
holm index of the pairs, and C∞ is connected. We show that these subsets are
(non-complemented) differentiable submanifolds of B(H)×B(H).
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1. INTRODUCTION

The study of pairs of subspaces of a Hilbert spaceH or, more generally, pairs
of orthogonal projections in a C∗-algebra started in the early times of spectral
theory with Dixmier [9]. Some efforts towards finding more transparent proofs
of Dixmier’s theorems are due to Davis [8], Pedersen [17], Halmos [13], Raeburn
and Sinclair [22], Avron, Seiler and Simon [3], Amrein and Sinha [1], among many
others. The excellent survey of Böttcher and Spitkovsky [4] contains a complete
description and bibliography. This theory is concerned not only with two projec-
tions P, Q in B(H) (the algebra of bounded linear operators in H) but also with
the products PQ and PQP. This paper is an addition to this part of the theory,
where PQ is supposed to be compact. The interest in this type of products is not
new. Consider the following examples.

EXAMPLE 1.1. Let I, J ⊂ Rn be Lebesgue-measurable sets of finite measure.
Let PI , QJ be the projections in L2(Rn, dx) given by

PI f = χI f and QJ f = (χJ f̂ ) ,̌
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where χL denotes the characteristic function of the set L. Equivalently, denoting
by UF the Fourier transform regarded as a unitary operator acting in L2(Rn, dx),
then

PI = MχI and QJ = U∗FMχJ UF .
In [10] (Lemma 2) it is proven that PI QJ is a Hilbert–Schmidt operator. See also
[12]. These products play a relevant role in operator theoretic formulations of the
uncertainty principle [10], [12].

EXAMPLE 1.2. Let H = L2(T, dt) where T is the unit circle, and consider
the decomposition

H = H− ⊕H+,
where H+ is the Hardy space. Denote by P+ and P− the orthogonal projec-
tions onto H+ and H−, respectively. Let ϕ, ψ be continuous functions on T with
|ϕ(eit)| = |ψ(eit)| = 1 for all t, and

P = P⊥ϕH+
= 1− PϕH+ , Q = PψH+ .

Since ϕ and ψ are unimodular, the multiplication operators Mϕ, Mψ are unitary
inH. Then

PϕH+ = PMϕ(H+) = MϕP+M∗ϕ = MϕP+Mϕ,

and similarly for PψH+ . Then

P⊥ϕH+
= 1− PϕH+ = Mϕ(1− P+)Mϕ = MϕP−Mϕ.

Therefore
PQ = MϕP−Mϕ MψP+Mψ = MϕP−MϕψP+Mψ.

Since P−Mϕψ|H+ is a Hankel operator with continuous symbol, it follows by
Hartman’s theorem [14] that it is compact (see also Theorem 5.5 in [18]). Thus
PQ is compact.

We shall see below that these two examples are of different nature.
Our main goal in this paper is the study of the geometry of the sets

C = {(P, Q) : P, Q are orthogonal projections and PQ is compact}
and, for each projection P,

C(P) = {Q : PQ is compact}.
Let us describe the contents of the paper.

In Section 2 we state elementary properties of pairs P, Q in C: the spectral
description of the entries of Q, written as a 2× 2 matrix in terms of P, and the
partition of the class C in three subclasses C0, C1, and C∞. In Section 3 we recall the
so-called Halmos decomposition ofH given by a pair of subspaces and specialize
it to the case where the corresponding pair of projections lies in C. In Section 4
we give a spatial characterization of C in the following sense: given orthogonal
projections P, Q, denote S = R(P) and T = R(Q); then (P, Q) belongs to C if and
only if there exist orthonormal bases {ξn}, {ψn} of S and T , respectively, such
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that 〈ξn, ψk〉 = 0 if n 6= k, and 〈ξn, ψn〉 → 0. In Section 5 we introduce the action
of the restricted unitary group induced by P on projections Q ∈ C(P). In Section 6
we study the class C1, on which an index is defined, and prove that the connected
components of C1 are parametrized by this index. It is shown that Hankel pairs as
in Example 1.1.2 belong to C1. In Section 7 we study the class C∞ and prove that
it is connected. We also prove that the pairs (PI , QJ) like in Example 1.1.1 belong
to C∞. In Section 8 we prove that the sets C and C(P) are (non-complemented)
C∞-differentiable submanifolds of B(H).

2. ELEMENTARY PROPERTIES

Let H be a Hilbert space, B(H) the algebra of bounded linear operators in
H, K(H) the ideal of compact operators and P(H) the set of selfadjoint (orthog-
onal) projections. If S is a closed subspace ofH, the orthogonal projection onto S
is denoted by PS . Given P ∈ P(H), operators acting in H can be written as 2× 2
matrices. For instance, any selfadjoint operator Q is of the form

Q =

(
a x

x∗ b

)
with a = a∗ and b = b∗. The fact that Q is a projection is equivalent to the
relations

(2.1)


xx∗ = a− a2,
x∗x = b− b2,
ax + xb = x,

with 0 6 a 6 1R(P), 0 6 b 6 1N(P) and ‖x‖ 6 1/2. The fact that PQ is com-
pact means that a ∈ B(R(P)) and x ∈ B(N(P), R(P)) are compact. Here and
throughout R(T) and N(T) denote the range and the nullspace of T, respectively.

Let us show another example of pairs of projections with compact product.

EXAMPLE 2.1. Let H = L × S and fix a compact operator K : S → L.
Consider the idempotent E = EK given by the matrix

E =

(
1L K
0 0

)
.

Then P = PR(E) = PL and Q = PN(E) satisfy that PQ is compact. Indeed, straight-
forward computations show that R(E) = L and that

PN(E) = (1− EK)(1− EK − E∗K)
−1 =

(
KK∗(1 + KK∗)−1 −K(1 + K∗K)−1

−K∗(1 + KK∗)−1 (1 + K∗K)−1

)
.

Then

PQ =

(
KK∗(1 + KK∗)−1 −K(1 + K∗K)−1

0 0

)
,
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which is clearly compact. The singular values of PQ are the square roots of the
eigenvalues of

PQP =

(
KK∗(1 + KK∗)−1 0

0 0

)
,

i.e., those of KK∗(1 + KK∗)−1, which have the same asymptotic behavior near
zero as the singular values of K.

Let us collect several elementary properties of pairs in C. First note that b (in
the matrix expression of Q in terms of P) may not be compact. It is positive and
b− b2 is compact. This implies that b can be diagonalized, and that its spectrum
consists of eigenvalues which can only accumulate (eventually) at 0 or 1, plus 0
and 1, which may not be eigenvalues. All spectral values different from 0 or 1
have finite multiplicity.

Moreover, there is a relationship between the eigenvalues of a and b, which
we state in the following elementary lemma.

LEMMA 2.2. If λ 6= 0, 1 is an eigenvalue of b, then 1− λ is an eigenvalue of a,
and the operator x|N(b−λ1N(P))

maps N(b − λ1N(P)) isomorphically onto N(a − (1−
λ)1R(P)). Thus, in particular, these eigenvalues have the same multiplicity. Moreover,

xPN(b−λ1N(P))
= PN(a−(1−λ)1R(P))

x.

Proof. Let ξ ∈ H, ξ 6= 0, such that bξ = λξ (with λ 6= 0, 1). Then, by the
third relation in (2.1), one has

xξ = axξ + xbξ = axξ + λxξ, i.e., axξ = (1− λ)xξ.

Also note that

N(x) = N(x∗x) = N(b− b2) = N(b)⊕ N(b− 1N(P)),

and thus xξ 6= 0 is an eigenvector for a, with eigenvalue 1 − λ, and the map
x|N(b−λ1N(P))

is injective from N(b− λ1N(P)) to N(ax− (1− λ)1R(P)). Therefore

dim(N(b− λ1N(P))) 6 dim(N(a− (1− λ)1R(P))).

By a symmetric argument, using x∗ (and the relation bx∗ + x∗a = x), one obtains
equality of these dimensions.

Pick now an arbitrary vector ξ ∈ N(P) and write ξ = ξ1 + ξ2, with ξ1 ∈
N(b− λ1N(P)) and ξ2 ⊥ N(b− λ1N(P)). Then

xPN(b−λ1N(P))
ξ = xξ1.

On the other hand
PN(a−(1−λ)1R(P))

xξ1 = xξ1,

by the fact proven above. Let us see that PN(a−(1−λ)1R(P))
xξ2 = 0, which will

prove our claim. Since ξ2 ⊥ N(b− λ1N(P)), it follows that ξ2 = ∑
l>2

ηl + η0 + η1,

where ηl , l > 2, are eigenvectors of b corresponding to eigenvalues λl different
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from 0, 1 and λ, η0 ∈ N(b), η1 ∈ N(b − 1N(P)) (where these two latter may be
trivial). Note then that η0, η1 ∈ N(x), and thus

xξ2 = ∑
l>2

xηl ,

where the vectors xηl are eigenvectors of a corresponding to eigenvalues 1− λl ,
different from 0, 1 and 1− λ. Thus PN(a−(1−λ)1R(P))

xξ2 = 0.

For an operator T ∈ B(H), let r(T) = dim(R(T)) be the rank of T and
n(T) = dim(N(T)) the nullity of T.

REMARK 2.3. Lemma 2.2 implies that we may write a and b as

(2.2)


a = ∑

n>1
λnPn + E1,

b = ∑
n>1

(1− λn)P′n + E′1,

where 1 > λn > 0 is a decreasing set, which may be finite or a sequence converg-
ing to 0:

r(Pn)= r(P′n)<∞, E1=PN(a−1R(P))
with r(E1)<∞, and E′1=PN(b−1N(P))

.

Accordingly, the decomposition of the (non-selfadjoint) operator x in singular
values is

x = ∑
n>1

αn

( kn

∑
j=1

ξn,j ⊗ ξ ′n,j

)
,

where αn =
√

λn − λ2
n, and {ξn,j : 1 6 j 6 kn} and {ξ ′n,j : 1 6 j 6 kn} are

orthonormal systems which span R(Pn) and R(P′n), respectively.

Let us first sort out the pairs where P or Q have finite rank, and which
clearly belong to C.

REMARK 2.4. (i) If r(P) = k < ∞, then (P, Q) ∈ C for every Q ∈ P(H).
Moreover, if (P(t), Q(t)) is a continuous path in C, P(t) and Q(t) are continuous
paths in P(H), and thus r(P(t)) = k and r(Q(t)) = l 6 ∞ along the path. If
l = ∞, then n(Q(t)) = n(Q) = m 6 ∞ for all t. Conversely, suppose that (P′, Q′)
is another pair in C with r(P) = r(P′), r(Q) = r(Q′) and n(Q) = n(Q′). Then
there exists a unitary operator U such that UPU∗ = P′. Let U = eiX for some
X∗ = X. Then

α(t) = (eitXPe−itX , eitXQe−itX)

is a continuous path inside C with α(0) = (P, Q) and α(1) = (P′, UQU∗). It is
clear that UQU∗ and Q′ have also the same rank and nullity. Thus, there exists a
unitary operator W = eitY (with Y∗ = Y) such that WUQ(WU)∗ = Q. Then

β(t) = (P′, eitYUQU∗e−itY)
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is another continuous path inside C joining (P′, UQU∗) and (P′, Q′). It follows
that (P, Q) and (P′, Q′) lie in the same connected component of C.

(ii) If n(P) = m < ∞ and (P, Q) ∈ C, then necessarily r(Q) = l < ∞. Indeed,
in this case PQ is compact and (1− P)Q has finite rank, so Q = PQ + (1− P)Q
is compact, i.e. of finite rank. Thus, a similar analysis as above can be done for
pairs in C with the second coordinate of rank l < ∞.

(iii) We may summarize this information as follows. Let

C0 = {(P, Q) ∈ P(H)×P(H) : r(P) < ∞ or r(Q) < ∞}.
Then the connected components of C0 are the sets

Cm,n
k,l = {(P, Q) ∈ P(H)×P(H) : r(P) = k, n(P) = l, r(Q) = m, n(Q) = n},

with min{k, l, m, n} finite.

In what follows, unless otherwise stated, we shall suppose that both pro-
jections in the pair (P, Q) ∈ C have infinite rank and nullity. To describe the
pairs (P, Q) ∈ C, it will be useful to consider the homomorphism onto the Calkin
algebra,

π : B(H)→ B(H)/K(H).
Put p = π(P), q = π(Q), which are non zero projections in B(H)/K(H). Write
the matrix of q in terms of p. Then

q =

(
0 0
0 q′

)
,

where q′ is a projection (i.e. a selfadjoint idempotent) in B(N(P))/K(N(P)), the
Calkin algebra of N(P). In the Calkin algebra there are three (unitary) equiva-
lence classes of projections: 0, 1 and e 6= 0, 1 (e = π(E) for any E with R(E) and
N(E) infinite dimensional).

DEFINITION 2.5. Fix P ∈ P(H). Denote

C(P) = {Q ∈ P(H) : PQ is compact}.
According to the above classification, relative to P there are two classes of projec-
tions Q such that PQ is compact.

(i) If q′ = 1:

C1(P) = {Q ∈ P(H) : π((1− P)(1−Q)(1− P)) = π(1− P)}.
This means that dim(N(b)) < ∞. We shall describe this class below. It is the
restricted Grassmannian induced by the decomposition H = N(P) ⊕ R(P) (in
the usual description of the restricted Grassmannian, N(P) plays the main role).

(ii) If q′ is a proper projection in B(N(P))/K(N(P)):

C∞(P) = {Q ∈ P(H) : π((1− P)(1−Q)(1− P)) 6= π(1− P), 0}.
We shall call this the class of essential projections relative to P. We shall see that
the pairs in Example 1.1 belong to this class.
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3. THE HALMOS DECOMPOSITION

Given orthogonal projections P and Q , the Halmos decomposition [13] (though
it was certainly used before) is the following orthogonal decomposition ofH:

H11 = R(P) ∩ R(Q), H00 = N(P) ∩ N(Q),

H10 = R(P) ∩ N(Q), H01 = N(P) ∩ R(Q),

and H0 the orthogonal complement of the sum of the above. This last subspace
is usually called the generic part of the pair P, Q. Note also that

N(P−Q) = H11 ⊕H00, N(P−Q− 1) = H10 and N(P−Q + 1) = H01,

so that the generic part depends in fact only on the difference P−Q.
Halmos proved that there is an isometric isomorphism between H0 and a

product Hilbert spaceL×L such that, in the above decomposition (puttingL×L
in place ofH0), the projections are

P = 1⊕ 0⊕ 1⊕ 0⊕
(

1 0
0 0

)
and Q = 1⊕ 0⊕ 0⊕ 1⊕

(
C2 CS
CS S2

)
,

where C = cos(X) and S = sin(X) for some operator 0 6 X 6 π/2 in L with
trivial nullspace.

Let us describe the pairs in C in terms of this decomposition. It should be
noted that the operator X and the space L are uniquely determined up to unitary
equivalence.

PROPOSITION 3.1. The pair (P, Q) belongs to C if and only if H11 is finite di-
mensional and C = cos(X) is compact.

Proof. By direct computation,

PQ = 1⊕ 0⊕ 0⊕ 0⊕
(

C2 CS
0 0

)
.

If C is compact, then C2 and CS are compact. If, additionally, dimH11 < ∞, then
it is clear that PQ is compact.

Conversely, if PQ is compact, then clearly dimH11 < ∞. If the matrix oper-
ator (

C2 CS
0 0

)
is compact, then its 1, 1 entry is also compact. The square root of a positive com-
pact operator is compact (recall that C > 0), thus C is compact.

REMARK 3.2. If (P, Q) ∈ C, then the spectral resolution of X can be easily
described. Since 0 < cos(X) is compact, it follows that

X = ∑
n

γnPn +
π

2
E,
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where 0 < γn < π/2 is an increasing (finite or infinite) sequence, and Pn, E are
the projections onto the eigenspaces associated to γn and π/2, respectively. For
all n, dim R(Pn) < ∞, and

R(E)⊕
(⊕

n>1

R(Pn)
)
= L.

From the spectral picture of X above, one obtains the following result, which
states that in their generic part, all pairs in C are obtained as in Example 2.1

PROPOSITION 3.3. The pair (P, Q) belongs to C if and only if the following con-
ditions are satisfied:

(i)H11 is finite dimensional.
(ii) The subspaces M = P(H0) and N = Q(H0) of the generic partH0 satisfy

M⊕ N = H0.

(iii) The idempotent E = PM‖N corresponding with this decomposition has matrix
form, in terms of its range M,

E =

(
1 K
0 0

)
for K : N → M a compact operator.

Proof. It is clear that these conditions imply that (P, Q) belongs to C. It is
also clear that condition dim(H11) < ∞ is necessary. Denote by P0 and Q0 the
restrictions of P and Q to their generic part. In Halmos’ model H0 = L × L,
sin(X) is invertible in L. Then (reasoning with matrices in terms ofH0 = L×L)

P0 −Q0 =

(
S2 CS
CS −S2

)
and thus (P0 −Q0)

2 =

(
S2 0
0 S2

)
is invertible. Then P0 − Q0 is invertible. This means that M⊕ N = H0 (see [5]).
Moreover, by a formula in [5], and after straightforward computations, it holds
that

E = PM‖N = P0(P0 −Q0)
−1 =

(
1 −CS−1

0 0

)
.

Note that −CS−1 is compact in L.

We shall describe the different subclasses of C in terms of the Halmos de-
composition and the spectral resolution of X. The class C0 is easiest to describe.
Recall that (P, Q) ∈ C0 if dim R(Q) or dim R(P) < ∞.

From the above facts the following result is immediate.

PROPOSITION 3.4. Let (P, Q) ∈ C. Then (P, Q) ∈ C0 if and only if the sequence
{γn} is finite, dimH01 < ∞ and dim R(E1) < ∞.
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4. A SPATIAL CHARACTERIZATION

In this section we briefly address the following question: let S and T be
closed subspaces ofH: when is PSPT compact?

THEOREM 4.1. The operator PSPT is compact if and only if there exist orthonor-
mal bases {ξn : n > 1} and {ψn : n > 1} of S and T , respectively, such that
〈ξn, ψk〉 = 0 if n 6= k and 〈ξn, ψn〉 → 0 (n→ ∞).

Proof. The sufficiency of this condition is clear. If {ξn : n > 1} and {ψn :
n > 1} are bi-orthogonal and 〈ξn, ψn〉 → 0, then

PSPT =
(

∑
n>1
〈·, ξn〉ξn

)(
∑
k>1
〈·, ψk〉ψk

)
= ∑

n>1
〈ξn, ψn〉ξn ⊗ ψn.

This is essentially the singular value decomposition for PSPT . Indeed, put

〈ξn, ψn〉 = eiθn |〈ξn, ψn〉|
and replace ξ ′n = e−iθn ξn. Then

PSPT = ∑
n>1
|〈ξ ′n, ψn〉|ξ ′n ⊗ ψn

with singular values |〈ξ ′n, ψn〉| → 0, and thus PSPT is compact.
Conversely, suppose that T = PSPT is compact. Then clearly R(T) ⊂ S and

N(PT ) = T ⊥ ⊂ N(T), i.e. N(T)⊥ ⊂ T . Thus PSPR(T) = PR(T) and PT PN(T)⊥ =

PN(T)⊥ . Then

T = PR(T)TPN(T)⊥ = PR(T)PSPT PSPN(T)⊥ = PR(T)PN(T)⊥ .

Consider the singular value decomposition of T

T = ∑
n>1

snξn ⊗ ψn,

where {ξn : n > 1} and {ψn : n > 1} are orthonormal bases of R(T) and N(T)⊥,
respectively. Note that T satifies the equation

(4.1) T2 = PSPT PSPT = TT∗T.

Straightforward computations show that

T2 = ∑
n>1

snTξn ⊗ ψn = ∑
n,k>1

snsk〈ξn, ψk〉ξk ⊗ ψn = ∑
k>1

〈
· , ∑

n>1
snsk〈ψk, ξn〉ψn

〉
ξk.

On the other hand,

T∗T=∑
k>1

s2
kψk ⊗ ψk and TT∗T=∑

k>1
s2

kTψk ⊗ ψk =∑
k>1

s3
kξk ⊗ ψk =∑

k>1
s3

k〈·, ψk〉ξk.

Therefore using (4.1)
∑
n>1

snsk〈ψk, ξn〉ψn = s3
kψk.

Then 〈ξn, ψk〉 = 0 if n 6= k and 〈ξn, ψn〉 = sn.
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Let us extend the orthonormal bases {ξn} and {ψn} of R(T) and N(T)⊥ to
orthonormal bases of S and T . Note that if ξ ∈ S 	 R(T) and ψ ∈ T 	 N(T)⊥,
then

〈ξ, ψ〉 = 〈PSξ, PT 〉 = 〈ξ, PSPT ψ〉 = 〈ξ, Tψ〉 = 0,

because ξ ⊥ R(T). Therefore we can extend the bases {ξn} and {ψn} to bases
{ξ ′n} and {ψ′n} arbitrarily, and the properties that 〈ξ ′n, ψ′k〉 = 0 if n 6= k, and that
〈ξ ′n, ψ′n〉 (= sn or 0) converges to 0 remain valid for the extended bases.

REMARK 4.2. Equation (4.1) above in fact characterizes operators which are
the product of two projections, compact or not. This was shown by T.R. Crim-
mins, and published in [21].

REMARK 4.3. In the special case S = R(PI) and T = R(QJ) for I, J ⊂ R3 of
finite Lebesgue measure, the bi-orthogonal system is given by the so-called pro-
late spherical functions, and their (normalized) images under QJ (see, for instance,
[15]). That these functions are bi-orthogonal (or double orthogonal, as stated in
[15]) is well known. As seen above, this is not a special feature of this example
but a general property when PQ is compact.

5. UNITARY ACTIONS

We shall use two unitary actions to describe the structure of C. The full
unitary group U (H) acts on pairs in C by joint inner conjugation:

U · (P, Q) = (UPU∗, UQU∗), U ∈ U (H), (P, Q) ∈ C.

We shall make use of another local unitary action, on pairs in C with the first
coordinate P0 fixed. Recall the definition of the restricted unitary group, where
the restriction is given by the decompositionH = R(P0)⊕ N(P0) (see [19]):

Ures(P0) = {U ∈ U (H) : [U, P0] ∈ K(H)}.

In matrix form, in terms of the given decomposition, these unitaries are of the
form

U =

(
u11 u12
u21 u22

)
where u12 and u21 are compact operators. Elementary matrix computations, in-
volving the fact that U is unitary, imply that u11 and u22 are Fredholm operators
in R(P0) and N(P0), respectively, and that

ind(u22) = −ind(u11).

The integer ind(u11) is usually called the index of U. It is known that this in-
dex parametrizes the connected components of Ures(P0): two unitaries U, W ∈
Ures(P0) belong to the same connected component if and only if ind(U) = ind(W)
(see for instance [19] or [6]).
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Let us prove that Ures(P0) acts by inner conjugation of the classes Cx(P0)
(x = 0, 1, ∞).

PROPOSITION 5.1. Let Q ∈ Cx(P0) (x = 0, 1, ∞) and U ∈ Ures(P0). Then
UQU∗ ∈ Cx(P0).

Proof. Straightforward matrix computation shows

UQU∗ =
(

u11 u12
u21 u22

)(
a x

x∗ y

)(
u∗11 u∗21
u∗12 u∗22

)
.

The 1, 1 entry of this product is

u11au∗11 + u12x∗u∗11 + u11xu∗12 + u12bu∗12,

where a, x and u12 are compact, therefore the 1, 1 entry is compact. The 1, 2 en-
try is

u11au∗21 + u12x∗u∗21 + u11xu∗22 + u12bu∗22,
which is compact by a similar argument. Then P0UQU∗ ∈ K(H).

We shall mainly use U 0
res(P0), the connected component of the identity (or

zero index component). This component is an exponential group, namely

U 0
res(P0) = exp{iX ∈ B(H) : X∗ = X, [X, P0] ∈ K(H)},

(see [6], [19]). Note that Ures(P0) is the unitary group of the C∗-algebraAP0(H) of
operators T inH such that [T, P0] ∈ K(H).

6. THE RESTRICTED GRASSMANNIAN

Let us recall some elementary facts concerning the restricted Grassmannian
of a decomposition of H = N0 ⊕N⊥0 . Denote by E0 the orthogonal projection
onto N0.

DEFINITION 6.1 ([23]). A projection Q belongs to the restricted Grassman-
nian Pres(N0) with respect to the decomposition H = N0 ⊕ N⊥0 , or more pre-
cisely, with respect to subspace N0, if and only if

(i) E0Q|R(Q) : R(Q)→ N0 ∈ B(R(Q),N0) is a Fredholm operator in B(R(Q),
N0), and

(ii) (1− E0)Q|R(Q) : R(Q)→ N⊥0 ∈ B(R(Q),N⊥0 ) is compact.

The index of the first operator characterizes the connected components of
Pres(N0). The following result is elementary.

LEMMA 6.2. Let Q ∈ P(H) with matrix (in terms ofH = N0 ⊕N⊥0 )

Q =

(
a x

x∗ b

)
.

Then Q ∈ Pres(N0) if and only if a is Fredholm in B(N0), and b and x are compact.



90 ESTEBAN ANDRUCHOW AND GUSTAVO CORACH

Proof. The proof is based on the following elementary facts.
(i) A ∈ B(H1,H2) is a Fredholm operator if and only if AA∗ is a Fredholm

operator inH1 and N(A) is finite dimensional.
(ii) A ∈ B(H1,H2) is compact if and only if A∗A ∈ B(H1) is compact.

Suppose first that Q ∈ Pres(N0). Then E0Q ∈ B(R(Q),N0) is Fredholm,
and thus

E0Q(E0Q)∗|N0 = E0QE0|N0 = a

is Fredholm in N0. Also (1− E0)Q ∈ B(R(Q),N⊥0 ) is compact, and thus

(1− E0)Q(1− E0 −Q)∗|N⊥0 = (1− E0)Q(1− E0)|N⊥0 = b

is compact inN⊥0 . The fact that Q is a projection implies the relation b− b2 = x∗x,
and thus x is compact.

Conversely, by the last computations, if x and b are compact, then (1 −
E0)Q ∈ B(R(Q),N⊥0 ) is compact. Similarly, E0Q(E0Q)∗|N0 = a is Fredholm,
thus E0Q, as an operator in B(R(Q),N0), has closed range (equal to the range of
a) with finite codimension. Let us prove that its nullspace is finite dimensional.
Let ξ = ξ+ + ξ− = Qξ such that E0ξ = 0, (ξ+ ∈ N0, ξ− ∈ N⊥0 ). This implies that{

ξ+ = aξ+ + xξ−,
ξ− = x∗ξ+ + bξ−,

and ξ+ = 0. The second equation then reduces to ξ− = bξ−, i.e., ξ− lies in the 1-
eigenspace of the compact operator b. Thus ξ− lies in a finite dimensional space.
It follows that N(E0Q|R(Q)) is finite dimensional.

COROLLARY 6.3. Let P ∈ P(H) be such that N(P), R(P) are infinite dimen-
sional. Then C1(P) coincides with the restricted Grassmannian of H induced by the
decompositionH = N(P)⊕ R(P).

Proof. In the description of the classes Ci(P) at Definition 2.5 (given in ma-
trix form in terms of the decomposition H = R(P) ⊕ N(P), note the reversed
order), a projection Q belongs to C1(P) if and only if, in the Calkin algebra,
its 2, 2 entry is the identity and all other entries are zero. By the Lemma 6.2,
this means that Q belongs to the restricted Grassmannian of the decomposition
H = N(P)⊕ R(P).

From now on we shall refer to this set of projections as the restricted Grass-
mannian of N(P0).

REMARK 6.4. The group U 0
res(P0) acts transitively on the connected compo-

nents of C1(P0), which are parametrized by the Fredholm index defined in the
restricted Grassmannian of N(P0).

Let us denote by

C1 = {(P, Q) ∈ C : Q ∈ C1(P)},
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the union of C1(P) for all P ∈ P∞(H), where P∞(H) denotes the (connected)
space of projections inH with infinite dimensional range and nullspace.

THEOREM 6.5. The connected components of C1 are parametrized by the Fredholm
index. Namely, the pairs (P, Q), (P′, Q′) ∈ C1 lie in the same connected component if
and only if the index of Q in the restricted Grassmannian of N(P) coincides with the
index of Q′ in the restricted Grassmannian of N(P′).

Proof. There exists a unitary operator U ∈ U (H) such that U∗P′U = P.
Consider the pair U∗ · (P′, Q′) = (P, U∗Q′U). Note that (P, U∗Q′U) belongs to
the restricted Grassmannian of N(P), and it has the same index as (P′, Q′). Since
U (H) is connected, this means that one is reduced to the case P = P′, where the
result is valid due to the above corollary.

Note that the class C1 can be described in terms of the Halmos decomposi-
tion.

PROPOSITION 6.6. Let (P, Q) ∈ C. Then the following are equivalent:
(i) (P, Q) ∈ C1.

(ii) dimH00 < ∞.
(iii) dim N(b) < ∞.

In this case, the index of Q in the restricted Grassmannian of N(P) is given by

dimH01 − dimH10.

Proof. The (five space) Halmos decomposition induces a (four space) de-
composition ofH which reduces both P and Q. Namely,

H = H00 ⊕H11 ⊕H′ ⊕H0,

whereH′ = H10⊕H01. By Lemma 6.2, the part of Q which acts on N(P) must be
a Fredholm operator. By the above reduction, this amounts to showing that both
0, acting in H00, and S2, acting in the space L, are Fredholm operators (recall
notations from Section 3). The first assertion means that dimH00 < ∞. With
respect to the second,

S2 = sin2(X) = ∑
n

sin2(γn)Pn + E

is always a Fredholm operator (recall that N(S) = N(X) = {0}), since 0 <
sin2(γn) is a finite set or a sequence increasing to 1. If Q ∈ C1(P), then b is
Fredholm in N(P), and thus N(b) is finite dimensional. Conversely, the fact that
Q ∈ C(P) implies that the spectral decomposition of b is of the form

b = ∑
n>1

(1− λn)P′n + E′1,

with 1 > λn > 0 a finite set or a strictly decreasing sequence converging to 0. If
N(b) is finite dimensional, then b is a Fredholm operator, and thus Q belongs to
the restricted Grassmannian of N(P), i.e., Q ∈ C1(P).
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If Q lies in the restricted Grassmannian, it is well known that the index of
Q with respect to N(P) is dim(R(Q)∩ N(P))− dim(N(Q)∩ R(P)) = dimH01−
dimH10.

EXAMPLE 6.7. Let us return to Example 1.2 where we have

H = L2(T, dt) = H− ⊕H+, P = P⊥ϕH+
, Q = PψH+ ,

where H+ is the Hardy space and ϕ, ψ : T → T are continuous. The 2, 2 entry b
of Q in terms of P is unitarily equivalent to

P+MϕψP+MψϕP+ = (P+MψϕP+)∗P+MψϕP+.

Note that P+Mψϕ|H+ is a Toeplitz operator with non vanishing continuous sym-
bol, therefore b is a Fredholm operator [11], and (P, Q) ∈ C1. The index of the
pair is (minus) the winding number of the symbol ψϕ [11]. Subspaces ϕH+ with
ϕ continuous and non vanishing were studied in [19] and [23] in connection with
parametrizations of solutions of the KdV equation.

7. ESSENTIAL PROJECTIONS

Following the notation of the previous section, denote

C∞ = {(P, Q) ∈ C : Q ∈ C∞(P)},

the union of C∞(P) for all P ∈ P∞(H). Let (P, Q) ∈ C∞. Write Q as a matrix in
terms of P as before,

Q =

(
a x

x∗ b

)
with a = ∑

n>1
λnPn + E1 and b = ∑

n>1
(1− λn)P′n + E′1. Define

Qd =

(
E1 0
0 ∑

n
P′n + E′1

)
.

Note that Qd is a projection; it is also clear that Qd ∈ P∞(H). Indeed, since
r(E1) < ∞, it follows that dim N(Qd) = ∞. If the sequence {λn} is finite, the
facts that they have finite multiplicities and that b is a Fredholm operator, imply

that r(E′1) = ∞. If the sequence is infinite, then r
(

∑
n

P′n
)

= ∞. In any case,

r(Qd) = ∞.

LEMMA 7.1. B = Q + Qd − 1 is invertible inH.

Proof. Let N (respectively N′) denote the orthogonal projection onto N(a)
(respectively N(b)) in R(P) (respectively N(P)), and write 1R(P) = E1 + N +
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∑
n>1

Pn, and 1N(P) = E′1 + N′ + ∑
n>1

P′n. One has

B =

(
∑

n>1
(λn − 1)Pn + E1 − N x

x∗ ∑(1− λn)P′n + E′1 − N′

)
.

The diagonal entries of B are invertible in R(P) and N(P). Indeed, they are diag-
onal operators with non zero eigenvalues that accumulate (eventually) at −1 and
1, respectively. The codiagonal entries of B are compact. It follows that B is of the
form invertible plus compact. Thus it is a Fredholm operator, and in particular it
has closed range. Therefore, since B is selfadjoint, it suffices to show that it has
trivial nullspace. Note that B is a difference of projections, namely

B = Q− (1−Qd).

It is an elementary fact that the nullspace of a difference of projections is

N(B) = (N(Q) ∩ N(1−Qd))⊕ (R(Q) ∩ R(1−Qd))

= (N(Q) ∩ R(Qd))⊕ (R(Q) ∩ N(Qd)).

Let us see that N(Q) ∩ R(Qd) = {0}. Let ξ + η ∈ R(P)⊕ N(P) = H in N(Q) ∩
R(Qd). Then

(7.1) E1ξ = ξ and ∑
n>1

P′nη + E′1η = η.

This implies that Pnξ = 0 for all n, Nξ = 0 and N′η = 0. Also one has

(7.2)


0 = ∑

n>1
λnPnξ + E1ξ + xη = ξ + xη,

0 = x∗ξ + ∑
n>1

(1− λn)P′nη + E′η.

Recall that R(x) =
⊕

n>1
R(Pn), which is orthogonal to R(E1). Thus ξ = 0 and

xη = 0. Since the nullspace of x is R(N′)⊕ R(E′1), one has that η = N′η + E′1η.
Combining this with the second equality in (7.1), one gets N′η = 0 and E′η = η
(and P′nη = 0 for all n). Using these facts in the second equation of (7.2), one
obtains η = 0.

The fact that R(Q) ∩ N(Qd) = {0} is proved in a similar fashion.

REMARK 7.2. Buckholtz [5] proved that a difference of projections P1 − P2
is invertible if and only if ‖P1 + P2 − 1‖ < 1. In our case, this implies that

‖Q−Qd‖ < 1.

LEMMA 7.3. The unitary part U of B in the polar decomposition B = U|B| be-
longs to U 0

res(P).

Proof. As remarked in the above proof, the off-diagonal entries of B (in its
matrix in terms of P) are compact. Therefore B is an invertible element in the
C∗-algebra AP(H). It follows that its unitary part is a unitary element of this
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algebra, namely Ures(P). We need to show that it has index zero. The index is
in fact defined in the whole invertible group of AP(H), and it coincides with the
index of the 1, 1 entry. As it was also pointed out in the proof above, the 1, 1 entry
of B is invertible in R(P), and thus it has trivial index.

REMARK 7.4. It is well known (see for instance [7]) that if an invertible op-
erator intertwines two selfadjoint projections, then its unitary part in the polar
decomposition also does. In our case,

BQ = QQd = QdB.

Therefore UQ = QdU, or UQU∗ = Qd.
Note also the fact that since B is selfadjoint, the operator U is a symmetry

(i.e., a selfadjoint unitary: S∗ = S−1 = S), so that UQU = Qd.

LEMMA 7.5. Let E, F be two projections in P∞(H) which commute with P. Then
they are unitarily equivalent with a unitary operator in U 0

res(P).

Proof. In terms of P, one has

E =

(
E1 0
0 E2

)
and F =

(
F1 0
0 F2

)
,

where E1 and F1 have finite rank in R(P) and E2 and F2 have infinite rank and
nullity in N(P). By means of a unitary operator of the form(

1R(P) 0
0 W

)
,

one is reduced to the case E2 = F2. Clearly this unitary operator belongs to
U 0

res(P). In order to prove that E and F are conjugate with a unitary in U 0
res(P), it

suffices to show that any of these projections, for instance E, can be conjugated
with

E0 =

(
0 0
0 E2

)
.

Consider the following orthonormal bases:

(•) {en : 1 6 n} an orthonormal basis of R(E2) (in N(P)).
(•) {e′l : 1 6 l} an orthonormal basis of N(P)	 R(E2).
(•) { fk : 1 6 k} an orthonormal basis of R(P), with f1, . . . , fN spanning R(E1).

Consider U defined as follows:

(•) U(en) = fn if 1 6 n 6 N, and U(en) = en−N if n > N + 1.
(•) U(e′l) = e′l+N .
(•) U( fk) = e′k if 1 6 k 6 N, and U( fk) = fk if n > N + 1.

It is straightforward that U is a unitary operator. Note also that U is not
the identity only on a finite number of fk, and thus UP and PU are of the form P
plus compact. Therefore [U, P] is compact, i.e. U ∈ Ures(P). For the same reason,
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on R(P), U is the identity plus a finite rank operator, and thus U has index zero.
Finally, by construction, U(R(E0)) = R(E1) and U(N(E0)) = N(E1).

From these facts, the main result of this section follows.

THEOREM 7.6. Let P0 ∈ P∞(H).
(i) The action of U 0

res(P0) is transitive in C∞(P0). In particular, C∞(P0) is connected.
(ii) C∞ is connected,

Proof. Let Q and R be elements of C∞(P0). By the first two lemmas above,
Q is U 0

res(P0)-conjugate to Qd and R is U 0
res(P0)-conjugated to Rd. Rd and Qd are

U 0
res(P0)-conjugate by the third lemma.

To prove the second assertion, suppose that (P, Q) and (P′, Q′) belong to
C∞. Since by hypothesis P, P′ ∈ P∞(H), there exists a unitary operator W = eiX

(with X∗ = X) such that WPW∗ = P′. The pairs (P, Q) and (P′, WQW∗) are
homotopic in C∞ (for instance, by means of the curve (eitXPe−itX , eitXQe−itX)).
Thus, it suffices to show that (P′, WQW∗) and (P′, Q′) are homotopic in C∞. This
is the first assertion.

Note that in particular, this implies that if Q ∈ C∞(P), then also Qd ∈
C∞(P). This fact could have been obtained directly from the definition of Qd.

REMARK 7.7. Consider the example at the beginning of Section 1, namely
let I, J be measurable subsets ofRn of finite measure, and let PI , QJ∈P(L2(Rn, dx))
be given by

PI f = χI f and QJ f = (χJ f̂ ) .̌

Lenard proved [16] that N(PI) ∩ N(QJ) is infinite dimensional. Therefore, the
matrix of QJ in terms of PI (whose first column and row are compact) has a 2, 2
entry which is not a Fredholm operator. Clearly, it is not compact (which would
mean that QJ has finite rank). Therefore (PI , QJ) ∈ C∞. Moreover, given another
pair I′, J′ of finite Lebesgue measure subsets of Rn, the pairs (PI , QJ) and (PI′ , QJ′)
are homotopic in C∞.

The above remark, showing that pairs in the example by Lenard belong to
C∞, can be generalised. Recall the characterizations of C0 and C1 in terms of the
Halmos decomposition.

PROPOSITION 7.8. Let (P, Q) ∈ C. Then (P, Q) ∈ C∞ if and only if dim R(Q) =
∞ and dimH00 = ∞.

For the proof use the same argument as in the above remark.

REMARK 7.9. Note that (P, Q) ∈ C if and only if (Q, P) ∈ C: PQ is compact
if and only if QP is compact. There is, however, an abuse of notation in this
assertion, because we have supposed from the beginning that the first coordinate
of the pair must belong to P∞(H). Assume thus that also Q ∈ P∞(H).



96 ESTEBAN ANDRUCHOW AND GUSTAVO CORACH

Note that if (P, Q) ∈ C1, then also (Q, P) ∈ C1. This follows in a straight-
forward manner from the definition of the restricted Grassmannian, by taking
adjoints. Also it is clear that the index of the reversed pair changes sign.

As a consequence (since the class C0 is explicitly excluded), it follows that
(P, Q) ∈ C∞ implies that (Q, P) ∈ C∞.

8. REGULAR STRUCTURE

Let us recall some basic facts on the differential geometry of the set P(H)
(see for instance [2], [7], [20].)

REMARK 8.1. (i) The space P(H) is a homogeneous space under the action
of the unitary group U (H) by inner conjugation. The orbits of the action coincide
with the connected components of P(H), which are: Pn,∞(H) (projections of
nullity n), P∞,n(H) (projections of rank n) and P∞(H) (projections of infinite
rank and nullity). These components are C∞-submanifolds of B(H).

(ii) There is a natural linear connection in B(H). If dimH < ∞, it is the Levi–
Civita connection of the Riemannian metric which consists of considering the
Frobenius inner product at every tangent space. It is based on the decompositon
of B(H) in diagonal and codiagonal matrices in terms of a given projection. To
be more specific, given P0 ∈ P(H), the tangent space of P(H) at P0 consists of all
selfadjoint codiagonal matrices (in terms of P0). The linear connection in P(H) is
induced by a reductive structure, where the horizontal elements at P0 (in the Lie
algebra of U (H): the space of antihermitian elements of B(H)) are the codiagonal
antihermitian operators. The geodesics of P(H) which start at P0 are curves of
the form

(8.1) δ(t) = eitXP0e−itX ,

with X∗ = X codiagonal with respect to P0. It was proved in [20] that if the pro-
jections P0, P1 ∈ P(H) satisfy ‖P0 − P1‖ < 1, then there exists a unique geodesic
(up to reparametrization) joining P0 and P1. This condition is not necessary for
the existence of a unique geodesic.

(iii) In [2] a necessary and sufficient condition was found in order that there
exists a unique geodesic joining two projections P and Q. This is the case if and
only if

R(P) ∩ N(Q) = N(P) ∩ R(Q) = {0}.
(iv) It is sometimes useful to parametrize projections using symmetries S (S∗ =

S, S2 = 1), via the affine map

P←→ SP = 2P− 1.

Some algebraic computations are simpler with symmetries. For instance, the
condition that the exponent X (of the geodesic) is P0-codiagonal means that X
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anti-commutes with SP0 . Thus the geodesic (8.1), in terms of symmetries, can be
expressed as

Sδ(t) = eitXSP0e−itX = e2itXSP0 = SP0e−2itX .

Fix P0 ∈ P∞(H). We shall see first that C(P0) is a differentiable manifold. If
A is a C∗-algebra, denote by Ah the space of selfadjoint elements of A.

LEMMA 8.2. If Q, Q′ ∈ C(P0) and ‖Q − Q′‖ < 1, then there exists U ∈
U 0

res(P0) such that UQU∗ = Q′. This unitary operator U can be chosen as an explicit
formula U(Q, Q′) in terms of Q and Q′, where the map (Q, Q′) 7→ U(Q, Q′) is smooth.
In particular, Q and Q′ lie in the same (class and) connected component of C(P0).

Proof. If ‖Q − Q′‖ < 1, then there exists a unique geodesic joining Q and
Q′ in P(H): Q′ = eiXQe−iX for X∗ = X being Q-codiagonal with ‖X‖ < π/2.
As remarked in [7], the fact that X is Q-codiagonal implies that X anti-commutes
with 2Q− 1. Then

2Q′ − 1 = eiX(2Q− 1)e−iX = e2iX(2Q− 1).

Thus
e2iX = (2Q′ − 1)(2Q− 1).

Since ‖2iX‖ < π, the spectrum of (2Q′ − 1)(2Q − 1) is contained in the subset
{eit : t ∈ (−π, π)} of the unit circle, and thus the operator X can be recovered as
a continuous (in fact holomorphic) logarithm of (2Q′ − 1)(2Q− 1),

X = − i
2

log((2Q′ − 1)(2Q− 1)).

Note that both (2Q′ − 1)(2Q − 1)P0 and P0(2Q′ − 1)(2Q − 1) are of the form
P0 plus compact. It follows that [(2Q′ − 1)(2Q − 1), P0] is compact, and thus
(2Q′ − 1)(2Q− 1) ∈ Ures(P0). This implies that the exponent X belongs to AP0

(recall that the exponential map is a diffeomorphism between exponents X∗ = X
inAP0 of norm less than π and unitaries U in Ures(P0) such that ‖U− 1‖ < 2).

REMARK 8.3. In particular, the above result provides a way to parametrize
elements Q′ ∈ C(P0) in the vicinity of a given Q ∈ C(P0). Namely, let

VQ = {Q′ ∈ C(P0) : ‖Q′ −Q‖ < 1}.

For each Q′ ∈ VQ, there exists a unique X = XQ(Q′), X = X∗, ‖X‖ < π/2, which
is Q-codiagonal and belongs to AP0 , such that eiXQe−iX = Q′.

Conversely, to each operator X as above, there corresponds an element Q′ =
eiXQe−iX ∈ C(P0), with ‖Q′ −Q‖ < 1. Both maps

Q′ 7→ X and X 7→ Q′

are smooth, and each one is the inverse of the other. Thus one has defined a local
chart VQ for any Q ∈ C(P0), which is modelled in an open ball of (AP0)h.



98 ESTEBAN ANDRUCHOW AND GUSTAVO CORACH

COROLLARY 8.4. For any P0 ∈ P∞(H), the set C(P0) is a smooth manifold
modelled in AP0(H)h.

As remarked in Section 2, the subset C0 of pairs in C where either of the pro-
jections have finite rank, decomposes as a discrete union of components parame-
trized by rank and nullity. It is not difficult to prove that each of these components
is a differentiable manifold. We are interested in the non trivial pairs in C: C \ C0,
comprising the components of C1 and C∞.

THEOREM 8.5. The set

C ′ = C \ C0 = {(P, Q) : P, Q ∈ P∞(H), PQ is compact}

is a smooth differentiable manifold.

Proof. Fix a pair (P0, Q0) ∈ C ′. We shall exhibit a local chart for C ′ near
this pair. Let (P, Q) ∈ C ′ such that ‖P − P0‖ < 1. Then, as remarked above,
there exists X = X(P) (a smooth map in terms of P, with X(P0) = 0), X∗ = X,
‖X‖ < π/2 and X is P0-codiagonal, such that

P = eiXP0e−iX .

Then the pair e−iX(P, Q)eiX = (P0, e−iXQeiX) belongs to C(P0). Let (P, Q) be
close enough to (P0, Q0) so that e−iXQeiX lies in the local chart VQ0 for C(P0)

around Q0 constructed above. Note that if P→ P0, then eiX → 1, so that

‖e−iXQeiX −Q0‖ 6 ‖e−iXQeiX −Q‖+ ‖Q−Q0‖

is arbitrarily small if (P, Q) is close to (P0, Q0). The chart for (P0, Q0) is the
open set

V(P0,Q0)
= {(P, Q) ∈ C ′ : ‖P− P0‖ < 1 and e−iXQeiX ∈ VQ0}.

If e−iXQeiX ∈ VQ0 , then there exists a unique Y = XQ0(e
−iXQeiX) inAP0 , Y∗ = Y,

‖Y‖ < π/2, which is Q0-codiagonal, such that

e−iXQeiX = eiYQ0e−iY.

Denote BP0 = {X ∈ Bh(H) : ‖X‖ < π/2 and X is P0-codiagonal} (and accord-
ingly consider BQ0 ). Consider the map

Ψ = Ψ(P0,Q0)
: V(P0,Q0)

→ BP0 × (BQ0 ∩ (AP0)h) ⊂ Bh(H)× (AP0)h

given by
Ψ(P, Q) = (X, Y).

The inverse of Ψ is the map Ψ−1(X, Y) = (eiXP0e−iX , eiYeiXQ0e−iYe−iX).

Let us return to C(P0) for a fixed P0 ∈ C, and the fact stated in Remark 8.3.
This remark says a bit more about the geometry of C(P0) as a submanifold of
P(H). Recall from the facts pointed out at the beginning of this section that two
projections at distance less than one are joined by a unique minimal geodesic.
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COROLLARY 8.6. Let Q, Q′ ∈ C(P0) such that ‖Q−Q′‖ < 1. Then the unique
geodesic of P(H) remains inside C(P0).

Proof. If Q, Q′ ∈ C(P0) with ‖Q − Q′‖ < 1, then the unique (selfadjoint,
Q-codiagonal) exponent X = XQ(Q′) with ‖X‖ < π/2 such that eiXQe−iX = Q′

belongs to AP0 .

Recall from Remark 8.1 that if a weaker condition holds, namely

R(Q) ∩ N(Q′) = N(Q) ∩ R(Q′) = {0},

then there exists a unique X as above. A natural question is the following. Sup-
pose that this condition for uniqueness holds, but ‖Q−Q′‖ = 1; does the unique
geodesic γ(t) = eiXQe−iX lie in C(P)?
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Birkhäuser, Boston 2005.

[16] A. LENARD, The numerical range of a pair of projections, J. Funct. Anal. 10(1972),
410–423.

[17] G.K. PEDERSEN, Measure theory for C∗-algebras, Math. Scand. 19(1966), 131–145.

[18] V.V. PELLER, An excursion into the theory of Hankel operators, in Holomorphic Spaces
(Berkeley, CA, 1995), Math. Sci. Res. Inst. Publ., vol. 33, Cambridge Univ. Press, Cam-
bridge 1998, pp. 65–120.

[19] A. PRESSLEY, G. SEGAL, Loop Groups, Oxford Math. Monogr., Oxford Sci. Publ., The
Clarendon Press, Oxford Univ. Press, New York 1986.

[20] H. PORTA, L. RECHT, Minimality of geodesics in Grassmann manifolds, Proc. Amer.
Math. Soc. 100(1987), 464–466.

[21] H. RADJAVI, J.P. WILLIAMS, Products of self-adjoint operators, Michigan Math. J.
16(1969), 177–185.

[22] I. RAEBURN, A.M. SINCLAIR, The C∗-algebra generated by two projections, Math.
Scand. 65(1989), 278–290.

[23] G. SEGAL, G. WILSON, Loop groups and equations of KdV type, Inst. Hautés Etudes
Sci. Publ. Math. 61(1985), 5–65.

ESTEBAN ANDRUCHOW, INSTITUTO DE CIENCIAS, UNIVERSIDAD NACIONAL

DE GENERAL SARMIENTO, (1613) LOS POLVORINES and INSTITUTO ARGENTINO DE
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