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COMPRESSIONS OF THE SHIFT ON THE BIDISK AND
THEIR NUMERICAL RANGES
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ABSTRACT. We consider two-variable model spaces associated to rational in-
ner functions on the bidisk, which always possess canonical z-invariant sub-
spaces Sy, and study the compression of multiplication by z; to Sy, namely
Sy := Ps,M;,|s,. We show that these compressed shifts are unitarily equiv-
alent to matrix-valued Toeplitz operators with nice symbols and characterize
their numerical ranges and radii. We later specialize to particularly simple
rational inner functions and study the geometric properties of the associated
numerical ranges.
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1. INTRODUCTION

1.1. ONE-VARIABLE SETTING. Let 0 be an inner function on the Hardy space
H?(D) and let Ky := H?(D) © 6H?(D) be its model space. The associated com-
pressions of the shift Sy := PyM;|x, (multiplication by z followed by the or-
thogonal projection onto Kjy) have played a pivotal role in both operator and
function theory. Indeed, allowing 0 to be operator valued, the famous Sz.-Nagy-
Foias model theory says: every completely nonunitary, Cy contraction is unitarily
equivalent to a compression of the shift Sy on a model space Ky [26].
If the inner function is a finite Blaschke product B, i.e.

moz—a
B(z) :Hl—EiZZ' where a1,...,a,; €D,

i=1

then the associated compression of the shift Sp is quite well behaved. Indeed, the
matrix of Sp with respect to a basis called the Takenaka—Malmquist-Walsh basis
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{f1,--., fm}, see[14], is the upper triangular matrix Mp given entry-wise by

o ifi = j,
j=1 o
(1.1) (Mg)ij := (Safj fi)k, = . HH(*Ek)(l — |ai)V2(1 = ;)12 ifi <,
=i
0 ifi > j.

For this matrix, see the survey [16], pp. 180. Formula allows one to answer
many natural questions about the structure of Syg. Answers concerning the numer-
ical range and radius are particularly nice. Namely, if T : H — H is a bounded
operator on a Hilbert space H, then the numerical range of T is the set

W(T) := {(Th, h)3 : ||kl = 1}
and the numerical radius of T is the number
w(T) :=sup{|A| : A € W(T)}.

Discussion of these sets for compressed shifts associated to finite Blaschke prod-
ucts requires some geometry. Recall that Poncelet’s closure theorem says: given
two ellipses with one contained in the other, if there is an N-sided polygon cir-
cumscribing the smaller ellipse that has all of its vertices on the larger ellipse, then
for every A on the larger ellipse there is such an N-sided circumscribing polygon
with a vertex at A, see Section 5 of [16]. Similarly, for N > 3, wesay acurve I’ C D
satisfies the N-Poncelet property if for each point A € dD = T, there is an N-sided
polygon circumscribing I with one vertex at A and all other vertices on T, see
pp. 182 of [16].

Surprisingly, Poncelet curves have close ties to numerical ranges. Indeed,
let B be a finite Blaschke product of degree m > 1. Then, as shown by Mir-
man [24] and Gau and Wu [15], the boundary 0WW(Sg) actually possesses the
(m + 1)-Poncelet property. The idea behind the proof is quite intuitive; the in-
scribing polygons are in one-to-one correspondence with the unitary 1-dilations
of Sp, which are obtained from (1.I). Moreover the vertices of the polygons are
exactly the eigenvalues of the unitary 1-dilations, and because W (Sp) is strictly
contained in I, the numerical radius w(Sg) is always strictly less than 1. For a
detailed exploration of Poncelet ellipses for B a degree-3 Blaschke product see
[11], and for similar results concerning infinite Blaschke products see [9].

In what follows, we study these and other geometric properties of numeri-
cal ranges and radii of compressions of shifts on the bidisk D?.

1.2. TWO-VARIABLE SETTING. For the two-variable case, let ® be an inner func-
tion on D?, namely a function holomorphic on D? whose boundary values satisfy
|@(7)| = 1 for almost every T € T2. Then let Kg be the associated two-variable
model space defined by

Ko := HX(D?) © OH*(D?) = #( § 12—13().2()1@(%;13w2) )
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where H(K) denotes the reproducing kernel Hilbert space with reproducing ker-
nel K. In this paper, we use © to denote two-variable inner functions and 6 for
simpler, often one-variable inner functions. In this setting, one natural compres-
sion of the shift is the operator

S6 = PoM:, |k,

where Pg denotes the orthogonal projection of H?(D?) onto Kg and M, is multi-
plication by z;. Although we explicitly study S}, symmetric results will hold for
a similarly-defined S%.

As in the one-variable discussion, we restrict attention to ® that are both
rational and inner. Section 2l includes most needed details about rational inner
functions, but discussing our main results will require some notation. First, the
degree of O, denoted deg ® = (m, n), is defined as follows: write ©® = % with p
and q polynomials with no common factors. Then m is the highest degree of z;
and n the highest degree of z; appearing in either p or q. Moreover, if @ is rational
inner with deg ©® = (m, n), then there is an (almost) unique polynomial p with no

1 1

z,+%,) and p and p share no

zeros on D? such that © = %, where p(z) = 2"z} p(
common factors. See [3], [25] for details.
Our goal is to study the numerical range of a general compression of the

shift §é associated to a rational inner function ®. Unfortunately, the question

“What are the properties of W(§é)?”
often has a trivial answer. To observe the problem, one can decompose Kg as

(1.2) Ko=81&S,

where &1 and &, are respectively M;,- and M,,-invariant. There are canonical
ways to obtain such decompositions, and details are provided in Section 2} If S;
is nontrivial, then S}|s, = M;, |5, and one can further show that

Clos{(Sof, f)ke : Ifllce = 1. f € S1} =D.

Then since SNC}) is a contraction, we can conclude that Clos(W(SNé)) equals D; see

Lemma ﬂ for details. Because of this, we compress §é to the M,,-invariant
subspace S; from (.2) and study this more interesting compression of the shift:

(13) Sl@ = P82§é|82 = P82M21|82'

1.3. OUTLINE AND MAIN RESULTS. This paper studies the structure of the com-
pression of the shift S}, defined in (T.3) and the geometry of its numerical range.
It is outlined as follows: in Section [2} we detail needed results about rational in-
ner functions and their model spaces on the bidisk. In Section 3} we obtain most
of our structural results about S, and its numerical range, while in Section @ we
illustrate the results from Section 3| with examples. In Sections [5|and [6} we study
the geometry of the numerical ranges W (S}, ) associated to simple rational inner
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functions; Section[5|addresses the zero inclusion question, and Section|f|examines
the shape of the boundary of the numerical range.

Before stating our main results, we require the following notation: H2(D)
denotes the one-variable Hardy space with independent variable z; and H3 (D)™

m -
:= @ H3(D) denotes the space of vector-valued functions f = (f1,..., fu) with
i=1

each f; € H3(D). Define L3(T)™ analogously, and let F be a bounded m x m
matrix-valued function defined for almost every z; € T. Then the zy-matrix-
valued Toeplitz operator with symbol F is the operator

(1.4) Tp : Hy(D)" — H3(D)"  defined by Trf = Py (Ff ),

where Prz(pyn 18 the orthogonal projection of L3(T)™ onto H3(ID)™.

Then, in Section @ we show that each S}, is unitarily equivalent to a zp-
matrix-valued Toeplitz operator with a well-behaved symbol as follows:

THEOREM Let ©® = % be rational inner of degree (m,n) and let Sy be as
in (1.2). Then there exists an m x m matrix-valued function Mg, with entries that are
rational functions of zp and continuous on D, such that

So =U Tm, U,
where U : H3(D)™ — S, is a unitary operator defined in ([2.6).

One can view Theorem [3.2 as a generalization of the formula for the
matrix of a compressed shift associated to a Blaschke product. As in the one-
variable setting, this structural result gives information about the numerical range
of S(la, namely:

COROLLARY Let ©® = £ be rational inner of degree (m,n), let Sy be as in
(1.2), and let Mg be as in Theorem Then

Clos(W(SL)) = cOnv( U W(Mg(f))).
TeT

Here “Clos” denotes the closure and “Conv” denotes the convex hull of the
given sets. Then Corollarysays that W(S})) is built out of numerical ranges of
specific m x m matrices. We also connect W(S},) to the numerical ranges of com-
pressed shifts associated to degree-m Blaschke products, see Theorem This
result is particularly important because it links the rich one-variable theory to this
two-variable setting. For example, it implies that Clos(W(S,)) is the closed con-
vex hull of a union of sets whose boundaries satisfy the (m + 1)-Poncelet prop-
erty. Amongst other results, we also combine Theorem .5 with one-variable facts
to characterize when the numerical radius is maximal.

THEOREM Let © = % be rational inner of degree (m,n) and let S be as in
(T2). Then the numerical radius w(S§) = 1 if and only if © has a singularity on T2,
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This theorem shows that certain one-variable properties do not (in general)
hold in this two-variable setting. Indeed, as N-Poncelet sets cannot touch T, this
implies that if © has a singularity on T?, then the boundary of W(S},) does not
satisfy an N-Poncelet property.

In Section [, we illustrate these theorems with examples. We consider © :=
ﬁ 6;, where each 6; is a degree (1, 1) rational inner function with a singularity on
i=1
T?2. Specifically, we decompose the associated Kg into concrete My,- and M,,-
invariant subspaces S; and S, find an orthonormal basis of H(K;) = S, ©
M;,S;, and use that to compute explicitly the matrix-valued function Mg from
Theorem[3.2} Proposition[4.3|contains the decomposition of Kg and the orthonor-
mal basis of 7 (K3), while Theorem 4.4 contains the formula for Me.

In Section [5, we restrict attention to & = 6,6,, where each 0; is a degree
(1,1) rational inner function with a singularity on T?. For these @, Theorem
gives a formula for Mg, which shows that W(Sl@) is basically the convex hull of
an infinite union of ellipses with specific foci and axes. This information allows
us to study the geometry of these numerical ranges and in particular, investigate
the classical problem:

“When is zero in the numerical range W(S(la)?”

An answer to the zero inclusion question often yields useful information.
For example, the numerical range of a compact operator T is closed if and only if
0 € W(T), [12]. Bourdon and Shapiro [8] studied the zero inclusion question for
composition operators showing, among other things, that the numerical range
of a composition operator other than the identity always contains zero in the
closure of the numerical range. More recently , Higdon [17] showed that if ¢ is a
holomorphic self-map of D with Denjoy—Wolff point on the unit circle that is not
a linear fractional transformation, then zero is an interior point of the numerical
range of the composition operator C,,.

In our setting, we obtain several results related to the zero inclusion ques-
tion for W(S},)). First, in Proposition we obtain two conditions guaranteeing
that zero is in this numerical range; these conditions involve the foci of the el-
liptical disks comprising W(S}). We then impose additional restrictions on the
coefficients of the rational inner function. Under these restrictions, in Proposi-
tion we obtain necessary and sufficient conditions for both zero to be in the
interior and zero to be in the boundary of the numerical range.

In Section@ we further study the shape of the numerical range W(S},). Due
to the complexity of the computations, we only consider rational inner functions

of the form © = 62, where 6; = % for a polynomial p(z) = a — z; + czp with no
zeros on D?, a zero on T2, and a, ¢ > 0. We initially consider the question:
“When is the numerical range W(S},) circular?”.

For more general operators, this question has a long and interesting history.
For example, Anderson showed that if an m x m matrix A has the property that
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W(A) is contained in D and there are more than m points with modulus 1 in the
numerical range, then W(A) = D and zero is an eigenvalue of A of multiplicity
at least 2. In [29], Wu extends these results.

We show that for our restricted class of rational inner functions, which seem
to be the ones most likely to produce a circular numerical range, W(S})) is never
circular. We then interpret the union of circles comprising W(S})) as a family of
curves. Using the theory of envelopes, we are able to obtain a precise description
of the boundary of the numerical range. The exact parameterization is given in
Theorem[6.3] We refer the reader to [29] for more information and other references
about this question.

2. RATIONAL INNER FUNCTIONS AND MODEL SPACES

Let © be a rational inner function on D? with deg ® = (m, ). As mentioned

earlier, there is a basically unique polynomial p with no zeros on D? such that

P = 1 1
0= %, where p(z) = z{'23p(5-, 2

An application of Bézout’s theorem implies that p, p have at most 2mn com-
mon zeros, including intersection multiplicity and moreover, they will have ex-
actly 2mn common zeros if deg p = deg p. Moreover, one can easily check that p
and p have the same zeros on T2. Then as common zeros of p and p on T? have
even intersection multiplicity, p can vanish at no more than mn points on T?2. For
further details and proofs of these comments, see [22]. Then, an application of
Theorem 4.9.1 in [25] implies that p also has no zeros on (D x T) U (T x D).

If © is an inner function (not necessarily rational), the structure of the model
space Kg is also quite interesting. As mentioned earlier, there are canonical
ways to decompose every nontrivial Kg into subspaces that are M,,- and M,,-
invariant, or equivalently, z1- and zp-invariant, as in (I.2). For example, as dis-
cussed in [4], [7], if you set ST"** to be the maximal subspace of K¢ invariant un-
der M;,, then S]"® is clearly z{-invariant and Sé“i“ = K¢ © §]"™ is zp-invariant.
One can similarly define SI"® and S™in.

Given any such subspaces &1 and S; with Kg = 81 © S, and each §; zj-

) and p, p have no common factors.

invariant, it makes sense to define reproducing kernels K;, K, : D> x D> — C by
(2.1) H(K1) =85162181 and H(Kz) = S 6 228;.

The resulting pair of kernels (K1, K ) is called a pair of Agler kernels of © because
the kernels satisfy the equation

(2.2) 1-0(2)0(w) = (1 —z11)Ka(z,w) + (1 — 22Ky (2, w),

forall z,w € D?. Indeed, any positive semidefinite kernels (K1, K, ) satisfying
are called Agler kernels of ® and the equation is called an Agler decomposition
of ©. The existence of Agler decompositions was first proved by Agler in [1]].
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If © is rational inner, there are close connections between the properties of
O and the structure of the Hilbert spaces 7 (K7 ) and #(K3). The following result
appears in [21] and follows by an examination of the degrees and singularities of
the functions in (2.2).

THEOREM 2.1. Let © = % be a rational inner function of degree (m,n) and let
Ky, Ky be Agler kernels of © as in 2.2). Then dim’H(Kl) dim H (Ky) are both finite.
Moreover, if g is a function in H(K1) then § = 5 where degr < (m,n —1) and if f is

a function in H(Ky), then f = I where degq < ( —1,n).
Define the following exceptional set:
(2.3) Eg:={t€T:3 7 € Tsuchthat p(ry,T) = 0}.

By the above comments about ©, the set Eg is necessarily finite. For T € T, define
the slice function @; by ©r = O(-, 7). Then O is a finite Blaschke product and in
what follows, Kg,_ will denote the one-variable model space associated to O.

The following result is proved for Hilbert spaces arising from canonical de-
compositions of Kg in [7], [28]. Specifically, see Theorems 1.6-1.8 in [7] as well as
Proposition 2.5 in [28]. Here, we include the proof for more general decomposi-
tions of K g, which basically mirrors the ideas appearing in [7].

THEOREM 2.2. Let © = % be a rational inner function of degree (m,n) and let
Ky, Ky be defined as in 2.1). Then for any T € T \ Eg, O is a Blaschke product with
deg ®; = m and the restriction map J : H(Kp) — Ko, defined by Jf = f(-,T) is
unitary. Furthermore, dim H (Ky) = m. The analogous statements hold for H(Kj).

Proof. By Theorem dimH(K;) = M for some M € N. We will later
conclude that M = m. Let {fy,..., fp} be an orthonormal basis of #(K;). Then

M -
by Proposition 2.18 of [2], we have Ky (z, w) = Y fi(z) fi(w).
i=1

Fix T € T\ Eg. Then O is a one-variable rational inner function and thus is
a Blaschke product with deg ®; < m. Further, as p has no zeros on D x T, one can
show that deg p(-,7) = m. Since p(-, ) also has no zeros on T, no polynomials

Pt

cancel in the fraction ©; = (
Now, letting zp, wy, — Tin (2 and d1V1d1ng by 1 — z;w; gives

r = mand dim Kg, = m.

1- lel

Zfz 21, T) fi(ws, T )

Thus, the set {f1(-,7),..., fm(-,7)} spans K, and so the restriction map J- is
well defined (i.e. maps H(K3) into Kg,) and is surjective.
To show that each J; is an isometry, fix f, ¢ € H(K3) and for z; € T, define

Fro(2) : /f21,22) (21,22)d0(21) = (f(-,22), 8( 22))kcer,
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where do(z;) is normalized Lebesgue measure on T and the last equality holds
for z; € T\ Eg. An application of Holder’s inequality immediately implies that
Fs o € LY(T). Furthermore, our assumptions imply that #(Kz) L zy#(K3). From

this we can conclude that f L zég in S, and hence in H?(D?), forall j € Z\ {0}.
Then the Fourier coefficients of Ff , can be computed as follows:

Frali) = [ 2 Erg(z)do(z) = [ 2,7 f(2)g(E o (z1)do(z) = 0
T T2
for j € Z\ {0}. Then basic Fourier analysis (for example, Corollary 8.45 in [13])
implies that

Ff,g(ZZ) = ff’g(O) = <f’g>7-l(K2) fora.e.z, € T.
But, the formula for Fy, implies that it is continuous on T\ Eg and so for z; €
T\ Eo,
{f(22),8(22) k0, = Frg(22) = (f, &)nks)-

This implies J¢ is an isometry for T € T \ Eg. Since it is also surjective, J¢ is
unitary and so

dimH(Kz) = dim K@T =m,
completing the proof. 1

REMARK 2.3. Let ©® = © be rational inner with deg ® = (m, n) and let S, be

as in (1.2). Then Theorems [2.1jand [2.2| can be used to deduce information about
both the functions in S, and the inner product of Sp. As mentioned earlier, we let
H3(D) denote the one-variable Hardy space with independent variable z5.

First, as in (2.1), let K; be the reproducing kernel satisfying H(Kz) = S, ©
2S8,. By Theorems and there is an orthonormal basis {{%, o, dm of

H(Ky) with degg; < (m —1,n) fori = 1,...,m. Then, since % 1 q—p’zg for all
i # jand k € Z, one can show

% ‘71‘((2)) qi(w) 7i(2) 9:(w)
i PE )y B () p(w)
24 S=H(S—m ) =P —g)

where the last term indicates an orthogonal decomposition of &, into m sub-
spaces. We also claim that each subspace

is precisely the set of functions %H% (D) and for each pair of functions % fi % gi€S),

Tie 9, N\ _ (f o
(2.5) <?le pg:>$§ = <fzrgz>H§(ID)).



COMPRESSIONS OF THE SHIFT ON THE BIDISK AND THEIR NUMERICAL RANGES 233

One can prove this claim by defining the above inner product on the set %H% (D).
A straightforward computation shows that this turns ﬂH% (D) into a reproducing

kernel Hilbert space with reproducing kernel ((Z)) Z’ Ewi ﬁ

of reproducing kernels, the set %HZZ(]D)) with the proposed inner product is ex-
actly S}.
Then, we can define a linear map U : H5(D)™ — S, by

By the uniqueness

(2.6) Uf = i‘;ﬁﬁ, for f = (fi, ..., fu) € HZ(D)™.

We will show that this map is actually unitary. First, observe that this map is well
defined and surjective since (2.4) and the above characterization of the subspaces

. m .
&) imply that S, is composed precisely of functions of the form Y 'ip' fi, where
i—1
each f; € H3(D). Moreover, as (2.4) is an orthogonal decomposition and

gives the inner product on each S}, we can conclude that for all f, ge H3 (D)™,

-

Uf,uz)s, = i <%fi/ %gi>81 - Z<f1r81>H2 = {8 w oy

i=1 i=1
Thus, U is unitary as desired.

3. THE STRUCTURE AND NUMERICAL RANGE OF Sé)

Let O be rational inner and write Kg = S; @ Sy, for subspaces Sy, S, that are
respectively 21 and zp-invariant. As the following lemma shows, the numerical
range of Pg, S |s, is not partlcularly interesting.

LEMMA 3.1. Let © = ? be rational inner of degree (m,n) and let Sy be a z;-
invariant subspace of Kg as in (1.2).
(i) If n = 0, then Clos W(Ps,S}|s,) = {0}.
(i) If n > 0, then Clos W(Ps,S}|s,) = D,
Proof. Let Kj be as in 2.I), i.e. the reproducing kernel satisfying H(K;) =
S1 6 21857. Then

=P AHK).
k=0

If n = 0, then Theorem [2.2]implies that dim H(K;) = 0, so S; = {0}. It follows
immediately that Clos W(Ps, §é|51) = {0}.

Now assume 7 > 0. Then by Theorems[2.1]and 2.2} we can find an orthonor-
mal basis {%, ey %} of H(Kj) with each r; a polynomial. Define

Zg, == {wy € D:ri(wy, wp) =0forallw, € Dand 1 <i < n}.
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If wy € Zg,, then each r;(wy,-) = 0 on D. Thus, r;(wy,-) = 0 on C. This implies
r; vanishes on the zero set of z; — w. Since z; — wy is irreducible, Hilbert’s Null-
stellensatz implies that z;y — w; divides each r; and as the r; are polynomials, this
implies that Zg, is a finite set. Observe that

> Ki(zw) {8 6 pw)
K ’ = = P E—
1(z,w) 1— 2,0, Z
is the reproducing kernel for S;. Fix wq € D\ Zk, and choose w, € D so that
at least one 7;(wy,w;) # 0. Then setting w = (wy, w,), we have ||K; (-, w) ||§1 =

Ki(w,w) # 0 and since Sy is z;-invariant,
wi|[Kq (-, w) |5, = w1 Ky (w, w) = (My, Ky (-, w), Ky (-, w)) s, = (SHK (-, w), Ky (-, w)) s,

Since ||Ky (-, w) ||‘291 # 0, we can divide both sides of the above equation by it and
conclude that the point w; € W(Ps, §(}) |5, )- Since this works for all w; € D\ Zg,
and Z, is finite,

D C Clos W(P51§@1)|31).

The other containment follows immediately because §(}) is a contraction. 1

By Lemma the interesting behavior of §é occurs on the subspace S,. Be-
cause of this, as mentioned earlier, we primarily study this alternate compression
of the shift

S = Ps,Shls, = Ps,M,|s,-

In the following result, we show that S}, is unitarily equivalent to a simple z,-
matrix-valued Toeplitz operator, as defined in (T.4).

THEOREM 3.2. Let © = % be rational inner of degree (m,n) and let Sy be as
in (1.2). Then there exists an m x m matrix-valued function Mg, with entries that are
rational functions of zp and continuous on D, such that

(3.1) S =U Ty, U,
where U : H3(D)™ — S, is the unitary operator defined in (2.6).

Proof. Throughout this proof, we use the notation defined and explained in
Remark Recall that {%, ceey %} denotes the previously-obtained orthonor-
mal basis of H(K3) := S, © 2,5s.

By Proposition 3.4 in [6], S, is invariant under the backward shift operator

Sy M |s,- This means that there are one-variable functions hyj, ..., hy; €
H2(D) such that

« (9] .
(3.2) Mz, (?f) - %hlj T ’%”hmj, forj=1,...,m.
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Define the m x m matrix-valued function H by
hin oo hig
(3.3) H:=|: S
/P -
and define the matrix-valued function Mg by
(3.4) Mg = H".

To establish the properties of Mg, we will show that H has entries that are rational
in zp and continuous on D. First rewrite the terms in (3.2) as

Yy - ) =5 0 (z)2F
<M21 ?) (z) = 22)p(0,22) and Qj(z) = k;) Qix(z2)71
for a polynomial Q; and write

m—1

qi(z) = Y. qi(z2)z}, fori=1,...,m.
k=0

Then by canceling the p from each denominator from (3.2) and looking at the
coefficients in front of each zX separately, (3.2) can be rewritten as

Qjo(z2)

q(z2) - qmo(22) hij(22) b(022)
TNm-1)(22) - Gmm-1)(22)] [mj(z2) Qion1z2)

P(O/ZZ)

forzy € Dandj=1,...,m. Let Aj denote the m x m matrix function in the above
equation. Since det A; is a one-variable polynomial, it is either identically zero or
has finitely many zeros. First assume det A; = 0, so that clearly det Aj(T) =0 for
each T € T. This implies that for each fixed T € T, one g (-, T) can be written as a
linear combination of the other ¢;(+, 7). However by Theorem 2.2} for T € T \ Ep,

the set " g
{?(.,T),...,?m(.,r)}

is a basis for the m-dimensional set Kg, . Thus the set must be linearly indepen-
dent, a contradiction.

Hence, det A]- # 0. Thus, the matrix Aj(zz) is invertible except at (at most)
a finite number of points z, € ID and so we can solve for each column of H as

_ Qjo(22)
hij(z2) fo(z2) o dml(z) ]| Hom)
hm-.z m,. z m m, z Q'(m—‘l)(zl)

j(22) T1(m-1)(22) Tm(m—1)(22) fo

This shows that the entries of H are rational functions in z; and so by (3.4), the
entries of Mg are rational in z,.
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Since the entries of H are also in H3(ID), we claim that they cannot have any
singularities in D. That there are no singularities in D should be clear. To see that
there are no singularities on T, proceed by contradiction and assume that some
hi; has a singularity at a 7 € T. Then, after writing h;; as a ratio of one-variable
polynomials with no common factors, the denominator of /;; vanishes at T but
the numerator does not. By the reproducing property of H2(DD), we know that
foreach z, € D,

hi(z2)| = | (B 1

1 > 1
— - Zp / H3(D)

’ < HhinHg(D)m-

But since h;; has a singularity at 7, there is a sequence {z,,} — T and positive

constant C such that |h;j(z2,)| > Cy—_— for each 1, a contradiction. Thus H,

1- | n]

and hence Mg, has entries continuous on .
Now we establish (3.I). Fix f,¢g € S;. Then by Remark there exist

vector-valued functions f ( fireeorfm), 8= (g1,-..,9m) € H5(D)" such that

f"lﬁ:uf and f

i
i Tio. =Ug,
~p legl

so f = U*f and § = U*g. Then using the inner product formulas from Re-
mark 2.3} we can compute

(Sb1,8)s, = (. Miyg <flqp M (B)g)g = L (% )

ij=1
= Z<fu l]g]>H2 <f THg>H2( D)™ <TM@]?'§>H§(]D>)”’
ij=1

= <u TM@ U*f'g>82/

where Ty is the zp-matrix-valued Toeplitz operator with symbol H. Since f,g €
&S, were arbitrary, this immediately gives (3.1). 1

EXAMPLE 3.3. Before proceeding, observe that Theorem 3.2 generalizes the
matrix from (1.1). Specifically, let ©® = % be a rational inner function with deg ® =

(m,0), so O is a finite Blaschke product of degree m. Then the associated two-
variable model space is

Ko —H( 1-0(21)0(w1) ))

(1 — lel)(l — ZpWa

which is zy-invariant. Thus, we can set S, = Kg and S; = {0}. One can actually
show that this is the only choice of S; and S;. Then

H(Ks) i= 82 © 225 = H(W)
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is the one-variable model space associated to ® with independent variable z;.
It follows immediately that the one-variable Takenaka-Malmquist-Walsh basis
{f1,.-., fm} is an orthonormal basis for H(K;) and each f; = % for some one-
variable polynomial q; with deg q; < m — 1. Because the one-variable model space
(with independent variable z;) is also invariant under the backward shift M} o we
can conclude that the unique h;; from are constants. Then since H(Kj) is a
subspace of Kg, we can use (3.2)-(3.4) to conclude

(Mo)ij = Hiji = <le§1' 7 >;<@ - <le§/ i >H(K2) = (Pr(iy) M= fj: fidmic):

which is a constant matrix agreeing with the matrix from (1.1).

As a corollary of Theorem we can characterize the numerical range of
Sy, denoted by W(S},).

COROLLARY 3.4. Let ©® = % be rational inner of degree (m,n), let Sy be as in
[1.2), and let Mg be as in Theorem Then

(3.5) Clos(W(SL)) = Conv( U W(Me(1)) )
TeT
Proof. By Theorem the operator S}, has the same numerical range as the
zp-matrix-valued Toeplitz operator Ty, : H3 (D)™ — H3(D)™. By Theorem 1 of
[5], the closure of the numerical range W(Tyy,, ) is equal to

Conv{W(A): A € R(Mp)},

where R(Mp) is the essential range of Mg as a function on T. It is easy to see that
this set is closed and so we do not need to take its closure. Since Mg is continuous
on T, its essential range will equal its range, i.e.

Conv{W(A) : A € R(Mo)} = Conv( |J W(Mo(1)) ),

TeT
proving (3.5). 1

One can also consider the family of one-variable functions {©; = O(-, 1) :
T € T\ Eg}, where Eg is the exceptional set defined in 2.3). For each t € T\ Eg,
let Sp, denote the compression of the shift on Kg_, the one-variable model space
associated to @<. It turns out that the numerical ranges W(Sg, ) are closely related
to W(S).

THEOREM 3.5. Let © = % be rational inner of degree (m,n), let Eg be the excep-
tional set from (2.3) and let S, be as in (1.2). Then

(3.6) c1os(W(s}9)):C1os(Conv( U W(S@T))).
7€T\Eg
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Proof. This proof will use the same notation as the proof of Theorem
First fix T € T\ Eg. By Theorem[2.2) the set
q1 qm
{ R )}
is an orthonormal basis for Kg_ with independent variable z;. Consider (3.2). As
all involved functions are rational with no singularities on D x (D \ Eg) and the
backward shift operator Slx — | s, treats z; like a constant, we can extend this
formula to the functions % » L, T). Spec1f1cally,

Mz (D 60) = (M) 1) = B i) -+ B (o),

forj = 1,...,m. Now, we use arguments similar to those in the proof of Theo-
rem 3.2 to show W(Sg,) = W(Mg(T)). Specifically, fix f € Kg.. Then there
exist unique constants ay, . ..,a,;, € C such that

vy i
f=Ya, ()

m
Moreover, ||f||,2C@ =1lifand onlyif ¥ |a;/2=1,1i.e. exactly when @ := (ay,...,an)
* i=1
€ C™ has norm one. Then,

(So.f. e, = M2 oo, = ( Lathm), Lot (B0
L :

=1 ?
ai—I(-,T),—\,T ll‘hl" T = ai,a‘hi' T
i/jz1< () D)) P

= (@ H(t)d)cn = (Mo (T)d, @)cm,

where we used the definitions of H and Mg from and (3.4). This sequence
of equalities proves that W(Sg,) = W(Mg(7)). Thus, we have

Clos(Conv( U W(S@T))>:Clos<Conv( U W(M@(r))))

1€T\Eg 7€T\Eg
:Clos(Conv( U W(M@(T)))) =Clos(W(SL)),
TeT
where we used Corollaryﬂand the fact that Mg is continuouson T. 1

IfO = p is rational inner of degree (m,n), then there are typically many
ways to decompose Kg into shift invariant subspaces &1 and S;. Indeed, accord-
ing to Corollary 13.6 in [22], if degp = degp, there is a unique such decom-
position if and only if p and p have 2mn common zeros (including intersection
multiplicity) on T2. Nevertheless, Theorem 3.5 allows us to show that W(S})
does not depend on the decomposition chosen.
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COROLLARY 3.6. Let © = % be rational inner of degree (m, n). Let

Ko=8§DS Igl@gz
where both S;, §] are zj-invariant subspaces for j = 1,2. Then
Clos(W(Ps,M;,|s,)) = Clos(W(szle \52))
Proof. By Theorem 3.5

Clos(W(Ps, Mz, |s,)) :Clos(cOnv( U W(S@T))) = Clos(W(Pg Mz, |5),
TGT\E@

as desired. 1

Theorem [3.5)is particularly useful because the compressions of the shift on
one-variable model spaces are well studied. Specifically, let B be a degree m
Blaschke product with zeros a1, ..., a;, and let Sp denote the compression of the
shift on Kp. Then, as mentioned in the introduction, one matrix of Sg is given by
(L.I). Using this formula, it is easy to deduce that the zeros ay, ..., are all in
W(Sp). We will use this to establish the following result.

THEOREM 3.7. Let © = % be rational inner of degree (m,n) and let S, be as in
(T2). Then the numerical radius w(Sg) = 1 if and only if © has a singularity on T?.

Proof. (=) Assume w(S})) = 1. Then there exists a sequence {1, } € W(S})
such that [A,| — 1. Since {A,} is bounded, it has a subsequence converging to
some A € T. Thus, A € Clos(W(S},)). By Corollary

Ae Conv( U W(Me(t)) )

TeT

Again by Corollary 3.4} as S, is a contraction, every « € |J W(Mg(7)) satisfies
2=
la| < 1. Since |A| = 1, we can conclude that there is some T € T and some

A € W(Mp(7)) such that [A| = 1.
Now by way of contradiction, assume © does not have a singularity at
(11, 7) for every 7 € T. Then T € T \ Eg and so by the proof of Theorem 3.5

W(Se.) = W(Mp(T)).

Thus A € W(Se,)- This gives a contradiction since the numerical range of a com-
pressed shift on a model space associated to a finite Blaschke product is strictly
contained in ID. See p. 181 of [16] for details. Thus ® must have a singularity at
(11, 7) for some 7y € T.

(<) Since S}, is a contraction, w(S})) < 1. Assume O has a singularity at

T = (7,T) € T2 Thenas @ = %, we must have p(7) = 0. To prove the desired
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claim, we will show that 7 € W(S}) and as || = 1, we have w(S},) > 1. Write

p(z1,22) ZPk 22)71 = Pm(22) (Zl + 2 pk( ))Zl),

for one-variable polynomials py, ..., py. Note that p,;, does not vanish on T. If
it did, one could conclude that p(0, -) vanishes on T, a contradiction of the fact
that p does not vanish on D x T. Now for each T € T, consider the one-variable
polynomial

P(z1,T) = Pm(T ( Zpkz )
and factor it as
p(z1,7) = () [ [ (21 — (7)),

k=1
where a1(7T),...,an,(T) are the zeros of p(-, T). Now we use the fact that the zeros
of a polynomial depend continuously on its coefficients, see [27].

Fix ¢ > 0. Since the coefficients { g" ((TT)) } are continuous on T, there exist
01,0, > 0 such that if |T - %2| < 01, then

Ek(T) Pr(%2) ‘<5 fork=1,...,m—1
Pm(T)  Pm(T2)

and reordering the ay(7) if necessary
lap(T) — ()| <& fork=1,...,m

Without loss of generality, we can assume a1 (72) = Tj. Since ¢ > 0 was arbitrary
and Eg is finite, the above argument shows that

% € Clos{a1 () : T € T\ Eg} C Clos( U W(S@T)) C Clos(W(SY)),
TGT\E@
where we used equation to show that each a1 () € W(Sg, ) and Theorem3.5]
to conclude the last containment. 1

4. EXAMPLE: S}a FOR SIMPLE RATIONAL INNER FUNCTIONS

In this section, we illustrate Theorem [3.2| using a particular class of rational
m
inner functions. Specifically, let ©® = [T 6;, where each 0; is a degree (1, 1) rational
i=1
inner function with a singularity on T2. In what follows, we will decompose Kg
into specific M;,- and M,-invariant subspaces & and S, (also called z1- and z-
invariant), find an orthonormal basis of H(Kz) := Sy © 22S;, and use this basis
to compute the matrix-valued function Mg from Theorem
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4.1. PRELIMINARIES. We first require preliminary information about degree (1,1)
rational inner functions with a singularity on T? and their associated model
spaces. To indicate that these are particularly simple functions, we denote them
with 6 rather than ©. Then for such a 6, there is a polynomial p(z) = a + bz; +
czp + dz1zp with no zeros in D? U (T x D) U (D x T) such that

0(z) p(z) _ iz +bzy + 7y —i—H‘
p(z) a+bz+cz+dziz
In this situation, it is particularly easy to identify shift-invariant subspaces &; and
&, associated to the two-variable model space /Cy.

LEMMA 4.1. Let 6 = % be a degree (1,1) rational inner function with p(z) =
a -+ bzy + czo + dz1zy. Assume p vanishes at T = (11, 72) € T2. Then Ko = S1 © Sy,

where

(4.1) S = ’H<@> and Sy = H(@)

1—zw, 1—zw;

with the functions in the reproducing kernels given by
v(z1— 1) Mzz — )
z2) = ————= and f(z) = —F"—-
8(z) (2 f(2) o (2)

for any A,y satisfying |A|? = |ac — db| and |y|*> = |ab — dc|. Moreover, Sy and S,
are the only subspaces of Ky satisfying K9 = S1 ® S, that are respectively z;- and
Zp-invariant.

7

Proof. Define f and g as above. As mentioned earlier, by [4], [7], there are
canonical subspaces S7"® and S with g = S"™ @ S;M" that are respectively
z1- and zp-invariant. As they are subspaces of H?(ID?), we can write them as

Ki(z, w) . Ky (z,w)
max __ min __
Sl 77{(1—21@1) and Sz H(1—22w2>’
for Agler kernels (K3, Kj) of 6 defined as in (2.I). Our first goal is to show that
Ki(z,w) = g(z)g(w) and Ky(z,w) = f(z)f(w). Now, by Theorems and

there are polynomials

r(z1) = A+Bz; and q(z) =C+ Dz,

such that Ky (z, w) = rp(zg)) rp((wu})) and Ky (z,w) = ‘ﬁzzz)) ‘%’ 02)). The definition of Agler

kernels implies that (K1, K3 ) satisfy the formula

—~
—~

(4.2) 1 0(2)8(@) = (1 - 2my) 12 192 | (4 75,
p(z) p(

Multiplying through by p(z)p(w) and letting (wq, w;) — (71, T2) gives

g
=
=
—~
N
~—
=
—~
g
~

0= q(Tz)(l — 21?1)17(22) + T(T1)(1 — 22?2)1’(21).
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This implies that g(12) = 0 and so, g(z2) = F(z2 — T2) for some constant F. Sim-
ilarly, r(z1) = G(z1 — 11) for some constant G. To show that Kj and K; have the
desired expressions in terms of ¢ and f, we just need to show that |[F|> = |A|? and
G2 = |

Substituting the formulas for g and r into and multiplying through by
p(z)p(w) gives

=(1- zlw1)|F| (20— ) (w2 — ) + (1 — 222)|G|*(z1 — T1) (w1 — T1).

Recalling that p(z) = a + bzy + czp +dz1zp and p(z) = az1z3 + bzy + ¢z1 +4d, we
can equate the coefficients of the monomials 1,271, z; and z, from both sides of
the above equation to conclude:

jaf? = |d? = [P+ |G, [b]* —[c]* = —|F]* +|G]?,
ab —dc = —7,|G|>, ac—db= —T,|F*

The last two equations show |F|?> = |A|? and |G|? = |y|?, implying that K (z, w) =
g(2)g(w) and Ka(z,w) = f(z)f(w). In combination with the first equation, one
can also obtain the useful formulas

—2(ab — cd)
> + b — |c[> = |d?

—2(ac — bd)
|a]? +[c> = [b]> — [d[>*

(4.3) T = and m =

To finish the proof, observe that p and p have two common zeros (including inter-
section multiplicity) on T2. As 0 is a degree (1,1) rational inner function, Corol-
lary 13.6 in [22] implies that 6 has a unique pair of Agler kernels and hence, a
unique pair of decomposing subspaces &7 and S; that are respectively z1- and
zp-invariant. This unique pair S and S, must then be the subspaces S7"®* and
SJin found earlier. W

It is worth pointing out that for the function f in Lemma 4.1} we can choose
any A satisfying |A|? = |ac — db|. However, in the sequel, we will typically choose
the particular A satisfying A2 = @c — db. We now obtain additional information
about M7, applied to 6 and this particular function f from Lemma.1] -

LEMMA 4.2. Let 6 = % be a degree (1,1) rational inner function with p(z) =

a4 bzy + czp + dzyzp. Assume p vanishes at T = (ﬁ, ) € T2 and let f be defined as
in Lemmawith A further satisfying A> = ac — db. Then

b+d22
a+czp

(M) = fE (- 2); (M3,0)(2) = FRA(22)-

a—+czp
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Proof. First, simple computations using the definition of f and p give

% _/\(Zz—Tz) 1 _ 1 o 2 — —b—d22
M 0@ = == (5 5mm) = Do
— () (- 22).

Similarly, one can compute
; 1 p(z)  p(0,z)

M; 6 =—(==- .

(Mz,6)(z) z1 (p(z) p(O,zz))
Using the definitions of p and p, one can obtain a common denominator, collect
like terms, and cancel the z; from the denominator to obtain:
(ac —db)z3 + (|a]® + |c|? — |b|? — |d|?)z2 + (ac — bd)

p(2)p(0,22)

Recall that 7 € T. Then using the formula for 7 from (4.3), one can conclude
that ac — bd # 0 and

2 2 1p12 _ 14)2 o=
(4.5) T = ; =—- lal” + |CL |£7| i and T = a2 _ fc bé.
T2 2(ac — bd) Ty ac—db

44)  (M0)(2) =

Taking the numerator from and factoring out (ac — db) gives
(ac — db)z3 + (|af* + [c|* — |b|* — |d|*)z2 + (ac — bd)

2 2 2 2 = ]
= + |c|* — |b]* — |d] ac — bd

= (dc—db) (2% + 2| = z —
( )(2 ac — db 2 ﬁc—db)

= A%(23 — 2mpzp + T3).
Combining our formulas gives

2

Mz 0)(2) = BB g (222),

a-+czp

the desired equality. 1

4.2. Mg FOR PRODUCT ©. Let us now return to the question posed at the begin-
m
ning of the section. Let ® = [] 6;, where each 0; is a degree (1,1) rational inner
i=1
function with a singularity on T?. We can now use Lemma 4.1/to decompose K¢
into specific z1- and z- invariant subspaces &1 and S; and find an orthonormal
basis of H(Kjp) := Sy ©2S;. Then using Lemma we will compute the matrix
function Mg from Theorem 3.2}
For each i, let Sig, S24,, and f; denote the canonical subspaces and re-
producing function associated to ¢; in Lemma Then we have the following
proposition.
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m
PROPOSITION 4.3. Let © = [T 6;, where each 0; is a degree (1,1) rational inner
i=1

function % where p;(z) = a; + bjzy + cjzp + diz1z0 with a singularity at (114, ;) €
T?. Define

ao S @((TT0)sin) ot 5ei= @ ((T166)5en):

i=1 i=1
Then Ko = S1 ® Sy and Sy, Sy are respectively zq- and zp-invariant. Furthermore, if
H(Kp) = S © 208, then the set

4.7) { f1, 01fo, 0102f5, ..., (Zijll ek) fm}

is an orthonormal basis for H(Ky), where each f;(z) = % and /\12 = a;c; — d;b;.

Proof. Observe that

m—1 m i—1
4.8) Kg= IC91 S¥) 91/C92 S5 (9192)1693 D---D ( H Gk)lcgm = @ <H6k>,C9i'

This can be seen by observing that the subspaces in (4.8)) are orthogonal to each
other and their reproducing kernels add to that of IC@ Now by Lemma .1} we
can write each Ky, = &1 9, © S, where these subspaces are respectively z;- and
zp-invariant. Define & and S; as in (£.6). Then, S; is an orthogonal sum of
z1-invariant subspaces and so is also a zj-invariant subspace. Similarly, S, is
zp-invariant. By (4.8), it immediately follows that Ko = S; & Sp. To prove the
orthonormal basis result, observe that the components of S, in are pairwise-
orthogonal and each is zp-invariant. Thus

$028 = é ((ﬁ gk)82,9,»922 ((ﬁ 6k>82,9i)) é (ﬁ 9k) (826,022820,),

i=1 k=1 k=1 i=1

i-1
where we used the fact that each [] 0y is inner. By the reproducing kernel formula
k=1

in Lemma {4.1} each s1ngleton set {f;} is an orthonormal basis for S, ©22S5 4,
Thus each singleton set {( T1 Gk) fl} is an orthonormal basis for (H Hk)(Szrgi S
2385,). Since the decompos1t10n of S ©2,8; into components in the above equa-
tion is orthogonal, the set { f1,601f2,---, (j:]’[ll Gk) fm} gives the desired orthonor-
mal basis. 1

Recall that deg® = (m,m). By Theorem the operator S}, := Ps, M., |s,
is unitarily equivalent to a z; matrix-valued Toeplitz operator with m x m symbol
Mg, whose entries are rational in z; and continuous on ID. For this particular ©@
and S,, we can compute Mg.



COMPRESSIONS OF THE SHIFT ON THE BIDISK AND THEIR NUMERICAL RANGES 245

m
THEOREM 4.4. Let © = [] 6;, where each 6; is a degree (1,1) rational inner
i=1

function % where p;(z) = a; + biz1 + cjzp + diz120 has a zero at T, = (114, p,;) € T2
Let Sy be as in @.6). Then, the m x m matrix-valued function Mg from Theorem 3.2]is
given entry-wise by

T -1 = _
(2T )y (2T bizotde | ars o s
/\] (ajJrC]'zZ ) /\1 (ﬂiJFCiZZ) k:I;I+1 (”kJFCkZZ lf] >1,
Mo(22)ji =\ 7 bviz) L
a;+c;zp l,f] =1,
0 ifj<i,

where each A; satisfies )‘12 = d;c; — d;b;.

Proof. By the proof of Theorem 3.2} we need only show that this Mg satisfies
the correct formula. Specifically, let

m—1
{f1, 01f2, 01602f3,. .., ( 11 9k)fm}
k=1
denote the orthonormal basis of H(K;) = S; © 2,8, from Proposition Then

by the proof of Theorem 3.2} Mg = H* where H is the m x m matrix of unique
functions h;; € H3 (D) satisfying

Mz, ((j{lj[iek)f]) = fij+--+ (Zijll@k)fmhmj, forj=1,...,m.
Then to identify each h;; we need only write
M;((Iﬁ(?k)fj) - (ﬁ@k)fih+g,

i—1
where h € H2(D) and g L ( I ek) Ks,- Then, we would have h;j = h.
k=1

To begin computing the h
subspace of 5,

ij, fix i,j with i > j. Observe that the following

-1

D (IT0)K

=1 k=1

o~

j-1

is the two-variable model space associated to the inner function [] 6 and hence
k=1

is invariant under M. Thus if i > j, the fact that

] —1

v, (T10)5) @ (TToopa - (T

l
(=1 k=1
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implies that h;; = 0. For the other cases, we will use the identity
(4.9) M (GH) = HMZ, (G) + G(0,z2) M, (H),

for any G, H € H?(D?) with GH € H?(D?). Now fix i = j and observe that by
and Lemmaf4.2]

—_

o (o)) = (Lo + 0 ()
(

]
The second term is in the model space associated to ] 6 and hence, is orthogo-
k=1

~.

\»

To)si( - 222) 4 o zan (T o)

1 a; + €jza

j-1

nal to ( 11 Gk) ng. This follows from Proposition 3.5 in [6], which shows that if ¢
k=1

is an inner function on D?, then (M ) ¢)H3(D) C Ky. Thus, we can conclude that

bj + dez

hi(z2) = — .
1 (22) a; + Cjz2

Lastly, fix i, j with i < j. Then by applying again, we have
i—1 i i—1 i—1 i
v () ) ~ (T (T o)) + (T o)) oz (1100
i i—1 i—1 i
= ([T (T o))+ (T )5) 02 (o o o

j—1 i—1

+ ((TT0)) @ zmz, (TT00)

k=1

i—1
Let us consider the terms in the last sum. The first term lies in ( IT Gk) 0;H%(D?)
k=1
i—1
and so is orthogonal to (H 9k>IC9i. Similarly, the third term is in the model
k=1
i—1
space associated to (H 9k> by Proposition 3.5 in [6] and so is orthogonal to

(H Qk) Ko,. Thus, the second term is the only one that contributes to h;;. By

Lemma E we can replace M7, 6; in the second term to obtain

((IT or) o (2 2) (o)

k=it1 @i+ cizp/ N
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It follows that
e = (1 o)) 0mn (25 2)
7, — i\ I Bzt
- Aj (;]-2—1— c?z])/\' (Zl-z—i— Cz;)kgl ( aiz—i:{z;{ )’

where we used the formulas for each 6 and f;. Thus, H is defined entry-wise by

. i
[ 22T 22— T brzo+dy L :
A] (aj+cjzz))\ (a —+c; zz> r 1—,£1 (ak+ckz2 ifi < I
=i
H(zp)ij = (_ biJFdiZZ)

a;+cizp

ifi =7,
0 ifi > j.
Then the fact that Mg = H* gives the desired formula. 1

To make this concrete, we compute several Mg using the formula from The-

orem 44

EXAMPLE 4.5. First, let © be the following degree (2,2) rational inner func-

tion:
N 22122—21—22 32122—221—22
o) =006 = (522 7) (52, )

Then 7,1 = » = 1 and we can take A; = iv2and A, = iv/6. Then, by Theo-
rem[£4)

5 0
Mo(z2) = | _viaa—znp 1 |-
(2-2,)(3-27;) 3-2%

Thus, S}, is unitarily equivalent to the matrix-valued Toeplitz operator with this
symbol.

EXAMPLE 4.6. Now, let © be the following degree (3, 3) rational inner func-
tion:
O(z) = 61(2)62(2)03(2)

_ (22122—21 —zz) (32122—221 —zz) (32122—21 — 2z —1)
S\ 2—z1—2 3—2z1—22 3—z1—2z0—2z120 /°

Then 1o1 = T2 = T3 = 1 and we have A1 = iv2, Ay = iv6, and A3 = 2i. By
Theorem [4.4]

= 0 0
—V/12(1-2,)?
Mep(z2) = (2_22)((3_2225)2) 5 0 |,
2V2(1-2%)%(147,) -2V/6(1-2)* 143

(2-22)(3-22)(3-272)  (3-222)(3-22) 3-22
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so S} is unitarily equivalent to the matrix-valued Toeplitz operator with this sym-
bol.

It is worth pointing that out that these Mg are lower triangular (rather than
upper triangular like (L.1)) because in our computations, we ordered our bases in
a different way than is typically done in the one-variable situation.

5. ZERO INCLUSION QUESTION FOR THE NUMERICAL RANGE

In this section, we study the question of when zero is in the numerical range
associated to a product of two degree (1,1) rational inner functions: using S,
as defined in and recalling that S}, := Ps, M., |s,, we are interested in the
question of when zero is in W(S).

We begin with some notation. Let @ = 0;60,, where each 6, is a degree (1,1)
rational inner function % and each p;(z) = a; + bjz1 + cjz2 + djz122 has a zero at
7 = (11,5, T;) € T2 By Corollary

Clos(W(S})) = Conv( U W(M@(T)))/

7eT

where Mg is the 2 x 2 matrix-valued function given in Theorem For our
O = 016,,

N (b1+d122) 0

a1+c122
T (2701 (2702 _ ( batdrzo
/\1/\2 (a1+c122 ) (a2+czzz ) <a2+c2zz )
where )\]2 = ajcj — d;b;, for j = 1,2. In future computations, we let fj, denote

17
(j,j)-entry of Mg(z2) and let B; denote the center of the circle C; := { - Zﬁ iiji :

(5.1) Mo (z2) =

z € T} forj =1,2. By Theorem the numerical radius w(S})) = 1 and so the

entries (eigenvalues) f) ., and f, ., as well as the entire circles C; and C; are in D.
For each z, € T, define

0 e
LI,XZ2 = |:1 0 :|/
where &, € R is chosen so that
(52) Mo (22) := Uy, Mo (22)Us,,

has positive (1,2)-entry. Since Uy, is unitary, Meg(22) and Mg (z,) have the same
numerical range. We will often apply the elliptical range theorem (see, for exam-
ple, [23]]), which says that the numerical range of a 2 x 2 upper-triangular matrix

(5.3) A= [g ﬂ
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is an elliptical disk with foci at 2 and b and minor axis of length |c| = (trace(A*A)
—la?> — |p|*)1/2. In particular, the numerical range of Mg(z3), and hence of
Mg (z3), is an elliptical disk with foci f; -, and f5 ., and minor axis length:

22— N1 "’22*1'2,2 ‘
a1+ 122 ap + cozp |’

(5.4) My = A1 A
5.1. WHEN IS 0 IN THE NUMERICAL RANGE? Now let us consider the zero inclu-
sion question.

PROPOSITION 5.1. Let @ = 010,, where each 0; is a degree (1,1) rational inner
function % where pj(z) = aj + bjz1 + cjza +djz1z2 has a zeroat Tj = (11,5, T j) € T2.
If there exists v € T \ {1, }j—1,2 such that either

(55) Fial +1fan] < 1= Fiaf20
or
(5.6) |B] = finl > |B]| forj=1lorj=2,

then 0 € W(Sg)°. Furthermore, if a;b; — cjd; € R, then holds if and only if
|ﬁ]d] — b]E]‘ > |a]5] - C]E]|
Proof. We first perform a general computation for any z; € T. By the dis-
cussions preceding (5.4), the numerical range of Mg (z2) is an elliptical disk with

foci f1,,, and f> ,, and minor axis m., given in (5.4). We will show that m, also
satisfies

(5.7) mzy = 1= fiz 21 [foml
To this end, observe that

|aj + |cj|* — |bj1> — |d;|* + (@jc; — bjdj)za + (ajT; — bjd;)Za

1—|fi.|* =
|f],zz| |a]’+C]'Zz|2
7 T e T L I 1 .. .
From (4.5), we know that each 7 == L . This implies that
’. 2,j Z(Ll]cj—bjdj)

?2,‘ TZ,'*
l-5n- 5%
TR
|la; + ¢cjza|

2 2 2 2 2
1= 1fjzl® = (" +Iej* = 1b1* — |;*)
Since both 7 ; € T and z; € T, and as | fj,22| < 1, we have
1_|f'z |2: (ﬁjCj—Ejdj)fz(Zz—Tz,]')z _ |ﬁ]‘C]‘—E]'dj| |Z—T2,]'|2 _ |)\j|2 |Z—T2,j|2
22 |aj + cjza|? |aj + cjz2|? la;j + cjza|?
where A; is defined as in Theorem This proves (5.7). Then a simple compu-

tation using the definition of an ellipse shows that the ellipse bounding Mg(z2)
has major axis given by

(5.8) Mz, = 1= f1, foz |-
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Now, to establish the first claim, assume there is some y € T\ {73} 1,2 sat-
isfying (5.5). One can see that the ellipse bounding WW(Mg(z7)) is non-degenerate
because implies m, # 0. Then combining condition (5.5) with the formula
for the major axis immediately gives 0 € W(Mg(7))? € W(S})°.

To establish the second claim, assume there is some v € T\ {73 };=1,2 such
that a focus f; , satisfies (5.6). Then, since Bj is the center of the circle on which the
fjz lie, [B; = fiz| > |B;| forall zo € T. Thus, the convex hull of the foci contains

zero and since each |E] — fjz| > 0, we know that zero lies in W(SE)°.

Now suppose that a]@j — c]H]« € R and consider the circle { bt € ']I‘}

aj+cjz
. bi+d; . .
with center §;. If z € Tand w = — o an Ci, then a computation gives
ji+C
I b] + a]-w
dj + cjw

Since |z|> = 1, we have
b]‘—l—ll]‘w . _bj+ajw

1=-—
dj—l—cjw dj—f—C]'w

which implies
(1a1* = e o] + 2(a;b; — cjdj) R + (|y | — |d;[?) =
Writing w = x + iy, completing the square and computing, we see that the center
p; satisfies
__ b~
P =T

so Bj = B]- by our assumption that a]-Ej - cjaj is real. The radius of the circle is

‘ |d |2 ‘b |2 (QJE] — cﬁ])2 1/2 _ |a]H] —E]C]|

|a;|* — \C]|2 (laj[* = 1ej[?)? |2 = lejl?

where we used the fact that our assumptions imply |a;| # [c;[. Thus, condi-
tion holds if and only if

|{Il]d] — b]C]| > |11]b] — C]d]‘,
as desired. 1

REMARK 5.2. In the first part of Proposition when zero lies in the in-
terior of a single ellipse, we can say more if the foci fi, and f,, lie on a line
through the origin. First, if the line segment joining the foci contains the origin in
its interior, then condition implies that the ellipse is nondegenerate and zero
immediately lies in the interior of the ellipse. A similar argument can be made if
one or both of the foci is zero.
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If the foci lie on a line that passes through the origin and are in the same
quadrant, we can write f;, = rie'? and f,, = rye!? with ry, 7, > 0. Since the
numerical radius is at most 1, we know that rj < 1forj=1,2. Ifeitherr; =1
or rp = 1, then condition (5.5) cannot hold. Thus 0 < ri < 1forj = 1,2 and
condition holds if and only if r; + 1, < 1 — r17p, which happens precisely

whenry < %;Z

Before proceeding further, we require the following lemma.

PROPOSITION 5.3. Let © = % be a rational inner function on D?, where p(z) =
a + bzq + cz; is a polynomial with a zero on T2. Then |a| = |b| + |c|.

Proof. Since @ is holomorphic, the polynomial p does not vanish inside D?.
If |a| < |b] + |c|, we could choose z; and z, to make p vanish in D?, so this is
impossible. Thus, we know that |a] > |b| + |c|. But p has a zero (13, 72) on T.
Thus, a = —b1y — cp and so |a| < |b] + |c|. Combining these two inequalities,
we obtain |a| = [b| + [c].

In the following proposition, we restrict to the situation where ® = 0,0,
and each ¢; = Z—j with p;(z) = a; + bjz1 + ¢jz2. We further require that b; < 0
and aj,c; > 0. Given these assumptions, one can divide through by |b;| and
automatically assume b; = —1.

We can now answer the zero inclusion question using the coefficients of the
polynomials defining @ as in the following proposition.

PROPOSITION 5.4. Let @ = 0160,, where each 0; is a degree (1,1) rational inner
function % where pj(z) = aj — z1 + ¢jzp has a zero at T, = (115, o) € T and
aj,cj > 0. Then

(i) 0 € W(SL)? if and only if crcr > 3;
(ii) 0 € 9W(SY) if and only if c1cp = 3.

Proof. First observe that and our assumptions on the coefficients a;, ¢;

imply that —— = 1 and = —1lforj=1,2. Corollaryimplies that

ajfcj

Clos(W(8h)) = Conv( [J W(Me(2))) = Conv( |J W(Me (7)),

zeT zeT

and to simplify notation, we will often work with Mg (2). Observe that the circles
of foci {
tion. The circles pass through the points

1ZE T} lie in W(S}) and cannot contain oo since S}, is a contrac-

1
aj+C]'

1
aj+c]-z

€ R,whenz =1,and 1 =1,
)

when z = —1.
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Now we show that 0 € W(S})? if and only if cic, > 1. As pointed out after
(5.2), Mp(z) has the same numerical range as

_ L /lajarcic S
Me(z) = ‘72*0622 1820162 ezl

a +clz

and so we work with Mg(Z). In particular H(Mpg(Z)) := 1 (Mp(Z) + Mo(2)*)
is a Hermitian matrix and therefore its numerical range is a real line segment.
The endpoints are the minimum and maximum eigenvalues of H(Mg(Z)), see
p. 12 of [18] or [20]. Furthermore, W(H(Mg(Z))) is the projection of W(Mg(Z))
and hence, of W(Mg(z)), onto the real axis. We now study the eigenvalues of
H(Mep(z)), which give the minimum and maximum real parts of the elements in
W(Mp(2)).
First, the trace of H(Mg(z)), which is the sum of the two eigenvalues of

H(Mgp(z)), equals

ap+ iRz ar+cRz

|a; +C12|2 |612+CQZ|2

since a; — ¢; = 1. This shows that at least one eigenvalue of H(Mg(Z)) is positive.
Then, the minimum eigenvalue will be negative if and only if det(H (Mg (z)) < 0.
In this case, we have

ay+cRz Vmazerco| ( |z+1[? )

det(H(Mo(2))) =det ozl 2 \Tn¥allaates]

/ latazci o] ( |z41]2 ) a1+ Rz

2 la1+c1z[ |ag+cpz] |ay+c1z]2

Let x = Rz. Then some H(Mg(z)) will have a negative eigenvalue if and only if
there exists x € (—1,1] with

F(x) =1 +cp+c1x)(T4co+cox) — ((c1 + ) (ea +¢3))(1+x)? <0.

The two zeros of f occur at

1 1
Cc1C2 1 +Cz+C1€2'

Thus, f has a zero between —1 and 1 if and only if c;c; > % and f will be negative
at some point x € (—1,1) if and only if one zero lies strictly between —1 and 1.
Therefore:

1) If c1ep < %, then there is no such value of x. This implies that for each
z € T, the matrix H(Mg(Zz)) has only positive eigenvalues and so, W(Mg(z)) C
{x+1iy: x > 0}. From this, we can conclude that 0 ¢ W(S})°.

(ii) If c1c0 > %, then f is negative at some point strictly between i —1and
1. Therefore, for some zy € T (with zy # £1) one eigenvalue of H(Mg(Zp)) is
positive and one is negative. Thus, W(Mg(Zp)) contains a point A, with negative
real part.
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Recall that the numerical range of any Mg(z) is the elliptical disk with foci
L__ and minor axis of length

aj+cjz
\/ |ara2c1¢2] |2+ 1]
Ve T iz [ag + ooz

This implies that W(Meg(zo)) is the reflection of W(Mg(Zp)) across the x-axis
and thus XZO € W(Sé). If A;, ¢ R, the triangle joining AZO,XZO and 1 must be
contained in W(S},), which implies 0 € W(S})°.

Now let A;, € R. By assumption, we also have A, negative. By earlier

at

arguments, the circle {m 1z € ']I‘} C W(S}). This circle passes through the
1

points 1 and ;= so it contains points in the first and fourth quadrants. Denote
two such points by A; and Apy. Then, the triangle joining A, Aj, and Ay is
contained in the numerical range and so 0 € W(Slg)o.
(ii) If c1co = 3, then f(x) > 0 for all x € (—1,1) and there are no values
in any W(Mg(z)) with negative real part; i.e., U W(Mp(z)) C {z € C:z =
zeT
x +1iy,x > 0}. On the other hand, if we COl’lSidEeI' z = 1, we can see that zero

satisfies the equation

o el o el = ) )l
Thus 0 € W(Mg(1)) and therefore 0 € 9WV(S}).

From these arguments, we know that if c;c; > 1, then 0 € W(S})? and
if cjep < 3, then 0 ¢ W(S})?. Furthermore, if cic, = 3, then 0 € 9W(SY).
Thus, we have proven most of Proposition It just remains to show that if
0 € IW(SY), then ccp = 1.

Assume 0 € BW(S(B). If cicp > %, then 0 € W(S(la)o, a contradiction. If
c1c2 < 4, the zeros of f are at

1 1
——1>1and - 1— ——— < —1.
Cc1C2 c1+cx+4crep

Since f(x) = aj + aox + azx? with a3 = c1cp — c1c2(1+¢1)(1 +¢2) < 0, the
minimum value of f on [—1, 1] must be either f(—1) =1 or

f(1) = (142c1)(142c2) —4cica(1+¢1)(1+c2)
= (1 —4c3c3) +2¢1(1 —2cq¢0) 4 2¢2(1 — 2¢1¢2) > 0.
Now define the quantity
m = min{f(~1), f(1)} > 0.

Fix z € T and let A1, A, be the two eigenvalues of H(Mg(Z)). Since S}, is a con-
traction, we know A1, A, < 1. Without loss of generality, assume A; =min{A1, A5 }.
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By assumption, A, # 0, since f(Rz) # 0. Then we can conclude that

det(H (Mo ())
M= —-—71—"
A2
This immediately implies that for each z € T, we have W(Mp(z)) C {x +1iy :
x > m} and zero cannot lie in the convex hull of the union of these sets. So, if

zero lies in the boundary of the numerical range, then cic = 1.

> det(H(Mp(2)) > m.

6. BOUNDARY OF THE NUMERICAL RANGE

6.1. INITIAL REDUCTIONS AND FORMULAS. We now analyze the boundary of
W(S}) or equivalently, the boundary of Clos(W(S})), for a special class of ratio-
nal inner functions. Specifically, let © = 62, where 6; has a zero on T? and 6; = %

for p(z) = a — z1 + czp with a,c # 0. The following remark shows that, without
loss of further generality, we can assume 4, ¢ > 0.

REMARK 6.1. Assume 6; = % for some p(z) = a —z; + czp and set © = 0%.
Then by Corollary

Clos(W(SL)) = cOnv( U W(M@(T))),
TeT
where Mg is the 2 x 2 matrix-valued function from Theorem Now write
a = |alel?, c = |c[e!?, and w = €l(¥~0)z and observe that implies that 7, =
—el(®=¥)_ With these substitutions, Mg, changes from

1 . (=) _ I B —ip_(wi1)?
ME)(Z) — [Q+CZ ac (afcz)zl to Mg(w) — eﬂe [a[+[clw |ﬂC|e g|a|+\c|w)2
e 0 GEED

Since, when computing numerical ranges, the variables z and w above will take
all values in T, we can conclude

Clos(W(SL)) = cOnv( U W(M@(T))) = cOnv( U W(M@(T))).

7eT 7eT

So, if we set q(z) = |a] —z1 + |c]z2 and ¢ = % and define @ = ¢?, then
Clos(W(SL)) equals Clos(W(S})).

Henceforth, we assume that p(z) = a — z; + czp where a,c > 0. By
and Proposition this forces » = —1 and a — ¢ = 1. Furthermore, by the
elliptical range theorem, the boundary of each W(Mg(7)) is a circle with center
¢t := - and radius r half the modulus of the (2,1)-entry of Mg(7). Thus,
we need to understand a family of circles. For later computations, we require the
following alternate parameterization.
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REMARK 6.2. The set of circles {0W (Mg (7)) }reT is equal to the set of cir-
cles {Cy }oc[0,27), where each Cy has center and radius given by

a + cel? ac
(6.1) c(0) := e and r(0):= (a+c)2(1 —cosf).
To see this, define the Blaschke factor
ctz  cHaz

B(z) :=

1+&z  atez
Then B maps T one-to-one and onto itself. Now fix T € T, set A = B(T) € T, and
choose 6 to be the unique angle in [0,277) with A = el?. Observe that

atch — a(a+ cT) —(i(C—I—llT) _ (a—i—c)(af—c) _ a—o—i’
a+ct a+ct a+ct
where we used a — ¢ = 1. Then the center of W (Mg (7)) is
1 a+cA  a+cA
= — = - 6(9).
a+ct a+cA a+c
To consider the radius, first observe that since A € T, we have 2(1 — cosf) =
|1 — A|%. Moreover

Cr

c+af‘2_

1+7 )2
2
a+cT —(a+c)‘ ’

1-AP =1
| | + a+ct

Using that equation, we can write the radius of W (Mg(7)) as

r't

_ac l+?’2_ac|1—/\|2_ac(l—cosH)_r(6>
 2lat+cTtl 2@+ (at+c)2

which proves the claim.

6.2. CIRCULAR NUMERICAL RANGES. In the one-variable situation, if B is a
degree-2 Blaschke product, then the numerical range of Sp is a circular disk if
and only if the two zeros of B are the same. One might conjecture that a similar
statement should hold in two variables, namely if § = 6%, then Clos(W(S})) is
circular. In this section, we show this is not the case.

Now fix T € T. Then oW (Mg(7)) is a circle with radius

_ac [T+1)? e 1+x
S 2a+ct? (a4 ex)2+c2(1—x2)’

T

where T = x + iy. One can check that r; increases as x increases. Therefore, the
maximum and minimum values of 7+ occur when T = 1and T = —1, respectively.
Now consider the alternate formulas given in (6.1). First, since the centers are
exactly the points

a+ cel? a c

c(6) = = (2=+

a-+c a-+c a+cc

o0s 0, LsinG),
a—+c
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c(0) and c(27r — 0) are reflections of each other across the real axis. Moreover,
also implies that r(8) = r(27r — ) and so the set of circles {Cp}pe(o2r) is
symmetric with respect to the real axis. This immediately implies Clos(W(S},))
must also be symmetric with respect to the real axis.

Thus, if Clos(W(S},)) were circular, the real line would contain the diame-
ter. Furthermore, the value ﬁ = 1 obtained when T = —1 is in the numerical
range and the numerical radius is 1. So 1 is the maximum value on the real axis.
The smallest value on the real axis occurs when T = 1 or equivalently, when
6 = . Then shows that the center c; = a%c is real and has real part smaller

than any other c;. Similarly, the radius r; = (112+L§)2 is maximal and so, the smallest

value of Clos(W(Sg)) on the real axis is

1 2ac a+c—2ac

atc (a+o?  (a+o)p2
Thus, these are the extreme real values of the numerical range, and if the numer-
ical range were circular, they would be the endpoints of a diameter. Then the
center of the circle would be the point («,0), with a given by

(6.2) ni=

1( a+c—2ac> _a®+a+c(l+c)  a?+a+(a—1)a  a?
2 (a+c)2 /) 2@a+9?  2a+c)?  (a+c)?’

where we used a = ¢ + 1. Similarly, the radius » would be

. 1(1_a+c—2a0) _a*—a+4dac+cr—c

T2 (a+c)? 2(a+c)?
_dac+c*—c+(c+1)2—(c+1)  2ac+c?
N 2(a+c)? - (a+0)?

We can now find a point Q that is in the numerical range but is not in that circle.
Specifically, consider § = 7 and using (6.1), define the point Q by

0= (3) +r(F)e = (),

which is on C,; /5 and hence is in Clos(W(S}))). If the numerical range were cir-
cular, the point Q would lie in or on the circle bounding the numerical range with
center («,0) and radius r. Computing the distance from Q to the center gives

a a2 C2 ﬂcz llCZ C2 llCZ
s (0, (2,0)) = ( q) it e e

a+c (a+c (a+c)t  (a+c)t (a+c)*
For Q to be in the circle, we must have

. > (2ac + c?)?

dist (Q, (0{,0)) < r- = W,

which is impossible. Thus, Clos(W(S},)) cannot be circular.
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6.3. THE BOUNDARY OF THE NUMERICAL RANGE. The goal of this section is to
prove the following theorem.

THEOREM 6.3. Let © = 6% be a degree (2,2) rational inner function, where 61 =
%for a polynomial p(z) = a — z1 + ¢z with no zeros on D?, a zero on T2, and a, ¢ > 0.
Then the boundary of W(S}) is given by the curve E = (x(8),y(0)) where

_a+ccosf  ac(l—cosf) . a
x(0) = e + CEDL cos (9—arcs1n(a+csm€)),
() = csinf + ac(1 — cos0) sin (9 — arcsin( a sin 9))
ST (a+c)? a+c ’

for 6 € [0,27).

We prove Theorem [6.3| using the theory of envelopes of families of curves.
The proof takes a bit of work, so we break it into sections.

6.3.1. INTRODUCTION TO ENVELOPES. Let f(x,y,60) = 0 be a family of (distinct)
curves parameterized by . One may think of the envelope E of a family of curves
as a curve that is tangent to each member of the family. There are several com-
peting definitions for the notion of an envelope, one of which is the curve that
satisfies the envelope algorithm that we describe below. We take that as our def-
inition, noting that in this case, the standard ways of thinking about envelopes
agree. A discussion of these notions can be found in Courant ([10], p. 171). We
also refer readers interested in envelopes to [19].

Assume the family of curves f(x,y,0) = 0 satisfies f2 + fy2 #0.LetEbea
curve parameterized as (x(6), y(0)) where x(6) and y(6) are continuously differ-
entiable functions. Then we say that E satisfies the envelope algorithm if the points
on E satisfy the equations

(6.3) f(x,y,0) =0 and fy(x,y,0) =0

and the functions x(6) and y(0) satisfy

dx\2 dy\ 2

(64) (55) +(55) #o

An alternate way to compute an envelope E involves using intersections of the
curves f(x,y,0) = 0 associated to different 6. For this method, assume an enve-
lope E exists and can be parameterized as (x(6),y(0)) for x(6), y(#) continuously
differentiable functions satisfying (6.4). Then, fix & and 6 and locate the inter-
section point of the curves f(x,y,0 +h) = 0 and f(x,y,60) = 0; call this point
Pre- Then pg := ;lllg(l) Pnp gives the point on the envelope E tangent to the curve

f(x,y,60) = 0.
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6.3.2. NOTATION AND SUMMARY. To study W(S},), Corollary 3.4 implies that
we need to study the family of circles {0OW(Mg(T))}rer. By Remark it is
equivalent to consider the family of circles {Cq }gc[g o), where each Cy has center
and radius given by

a+ccosf .csinf
+1 ,
a+c a+c

ac
O

To align with the envelope notation, observe that the family of circles {Cp }gc (o)
is also the set of curves satisfying f(x,y,6) = 0 for

(6.5) F(x,y,0) = (x —c1(0))2 4 (y — c2(0))* — (6)%, 6 € [0,27).

For each 6 € [0,27), let Dy denote the open disk with boundary Cy. Let C :=
{c(0) : 6 € [0,27)} denote the circle of centers of the Cy and let D denote the open

disk with boundary C.Set 2 = DU |J Dy and let B denote the boundary of
0€[0,27)

Q. Then the closure of the numerical range W(S},) is the closed convex hull of 2.
In what follows, we find an envelope of the family of curves {Cp}gcjo2r)

c(0) = c1(0) +ica(0) = (1 —cos®).

and use it to compute the boundary of W(S}). First, observe that our family of
curves satisfies f2 + fy2 # 0 for 6 # 0. Then to find an envelope of {Cp}gc(o27),
we need only find a curve E satisfying and (6.4). Specifically, we will find
all points satisfying (6.3). These points will yield two curves E; and E;. We will
show E; also satisfies and thus gives an envelope for our family of curves.
We further show that E; is a convex curve bounding the set (2. This implies (2 is
convex and so 2 = Clos(W(S},)). Thus E; gives the boundary of Clos(W(Sg)),
and hence of W(S},), as desired.

6.3.3. FINDING THE ENVELOPE. We first identify all points satisfying (6.3), which
gives the two equations f(x,y,0) = 0 and

(6.6) — (x = 1(0))6h(6) — (v — c2(6))ch(6) — r(6)r'(6) = 0.
Observe that we can write each circle Cy parametrically as
x(s) =c1(0) +r(0)cos(s), y(s) =ca2(0)+r(0)sin(s), s € [0,2m).
Then is equivalent to
+1(0) sin(s) =227 1 1(0)—2 sing = 0.

—7(6) cos(s) a+c a+c (a+c)?
For 6 # 0, we have r(0) # 0 and so this is equivalent to

csinf ccosf

sin 6.

(6.7) sin(s — 0) = cosfsin(s) — sin 6 cos(s) e

Note that the above equation has two solutions for s:

. a . . a .
(6.8) 51(9).f9—arcsm(a—+csm9) and 52(9).f9—7'c—|—arcsm(ﬁsm9).
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Then the curves E1(0) = (x1(0),y1(0)) and E»(0) = (x2(0),y2(0)) defined by
xj(0) :=c1(0) +7(6) cos(s;(8)) and y;(6) := c2(0) + () sin(s;(0)),
6 €(0,2m),j=1,2

give two curves whose points satisfy (6.3).

Since we are concerned with the convex hull of the family of circles
{C@}GG[O’ZH), we consider the outer curve E;. To show that E; satisfies (6.4), we
need to do a little more work. First, observe that implies the following two
equations:

(6.9) cos(f —s1(0))(1—51(0)) =

We can obtain more information by writing

cosf and R(c'()e ™) = —'(9).

c

i0
a+ ce' N ac(1— coi 6) eis1 (6)
a+c (a+c)

and then computing derivatives as follows:
x1(8)+iy; () =1 (' ()™ () 11/ (8) + ir(6)s} (6))
=1 O (R(c(0)e 1O +7/(0)) +i3(c'(0)e 1) +1(0)) +ir(0)s(0)).
Then, using and the fact that () is real, we have

X (6) + iy (0) = i) (S (S iee ™0 () ) +r(0)s(6) )
ac

— :ais1(6) _c _ 7 (1- !
ie (a+ccos(9 s1(0)) + (a+c)2(1 cos(@))sl(G)),
which allows us to conclude that
/ o c
(6.10) x| (6) = —sin(s1(6)) (a — =
Vi c ac B ,
6.11) ,(6) = cos(s1(6)) (a — s c0s0)s} () ).
To conclude for Eq, one just needs to show that

c — cos(6 —51(0)) + (aiicc)z(l — cos 0)s}(8) £ 0,

E1(8) = c(8) +r(0)e1®) =

cos(0 —s1(0)) + o E (1 — cos)s) (9)),

cos(6 —s1(0)) +

(6.12)

for 6 # 0. This is almost immediate. First observe that since <1, for6 e

[0,27),

_a_
a+tc

s

2’

and so 6 —s51(0) € (=%, %). This implies cos(f — s1(6)) > 0. Moreover, one can
compute

T . a
—— < arcsm( sin 9)
2 a-+c

5 (0) = a cos 0
10)=1-
a—+c 1— (uizc)Z sinz 0
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and observe that s} is continuous and s} (5 ) = 1 > 0. One can show that s} (6) = 0
a

leads to the contradiction 1 = e Thus, s’1 > 0 as well and we can conclude that
(6.12) is strictly positive. This implies E; satisfies and thus is an envelope for
the farmly {CQ}GE[O,ZH)'

Finally, a word about 6 = 0. Because the circle Cj is the single point (1,0),
it does not make sense to say a curve is tangent to Cy. However, the formulas
(xj(0),y;(0)) for each E; extend to continuously differentiable functions on inter-
vals containing zero in their interior. In particular, we can certainly extend E; and

E; to 6 = 0 by specifying E;(0) = 1 for j = 1,2.

6.3.4. LOCATION OF Ej, E;. Let us briefly consider the relationship between the
curves Eq, E» and intersections of the circles {Cp}ge(o2,)- We use this relationship
to show that with the exception of the point (1,0), the curve E; lies completely
outside of D and the curve E; lies completely in the interior of D.

Fix 6 # 0. Then for h with |h| sufficiently small, the circles Cy and Cy , j, inter-
sect in two points. To verify this, observe that the disks Dy and Dy, j, will overlap
for |h| sufficiently small. Moreover, the circle formula paired with the for-
mulas for ¢(#) and 7(6) can be used to show that no circle Cy is fully contained
in a different circle C3. Thus, there must be two intersection points; call them pé’h
and Pﬁ,h-

Basic geometry shows that the points pél,,h and pé,h will be symmetric across
the straight line connecting the centers c(6) and c(6 + h). Since () # 0, we can
conclude that one point, say p} ,, is in D° and the other point pg,h is in D. Now
write the intersection points as ,

pé,h =c(0) + r(G)eisL,

where s{l is an angle depending on j and k. Substituting this formula for pé,h into
the equation for Cy, gives:

(c1(0)+r(0) cos(si)—cl (04 1))>+(ca(0)+7(0) sin(s{l) —y(04h))2=r(0+h)?=0,

and one can use trigonometric approximations to show that

sin 6.

o _
}lllir(l)sm(sh —-0)= T
This shows that the sets {p};’h}, {pg,h} converge to points p} and p3 on Cy satisfy-
ing (6.7). This implies that the sets {p}, p3} and {E;(6), E2(6)} are equal.

Now we can examine the location of the curves E; and E,. First since E;(6)
and E,(0) are limits of the {p]é,h}, they are symmetric points across C. Thus, if
either of E1(6), Ex(6) is on C, we must have E1(8) = E»(6). However, using (6.8),
one can show that E;(0) = E;(0) only at 8 = 0. Thus, E; and E; only touch C at
6 =0.
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Then by the properties of pj and p3, except at § = 0, one of the curves E;, E;
is always in D" and one is always in D. By checking at § = 77, we can conclude

~C

E1(0) =ps €D for0< 6 <2m, E(0)=(1,0);
Ex(8) =p5€D for0<6<2m, Ey0)=(1,0).

6.3.5. THE BOUNDARY OF (2. Recall that B denotes the boundary of (2 = DU

U Dy. We will show that B = Ej. Our initial goal is to show B C Ej.
0€(0,2m)
First, it is easy to conclude that B C |J Cy. To see this, note that B is in
0<[0,27)

the boundary of |J Dy. Then if {c(6,) + Apr(0n)e*} with0 < A, < 1isa
0€[0,27)
sequence convergin[g to a point on 5, one can use convergent subsequences of the
{6,}, {sn}, and {A, } to conclude that it must converge to a point on some Cy.
Since (2 is in the closure of the numerical range of a contraction, we also
know E;(0) = (1,0) = Cy € B. Now, we determine the points that the Cy with
0 # 0 can contribute to B. Fix 0 # 0. Set By = B N Cy. Further, define

N-1
Q= DGUDU( U DW/N).
(=0

Let By denote the boundary of (2%; then By is composed of arcs of circles from
the boundaries of the disks comprising (2%,. Let B, be the contribution of Cy to
Bn. Since (2 is open, we know that

BY :=BnNCy=Con (QF)".

One can use the definition of boundary and the density of the roots of unity in T
to show
: 0
Be = ]%lir;o BN'

Fix N and assume B, # @. By earlier discussions, for N sufficiently large (i.e. the
difference between the angles sufficiently small), Cg will have one intersection
point in DS, call it py, with each close Cy bounding a disk from Q?\] Then a
whole segment of Cy between py and the point on Cy N C closest to c() will be
contained in Dy. This implies that Bze\] must be an arc on Cy whose endpoints are
intersection points of Cy and two nearby circles Cy, and Cy, .

By earlier remarks about intersection points, as N — oo, the intersection
points in D° between Cy and the closest Cy’s will approach E;(6). Thus we can
conclude that either By = @ or By = E;(0). This proves the claim that B C Ej.

To show B = Ej, proceed by contradiction and assume there is some E; () =
(x1(0),y1(0)) ¢ B. Without loss of generality, assume 0 < 6 < 7. Earlier
arguments showed that s} is always positive, so s; is strictly increasing. Thus,
s1(0) € (51(0),s1(mr)) = (0,7r). This implies sin(s1(#)) > 0 and by (6.10), x; is
strictly decreasing on [0, 7]. Moreover, on (0, 7t), we have y; > 0 and on (7, 27),
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we have y; < 0. Thus, there is no point on E; with x-coordinate x;(6) and y-
coordinate strictly larger than y1(6).

To obtain the contradiction, define « = sup{e : (x1(0),y1(0) +¢€) € Q}.
Since 2 is bounded, such an « exists and since E;(6) ¢ B, we know a > 0. But,
then (x1(0),y1(0) + a) € B and since B C Ej, we must have (x1(0),y1(0) +«) €
E;. But, this contradicts our previous statement about E;. Then it follows that
B = E;.

6.3.6. THE PROOF OF THEOREM Let O be the closed convex hull of 2. By
previous facts, this implies () =Clos(W(S})). We will show that E; is the bound-
ary of 0 and hence, of Clos(W(S}))) and W(S}).

First we show Ej is the boundary of some convex set. To show this, we
use the parallel tangents condition, which says that a curve C is the boundary
of a convex set if and only if there are no three points on C such that the tan-
gents at these points are parallel. Observe that the tangents of E; are given by
(x1(0),y1(0)) for & € [0,27). By way of contradiction, assume there are three
points whose tangents are parallel, say at 01,6, 605 € [0,27). This implies that

vi(61) _ v1(62) _ v1(65)

xp(01)  x1(02)  x1(65)

By (6.10) and (6.11), we know Ziézg = —cot(s1(0)) for 8 € [0,27). Then, since
1

s1 is a one-to-one function mapping [0,277) onto [0,277), equation (6.13) says that

there are three distinct angles 1, ¢, 3 € [0,277) satisfying

cot(ih1) = cot(ip2) = cot(ys),

which contradicts properties of cotangent. Thus, E; is the boundary of a convex
set S.

As E; is a bounded closed curve and S is convex, its closure S must be the
closed convex hull of E;. Similarly, as (2 is composed of circular disks including
D, one can show that (2 is contained in the closed convex hull of E;. But, then
Q C S C O, which implies that ) = S. Thus, E; is the boundary of () and hence,
the boundary of Clos(W(Sg)) and W(S}).

Finally, we remark that the boundary of the numerical range is not, in gen-
eral, the set of extreme points that one obtains from the circles. Here, by an ex-
treme point, we mean the point on Cy furthest away from the center of C. In
Figure[l]for a = 2 and ¢ = 1, we present some of the circles {Cy}, the curve con-
sisting of the extreme points of the Cy, and the boundary of the numerical range
of S

(6.13)

Acknowledgements. Kelly Bickel was supported in part by National Science Foun-
dation DMS grant 1448846. Pamela Gorkin was supported in part by Simons Founda-
tion Grant 243653. The authors gratefully acknowledge Institut Mittag-Leffler, where this



263

COMPRESSIONS OF THE SHIFT ON THE BIDISK AND THEIR NUMERICAL RANGES

I

1

0.6

) fora = 2 and ¢ = 1, the curve of extreme

FIGURE 1. W(Sg
points is dashed and the outer envelope of circles in solid.

work was initiated. The authors would also like to thank Elias Wegert for sharing a simple

method for computing the envelope of a family of curves.

REFERENCES

[1] J. AGLER, On the representation of certain holomorphic functions defined on a poly-
disc, in Topics in Operator Theory: Ernst D. Hellinger Memorial Volume, Oper. Theory

7—66.

Birkh&user-Verlag, Basel 1990, pp. 4

Adv. Appl.,, vol. 48,
[2] J. AGLER, J.E. MCCARTHY

Pick Interpolation and Hilbert Function Spaces, Grad. Stud.

Math., vol. 44, Amer. Math. Soc., Providence, RI 2002.

7



264 KELLY BICKEL AND PAMELA GORKIN

[3] J. AGLER, ].E. MCCARTHY, M. STANKUS, Toral algebraic sets and function theory on
polydisks, J. Geom. Anal. 16(2006), 551-562.

[4] J.A. BALL, C. SADOSKY, V. VINNIKOV, Scattering systems with several evolutions
and multidimensional input/state/output systems, Integral Equations Operator Theory
52(2005), 323-393.

[5] N. BEBIANO, .M. SPITKOVSKY, Numerical ranges of Toeplitz operators with matrix
symbols, Linear Algebra Appl. 436(2012), 1721-1726.

[6] K. BICKEL, Fundamental Agler decompositions, Integral Equations Operator Theory
74(2012), 233-257.

[7] K. BICKEL, G. KNESE, Inner functions on the bidisk and associated Hilbert spaces, J.
Funct. Anal. 265(2013), 2753-2790.

[8] P.S. BOURDON, J.H. SHAPIRO, When is zero in the numerical range of a composition
operator? Integral Equations Operator Theory 44(2002), 410—441.

[9] I. CHALENDAR, P. GORKIN, J.R. PARTINGTON, Numerical ranges of restricted shifts
and unitary dilations, Oper. Matrices 3(2009), 271-281.

[10] R. COURANT, Differential and Integral Calculus, Vol. II, Wiley Classics Library, A Wiley-
Interscience Publ., John Wiley and Sons, Inc., New York 1988.

[11] U. DAEPP, P. GORKIN, R. MORTINI, Ellipses and finite Blaschke products, Amer.
Math. Monthly 109(2002), 785-795.

[12] G. DE BARRA, J.R. GILES, B. SIMS, On the numerical range of compact operators on
Hilbert spaces, J. London Math. Soc. (2) 5(1972), 704-706.

[13] G.B. FOLLAND, Real Analysis, Modern Techniques and their Applications, second ed.,
John Wiley and Sons, Inc., New York 1999.

[14] S.R. GARCIA, W.T. ROsS, Model spaces: a survey, in Invariant Subspaces of the Shift
Operator, Contemp. Math., vol. 638, Centre Rech. Math. Proc., Amer. Math. Soc., Prov-
idence, RI 2015, pp. 197-245.

[15] H.-L. GAU, Y.P. WU, Numerical range of S(¢), Linear Multilinear Algebra 45(1998),
49-73.

[16] H.-L. GAu, Y.P. WU, Numerical range and Poncelet property, Taiwanese |. Math.
7(2003), 173-193.

[17] W.M. HIGDON, On the numerical ranges of composition operators induced by map-
pings with the Denjoy-Wolff point on the boundary, Integral Equations Operator Theory
85(2016), 127-135.

[18] R.A. HORN, C.R. JOHNSON, Topics in Matrix Analysis, Cambridge Univ. Press, Cam-
bridge 1994.

[19] D. KALMAN, Solving the ladder problem on the back of an envelope, Math. Mag.
80(2007), 163-182.

[20] R. KIPPENHAHN, On the numerical range of a matrix, Linear Multilinear Algebra
56(2008), 185-225.

[21] G. KNESE, Rational inner functions in the Schur-Agler class of the polydisk, Publ.
Mat. 55(2011), 343-357.



COMPRESSIONS OF THE SHIFT ON THE BIDISK AND THEIR NUMERICAL RANGES 265

[22] G. KNESE, Integrability and regularity of rational functions, Proc. London Math. Soc.
(3) 111(2015), 1261-1306.

[23] C.-K. L1, A simple proof of the elliptical range theorem, Proc. Amer. Math. Soc.
124(1996), 1985-1986.

[24] B. MIRMAN, Numerical ranges and Poncelet curves, Linear Algebra Appl. 281(1998),
59-85.

[25] W. RUDIN, Function Theory in Polydiscs, W.A. Benjamin, Inc., New York-Amsterdam
1969.

[26] B. Sz.-NAGY, C. Foias, H. BErcovicCl, L. KERCHY, Harmonic Analysis of Operators
on Hilbert Space, second ed., Universitext, Springer, New York 2010.

[27] D.J. UHERKA, A.M. SERGOTT, On the continuous dependence of the roots of a poly-
nomial on its coefficients, Amer. Math. Monthly 84(1977), 368-370.

[28] H.J. WOERDEMAN, A general Christoffel-Darboux type formula, Integral Equations
Operator Theory 67(2010), 203-213.

[29] P.Y. WU, Numerical ranges as circular discs, Appl. Math. Lett. 24(2011), 2115-2117.

KELLY BICKEL, DEPARTMENT OF MATHEMATICS, BUCKNELL UNIVERSITY, 380
OLIN SCIENCE BUILDING, LEWISBURG, PA 17837, U.S.A.
E-mail address: kelly.bickel@bucknell.edu

PAMELA GORKIN, DEPARTMENT OF MATHEMATICS, BUCKNELL UNIVERSITY,
380 OLIN SCIENCE BUILDING, LEWISBURG, PA 17837, U.S.A.
E-mail address: pgorkin@bucknell.edu

Received February 14, 2017.



	1. INTRODUCTION
	1.1. One-variable setting
	1.2. Two-variable setting
	1.3. Outline and main results

	2. RATIONAL INNER FUNCTIONS AND MODEL SPACES
	3. THE STRUCTURE AND NUMERICAL RANGE OF S1 
	4. EXAMPLE: S1 FOR SIMPLE RATIONAL INNER FUNCTIONS
	4.1. Preliminaries
	4.2. M for product 

	5. ZERO INCLUSION QUESTION FOR THE NUMERICAL RANGE
	5.1. When is 0 in the numerical range?

	6. BOUNDARY OF THE NUMERICAL RANGE
	6.1. Initial reductions and formulas
	6.2. Circular numerical ranges
	6.3. The boundary of the numerical range

	REFERENCES

