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ABSTRACT. We prove the existence of the Lip1/2 continuous Moyal deforma-
tion of Euclidean plane. It is a noncompact version of Haagerup and Rørdam’s
result about continuous paths of the rotation C∗-algebras. Moveover, our con-
struction is generalized to noncommutative Euclidean spaces of dimension
d > 2. As a corollary, we extend Haagerup and Rørdam’s result to noncom-
mutative d-tori.
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1. INTRODUCTION

The celebrated Heisenberg commutation relation,

PQ−QP = −iI,

where I is the identity operator, plays an important role in quantum mechanics
and the related mathematics. This commutation relation affiliates to the Moyal
deformation of Euclidean plane. Let d > 2 and θ = (θjk)

d
j,k=1 be a real skew-

symmetric d× d-matrix. The associated noncommutative Euclidean space (for a
nonsingular θ) is given by d one-parameter unitary groups u1(t), u2(t), . . . , ud(t)
satisfying the following commutation relations

uj(s)uk(t) = eistθjk uk(t)uj(s), ∀s, t ∈ R,

for j, k = 1, 2, . . . , d. The noncommutative Euclidean space, also called Moyal
plane, is a prototype of noncompact noncommutative manifolds (see e.g. [10]).
Moreover, interesting objects and structures from quantum physics have been
studied on the noncommutative plane and noncommutative R4 (see e.g. [17],
[18], [24]).
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Another class of fundamental examples in noncommutative geometry are
the noncommutative tori. They have been extensively studied over decades (we
refer to the survey paper by Rieffel [21] for the study before 90s, and [3], [5], [8] for
more recent development). Recall that the noncommutative d-torus Ad

θ associated
to θ is the universal C∗-algebra generated by d unitaries u1, u2, . . . , ud subject to
the commutation relations

ujuk = e2πiθjk ukuj, j, k = 1, 2, . . . , d.

It is clear from the definition that Ad
θ is a noncommutative deformation of C(Td),

the C∗-algebra of continuous functions on a usual d-torus (θ = 0). When d = 2,
the commutation relations reduce to two unitaries u, v satisfying

uv = e2πiθvu

for a real number θ. The noncommutative 2-tori are also called rotation C∗-
algebras (cf. [6]).

In this paper, we will consider generalizations of the following result by
Haagerup and Rørdam in [14].

THEOREM A. Let H be an infinite dimensional Hilbert space and U(H) be its
unitary group. There exist two continuous paths u, v : [0, 1]→ U(H) and a universal
constant C > 0 such that u(0) = u(1), v(0) = v(1), and

(i) u(θ)v(θ) = e2πiθv(θ)u(θ);
(ii) max{‖u(θ)− u(θ′)‖, ‖v(θ)− v(θ′)‖} 6 C|θ − θ′|1/2;

for all θ, θ′ ∈ [0, 1].

It was shown by Elliott in [7] that the family of rotation algebras forms a
continuous field of C∗-algebra (see e.g. [9] for the definition). The above theorem
gives this family a continuous embedding in B(H). Kirchberg and Phillips in
[16] also obtained a Lip1/2-continuous embedding of rotation algebras into the
Cuntz algebra O2. The existence of Lip1/2-continuous paths has applications in
estimating the spectrum of almost Mathieu operators (see [2]).

It is natural to expect that the similar Lip1/2-continuous embedding exists
for high dimensional noncommutative tori. Both Theorem 5.7 of [16] and Theo-
rem 3.2 of [1] prove the existence of the embedding with continuity in norm, but
with little information about the concrete continuity. We confirm that the Lip1/2-
continuous embedding also exist for noncommutative d-tori of dimension d > 2.
Let us denote A[d] ≡ [0, 1](d−1)d/2 as the space of all skew-symmetric d× d ma-
trices with entries in the unit interval.

THEOREM 1.1. There exist d continuous maps u1, u2, . . . , ud : A[d] → U(H)
and a universal constant C > 0 such that:

(i) ujuk = e2πiθjk ukuj, j, k = 1, 2, . . . , d;

(ii) ‖uj(θ)− uj(θ
′)‖ 6 C

(
∑

16k6d
|θjk − θ′jk|

1/2
)

, j = 1, 2, . . . , d;
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for all θ, θ′ ∈ A[d].
The proof is based on an explicit construction, which we illustrate here for

the case d = 3. Given the two continuous paths u, v from Theorem A, we define
the following maps u1, u2, u3 : A[3]→ U(H⊗3),

u1(θ) = u(θ12)⊗ u(θ13)⊗ I, u2(θ) = v(θ12)⊗ I ⊗ u(θ23),

u3(θ) = I ⊗ v(θ13)⊗ v(θ23).(1.1)

Because each pair of operators only shares one nontrivial tensor component (other
than the identity), u1, u2 and u3 satisfy the commutation relations

u1(θ)u2(θ) = e2πiθ12 u2(θ)u1(θ), u1(θ)u3(θ) = e2πiθ13 u3(θ)u1(θ),

u2(θ)u3(θ) = e2πiθ23 u3(θ)u2(θ).

By induction, this construction can be generalized to higher dimension and the
Lip1/2-continuity follows from the triangle inequality. It also works for the paths
in the Cuntz algebra O2 and implies a continuous embedding into O2 because
O2 ⊗O2 = O2 (see [16]).

We also prove the “noncompact” analog of the above results. It is proved
in [14] that for an infinite multiplicity representation (P, Q) of the Heisenberg re-
lation, there exists a commuting pair of self-adjoint operators (P0, Q0) on H such
that P− P0 and Q− Q0 are bounded. This bounded perturbation of unbounded
operators is used in the construction of continuous path of rotation algebras. We
find that the methods of Haagerup and Rørdam, with careful modifications, also
applies to the Heisenberg relation, to construct a continuous Moyal deformation
of R2. Moreover, using the same idea of (1.1), this can be generalized to noncom-
mutative Euclidean space of dimension d > 2.

Denote A(d) ≡ Rd(d−1)/2 as the space of all real skew-symmetric d × d-
matrices. Our main result can be stated as follows.

THEOREM 1.2. There exist continuous maps u1, u2, . . . , ud : A(d)×R→ U(H)
and a universal constant C > 0 such that:

(i) for each θ, u1(θ, ·), u2(θ, ·), . . . , ud(θ, ·) are strongly continuous one-parameter
unitary groups satisfying

uj(θ, s)uk(θ, t) = eistθjk uk(θ, t)uj(θ, s), ∀s, t ∈ R, j, k = 1, . . . , d;

(ii) for any t ∈ R and θ, θ′ ∈ A(d),

‖uj(θ, t)− uj(θ
′, t)‖ 6 C|t|

(
∑
k
|θkj − θ′kj|

1/2
)

, j = 1, . . . , d.

The present work is organized as follows. In Section 2, we apply the method
of Haagerup and Rørdam to construct a continuous deformation of the Heisen-
berg relations. Section 3 extends both the bounded perturbation and the con-
tinuous deformation to noncommutative Euclidean space of higher dimensions.
Section 4 is devoted to corresponding results for noncommutative d-tori.
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2. CONTINUOUS PERTURBATION OF HEISENBERG RELATIONS

We first discuss Theorem 1.2 for d = 2 by the method of Haagerup and Rør-
dam in [14]. In this section, θ always denotes a real number. Let P and Q be two
(unbounded) self-adjoint operators on a Hilbert space H and u(s) = eiPs, v(t) =
eiQt be their associated one-parameter groups. For a nonzero θ, we say P and Q
satisfy the Heisenberg relation with parameter θ

[P, Q] = PQ−QP = −iθ I,(2.1)

if u(s), v(t) satisfy the Weyl relation

u(s)v(t) = eistθv(t)u(s).(2.2)

When θ = 1, we call (2.1) the standard Heisenberg relation. Thanks to the well-
known Stone–von Neumann theorem (cf. pp. 285–287 of [15]), any representation
of the standard Heisenberg relation is unitarily equivalent to a (finite or infinite)
multiple of the Schrödinger picture. More precisely, the only irreducible repre-
sentation, up to a unitary equivalence, is given by the momentum operator and
position operator from quantum mechanics

P f = −i
d f
dx

, (Q f )(x) = x f (x), f ∈ C1
c (R).

Both P, Q are unbounded self-adjoint operators on the Hilbert space L2(R) and
they have a common core of C1

c (R) (continuously differentiable compactly sup-
ported functions). The associated one-parameter unitary groups are given by

(u(s) f )(x) = f (x + s), (v(t) f )(x) = eixt f (x),(2.3)

which satisfy (2.2). Note that (2.1) implies that ( 1
θ P, Q) satisfies the standard

Heisenberg relation, so the Stone–von Neumann theorem is easily generalized
for any nonzero θ. When θ = 0, the one-parameter groups commute

eiPseiQt = eiQteiPs,

and we say P and Q commute strongly. Strongly commuting pairs (P, Q) are
one-to-one corresponding to unitary representations of R2. In particular, the left
regular group representation of R2 is given by

P f = −i
d f
dx

, Q f = −i
d f
dy

(2.4)

as unbounded self-adjoint operators on L2(R2) and the unitaries are translations,

(u(t) f )(x, y) = f (x + t, y), (v(t) f )(x, y) = f (x, y + t), f ∈ L2(R2).

We will combine the discussions of Section 3 and 5 from [14], working on the un-
bounded operators (P, Q) instead of unitaries. Let us begin with a modification
of Theorem 3.1 of [14].
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THEOREM 2.1. Let θ 6= 0. Let (P, Q) be a representation of [P, Q] = −iθ I with
infinite multiplicity on a separable Hilbert space H. Then for any θ′ ∈ R, there exist
self-adjoint operators P′ and Q′ on H satisfying [P′, Q′] = −iθ′ I such that P− P′ and
Q−Q′ are bounded and moreover,

max{‖P− P′‖, ‖Q−Q′‖} 6 9|θ − θ′|1/2.

Proof. We may first assume θ′ > θ and denote δ = |θ′ − θ|1/2. Let K be an
infinite dimensional separable Hilbert space. Because all infinite multiplicity rep-
resentations of the Heisenberg relation on a separable Hilbert space are unitarily
equivalent, we may assume that (P, Q) is given by

P = −iδ
∂

∂x
, Q = −i

∂

∂y
+

θ

δ
x,

on L2(R2, K). The associated one-parameter groups u(t) = eiPt, v(t) = eiQt are

(u(t) f )(x, y) = f (x + δt, y), (v(t) f )(x, y) = ei(θ/δ)xt f (x, y + t).

Let w : R2 → U(K) be a C1-function with values in the unitary group U(K) of K.
It can be regarded as a unitary on L2(R2, K) via pointwise action

(w f )(x, y) = w(x, y) f (x, y).

The subspace C1
c (R2, K) is a common core of P, Q and also invariant under w.

Then for f ∈ C1
c (R2, K),

(w∗Pw f )(x, y) = −iδ
(∂ f

∂x
(x, y) + iw(x, y)∗

∂w
∂x

(x, y) f (x, y)
)

,

(w∗Qw f )(x, y) = −i
(∂ f

∂y
(x, y) + iw(x, y)∗

∂w
∂y

(x, y) f (x, y)
)
+

θ

δ
x f (x, y).(2.5)

It is proved in Theorem 3.1 of [14] that there exists a C1-function w : R2 → U(K)
such that

sup
(x,y)∈R2

∥∥∥∂w
∂x

(x, y)
∥∥∥ 6 9, sup

(x,y)∈R2

∥∥∥∂w
∂y

(x, y)− ixw(x, y)
∥∥∥ 6 9.(2.6)

Set w(x, y) = w(x, δy), and choose the self-adjoint operators P′ = wPw∗, Q′ =
w(Q + θ′−θ

δ x)w∗. The pair (P′, Q′) satisfies [P′, Q′] = −iθ′ I and also shares the
common core C1

c (R2, K). On this dense domain C1
c (R2, K)

P− P′ = w(w∗Pw− P)w∗ = iw
(

δw∗
∂w
∂x

)
w∗ = iδ

∂w
∂x

w∗,

Q−Q′ = w(w∗Qw−Q− δx)w∗ = iw
(

w∗
∂w
∂y
− δx

)
w∗ = i

(∂w
∂y

w∗ − δx
)

.
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Both are bounded because for any (x, y) ∈ R2,∥∥∥− iδ
∂w
∂x

(x, y)w(x, y)∗
∥∥∥ =

∥∥∥δ
∂w
∂x

(x, δy)
∥∥∥ 6 9δ,∥∥∥− i

∂w
∂y

(x, y)w∗(x, y)− δx
∥∥∥ =

∥∥∥δ
(∂w

∂y
(x, δy)− ixw(x, δy)

)∥∥∥ 6 9δ.

For θ > θ′, the estimates follow similarly by taking w(x, y) = w(x,−δy).

REMARK 2.2. The pair (P′, Q′) gives a representation of infinite multiplicity.
In particular when θ′ = 0, P′ and Q′ strongly commute and are unitarily equiva-
lent to an infinite multiple of regular representations (2.4). Conversely, the above
theorem remains valid for θ = 0 if in addition (P, Q) is unitarily equivalent to the
regular representation.

Stone’s theorem states that self-adjoint operators on a Hilbert space H are
one-to-one correspondent to one-parameter unitary groups in B(H). The next
proposition shows that this correspondence is of a certain continuity.

PROPOSITION 2.3. Let P and P′ be (possibly unbounded) self-adjoint operators on
a Hilbert space H. Then their domains D(P) and D(P′) coincide and P− P′ is bounded
with its norm less than a constant C > 0 if and only if ‖eiPt − eiP′t‖ 6 C|t| for any
t ∈ R.

Proof. The necessity is Lemma 4.3 of [14]. Here we prove the sufficiency.
For ξ ∈ D(P) and η ∈ D(P′), it follows by Stone’s theorem that

lim
t→0

eiPtξ − ξ

t
= iPξ, lim

t→0

eiP′tη − η

t
= iP′η

converge strongly. Then the derivative of the inner product 〈eiPtξ, eiP′tη〉 at t = 0
is given by

lim
t→0

1
t
(〈eiPtξ, eiP′tη〉−〈ξ, η〉)= lim

t→0

1
t
(〈eiPtξ, eiP′tη〉−〈eiPtξ, η〉)+ 1

t
(〈eiPtξ, η〉−〈ξ, η〉)

= 〈ξ, iP′η〉+ 〈iPξ, η〉.
On the other hand,

‖e−iP′teiPt − 1‖ = ‖eiPt − eiP′t‖ 6 C|t|, t ∈ R

by assumptions. This implies

〈eiPtξ, eiP′tη〉 − 〈ξ, η〉 = 〈(e−iP′teiPt − 1)ξ, η〉 6 Ct‖ξ‖‖η‖.

Therefore

|〈ξ, iP′η〉+ 〈iPξ, η〉| 6 C‖ξ‖‖η‖, |〈ξ, P′η〉| 6 (C‖ξ‖ + ‖Pξ‖)‖η‖.(2.7)

Since P′ is self-adjoint, we have ξ ∈ D(P′∗) = D(P′). Now we are able to rewrite
(2.7) to obtain

|〈(P− P′)ξ, η〉| 6 C‖ξ‖‖η‖
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for all ξ ∈ D(P), η ∈ D(P′). Since D(P) and D(P′) are dense in H, ‖P− P′‖ 6 C
and P, P′ have the same domain. Note that for sufficiency we only use

‖eiPt − eiP′t‖ 6 C|t|, t ∈ [0, ε]

for some ε > 0.

The following is Lemma 5.1 of [14], which is used as a key tool in the con-
struction of continuous paths. We omit its proof here.

LEMMA 2.4. Let M ⊂ B(H) be a von-Neumann algebra with properly infinite
commutant M′. For a unitary u ∈ M, there exists a smooth path u(t), t ∈ [0, 1] of
unitary, such that:

(i) u(0) = 1 and u(1) = u;
(ii) ‖u′(t)‖ 6 9;

(iii) ‖[u(t), a]‖ 6 4‖[u, a]‖;
(iv) ‖[u′(t), a]‖ 6 9‖[u, a]‖;
(v) ‖ d

dt u(t)au(t)∗‖ 6 45‖[u, a]‖;
for all t ∈ [0, 1] and a ∈ M.

The next lemma is an analog of Lemma 5.2 of [14].

LEMMA 2.5. Let θ 6= θ′ both be nonzero and k ∈ N be given. Let (P(θ), Q(θ))
(respectively (P(θ′), Q(θ′))) be a representation of [P, Q] = −iθ I (respectively [P, Q] =
−iθ′ I) of infinite multiplicity on a separable Hilbert space H. Denote the associated one-
parameter unitary groups as

u0(t) = eiP(θ)t, v0(t) = eiQ(θ)t, u1(t) = eiP(θ′)t, v1(t) = eiQ(θ′)t.

Assume that the commutant of {u0(t), u1(t), v0(t), v1(t) : t ∈ R} is properly infinite
and P(θ)− P(θ′) and Q(θ)−Q(θ′) are bounded. Denote

d = max{‖P(θ)− P(θ′)‖, ‖Q(θ)−Q(θ′)‖},

and set

sj = θ +
j
k
(θ′ − θ), j = 0, 1, . . . , k

so that s0 = θ, sk = θ′. Then there exist pairs (P(sj), Q(sj)), j = 1, 2, . . . , k − 1, of
self-adjoint operators on H such that:

(i) (P(sj), Q(sj)) satisfies the Heisenberg relation [P(sj), Q(sj)] = −isj I;
(ii) P(sj)− P(sj+1) and Q(sj)−Q(sj+1) are bounded and

max{‖P(sj)− P(sj+1)‖, ‖Q(sj)−Q(sj+1)‖} 6 1224
( |θ − θ′|

k

)1/2
+ 45

d
k

;

(iii) the commutant of the one-paramter groups {eiP(s0)t, . . . , eiP(sk)t, eiQ(s0)t, . . . ,
eiQ(sk)t} is properly infinite.
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Proof. We decompose H = H1 ⊗ H2 ⊗ H3 as a tensor product of three in-
finite dimensional Hilbert spaces. Moreover we may assume the four one-para-
meter groups {u0(t), u1(t), v0(t), v1(t)} are in the subalgebra B(H1)⊗CIB(H2)

⊗
CIB(H3)

, since the commutant of {u0(t), u1(t), v0(t), v1(t)} is properly infinite.
Also, P(θ), Q(θ), P(θ′) and Q(θ′) can be regarded as operators on H1 by iden-
tifying operators P with P⊗ 1B(H2)

⊗ 1B(H3)
.

Denote δ = ( |θ
′−θ|
k )1/2 and set P(s0) = P(θ), Q(s0) = Q(θ). We can apply

Theorem 2.1 inductively to obtain k pairs of self-adjoint operators (P(sj), Q(sj))
on H1 satisfying (i) and

max{‖P(sj)− P(sj + 1)‖, ‖Q(sj)−Q(sj + 1)‖} 6 9δ.(2.8)

By the assumption on d and the triangle inequality, we have

max{‖P(sk)− P(θ′)‖, ‖Q(sk)−Q(θ′)‖} 6 9kδ + d.(2.9)

Note that for sk = θ′, both pairs (P(sk), Q(sk)) and (P(θ′), Q(θ′)) are infinite
multiplicity representations of the Heisenberg relation with the nonzero param-
eter θ′. Then P(θ′) = WP(sk)W∗, Q(θ′) = WQ(sk)W∗ for some unitary W ∈
B(H1)⊗C1⊗C1. Thus (2.9) implies

max{‖P(sk)−WP(sk)W∗‖, ‖Q(sk)−WQ(sk)W∗‖} 6 9kδ + d.

Denote usj(t) = etP(sk)i, vsj(t) = etQ(sk)i. By Proposition 2.3,

max{‖[w, usk (t)]‖, ‖[w, vsk (t)]‖} 6 (9kδ + d)|t|, t ∈ R.

For any j = 0, 1, . . . , k, by (2.8) and the triangle inequality we have

max{‖[w, usj(t)]‖, ‖[w, vsj(t)]‖} 6 (27kδ + d)|t|, t ∈ R.

All of the operators above are in the subalgebra B(H1) ⊗ CI ⊗ CI, which is of
properly infinite commutant inside B(H1) ⊗ B(H2) ⊗ CI. Hence we can apply
Lemma 2.4 for W, to obtain a path of unitary W : [0, 1] → B(H1)⊗ B(H2)⊗C1
such that W(0) = I, W(1) = W, and

max
{∥∥∥ d

ds
W(s)usj(t)W

∗(s)
∥∥∥,
∥∥∥ d

ds
W(s)vsj(t)W

∗(s)
∥∥∥} 6 45(27kδ + d)|t|,

for all j = 0, 1, . . . , k and t ∈ R. Now for each j, set

usj(t) = W
( j

k

)
usj(t)W

∗
( j

k

)
, vsj(t) = W

( j
k

)
vsj(t)W

∗
( j

k

)
,

and self-adjoint operators P(sj), Q(sj) for the associated infinitesimal generators.
We claim that this gives the desired construction.
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First, P(s0) = P(θ), Q(s0) = Q(θ) and P(sk) = P(θ′), Q(sk) = Q(θ′). Each
pair (P(sj), Q(sj)) satisfies the commutation relations (i). Moreover,

‖usj(t)− usj+1(t)‖ 6
∥∥∥W
( j + 1

k

)
(usj+1(t)− usj(t))W

∗
( j + 1

k

)∥∥∥
+
∥∥∥ (j+1)/k∫

j/k

d
ds

(W(s)usj(t)W
∗(s))ds

∥∥∥
6 9δ|t|+ 45

(
27δ +

d
k

)
|t| =

(
1224δ + 45

d
k

)
|t|,

and the same bound holds for ‖vsj+1(t)− vsj(t)‖. By Lemma 2.3, we obtain that

max{‖P(sj)− P(sj+1)‖, ‖Q(sj)−Q(sj+1)‖} 6 1224δ + 45
d
k

.

Finally, all unitary groups usj(t), vsj(t) belong to B(H1)⊗ B(H2)⊗C1 and hence
the commutant is properly infinite.

REMARK 2.6. Note that for (P(θ), Q(θ)), we only use the fact that Theo-
rem 2.1 applies. Hence the above theorem remains valid if θ is 0 and (P(θ), Q(θ))
is unitarily equivalent to an infinite multiple of left regular representation. This
point is used in the next theorem.

Let us denote by S(H) the set of all self-adjoint operators on the Hilbert
space H. Based on the above lemma, we construct maps P, Q : R → S(H) with
continuously bounded perturbation. The next theorem is an analog of Lemma 5.3
and Theorem 5.4 of [14] for Heisenberg relations.

THEOREM 2.7. Let H be an infinite dimensional Hilbert space. Then there exist
maps P, Q : R→ S(H) and a universal constant C > 0 such that for all θ, θ′ ∈ R,

(i) [P(θ), Q(θ)] = −iθ I;
(ii) P(θ)− P(θ′) and Q(θ)−Q(θ′) are bounded on H and moreover,

max{‖P(θ)− P(θ′)‖, ‖Q(θ)−Q(θ′)‖} 6 C|θ − θ′|1/2.(2.10)

Proof. Set k = 8100 and Γ =
∞⋃

n=1
Γn, where

Γn =
{ j

kn : j ∈ Z, |j| 6 (n + 1)kn
}

.

Write H = H1 ⊗ H2 where both H1 and H2 are infinite dimensional. Let K be a
separable infinite dimensional Hilbert space. We may assume H1 = L2(R2, K)
and define the map P, Q in S(L2(R2, K)) for all integers j ∈ Z as follows

(P(0) f )(x, y) = −i
∂ f
∂x

(x, y), (Q(0) f )(x, y) = −i
∂ f
∂y

(x, y), f ∈ C1
c (R2, K),

P(j + 1) = w∗P(j)w, Q(j + 1) = w∗(Q(j) + x)w,
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where w ∈ U(L2(R2, K)) is the unitary operator described in (2.6). Theorem 2.1
implies

max{‖P(j)− P(j + 1)‖, ‖Q(j)−Q(j + 1)‖} 6 9.

Now identify P(j) and Q(j) with their amplifications P(j) ⊗ I and Q(j) ⊗ I on
H1⊗H2. Denote that u(θ, t) = eiP(θ)t and v(θ, t) = eiQ(θ)t. Then {(P(j), Q(j)), j =
−1, 0, 1} defines the map on Γ0 satisfying condition (i) and (ii) for constant C′ =
2500, and

(iii) the commutant of {u(θ, t), v(θ, t) : θ ∈ Γn} is properly infinite.

Now assume that the maps P, Q are defined on Γn with conditions (i), (ii) and (iii)
satisfied. For the induction step, we first add two integer points θ = ±(n + 2),
and then apply the Lemma 2.5 to the subintervals [ j

kn , j+1
kn ] (note that at

j = 0, (P(0), Q(0)) is the left regular representation) and unit intervals [−(n + 2),
−(n + 1)], [n + 1, n + 2]. In particular, for these two intervals of unit length, we
apply the Lemma 2.5 of k-division n + 1 times. Thus we extend the maps P, Q to
Γn+1 with (i), (ii) and (iii) still satisfied. Indeed, for (ii),

max
{∥∥∥P

( j
kn+1

)
− P

( j + 1
kn+1

)∥∥∥,
∥∥∥Q
( j

kn+1

)
−Q

( j + 1
kn+1

)∥∥∥}
6 1224k−(n+1)/2 + 45

2500
k

k−n/2

=
(

1224 + 2500
45√

k

)
k−(n+1)/2 6 2500k−(n+1)/2,

where the last inequality follows from that
√

k = 90. Thus by induction, we
construct the maps P, Q on Γ.

Finally, we extend P, Q from the dense subset Γ to R. By Lemma 2.3, the
one-parameter unitary groups u(θ, t) = eiP(θ)t, v(θ, t) = eiQ(θ)t satisfy that

max{‖u(θ, t)− u(θ′, t)‖, ‖v(θ, t)− v(θ′, t)‖} 6 2500|t| · |θ− θ′|1/2, t ∈ R, θ ∈ Γ,

For a fixed t, we can continuously extend u(·, t), v(·, t) for all θ ∈ R. It can be
proved by the same argument of Theorem 5.4 in [14] that this extension is again
Lip1/2-continuous, but with a larger constant C = 320 · 2500|t| = 800,000 |t|.
Namely, for all t, θ, θ′ ∈ R, our extension satisfies

max{‖u(θ, t)− u(θ′, t)‖, ‖v(θ, t)− v(θ′, t)‖} 6 800,000|t| · |θ − θ′|1/2.(2.11)

The continuity implies that for each θ, u(θ, t) and v(θ, t) are strongly continuous
one-parameter unitary groups such that

u(θ, s)v(θ, t) = eistθv(θ, t)v(θ, s), ∀s, t ∈ R.(2.12)

Finally we choose the self-adjoint operators P(θ) and Q(θ) as the infinitesimal
generators of u(θ, t) and v(θ, t). By Proposition 2.3, (ii) is satisfied with constant
C = 800,000.
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REMARK 2.8. Proposition 3.9 of [14] proves that if (P, Q) is a representa-
tion of the Heisenberg relation of finite multiplicity on a Hilbert space H, there
exists no strongly commuting pair (P0, Q0) on H such that P − P0 and Q − Q0
are bounded. The argument works for all θ 6= 0, which implies that (P(θ), Q(θ))
constructed above at each θ is a representation of infinite multiplicity.

The above theorem can be reformulated with one-parameter unitary groups.

COROLLARY 2.9. Let H be an infinite dimensional Hilbert space. There exist two
maps u, v : R×R→ U(H) and a universal constant C > 0 such that:

(i) for each θ ∈ R, u(θ, ·) and v(θ, ·) are strongly continuous one-parameter unitary
groups satisfying

u(θ, s)v(θ, t) = eistθv(θ, t)u(θ, s), s, t ∈ R,(2.13)

(ii) for each t ∈ R, u(·, t) and v(·, t) are Lip1/2-continuous:

max{‖u(θ, t)− u(θ′, t)‖, ‖v(θ, t)− v(θ′, t)‖} 6 C|t||θ − θ′|1/2, ∀θ, θ′ ∈ R.

Moreover, for all θ, u(θ, ·) and v(θ, ·) are a representation of (2.13) of infinite multiplic-
ity.

3. PERTURBATIONS OF NONCOMMUTATIVE EUCLIDEAN SPACE

We now consider the case of dimension d > 2. From this section on, we
denote by θ = (θjk)

d
j,k=1 a real skew-symmetric d× d-matrix. Let (P1, P2, . . . , Pd)

be a d-tuple of self-adjoint operators on a Hilbert space H. We say (P1, P2, . . . , Pd)
satisfy the Heisenberg relations with parameter θ

[Pj, Pk] = −θjk I, j, k = 1, 2, . . . , d

if the one-parameter unitary groups u1(s) = eiP1s, u2(s) = eiP2s, . . . , ud(s) = eiPds

satisfy

uj(s)uk(t) = eistθjk uk(t)uj(s), s, t ∈ R, j, k = 1, 2, . . . , d.(3.1)

When θ is the zero matrix, (P1, P2, . . . , Pj) gives a unitary representation of Rd.
The left regular representation of Rd is the translation action on L2(Rd) as follows,

Pj f = −i
∂ f
∂xj

, (uj(t) f )(x1, x2, . . . , xd) = f (x1, x2, . . . , xj + t, . . . , xd).

The standard noncommutative case is that d = 2n and θ =

[
0 In
−in 0

]
, where

In is the n-dimensional identity matrix. This gives the canonical commutation
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relations (CCR) which consist of n pairs of Heisenberg relations that mutually
commute, i.e. {

[Pj, Pj+n] = −iI ∀1 6 j 6 n,
otherwise [Pj, Pk] = 0.

(3.2)

The Stone–von Neumann theorem applies here (cf. Theorem 14.8 of [15]): any
irreducible representation of (3.2) is unitarily equivalent to n-dimensional quan-
tum mechanics model on L2(Rn),

Pj f = −i
∂ f
∂xj

, Pj+n f (x1, . . . , xn) = xj f (x1, . . . , xn), j = 1, . . . , n;(3.3)

any representation of (3.2) is unitarily equivalent to a finite or infinite multiple
of the irreducible representation. It is known that a similar property holds for all
nonsingular θ, which we briefly discuss in the following.

We use boldface letters for real vectors such as s = (s1, s2, . . . , sd). Given a
d-tuple (u1, u2, . . . , ud) of one-parameter unitary groups satisfying (3.1), we intro-
duce the following strongly continuous map:

u : Rd → U(H), u(s) = exp
(
− i

2 ∑
j<k

θjksjsk

)
u1(s1)u2(s2) · · · ud(sd).

It satisfies the commutation relation

u(s)u(t) = e(i/2)θ(s,t)u(s + t) = eiθ(s,t)u(t)u(s), s, t ∈ Rd,(3.4)

where θ(s, t) = ∑
jk

θjksjtk is the symplectic bilinear form associated with θ. (3.4) is

called a projective unitary representation of Rd (see Appendix for the definition),
and it is an equivalent formulation of (3.1). Let T = (Tjk)

d
j,k=1 be a real invertible

matrix and Tt be its transpose. Then θ̃ = TθTt is also a skew-symmetric real ma-
trix, and its associated Heisenberg relation admits the following representation,

u(Ts)u(Tt) = eiθ(Ts,Tt)u(Tt)u(Ts) = eθ̃(s,t)u(Tt)u(Ts).

Since T is invertible, the Heisenberg relations associated with θ and associated
with θ̃ generate each other and there is an one-to-one correspondence between

their representations. Let us fix S =

[
0 In
−In 0

]
for the antipode matrix. For a

nonsingular θ, there exists an invertible T such that TθTt = S. Hence the Stone–
von Neumann theorem concludes the case for all nonsingular θ.

PROPOSITION 3.1. Let d = 2n. Suppose θ is nonsingular and T = (Tjk)
d
j,k=1 is

a real invertible matrix such that TθTt = S. Then any irreducible representation of

[Pj, Pk] = −iθjk I, j, k = 1, 2, . . . , d(3.5)
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is unitarily equivalent to the following representation on L2(Rn),

Pj = ∑
16k6n

(
Tj,k

(
− i

∂

∂xk

)
+ Tj,k+nxk

)
, j = 1, 2, . . . , d.(3.6)

Moreover, any representation of (3.5) is a (finite or infinite) multiple of (3.6).

For a general θ the representation always generates a tensor product of a
type I factor and a commutative algebra (see [22]). The next theorem is the gen-
eralization of Theorem 2.1 for dimension d > 2.

THEOREM 3.2. Let θ be nonsingular. Let (P1, P2, . . . , Pd) be a representation of

[Pj, Pk] = −iθjk I, j, k = 1, 2, . . . , d

on a separable Hilbert space H of infinite multiplicity. Then for any real skew-symmetric
θ′, there exist self-adjoint operators P′1, P′2, . . . , P′d on H such that for all j, k,

(i) [P′j , P′k] = −iθ′jk I;
(ii) Pj − P′j is bounded on H and

‖Pj − P′j‖ < 9(d− 1)max
k
|θjk − θ′jk|

1/2.

Proof. Let K be a separable infinite dimensional Hilbert space. Set δj =

max
k
|θjk− θ′jk|

1/2. Let us first assume that δj > 0 for every j. By Proposition 3.1, up

to a unitary equivalence we may assume that H = L2(Rd, K) and (P1, P2, . . . , Pd)
are given by

Pj =
(
− iδj

∂

∂xj
+ ∑

k<j

θkj

δk
xk

)
⊗ 1K,(3.7)

where (−i ∂
∂xj

)’s and xj’s are given in (3.3). Let W : Rd → U(K) be a C1-function

with values in the unitary group U(K). W can be viewed as a unitary on L2(Rd, K)
via pointwise action. A calculation similar to (2.5) yields

W∗PjW = −iδj

( ∂

∂xj
+ W∗

∂W
∂xj

)
+ ∑

k<j

θkj

δk
xk.

Let us recall the two-variable C1-function w : R2 → U(K) in Theorem 2.1.

Write δjk =
θ′jk−θjk

δjδk
and define the following functions,

w2(x1, x2, . . . , xd) = w(x1, δ12x2),

w3(x1, x2, . . . , xd) = w(x1, δ13x3)w(x2, δ23x3),

...

wd(x1, x2, . . . , xd) = w(x1, δ1dxd)w(x2, δ2dxd) · · ·w(xd−1, δd−1,dxd).
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When 1 6 j < k, for any (x1, x2, . . . , xd) ∈ Rd∥∥∥∂wk
∂xj

(x1, x2, . . . , xd)
∥∥∥ =

∥∥∥∂w
∂x

(xj, δjkxk)
∥∥∥ < 9,(3.8)

and when k < j 6 d, ∂wk
∂xj

= 0. Because the pointwise unitaries w(xk, δkjxj)

commute with the multipliers xj, we have

∂wj

∂xj
(x1, x2, . . . , xd)− ∑

16k<j
δkjxkwj(x1, x2, . . . , xd)

= ∑
16k<j

δkjw(x1, δ1jxj) · · ·
∂w
∂y

(xk, δkjxj) · · ·w(xj−1, δj−1,jxj)

− ∑
16k<j

δkjxkwj(x1, x2, . . . , xd)

= ∑
16k<j

δkjw(x1, δ1jxj) · · ·
(∂w

∂y
(xk, δkjxj)− ixkw(xk, δkjxj)

)
(3.9)

· · ·w(xj−1, δj−1,jxj).

Thus the norm estimate follows:∥∥∥∂wj

∂xj
(x1, x2, . . . , xd)−∑

k<j
δkjxkwj(x1, x2, . . . , xd)

∥∥∥ 6 9 ∑
k<j

δkj.(3.10)

Now set

W(x1, x2, . . . xd) = w2(x1, x2, . . . , xd)w3(x1, x2, . . . , xd) · · ·wd(x1, x2, . . . , xd),

and define P′j = W∗
(

Pj + ∑
16k<j

θ′kj−θkj
δk

xk

)
W. Then (P′1, P′2, . . . , P′d) satisfies

[P′j , P′k] = −iθjk I and for each j

Pj − P′j = i
(

δjW∗
∂W
∂xj
− i ∑

16k<j

θ′kj − θkj

δk
xk

)
= iδj

(
W∗

∂W
∂xj
− i ∑

16k<j
δkjx

)
.

Note that for all (x1, x2, . . . , xd) ∈ Rd∥∥∥∂W
∂xj

(x1, x2, . . . , xd)− ∑
16k<j

δkjxkW(x1, x2, . . . , xd)
∥∥∥

6
∥∥∥∂wj

∂xj
(x1, x2, . . . , xd)−∑

16k<j
δkjxkwj(x1, x2, . . . , xd)

∥∥∥+ ∑
j<k6d

∥∥∥∂wk
∂xj

(x1, x2, . . . , xd)
∥∥∥

69 ∑
16k<j

δkj + 9(j− 1) = 9(j− 1) + 9(d− j) = 9(d− 1).

Therefore, Pj − P′j is bounded on H and ‖Pj − P′j‖ 6 9(d− 1)δj.
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For a general θ′, we may assume that δj > 0 for j 6 s and δj = 0 for
s < j 6 d. Then we take the representation (3.7) for j 6 s and use

Pj =
(
− i

∂

∂xj
+ ∑

k6s

θkj

δk
xk + ∑

s<k<j
θjkxk

)
⊗ 1K,

for s < j 6 d. Applying the above argument to P1, . . . , Ps, we obtain

P′j = W∗
(

Pj + ∑
k<j

θ′kj − θkj

δk
xk

)
W, j 6 s.

Note that now the pointwise unitary W is independent of coordinates xs+1, . . . , xd,
and hence it commutes with the newly defined Ps+1, . . . , Pd. One can verify that
the d-tuple (P′1, . . . , P′s , Ps+1, . . . , Pd) satisfies the desired conditions.

The next proposition is a partial converse of the above theorem. The proof
is a natural generalization of the Proposition 3.7 in [14].

PROPOSITION 3.3. Let θ be nonsingular and (P1, P2, . . . , Pd) be a representa-
tion of

[Pj, Pk] = −iθjk I, j, k = 1, 2, . . . , d

on a Hilbert space H. If (P1, P2, . . . , Pd) is of finite multiplicity, then there exist no
strongly commuting self-adjoint operators (P′1, P′2, . . . , P′d) on H such that Pj − P′j is
bounded on H for all j.

Proof. Let us first assume that (P1, . . . , Pd) is irreducible. It is sufficient to
consider the standard representation on L2(Rn),

Pj = −i
∂

∂xj
, Pj+n = xj, j = 1, . . . , n =

d
2

.

Other θ’s follow by a linear transformation T as in Proposition 3.1. Consider the
creation and annihilation operators of the n-dimensional harmonic oscillator,

aj =
1√
2
(Pj − iPj+n), a∗j =

1√
2
(Pj + iPj+n).

We use the usual notations m = (m1, m2, . . . , mn) ∈ Nn, m! = m1! · · ·mn! and
|m| = ∑

j
mj. Denote φ0(x) = π−n/4e−|x|

2/2 as the Gaussian density for Rn. There

is a natural orthonormal basis of harmonic oscillator

φm =
1

cm
(a∗)mφ0, m ∈ Nn

where (a∗)m = (a∗1)
m1 · · · (a∗n)mn and cm is the normalization constant. The cre-

ation and annihilation actions are

a∗j φm =
√

mj + 1φ(m1,...,mj+1,...,mn), ajφm =
√

mjφ(m1,...,mj−1,...,mn),

ajφ(m1,...,0,...,mn) = 0.
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Let c1, . . . , cn be the N× N matrices which are self-adjoint generators of the com-
plex Clifford algebra Cln (N = 2n/2 or N = 2(n+1)/2). They satisfy the commuta-
tion relations: {

cjck + ckcj = 2 if j = k,
cjck + ckcj = 0 otherwise.

Set A = ∑
j

cj ⊗ a∗j . One calculates that

A∗A = 1⊗∑
j

aja∗j , AA∗ = 1⊗∑
j

a∗j aj.

Note that (
∑

j
aja∗j

)
φm = (|m|+ n)φm,

(
∑

j
a∗j aj

)
φm = |m|φm.

Thus |A| = (A∗A)1/2 is invertible with compact inverse |A|−1 and ker(|A∗|) =
{Cφ0}⊗CN . The polar V = A|A|−1 of A is a partial isometry, ker(V) = ker(|A|),
and ker V∗ = ker(|A∗|). Hence V is a Fredholm operator with index(V) = −N.

Assume that P′1, . . . , P′d on H commute strongly and P′j − Pj is bounded for
all j. Then

A′ =
1√
2

n

∑
j=1

cj ⊗ (P′j + iP′j+n)

is normal, and A′ − A is bounded on H. Let V′ = A′|A|−1. V′ is everywhere
defined and bounded since V′ − V = (A′ − A)|A|−1 is compact. Hence V′ is
also a Fredholm operator with index(V′) = −N. Nevertheless, since |A|−1 is
one-to-one and onto the domain D(A)(= D(A′)),

dim(ker(V′)) = dim(ker(A′)) = dim(ker(A′∗)) = dim(ker(V′∗)),

which leads to a contradiction.
When (P1, . . . , Pd) has finite multiplicity M, V is of Fredholm index −MN.

The proof remains the same as above.

We now prove our main Theorem 1.2. Recall that we denote by A(d) the
space of real d-dimensional skew-symmetric matrices.

Proof of Theorem 1.2. The proof is by induction. The continuous maps u, v
from Theorem 2.7 give the initial step d = 2. For the induction step, we may write
H = H1 ⊗ H⊗(d−1)

2 , where both H1 and H2 are infinite dimensional. We assume
d− 1 maps U1, U2, . . . , Ud−1 on H1 satisfying the desired poperty for dimension
d− 1. Also we have the two maps u, v for d = 2 on each copy of H2. Denote θ̂

for the submatrix (θjk)
d−1
j,k=1, I1 the identity on H1 and I2 the identity on H2. We
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construct d maps from A(d) to U(H1 ⊗ H⊗(d−1)
2 ) as follows,

u1(θ, t) = U1(θ̂, t)⊗ u(θ1d, t)⊗ I2 ⊗ · · · ⊗ I2,

u2(θ, t) = U2(θ̂, t)⊗ I2 ⊗ u(θ2d, t)⊗ I2 ⊗ · · · ⊗ I2,

u3(θ, t) = U3(θ̂, t)⊗ I2 ⊗ I2 ⊗ u(θ3d, t)⊗ I2 ⊗ · · · ⊗ I2,

...

u(d−1)(θ, t) = U(d−1)(θ̂, t)⊗ I2 ⊗ · · · ⊗ I2 ⊗ u(θ(d−1),d, t),

ud(θ, t) = I1 ⊗ v(θ1d, t)⊗ v(θ2d, t)⊗ v(θ3d, t)⊗ · · · ⊗ v(θ(d−1),d, t).

One can check that (u1, u2, . . . , ud) satisfies the desired commutation relations. By
the triangle inequality, for j 6 d− 1,

‖uj(θ, t)− uj(θ
′, t)‖ 6 ‖Uj(θ̂, t)−Uj(θ̂′, t)‖ + ‖u(θjd, t)− u(θ′jd, t)‖

6 C|t|
(

∑
16k6d−1

|θjk − θ′jk|
1/2
)
+ C|t||θjd − θ′jd|

1/2

= C|t|
(

∑
16k6d

|θjk − θ′jk|
1/2
)

,(3.11)

and the estimate of ud follows similarly. Here we used the inductive assumption
on d− 1 and the initial step on d = 2. The constant C is independent of dimension
d and it can be 800,000 as in Theorem 2.9.

Denote |s|=
(

∑
j
|sj|2

)1/2
as the Euclidean metric for vector s=(s1, s2, . . . , sd)

and recall the symplectic bilinear form θ(s, t) = ∑
jk

θjksjtk. A strongly continuous

map u : Rd → U(H) is called a θ-projective unitary representation (or shortly
θ-representation) of Rd if it satisfies

u(s)u(t) = e(i/2)θ(s,t)u(s + t).(3.12)

The above theorem can be reformulated as a continuous family of projective uni-
tary representations.

COROLLARY 3.4. Let H be an infinite dimensional Hilbert space. There exist a
map u : A(d)×Rd → U(H) and a universal constant C > 0 such that:

(i) for each θ ∈ A(d), u(θ, ·) is a strongly continuous θ-representation of Rd;
(ii) for any s ∈ Rd and θ, θ′ ∈ A(d),

‖u(θ, s)− u(θ′, s)‖ 6 C|s|
(

∑
k,j
|θkj − θ′kj|

1/2
)

.(3.13)
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Proof. Let u1(θ, ·), u2(θ, ·), . . . , ud(θ, ·) be one-parameter unitary groups from
Theorem 1.2 and P1(θ), P2(θ), . . . , Pd(θ) be the corresponding infinitesimal gener-
ators. Then

[Pj(θ), Pk(θ)] = −iθjk I, j, k = 1, . . . , d,

and by Lemma 2.3, Pj(θ)− Pj(θ
′) is bounded on H:

‖Pj(θ)− Pj(θ
′)‖ 6 C

(
∑
k
|θjk − θ′jk|

1/2
)

.

We first consider that θ and θ′ are nonsingular. It is clear from Proposition 3.1 that
P1(θ), P2(θ), . . . , Pd(θ) share a common core. For any vector s ∈ Rd, we obtain by
the Baker–Campbell–Hausdorff formula that

u(θ, s) := ei(∑j sjPj(θ)) = exp
(
− i

2 ∑
j<k

θjksjsk

)
u1(θ, s1)u2(θ, s2) · · · ud(θ, sd).

Therefore,

‖u(θ, s)− u(θ′, s)‖=‖ei(∑j sjPj(θ)) − ei(∑j sjPj(θ
′))‖ 6

∥∥∥∑
j

sj(Pj(θ)− Pj(θ
′))
∥∥∥

6C ∑
j
|sj|
(

∑
k
|θjk−θ′jk|

1/2
)
6C|s|

(
∑

j

(
∑
k
|θjk−θ′jk|

1/2
)2)1/2

6C|s|
(

∑
j,k
|θjk − θ′jk|

1/2
)

.

Note that when s is fixed, u(·, s) is continuous in norm. Then the estimates for
general θ and θ′ follows.

We now explore applications on noncommutative Euclidean spaces. Let
S(Rd) be the complex Schwartz functions on Rd, and s · t denote the Euclidean
inner product. Fix a nonzero θ ∈ A(d). The associated Moyal product, for f , g ∈
S(Rd), is defined as

f ?θ g(x) = (2π)−d
∫
Rd

∫
Rd

f
(

x− 1
2

θs
)

g(x + t)e−is·tds dt, f , g ∈ S(Rd)(3.14)

(see [22]). The noncommutative Euclidean space Eθ associated to θ is the C∗-
algebra generated by {λθ( f ) : f ∈ S(Rd)}, where λθ : (S(Rd), ?θ) → B(L2(Rd))
is the left Moyal multiplication,

λθ( f )g = f ?θ g, f ∈ S(Rd), g ∈ L2(Rd).

Eθ is the Moyal deformation of C0(Rd), the algebra of continuous functions van-
ishing at infinity. An equivalent formulation of Moyal product via Fourier trans-
form is given by

λθ( f ) =
∫
Rd

f̂ (s)λθ(s)ds,
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where f̂ is the Fourier transform of f and

λ̂θ(s)g(t) = eiθ(s,t−s) ĝ(t− s),(3.15)

is called the left regular θ-representation of Rd (see [11] for more information on
Moyal analysis).

Let u be a θ-representation on a Hilbert space H. The associated quantiza-
tion map

u( f ) =
∫
Rd

f̂ (s)u(s)ds,

gives a representation of Moyal product, i.e. u( f )u(g) = u( f ?θ g). Actually,
representations of Eθ are in one-to-one correspondence to θ-representations of Rd

(see [20]). There is a (canonical) ∗-homomorphism from Eθ onto the C∗-algebra
generated by {u( f ) : f ∈ S(Rd)}:

πu(λθ( f )) = u( f ).

If πu is an isomorphism, we say u is canonical.

LEMMA 3.5. Let θ ∈ A(d) be nonsingular and θ̂ = (θjk)
d−1
j,k=1 be its principal

submatrix. For a vector s ∈ Rd−1, write (s, 0) = (s1, . . . , s(d−1), 0) ∈ Rd. Let u :
Rd → U(H) be a θ-representation on H. Then the following θ̂-representation of Rd−1

û : Rd−1 → U(H), û(s) = u(s, 0),

is canonical.

Proof. For f ∈ S(Rd−1), denote v( f ) =
∫

f̂ (s)λθ(s, 0)ds, and λ
θ̂
( f ) for the

left θ̂-Moyal multiplication on L2(Rd−1). It is sufficient to show that

‖v( f )‖ = ‖λ
θ̂
( f )‖

holds for functions f which are L1-norm dense in S(Rd−1). By Proposition 3.1,
we may just consider that u is the left regular θ-representation (3.15) on L2(Rd).
For any g ∈ S(Rd−1), define gn ∈ S(Rd) as follows:

ĝn(t, td) = ĝ(t)φn(td), (t, td) ∈ Rd,

where φn ∈ S(R) is a sequence of smooth function supported in [−εn, εn] such
that εn → 0 and the L2-norm ‖φn‖2 = 1. For f ∈ S(Rd−1),

v̂( f )gn(t, td)− λ̂
θ̂
( f )g(t)φn(td)

= φn(td)
∫

f̂ (s)ĝ(t− s)e(i/2)θ̂(s,t−s) exp
( i

2

d−1

∑
j=1

θjdsjtd

)
ds

− φn(td)
∫

f̂ (s)ĝ(t− s)e(i/2)θ̂(s,t−s)ds
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= φn(td)
∫

f̂ (s)ĝ(t− s)ei/2θ̂(s,t−s)
(

exp
( i

2

d−1

∑
j=1

θjdsjtd

)
− 1
)

ds.

Now assume that f̂ is compactly supported. Then the sequence

βn := sup
td∈supp(φn)

sup
s∈supp( f )

∣∣∣ exp
( i

2

d−1

∑
j=1

θjdsjtd

)
− 1
∣∣∣

converges to 0 as n→ ∞. Hence

‖v̂( f )gn − λ̂
θ̂
( f )gφn‖2 6 βn‖φn‖2‖ f ‖2‖g‖2 → 0.

Thus for compactly supported f , and any g ∈ S(Rd−1)

lim
n
‖v( f )gn‖2 = ‖λ

θ̂
( f )g‖2,

which implies

‖v( f )‖ =‖λ
θ̂
( f )‖.

Let α > 0 and ∆ be the Laplacian inRd. Recall that the Sobolev space Hα(Rd)
is the Hilbert space Hα(Rd) := { f ∈ L2(Rd) : (1 + |∆|)α/2 f ∈ L2(Rd)} equipped
with the norm ‖ f ‖Hα = ‖(1 + |∆|)α/2 f ‖2.

COROLLARY 3.6. Let H be an infinite dimensional Hilbert space. There exists a
map

u : A(d)× S(Rd)→ B(H), (θ, f ) 7→ uθ( f )
such that:

(i) for each θ ∈ A(d),

uθ( f ?θ g) = uθ( f )uθ(g), ∀ f , g ∈ S(Rd);

(ii) for α > d
2 + 1, there exists a constant Cα,d such that for all f ∈ S(Rd) and

θ, θ′ ∈ A(d),

‖uθ( f )− uθ′( f )‖ 6 Cα,d

(
∑
j,k
|θjk − θ′jk|

1/2
)
‖ f ‖Hα ;

(iii) for each θ, uθ is a canonical representation.

Proof. We first consider the case d = 2m is even. Let u(θ, s) be the continu-
ous family of projective unitary representations from Corollary 3.4. Define

uθ( f ) =
∫
Rd

f̂ (s)u(θ, s)ds.

The first assertion follows from that u(θ, ·) is a θ-representation of Rd. For (ii), we
use the estimate (3.13):

‖uθ( f )− uθ′( f )‖ 6 C
(

∑
j,k
|θjk − θ′jk|

1/2
) ∫
Rd

| f̂ (s)||s|ds
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6 C
(

∑
j,k
|θjk − θ′jk|

1/2
)
‖| f̂ ||s|(1 + 4π|s|2)α/2−1/2‖2

( ∫
Rd

(1 + 4π|s|2)−α+1ds
)1/2

6 Cα,d

(
∑
j,k
|θjk − θ′jk|

1/2
)
‖ f ‖Hα .

The second integral converges when α− 1 > d
2 and the constant

Cα,d =
( Vd

2α− d− 2

)1/2
C

where Vd is the volume of unit (d− 1)-sphere. For (iii), given a θ, it is sufficient to
show that for any f ∈ S(Rd), ‖uθ( f )‖ = ‖λθ( f )‖. This is clear for all nonsingular
θ. Given a singular θ in even dimensions, we choose a sequence of nonsingular
skew-symmetric θn converging to θ. With the continuity in (ii), we obtain that for
all f ∈ Hα(Rd),

‖uθ( f )‖ = lim
n
‖uθn( f )‖ = lim

n
‖λθn( f )‖ > ‖λθ( f )‖.

The last inequality follows from the fact that λθn( f ) → λθ( f ) in strong operator
topology, and it is actually an equality (see [22]). Thus we finish the proof for the
even case. When d = 2m− 1 is odd, we set

uθ( f ) =
∫

Rd−1

f̂ (s)u(θ̃, (s, 0))ds, f ∈ S(Rd−1), θ ∈ A(d− 1)

where θ̃ =

[
θ 0
0 0

]
is an embedding of A(d − 1) into A(d). (i) and (ii) follows

similarly. For (iii), again we choose a sequence of nonsingular θ̃n approximating
θ̃. Denote by θn the corresponding (d − 1) × (d − 1) principal submatrix of θ̃n.
Then θn converges to θ, and by Lemma 3.5 we obtain that for all f ∈ Hα(Rd−1),

‖uθ( f )‖ = lim
n

∥∥∥ ∫ f̂ (s)u(θ̃n, (s, 0))ds
∥∥∥ = lim

n
‖λθn( f )‖ > ‖λθ( f )‖,

which completes the proof.

4. CONTINUOUS PERTURBATION OF NONCOMMUTATIVE TORI

Let (u1, u2, . . . , ud) be a d-tuple of unitaries satisfy

ujuk = σjkukuj, j, k = 1, 2, . . . , d,(4.1)

where σjk = e2πiθjk . We say (u1, u2, . . . , ud) is a canonical d-tuple of generators
for Aθ if the canonical map from Aθ to C∗(u1, u2, . . . , ud) is a ∗-isomorphism. We
denote T(d) ∼= T(d−1)d/2 as the space of all Hermitian d × d matrices with unit
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entries. In this section u will denote a d-tuple of unitaries (u1, u2, . . . , ud) and m
denote a d-tuple of integers (m1, m2, . . . , md). We use the standard notation of
multiple Fourier series as follows,

um = um1
1 um2

2 · · · u
md
d .

A polynomial in u with a finite number of nonzero coefficients is

a = ∑
m∈Zd

αmum.

Denote Pθ the ∗-algebra of all polynomials of (u1, u2, . . . , ud). Aθ is the envelop-
ing C∗-algebra of Pθ . One can define a faithful tracial state τ on Pθ ,

τ
(

∑
m∈Zd

αmum
)
= α0.

The GNS-representation of τ is given as follows:

π(um)|m′〉 = exp
(

2πi
(
− ∑

16j<k6d
θjkmkm

′
j

))
|m + m′〉, ∀m, m′ ∈ Zd,(4.2)

where we use “kets” |m〉 for the GNS-vector of um. {|m〉 : m ∈ Zd} forms an
orthonormal basis and the Hilbert space is isomorphic to l2(Zd). The trace τ is
implemented by the cyclic vector |0〉,

τ
(

∑
m∈Zd

αmum
)
= 〈0| ∑

m∈Zd

αmπ(um)|0〉 = α0.

By universality, π extends to a ∗-representation of Aθ and so does the tracial state
τ. To see that both τ and π are faithful, we recall the following reformulation of
τ by the transference automorphisms of Aθ . Let Td be the d-torus

Td = {(z1, z2, . . . , zd) ∈ Cd : |zj| = 1, ∀j}.

For a d-tuple z = (z1, z2, . . . , zd) ∈ Td, the transference automorphism associated
to z is given by

αz(um) = zmum ≡ zm1
1 zm2

2 · · · z
md
d um1

1 um2
2 · · · u

md
d .

For each j, we introduce the following map

Φj(a) =
∫
T

α(1,...,zj ,...,1)(a)dzj.

As an averaging of automorphisms, Φj is faithful, completely positive and con-
tractive. Note that

Φj(um) =

{
um if mj = 0,
0 otherwise.

Φj is the conditional expectation onto the subalgebra generated by all unitary
generators except uj. One can see that ΦjΦk = ΦkΦj, and this composition is the
conditional expectation onto the subalgebra generated by all generators except uj
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and uk. Inductively, the map Φ1Φ2 · · ·Φd is the conditional expectation onto the
scalars, which coincides with the canonical state τ:

Φ1Φ2 · · ·Φd(um) = τ(um)I =

{
I if m = (0, 0, . . . , 0),
0 otherwise.

This justifies that τ is faithful and so is the representation π.
The following lemma is an analog of Lemma 4.3 in [14].

LEMMA 4.1. Let (u1, u2, . . . , ud) be a d-tuple of unitaries satisfying

ujuk = e2πiθjk ukuj, j, k = 1, 2, . . . , d.

Then (u1, u2, . . . , ud) is a canonical d-tuple of generators for Aθ if and only if there exists
a state τ on the C∗-algebra C∗(u1, u2, . . . , ud) such that,

τ(um) =

{
1 if m = (0, 0, . . . , 0),
0 otherwise.

(4.3)

Proof. The necessity follows from the above discussion. Let us identify Aθ

with the representation π(Aθ) ⊂ B(l2(Zd)) in (4.2). Given a state τ as (4.3), the
GNS-representation πτ maps C∗(u1, u2, . . . , ud) into B(l2(Zd)) and sends each uj
to the canonical unitary π(ũj) ∈ π(Aθ). Denote πu for the canonical map from
Aθ onto C∗(u1, u2, . . . , ud). Both compositions πuπτ and πτπu are the identity
maps, since they send generators to generators. Therefore the canonical πu is a
∗-isomorphism.

The next theorem is a refinement of Theorem 1.1 with periodicity.

THEOREM 4.2. Let H be an infinite dimensional Hilbert space. There exist d con-
tinuous maps u1, u2, . . . , ud from T(d) to U(H) and a universal constant C > 0 such
that:

(i) for σ such that σjk = e2πiθjk , (u1(σ), u2(σ), . . . , ud(σ)) is a canonical d-tuple of
generators for Aθ ;

(iii) for each j,

1
2

max
k
|σjk − σ′jk|

1/2 6 ‖uj(θ)− uj(θ
′)‖ 6 C

(
∑
k
|σjk − σ′jk|

1/2
)

.

Proof. The continuous maps and the upper estimates of (ii) can be proved
with the same construction as in Theorem 1.2. The lower estimates follows from
Proposition 4.6 in [14], for each pair of indices (j, k). To show that

(u1(σ), u2(σ), . . . , ud(σ))

is canonical, we recall the fact that Aθ is simple when θZd ∩ Zd = {0} (see [13],
[19], [23]). Such θ’s are dense in all skew-symmetric d × d matrices. Then the
conclusion can be derived by combining the argument of Remark 5.6 in [14] with
Lemma 4.1.
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REMARK 4.3. For α > 0, let us recall the Sobolev space on d-torus

Hα(Td) =
{

f ∈ L2(Td) : ∑
m∈Zd

(1 + |m|2)α| f̂ (m)|2 < ∞
}

,

‖ f ‖Hα =
(

∑
m∈Zd

(1 + |m|2)α| f̂ (m)|2
)1/2

,

where f̂ is the Fourier series of f . Given the d continuous maps u1, u2, . . . , ud
above, we have the following quantization:

uσ( f ) := ∑
m

f̂ (m1, m2, . . . , md)u1(σ)
m1 u2(σ)

m2 · · · ud(σ)
md , σ ∈ T(d).

The series is well defined if f ∈ Hα(Td) for some α > d
2 . We have an analog of

Corollary 3.6 as follows: for α > d
2 + 1 there exists constant Cα,d depending on

α, d such that for any f ∈ Hα(Td) and σ, σ′ ∈ T(d),

‖uσ( f )− uσ′( f )‖ 6 Cα,d‖ f ‖Hα ∑
j,k
|σjk − σ′jk|

1/2.

Let us define that for each pair σ, σ′ ∈ T(d),

ρ(σ, σ′) := inf max
j
‖uj − u′j‖,

where the infimum runs over all d-tuple of unitaries (u1, u2, . . . , ud) on the sepera-
ble infinite dimensional Hilbert space H satisfying the commutation relation (4.1)
for σ, and respectively (u′1, u′2, . . . , u′d) for σ′. It is proved in [14] that for d = 2, ρ
is a translation invariant metric on T and

1
2
|σ− σ′|1/2 6 ρ(σ, σ′) 6 24|σ− σ′|1/2, σ, σ′ ∈ T.

Their argument generalizes to d > 2.

PROPOSITION 4.4. ρ is a translation-invariant metric onT(d) and for any σ, σ′ ∈
T(d),

1
2

max
j,k
|σjk − σ′jk|

1/2 6 ρ(σ, σ′) 6 24(d− 1)max
j,k
|σjk − σ′jk|

1/2.(4.4)

Proof. We first show the translation-invariance. Given σ, σ′, σ′′ ∈ T(d), let
(u1, u2, . . . ud), (u′1, u′2, . . . u′d) and (u′′1 , u′′2 , . . . u′′d ) be d tuples of unitaries on H sat-
isfying

ujuk = σjkukuj, u′ju
′
k = σ′jku′ku′j, u′′j u′′k = σ′′jku′′k u′′j , j, k = 1, . . . , d.

Define the new unitaries on H ⊗2 H ∼= H,

vj = uj ⊗ u′′j , v′j = uj ⊗ u′′j , j = 1, . . . , k.

They satisfy
vjvk = σj,kσ′′j,kvkvj, v′jv

′
k = σ′j,kσ′′j,kv′kv′j.
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Since ‖vj − v′j‖ = ‖uj − u′j‖ for all j, we have ρ(σ, σ′) 6 ρ(σσ′′, σ′σ′′) where σσ′′

is the Hadamard (entrywise) product. Thus the translation invariance follows by
symmetry.

With the translation-invariance, it is sufficient to prove the triangle inequal-
ity

ρ(σ′, σ′′) 6 ρ(σ′, σ) + ρ(σ, σ′′)(4.5)

for all triple (σ, σ′, σ′′) with a fixed σ. Indeed for any η, σ, σ′, σ′′ ∈ T(d), the tri-
angle inequalities (4.5) for (σ′, σ, σ′′) and (σ′η, ση, σ′′η) are equivalent. Choosing
θ ∈ A(d) such that θZd ∪ Zd = {0}, then Aθ is simple. We claim that any two
d-tuples of unitaries (u1, u2, . . . , ud) and (v1, v2, . . . , vd) on H satisfying the com-
mutation relations of Aθ are approximately unitarily equivalent, i.e. there exists a
sequence {wn} of unitaries on H such that for all j

‖wnujw∗n − vj‖ → 0.

This can be shown, as in Proposition 4.2 of [14], by Voiculescu’s noncommutative
Weyl–von Neumann theorem [26]. Consider the two canonical ∗-homomorphisms
πu, πv : Aθ → B(H),

πu(ũj) = uj, πv(ũj) = vj, j = 1, . . . , d,

where ũj’s represent the generators of Aθ . Denote by K the ideal of compact
operators on H. We need to verify that π−1

u (K) ⊂ ker πu and π−1
u (K) ⊂ ker πv.

π−1
u (K) and π−1

u (K) are proper ideals in Aθ , and hence both are trivial because
Aθ is simple.

Now choose σ such that e2πiθjk = σjk. For any σ′ and σ′′, find d-tuples
(u1, . . . , ud) and (u′1, . . . , u′d) of unitaries on H such that

ujuk = σjkukuj, u′ju
′
k = σ′jku′ku′j, and max

j
‖uj − u′j‖ 6 ρ(σ, σ′) +

ε

2
,

and also (v1, . . . , vd) and (v′′1 , . . . , v′′d ) such that

vjvk = σjkvkvj, v′′j v′′k = σ′′jkv′′k v′′j , and max
j
‖vj − v′′j ‖ 6 ρ(σ, σ′′) +

ε

2
.

Since (u1, . . . , ud) and (v1, . . . , vd) are approximately unitarily equivalent, there
exists a unitary w on H such that

max
j
‖wujw∗ − vj‖ 6 ε.

Then take uj = wu′jw
∗, we have:

ρ(σ′, σ′′)6max
j
‖uj−v′′j ‖6max

j
(‖wu′jw

∗−wujw∗‖+‖wujw∗−vj‖+‖vj−v′′j ‖)

6max
j
‖wu′jw

∗ − wujw∗‖ + max
j
‖wujw∗ − vj‖ + max

j
‖vj − v′′j ‖

6ρ(σ′, σ) + ρ(σ, σ′′) + 2ε.
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Therefore we have proved the triangle inequality.
Finally, the left inequality of (4.4) is a consequence of Theorem 4.2. On the

other hand, let θ, θ′ ∈ A(d) (we may assume θ nonsingular by translation invari-

ance) such that σjk = e2πiθjk and σ′jk = e2πiθ′jk . Take P1, P2, . . . , Pd and P′1, P′2, . . . , P′d
to be the self-adjoint operators from Theorem 3.2. The second inequality follows
from choosing

uj(t) = e
√

2πiPjt, u′j(t) = e
√

2πiP′j t, j = 1, . . . , d.

5. APPENDIX

In this appendix, we provide an argument for the universality of the non-
commutative Euclidean space Eθ defined in Section 3. One can identify Eθ as a
twisted group C∗-algebra and recall its natural connection to projective unitary rep-
resentations. We refer to the survey [20] for more information about this topic.

Let G be a locally compact Hausdorff group and e be the identity of G. A
strongly continuous map u : G → U(H) is a projective unitary representation if
there exists a (continuous) function σ : G× G → T such that

u(g)u(h) = σ(g, h)u(gh), g, h ∈ G.

The function σ is called the multiplier associated to u and u is called a σ-repre-
sentation. It follows from the group structure that for all g, g1, g2 ∈ G,

(i) σ(g, e) = σ(e, g) = 1;
(ii) σ(g, g1)σ(gg1, g2) = σ(g, g1g2)σ(g1, g2).

A function σ : G × G → T satisfying (i) and (ii) is called a 2-cocycle of G with
values in T.

Given a T-valued 2-cocycle σ of G, the Banach ∗-algebra L1(G, σ) is de-
fined as the set L1(G) equipped with the σ-twisted convolution and involution
given by

f1 ∗σ f2(g) =
∫
G

f1(g1) f2(g−1
1 g)σ(g1, g−1

1 g)dµ(g1)

where dµ is the (left) Haar measure on G, and f ∗(g) = σ(g, g−1) f (g−1). L1(G, σ)
can be represented on L2(G, µ) as follows:

λσ( f )(h) = f ∗σ h, f ∈ L1(G), h ∈ L2(G).

This is called the left σ-regular representation of G. The reduced σ-twisted group
C∗-algebra, denoted by C∗r (G, σ), is the norm closure of L1(G, σ) in B(L2(G)). The
full σ-twisted group C∗-algebra C∗(G, σ) is defined as the enveloping C∗-algebra
of L1(G, σ). There is a one-to-one correspondence between σ-representations of
G and representations of C∗(G, σ). If G is amenable, C∗(G, σ) is isomorphic to
C∗r (G, σ) and the left σ-regular representation of C∗(G, σ) on L2(G, σ) is faithful.
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Back to the noncommutative Euclidean space Eθ , a symplectic bilinear form
θ introduces a 2-cocycle of Rd as follows:

σθ(s, t) = exp
( i

2
θ(s, t)

)
, s, t ∈ Rd.

The Moyal product ?θ is the Fourier transform of σ-twisted convolution. One
identifies Eθ = C∗r (Rd, σθ) and it is further isomorphic to C∗(Rd, σθ) because Rd is
amenable. Thus there is a one-to-one correspondence between ∗-homomorphism
from Eθ and θ-representation of Rd. One can use an alternative argument by
identifying Eθ with an iterated crossed product C0(R)oRo · · ·oR, which uses
the amenablity of R.
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