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ABSTRACT. We consider two-variable model spaces associated to rational in-
ner functions on the bidisk, which always possess canonical z2-invariant sub-
spaces S2, and study the compression of multiplication by z1 to S2, namely
S1

Θ := PS2 Mz1 |S2 . We show that these compressed shifts are unitarily equiv-
alent to matrix-valued Toeplitz operators with nice symbols and characterize
their numerical ranges and radii. We later specialize to particularly simple
rational inner functions and study the geometric properties of the associated
numerical ranges.
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1. INTRODUCTION

1.1. ONE-VARIABLE SETTING. Let θ be an inner function on the Hardy space
H2(D) and let Kθ := H2(D)	 θH2(D) be its model space. The associated com-
pressions of the shift Sθ := Pθ Mz|Kθ

(multiplication by z followed by the or-
thogonal projection onto Kθ) have played a pivotal role in both operator and
function theory. Indeed, allowing θ to be operator valued, the famous Sz.-Nagy–
Foias model theory says: every completely nonunitary, C0 contraction is unitarily
equivalent to a compression of the shift Sθ on a model space Kθ [26].

If the inner function is a finite Blaschke product B, i.e.

B(z) =
m

∏
i=1

z− αi
1− αiz

, where α1, . . . , αm ∈ D,

then the associated compression of the shift SB is quite well behaved. Indeed, the
matrix of SB with respect to a basis called the Takenaka–Malmquist–Walsh basis
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{ f1, . . . , fm}, see [14], is the upper triangular matrix MB given entry-wise by

(1.1) (MB)ij := 〈SB f j, fi〉Kθ
=


αi if i = j,

j−1
∏

k=i+1
(−αk)(1− |αi|2)1/2(1− |αj|2)1/2 if i < j,

0 if i > j.

For this matrix, see the survey [16], pp. 180. Formula (1.1) allows one to answer
many natural questions about the structure of Sθ . Answers concerning the numer-
ical range and radius are particularly nice. Namely, if T : H → H is a bounded
operator on a Hilbert spaceH, then the numerical range of T is the set

W(T) := {〈Th, h〉H : ‖h‖H = 1}

and the numerical radius of T is the number

w(T) := sup{|λ| : λ ∈ W(T)}.

Discussion of these sets for compressed shifts associated to finite Blaschke prod-
ucts requires some geometry. Recall that Poncelet’s closure theorem says: given
two ellipses with one contained in the other, if there is an N-sided polygon cir-
cumscribing the smaller ellipse that has all of its vertices on the larger ellipse, then
for every λ on the larger ellipse there is such an N-sided circumscribing polygon
with a vertex at λ, see Section 5 of [16]. Similarly, for N > 3, we say a curve Γ ⊂ D
satisfies the N-Poncelet property if for each point λ ∈ ∂D = T, there is an N-sided
polygon circumscribing Γ with one vertex at λ and all other vertices on T, see
pp. 182 of [16].

Surprisingly, Poncelet curves have close ties to numerical ranges. Indeed,
let B be a finite Blaschke product of degree m > 1. Then, as shown by Mir-
man [24] and Gau and Wu [15], the boundary ∂W(SB) actually possesses the
(m + 1)-Poncelet property. The idea behind the proof is quite intuitive; the in-
scribing polygons are in one-to-one correspondence with the unitary 1-dilations
of SB, which are obtained from (1.1). Moreover the vertices of the polygons are
exactly the eigenvalues of the unitary 1-dilations, and because ∂W(SB) is strictly
contained in D, the numerical radius w(SB) is always strictly less than 1. For a
detailed exploration of Poncelet ellipses for B a degree-3 Blaschke product see
[11], and for similar results concerning infinite Blaschke products see [9].

In what follows, we study these and other geometric properties of numeri-
cal ranges and radii of compressions of shifts on the bidisk D2.

1.2. TWO-VARIABLE SETTING. For the two-variable case, let Θ be an inner func-
tion on D2, namely a function holomorphic on D2 whose boundary values satisfy
|Θ(τ)| = 1 for almost every τ ∈ T2. Then let KΘ be the associated two-variable
model space defined by

KΘ := H2(D2)	ΘH2(D2) = H
( 1−Θ(z)Θ(w)

(1− z1w1)(1− z2w2)

)
,
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whereH(K) denotes the reproducing kernel Hilbert space with reproducing ker-
nel K. In this paper, we use Θ to denote two-variable inner functions and θ for
simpler, often one-variable inner functions. In this setting, one natural compres-
sion of the shift is the operator

S̃ 1
Θ := PΘ Mz1 |KΘ

,

where PΘ denotes the orthogonal projection of H2(D2) ontoKΘ and Mz1 is multi-
plication by z1. Although we explicitly study S̃ 1

Θ, symmetric results will hold for
a similarly-defined S̃ 2

Θ.
As in the one-variable discussion, we restrict attention to Θ that are both

rational and inner. Section 2 includes most needed details about rational inner
functions, but discussing our main results will require some notation. First, the
degree of Θ, denoted deg Θ = (m, n), is defined as follows: write Θ = q

p with p
and q polynomials with no common factors. Then m is the highest degree of z1
and n the highest degree of z2 appearing in either p or q. Moreover, if Θ is rational
inner with deg Θ = (m, n), then there is an (almost) unique polynomial p with no
zeros on D2 such that Θ = p̃

p , where p̃(z) := zm
1 zn

2 p( 1
z1

, 1
z2
) and p and p̃ share no

common factors. See [3], [25] for details.
Our goal is to study the numerical range of a general compression of the

shift S̃ 1
Θ associated to a rational inner function Θ. Unfortunately, the question

“What are the properties ofW(S̃ 1
Θ)?”

often has a trivial answer. To observe the problem, one can decompose KΘ as

(1.2) KΘ = S1 ⊕ S2,

where S1 and S2 are respectively Mz1 - and Mz2 -invariant. There are canonical
ways to obtain such decompositions, and details are provided in Section 2. If S1
is nontrivial, then S̃ 1

Θ|S1 = Mz1 |S1 and one can further show that

Clos{〈S̃ 1
Θ f , f 〉KΘ

: ‖ f ‖KΘ
= 1, f ∈ S1} = D.

Then since S̃ 1
Θ is a contraction, we can conclude that Clos(W(S̃ 1

Θ)) equals D; see
Lemma 3.1 for details. Because of this, we compress S̃ 1

Θ to the Mz2 -invariant
subspace S2 from (1.2) and study this more interesting compression of the shift:

(1.3) S1
Θ := PS2 S̃ 1

Θ|S2 = PS2 Mz1 |S2 .

1.3. OUTLINE AND MAIN RESULTS. This paper studies the structure of the com-
pression of the shift S1

Θ defined in (1.3) and the geometry of its numerical range.
It is outlined as follows: in Section 2, we detail needed results about rational in-
ner functions and their model spaces on the bidisk. In Section 3, we obtain most
of our structural results about S1

Θ and its numerical range, while in Section 4, we
illustrate the results from Section 3 with examples. In Sections 5 and 6, we study
the geometry of the numerical rangesW(S1

Θ) associated to simple rational inner
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functions; Section 5 addresses the zero inclusion question, and Section 6 examines
the shape of the boundary of the numerical range.

Before stating our main results, we require the following notation: H2
2(D)

denotes the one-variable Hardy space with independent variable z2 and H2
2(D)m

:=
m⊕

i=1
H2

2(D) denotes the space of vector-valued functions ~f = ( f1, . . . , fm) with

each fi ∈ H2
2(D). Define L2

2(T)m analogously, and let F be a bounded m × m
matrix-valued function defined for almost every z2 ∈ T. Then the z2-matrix-
valued Toeplitz operator with symbol F is the operator

(1.4) TF : H2
2(D)m → H2

2(D)m defined by TF~f = PH2
2 (D)m(F~f ),

where PH2
2 (D)m is the orthogonal projection of L2

2(T)m onto H2
2(D)m.

Then, in Section 3, we show that each S1
Θ is unitarily equivalent to a z2-

matrix-valued Toeplitz operator with a well-behaved symbol as follows:

THEOREM 3.2. Let Θ = p̃
p be rational inner of degree (m, n) and let S2 be as

in (1.2). Then there exists an m× m matrix-valued function MΘ, with entries that are
rational functions of z2 and continuous on D, such that

S1
Θ = U TMΘ

U ∗,

where U : H2
2(D)m → S2 is a unitary operator defined in (2.6).

One can view Theorem 3.2 as a generalization of the formula (1.1) for the
matrix of a compressed shift associated to a Blaschke product. As in the one-
variable setting, this structural result gives information about the numerical range
of S1

Θ, namely:

COROLLARY 3.4. Let Θ = p̃
p be rational inner of degree (m, n), let S2 be as in

(1.2), and let MΘ be as in Theorem 3.2. Then

Clos(W(S1
Θ)) = Conv

( ⋃
τ∈T
W(MΘ(τ))

)
.

Here “Clos” denotes the closure and “Conv” denotes the convex hull of the
given sets. Then Corollary 3.4 says thatW(S1

Θ) is built out of numerical ranges of
specific m×m matrices. We also connectW(S1

Θ) to the numerical ranges of com-
pressed shifts associated to degree-m Blaschke products, see Theorem 3.5. This
result is particularly important because it links the rich one-variable theory to this
two-variable setting. For example, it implies that Clos(W(S1

Θ)) is the closed con-
vex hull of a union of sets whose boundaries satisfy the (m + 1)-Poncelet prop-
erty. Amongst other results, we also combine Theorem 3.5 with one-variable facts
to characterize when the numerical radius is maximal.

THEOREM 3.7. Let Θ = p̃
p be rational inner of degree (m, n) and let S2 be as in

(1.2). Then the numerical radius w(S1
Θ) = 1 if and only if Θ has a singularity on T2.
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This theorem shows that certain one-variable properties do not (in general)
hold in this two-variable setting. Indeed, as N-Poncelet sets cannot touch T, this
implies that if Θ has a singularity on T2, then the boundary of W(S1

Θ) does not
satisfy an N-Poncelet property.

In Section 4, we illustrate these theorems with examples. We consider Θ :=
m
∏
i=1

θi, where each θi is a degree (1, 1) rational inner function with a singularity on

T2. Specifically, we decompose the associated KΘ into concrete Mz1 - and Mz2 -
invariant subspaces S1 and S2, find an orthonormal basis of H(K2) := S2 	
Mz2S2, and use that to compute explicitly the matrix-valued function MΘ from
Theorem 3.2. Proposition 4.3 contains the decomposition ofKΘ and the orthonor-
mal basis ofH(K2), while Theorem 4.4 contains the formula for MΘ.

In Section 5, we restrict attention to Θ = θ1θ2, where each θi is a degree
(1, 1) rational inner function with a singularity on T2. For these Θ, Theorem 4.4
gives a formula for MΘ, which shows thatW(S1

Θ) is basically the convex hull of
an infinite union of ellipses with specific foci and axes. This information allows
us to study the geometry of these numerical ranges and in particular, investigate
the classical problem:

“When is zero in the numerical rangeW(S1
Θ)?”

An answer to the zero inclusion question often yields useful information.
For example, the numerical range of a compact operator T is closed if and only if
0 ∈ W(T), [12]. Bourdon and Shapiro [8] studied the zero inclusion question for
composition operators showing, among other things, that the numerical range
of a composition operator other than the identity always contains zero in the
closure of the numerical range. More recently , Higdon [17] showed that if ϕ is a
holomorphic self-map of D with Denjoy–Wolff point on the unit circle that is not
a linear fractional transformation, then zero is an interior point of the numerical
range of the composition operator Cϕ.

In our setting, we obtain several results related to the zero inclusion ques-
tion forW(S1

Θ). First, in Proposition 5.1, we obtain two conditions guaranteeing
that zero is in this numerical range; these conditions involve the foci of the el-
liptical disks comprising W(S1

Θ). We then impose additional restrictions on the
coefficients of the rational inner function. Under these restrictions, in Proposi-
tion 5.4, we obtain necessary and sufficient conditions for both zero to be in the
interior and zero to be in the boundary of the numerical range.

In Section 6, we further study the shape of the numerical rangeW(S1
Θ). Due

to the complexity of the computations, we only consider rational inner functions
of the form Θ = θ2

1 , where θ1 = p̃
p for a polynomial p(z) = a− z1 + cz2 with no

zeros on D2, a zero on T2, and a, c > 0. We initially consider the question:
“When is the numerical rangeW(S1

Θ) circular?”.
For more general operators, this question has a long and interesting history.

For example, Anderson showed that if an m×m matrix A has the property that
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W(A) is contained in D and there are more than m points with modulus 1 in the
numerical range, thenW(A) = D and zero is an eigenvalue of A of multiplicity
at least 2. In [29], Wu extends these results.

We show that for our restricted class of rational inner functions, which seem
to be the ones most likely to produce a circular numerical range,W(S1

Θ) is never
circular. We then interpret the union of circles comprisingW(S1

Θ) as a family of
curves. Using the theory of envelopes, we are able to obtain a precise description
of the boundary of the numerical range. The exact parameterization is given in
Theorem 6.3. We refer the reader to [29] for more information and other references
about this question.

2. RATIONAL INNER FUNCTIONS AND MODEL SPACES

Let Θ be a rational inner function on D2 with deg Θ = (m, n). As mentioned
earlier, there is a basically unique polynomial p with no zeros on D2 such that
Θ = p̃

p , where p̃(z) = zm
1 zn

2 p( 1
z1

, 1
z2
) and p̃, p have no common factors.

An application of Bézout’s theorem implies that p, p̃ have at most 2mn com-
mon zeros, including intersection multiplicity and moreover, they will have ex-
actly 2mn common zeros if deg p = deg p̃. Moreover, one can easily check that p
and p̃ have the same zeros on T2. Then as common zeros of p and p̃ on T2 have
even intersection multiplicity, p can vanish at no more than mn points on T2. For
further details and proofs of these comments, see [22]. Then, an application of
Theorem 4.9.1 in [25] implies that p also has no zeros on (D×T) ∪ (T×D).

If Θ is an inner function (not necessarily rational), the structure of the model
space KΘ is also quite interesting. As mentioned earlier, there are canonical
ways to decompose every nontrivial KΘ into subspaces that are Mz1 - and Mz2 -
invariant, or equivalently, z1- and z2-invariant, as in (1.2). For example, as dis-
cussed in [4], [7], if you set Smax

1 to be the maximal subspace of KΘ invariant un-
der Mz1 , then Smax

1 is clearly z1-invariant and Smin
2 := KΘ 	Smax

1 is z2-invariant.
One can similarly define Smax

2 and Smin
1 .

Given any such subspaces S1 and S2 with KΘ = S1 ⊕ S2 and each Sj zj-
invariant, it makes sense to define reproducing kernels K1, K2 : D2 ×D2 → C by

(2.1) H(K1) = S1 	 z1S1 and H(K2) = S2 	 z2S2.

The resulting pair of kernels (K1, K2) is called a pair of Agler kernels of Θ because
the kernels satisfy the equation

(2.2) 1−Θ(z)Θ(w) = (1− z1w1)K2(z, w) + (1− z2w2)K1(z, w),

for all z, w ∈ D2. Indeed, any positive semidefinite kernels (K1, K2) satisfying (2.2)
are called Agler kernels of Θ and the equation (2.2) is called an Agler decomposition
of Θ. The existence of Agler decompositions was first proved by Agler in [1].
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If Θ is rational inner, there are close connections between the properties of
Θ and the structure of the Hilbert spacesH(K1) and H(K2). The following result
appears in [21] and follows by an examination of the degrees and singularities of
the functions in (2.2).

THEOREM 2.1. Let Θ = p̃
p be a rational inner function of degree (m, n) and let

K1, K2 be Agler kernels of Θ as in (2.2). Then dimH(K1), dimH(K2) are both finite.
Moreover, if g is a function in H(K1), then g = r

p where deg r 6 (m, n− 1) and if f is
a function inH(K2), then f = q

p where deg q 6 (m− 1, n).

Define the following exceptional set:

(2.3) EΘ := {τ ∈ T : ∃ τ1 ∈ T such that p(τ1, τ) = 0}.

By the above comments about Θ, the set EΘ is necessarily finite. For τ ∈ T, define
the slice function Θτ by Θτ ≡ Θ(·, τ). Then Θτ is a finite Blaschke product and in
what follows, KΘτ

will denote the one-variable model space associated to Θτ .
The following result is proved for Hilbert spaces arising from canonical de-

compositions of KΘ in [7], [28]. Specifically, see Theorems 1.6–1.8 in [7] as well as
Proposition 2.5 in [28]. Here, we include the proof for more general decomposi-
tions of KΘ, which basically mirrors the ideas appearing in [7].

THEOREM 2.2. Let Θ = p̃
p be a rational inner function of degree (m, n) and let

K1, K2 be defined as in (2.1). Then for any τ ∈ T \ EΘ, Θτ is a Blaschke product with
deg Θτ = m and the restriction map Jτ : H(K2) → KΘτ

defined by Jτ f = f (·, τ) is
unitary. Furthermore, dimH(K2) = m. The analogous statements hold forH(K1).

Proof. By Theorem 2.1, dimH(K2) = M for some M ∈ N. We will later
conclude that M = m. Let { f1, . . . , fM} be an orthonormal basis of H(K2). Then

by Proposition 2.18 of [2], we have K2(z, w) =
M
∑

i=1
fi(z) fi(w).

Fix τ ∈ T \ EΘ. Then Θτ is a one-variable rational inner function and thus is
a Blaschke product with deg Θτ 6 m. Further, as p has no zeros on D×T, one can
show that deg p̃(·, τ) = m. Since p(·, τ) also has no zeros on T, no polynomials
cancel in the fraction Θτ = p̃(·,τ)

p(·,τ) . This implies deg Θτ = m and dimKΘτ
= m.

Now, letting z2, w2 → τ in (2.2) and dividing by 1− z1w1 gives

1−Θτ(z1)Θτ(w1)

1− z1w1
=

M

∑
i=1

fi(z1, τ) fi(w1, τ).

Thus, the set { f1(·, τ), . . . , fM(·, τ)} spans KΘτ
and so the restriction map Jτ is

well defined (i.e. mapsH(K2) into KΘτ
) and is surjective.

To show that each Jτ is an isometry, fix f , g ∈ H(K2) and for z2 ∈ T, define

Ff ,g(z2) :=
∫
T

f (z1, z2)g(z1, z2)dσ(z1) = 〈 f (·, z2), g(·, z2)〉KΘz2
,
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where dσ(z1) is normalized Lebesgue measure on T and the last equality holds
for z2 ∈ T \ EΘ. An application of Hölder’s inequality immediately implies that
Ff ,g ∈ L1(T). Furthermore, our assumptions imply thatH(K2) ⊥ z2H(K2). From

this we can conclude that f ⊥ zj
2g in S2, and hence in H2(D2), for all j ∈ Z \ {0}.

Then the Fourier coefficients of Ff ,g can be computed as follows:

F̂f ,g(j) =
∫
T

z−j
2 Ff ,g(z2)dσ(z2) =

∫
T2

z−j
2 f (z)g(z)dσ(z1)dσ(z2) = 0

for j ∈ Z \ {0}. Then basic Fourier analysis (for example, Corollary 8.45 in [13])
implies that

Ff ,g(z2) = F̂f ,g(0) = 〈 f , g〉H(K2)
for a.e. z2 ∈ T.

But, the formula for Ff ,g implies that it is continuous on T \ EΘ and so for z2 ∈
T \ EΘ,

〈 f (·, z2), g(·, z2)〉KΘz2
= Ff ,g(z2) = 〈 f , g〉H(K2)

.

This implies Jτ is an isometry for τ ∈ T \ EΘ. Since it is also surjective, Jτ is
unitary and so

dimH(K2) = dimKΘτ
= m,

completing the proof.

REMARK 2.3. Let Θ = p̃
p be rational inner with deg Θ = (m, n) and let S2 be

as in (1.2). Then Theorems 2.1 and 2.2 can be used to deduce information about
both the functions in S2 and the inner product of S2. As mentioned earlier, we let
H2

2(D) denote the one-variable Hardy space with independent variable z2.
First, as in (2.1), let K2 be the reproducing kernel satisfying H(K2) = S2 	

z2S2. By Theorems 2.1 and 2.2, there is an orthonormal basis { q1
p , . . . , qm

p } of

H(K2) with deg qi 6 (m − 1, n) for i = 1, . . . , m. Then, since qi
p ⊥

qj
p zk

2 for all
i 6= j and k ∈ Z, one can show

(2.4) S2 = H
( m

∑
i=1

qi(z)
p(z)

qi(w)

p(w)

1− z2w2

)
=

m⊕
i=1

H
( qi(z)

p(z)
qi(w)

p(w)

1− z2w2

)
,

where the last term indicates an orthogonal decomposition of S2 into m sub-
spaces. We also claim that each subspace

S i
2 := H

( qi(z)
p(z)

qi(w)

p(w)

1− z2w2

)
is precisely the set of functions qi

p H2
2(D) and for each pair of functions qi

p fi,
qi
p gi∈S i

2,

(2.5)
〈 qi

p
fi,

qi
p

gi

〉
S i

2

= 〈 fi, gi〉H2
2 (D)

.
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One can prove this claim by defining the above inner product on the set qi
p H2

2(D).
A straightforward computation shows that this turns qi

p H2
2(D) into a reproducing

kernel Hilbert space with reproducing kernel qi(z)
p(z)

qi(w)

pi(w)
1

1−z2w2
. By the uniqueness

of reproducing kernels, the set qi
p H2

2(D) with the proposed inner product is ex-

actly S i
2.

Then, we can define a linear map U : H2
2(D)m → S2 by

(2.6) U~f :=
m

∑
i=1

qi
p

fi, for ~f = ( f1, . . . , fm) ∈ H2
2(D)m.

We will show that this map is actually unitary. First, observe that this map is well
defined and surjective since (2.4) and the above characterization of the subspaces

S i
2 imply that S2 is composed precisely of functions of the form

m
∑

i=1

qi
p fi, where

each fi ∈ H2
2(D). Moreover, as (2.4) is an orthogonal decomposition and (2.5)

gives the inner product on each S i
2, we can conclude that for all ~f ,~g ∈ H2

2(D)m,

〈U~f ,U~g〉S2 =
m

∑
i=1

〈 qi
p

fi,
qi
p

gi

〉
S i

2

=
m

∑
i=1
〈 fi, gi〉H2

2 (D)
= 〈~f ,~g〉H2

2 (D)m .

Thus, U is unitary as desired.

3. THE STRUCTURE AND NUMERICAL RANGE OF S1
Θ

Let Θ be rational inner and writeKΘ = S1⊕S2, for subspaces S1, S2 that are
respectively z1- and z2-invariant. As the following lemma shows, the numerical
range of PS1 S̃ 1

Θ|S1 is not particularly interesting.

LEMMA 3.1. Let Θ = p̃
p be rational inner of degree (m, n) and let S1 be a z1-

invariant subspace of KΘ as in (1.2).
(i) If n = 0, then ClosW(PS1 S̃ 1

Θ|S1) = {0}.
(i) If n > 0, then ClosW(PS1 S̃ 1

Θ|S1) = D.

Proof. Let K1 be as in (2.1), i.e. the reproducing kernel satisfying H(K1) =
S1 	 z1S1. Then

S1 =
∞⊕

k=0

zk
1H(K1).

If n = 0, then Theorem 2.2 implies that dimH(K1) = 0, so S1 = {0}. It follows
immediately that ClosW(PS1 S̃ 1

Θ|S1) = {0}.
Now assume n > 0. Then by Theorems 2.1 and 2.2, we can find an orthonor-

mal basis { r1
p , . . . , rn

p } ofH(K1) with each ri a polynomial. Define

ZK1 := {w1 ∈ D : ri(w1, w2) = 0 for all w2 ∈ D and 1 6 i 6 n}.
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If w1 ∈ ZK1 , then each ri(w1, ·) ≡ 0 on D. Thus, ri(w1, ·) ≡ 0 on C. This implies
ri vanishes on the zero set of z1 − w1. Since z1 − w1 is irreducible, Hilbert’s Null-
stellensatz implies that z1 − w1 divides each ri and as the ri are polynomials, this
implies that ZK1 is a finite set. Observe that

K̂1(z, w) :=
K1(z, w)

1− z1w1
=

n

∑
i=1

ri(z)
p(z)

ri(w)

p(w)

1− z1w1

is the reproducing kernel for S1. Fix w1 ∈ D \ ZK1 and choose w2 ∈ D so that
at least one ri(w1, w2) 6= 0. Then setting w = (w1, w2), we have ‖K̂1(·, w)‖2

S1
=

K̂1(w, w) 6= 0 and since S1 is z1-invariant,

w1‖K̂1(·, w)‖2
S1
=w1K̂1(w, w)= 〈Mz1 K̂1(·, w), K̂1(·, w)〉S1 = 〈S̃

1
ΘK̂1(·, w), K̂1(·, w)〉S1 .

Since ‖K̂1(·, w)‖2
S1
6= 0, we can divide both sides of the above equation by it and

conclude that the point w1 ∈ W(PS1 S̃ 1
Θ|S1). Since this works for all w1 ∈ D \ ZK1

and ZK1 is finite,

D ⊆ ClosW(PS1 S̃ 1
Θ|S1).

The other containment follows immediately because S̃ 1
Θ is a contraction.

By Lemma 3.1, the interesting behavior of S̃ 1
Θ occurs on the subspace S2. Be-

cause of this, as mentioned earlier, we primarily study this alternate compression
of the shift

S1
Θ := PS2 S̃ 1

Θ|S2 = PS2 Mz1 |S2 .

In the following result, we show that S1
Θ is unitarily equivalent to a simple z2-

matrix-valued Toeplitz operator, as defined in (1.4).

THEOREM 3.2. Let Θ = p̃
p be rational inner of degree (m, n) and let S2 be as

in (1.2). Then there exists an m× m matrix-valued function MΘ, with entries that are
rational functions of z2 and continuous on D, such that

(3.1) S1
Θ = U TMΘ

U ∗,

where U : H2
2(D)m → S2 is the unitary operator defined in (2.6).

Proof. Throughout this proof, we use the notation defined and explained in
Remark 2.3. Recall that { q1

p , . . . , qm
p } denotes the previously-obtained orthonor-

mal basis ofH(K2) := S2 	 z2S2.
By Proposition 3.4 in [6], S2 is invariant under the backward shift operator

S1∗
Θ = M∗z1

|S2 . This means that there are one-variable functions h1j, . . . , hmj ∈
H2

2(D) such that

(3.2) M∗z1

( qj

p

)
=

q1

p
h1j + · · ·+

qm

p
hmj, for j = 1, . . . , m.
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Define the m×m matrix-valued function H by

(3.3) H :=

h11 · · · h1m
...

. . .
...

hm1 · · · hmm

 ,

and define the matrix-valued function MΘ by

(3.4) MΘ := H∗.

To establish the properties of MΘ, we will show that H has entries that are rational
in z2 and continuous on D. First rewrite the terms in (3.2) as(

M∗z1

qj

p

)
(z) =

Qj(z)
p(z)p(0, z2)

and Qj(z) =
m−1

∑
k=0

Qjk(z2)zk
1

for a polynomial Qj and write

qi(z) =
m−1

∑
k=0

qik(z2)zk
1, for i = 1, . . . , m.

Then by canceling the p from each denominator from (3.2) and looking at the
coefficients in front of each zk

1 separately, (3.2) can be rewritten as q10(z2) . . . qm0(z2)
...

. . .
...

q1(m−1)(z2) . . . qm(m−1)(z2)


h1j(z2)

...
hmj(z2)

 =


Qj0(z2)

p(0,z2)
...

Qj(m−1)(z2)

p(0,z2)

 ,

for z2 ∈ D and j = 1, . . . , m. Let Aj denote the m×m matrix function in the above
equation. Since det Aj is a one-variable polynomial, it is either identically zero or
has finitely many zeros. First assume det Aj ≡ 0, so that clearly det Aj(τ) = 0 for
each τ ∈ T. This implies that for each fixed τ ∈ T, one qk(·, τ) can be written as a
linear combination of the other qi(·, τ). However by Theorem 2.2, for τ ∈ T \ EΘ,
the set { q1

p
(·, τ), . . . ,

qm

p
(·, τ)

}
is a basis for the m-dimensional set KΘτ

. Thus the set must be linearly indepen-
dent, a contradiction.

Hence, det Aj 6≡ 0. Thus, the matrix Aj(z2) is invertible except at (at most)
a finite number of points z2 ∈ D and so we can solve for each column of H ash1j(z2)

...
hmj(z2)

 =

 q10(z2) . . . qm0(z2)
...

. . .
...

q1(m−1)(z2) . . . qm(m−1)(z2)


−1


Qj0(z2)

p(0,z2)
...

Qj(m−1)(z2)

p(0,z2)

 .

This shows that the entries of H are rational functions in z2 and so by (3.4), the
entries of MΘ are rational in z2.
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Since the entries of H are also in H2
2(D), we claim that they cannot have any

singularities in D. That there are no singularities in D should be clear. To see that
there are no singularities on T, proceed by contradiction and assume that some
hij has a singularity at a τ ∈ T. Then, after writing hij as a ratio of one-variable
polynomials with no common factors, the denominator of hij vanishes at τ but
the numerator does not. By the reproducing property of H2

2(D), we know that
for each z2 ∈ D,

|hij(z2)| =
∣∣∣〈hij,

1
1− · z2

〉
H2

2 (D)

∣∣∣ 6 ‖hij‖H2
2 (D)

1√
1− |z2|2

.

But since hij has a singularity at τ, there is a sequence {z2,n} → τ and positive
constant C such that |hij(z2,n)| > C 1

1−|z2,n |
for each n, a contradiction. Thus H,

and hence MΘ, has entries continuous on D.
Now we establish (3.1). Fix f , g ∈ S2. Then by Remark 2.3, there exist

vector-valued functions ~f = ( f1, . . . , fm),~g = (g1, . . . , gm) ∈ H2
2(D)m such that

f =
m

∑
i=1

qi
p

fi = U~f and g =
m

∑
i=1

qi
p

gi = U~g,

so ~f = U ∗ f and ~g = U ∗g. Then using the inner product formulas from Re-
mark 2.3, we can compute

〈S1
Θ f , g〉S2 = 〈 f , M∗z1

g〉S2 =
〈 m

∑
i=1

qi
p

fi,
m

∑
j=1

M∗z1

( qj

p

)
gj

〉
S2

=
m

∑
i,j=1

〈 qi
p

fi,
qi
p

hijgj

〉
S2

=
m

∑
i,j=1
〈 fi, hijgj〉H2

2 (D)
= 〈~f , TH~g〉H2

2 (D)m = 〈TMΘ
~f ,~g〉H2

2 (D)m

= 〈 U TMΘ
U ∗ f , g〉S2 ,

where TH is the z2-matrix-valued Toeplitz operator with symbol H. Since f , g ∈
S2 were arbitrary, this immediately gives (3.1).

EXAMPLE 3.3. Before proceeding, observe that Theorem 3.2 generalizes the
matrix from (1.1). Specifically, let Θ = p̃

p be a rational inner function with deg Θ =

(m, 0), so Θ is a finite Blaschke product of degree m. Then the associated two-
variable model space is

KΘ = H
( 1−Θ(z1)Θ(w1)

(1− z1w1)(1− z2w2)

)
,

which is z2-invariant. Thus, we can set S2 = KΘ and S1 = {0}. One can actually
show that this is the only choice of S1 and S2. Then

H(K2) := S2 	 z2S2 = H
(1−Θ(z1)Θ(w1)

1− z1w1

)
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is the one-variable model space associated to Θ with independent variable z1.
It follows immediately that the one-variable Takenaka–Malmquist–Walsh basis
{ f1, . . . , fm} is an orthonormal basis for H(K2) and each fi = qi

p for some one-
variable polynomial qi with deg qi 6 m− 1. Because the one-variable model space
(with independent variable z1) is also invariant under the backward shift M∗z1

, we
can conclude that the unique hij from (3.2) are constants. Then since H(K2) is a
subspace of KΘ, we can use (3.2)–(3.4) to conclude

(MΘ)ij = H ji =
〈

M∗z1

qi
p

,
qj

p

〉
KΘ

=
〈

M∗z1

qi
p

,
qj

p

〉
H(K2)

= 〈PH(K2)
Mz1 f j, fi〉H(K2)

,

which is a constant matrix agreeing with the matrix from (1.1).

As a corollary of Theorem 3.2, we can characterize the numerical range of
S1

Θ, denoted byW(S1
Θ).

COROLLARY 3.4. Let Θ = p̃
p be rational inner of degree (m, n), let S2 be as in

(1.2), and let MΘ be as in Theorem 3.2. Then

(3.5) Clos(W(S1
Θ)) = Conv

( ⋃
τ∈T
W(MΘ(τ))

)
.

Proof. By Theorem 3.2, the operator S1
Θ has the same numerical range as the

z2-matrix-valued Toeplitz operator TMΘ
: H2

2(D)m → H2
2(D)m. By Theorem 1 of

[5], the closure of the numerical rangeW(TMΘ
) is equal to

Conv{W(A) : A ∈ R(MΘ)},

whereR(MΘ) is the essential range of MΘ as a function on T. It is easy to see that
this set is closed and so we do not need to take its closure. Since MΘ is continuous
on T, its essential range will equal its range, i.e.

Conv{W(A) : A ∈ R(MΘ)} = Conv
( ⋃

τ∈T
W(MΘ(τ))

)
,

proving (3.5).

One can also consider the family of one-variable functions {Θτ = Θ(·, τ) :
τ ∈ T \ EΘ}, where EΘ is the exceptional set defined in (2.3). For each τ ∈ T \ EΘ,
let SΘτ

denote the compression of the shift on KΘτ
, the one-variable model space

associated to Θτ . It turns out that the numerical rangesW(SΘτ
) are closely related

toW(S1
Θ).

THEOREM 3.5. Let Θ = p̃
p be rational inner of degree (m, n), let EΘ be the excep-

tional set from (2.3) and let S2 be as in (1.2). Then

(3.6) Clos(W(S1
Θ)) = Clos

(
Conv

( ⋃
τ∈T\EΘ

W(SΘτ
)
))

.
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Proof. This proof will use the same notation as the proof of Theorem 3.2.
First fix τ ∈ T \ EΘ. By Theorem 2.2, the set{ q1

p
(·, τ), . . . ,

qm

p
(·, τ)

}
is an orthonormal basis for KΘτ

with independent variable z1. Consider (3.2). As
all involved functions are rational with no singularities on D× (D \ EΘ) and the
backward shift operator S1∗

Θ = M∗z1
|S2 treats z2 like a constant, we can extend this

formula to the functions qi
p (·, τ). Specifically,

M∗z1

( qj

p
(·, τ)

)
=
(

M∗z1

qj

p

)
(·, τ) =

q1

p
(·, τ)h1j(τ) + · · ·+

qm

p
(·, τ)hmj(τ),

for j = 1, . . . , m. Now, we use arguments similar to those in the proof of Theo-
rem 3.2 to show W(SΘτ

) = W(MΘ(τ)). Specifically, fix f ∈ KΘτ
. Then there

exist unique constants a1, . . . , am ∈ C such that

f =
m

∑
i=1

ai
qi
p
(·, τ).

Moreover, ‖ f ‖2
KΘτ

=1 if and only if
m
∑

i=1
|ai|2=1, i.e. exactly when~a := (a1, . . . , am)

∈ Cm has norm one. Then,

〈SΘτ
f , f 〉KΘτ

= 〈 f , M∗z1
f 〉KΘτ

=
〈 m

∑
i=1

ai
qi
p
(·, τ),

m

∑
j=1

aj M∗z1

( qj

p
(·, τ)

)〉
KΘτ

=
m

∑
i,j=1

〈
ai

qi
p
(·, τ),

qi
p
(·, τ)ajhij(τ)

〉
KΘτ

=
m

∑
i,j=1
〈ai, ajhij(τ)〉C

= 〈~a, H(τ)~a〉Cm = 〈MΘ(τ)~a,~a〉Cm ,

where we used the definitions of H and MΘ from (3.3) and (3.4). This sequence
of equalities proves thatW(SΘτ

) =W(MΘ(τ)). Thus, we have

Clos
(

Conv
( ⋃

τ∈T\EΘ

W(SΘτ
)
))

=Clos
(

Conv
( ⋃

τ∈T\EΘ

W(MΘ(τ))
))

=Clos
(

Conv
( ⋃

τ∈T
W(MΘ(τ))

))
=Clos(W(S1

Θ)),

where we used Corollary 3.4 and the fact that MΘ is continuous on T.

If Θ = p̃
p is rational inner of degree (m, n), then there are typically many

ways to decompose KΘ into shift invariant subspaces S1 and S2. Indeed, accord-
ing to Corollary 13.6 in [22], if deg p = deg p̃, there is a unique such decom-
position if and only if p̃ and p have 2mn common zeros (including intersection
multiplicity) on T2. Nevertheless, Theorem 3.5 allows us to show that W(S1

Θ)
does not depend on the decomposition chosen.
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COROLLARY 3.6. Let Θ = p̃
p be rational inner of degree (m, n). Let

KΘ = S1 ⊕ S2 = S̃1 ⊕ S̃2

where both Sj, S̃j are zj-invariant subspaces for j = 1, 2. Then

Clos(W(PS2 Mz1 |S2)) = Clos(W(PS̃2
Mz1 |S̃2

)).

Proof. By Theorem 3.5,

Clos(W(PS2 Mz1 |S2)) = Clos
(

Conv
( ⋃

τ∈T\EΘ

W(SΘτ
)
))

= Clos(W(PS̃2
Mz1 |S̃2

)),

as desired.

Theorem 3.5 is particularly useful because the compressions of the shift on
one-variable model spaces are well studied. Specifically, let B be a degree m
Blaschke product with zeros α1, . . . , αm and let SB denote the compression of the
shift on KB. Then, as mentioned in the introduction, one matrix of SB is given by
(1.1). Using this formula, it is easy to deduce that the zeros α1, . . . , αm are all in
W(SB). We will use this to establish the following result.

THEOREM 3.7. Let Θ = p̃
p be rational inner of degree (m, n) and let S2 be as in

(1.2). Then the numerical radius w(S1
Θ) = 1 if and only if Θ has a singularity on T2.

Proof. (⇒) Assume w(S1
Θ) = 1. Then there exists a sequence {λn} ⊆ W(S1

Θ)
such that |λn| → 1. Since {λn} is bounded, it has a subsequence converging to
some λ ∈ T. Thus, λ ∈ Clos(W(S1

Θ)). By Corollary 3.4,

λ ∈ Conv
( ⋃

τ∈T
W(MΘ(τ))

)
.

Again by Corollary 3.4, as S1
Θ is a contraction, every α ∈ ⋃

τ∈T
W(MΘ(τ)) satisfies

|α| 6 1. Since |λ| = 1, we can conclude that there is some τ̃ ∈ T and some
λ̃ ∈ W(MΘ(τ̃)) such that |λ̃| = 1.

Now by way of contradiction, assume Θ does not have a singularity at
(τ1, τ̃) for every τ1 ∈ T. Then τ̃ ∈ T \ EΘ and so by the proof of Theorem 3.5,

W(SΘτ̃
) =W(MΘ(τ̃)).

Thus λ̃ ∈ W(SΘτ̃
). This gives a contradiction since the numerical range of a com-

pressed shift on a model space associated to a finite Blaschke product is strictly
contained in D. See p. 181 of [16] for details. Thus Θ must have a singularity at
(τ1, τ̃) for some τ1 ∈ T.

(⇐) Since S1
Θ is a contraction, w(S1

Θ) 6 1. Assume Θ has a singularity at
τ̃ = (τ̃1, τ̃2) ∈ T2. Then as Θ = p̃

p , we must have p̃(τ̃) = 0. To prove the desired
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claim, we will show that τ̃1 ∈ W(S1
Θ) and as |τ̃1| = 1, we have w(S1

Θ) > 1. Write

p̃(z1, z2) =
m

∑
k=0

p̃k(z2)zk
1 = p̃m(z2)

(
zm

1 +
m−1

∑
k=0

p̃k(z2)

p̃m(z2)
zk

1

)
,

for one-variable polynomials p̃1, . . . , p̃m. Note that p̃m does not vanish on T. If
it did, one could conclude that p(0, ·) vanishes on T, a contradiction of the fact
that p does not vanish on D× T. Now for each τ ∈ T, consider the one-variable
polynomial

p̃(z1, τ) = p̃m(τ)
(

zm
1 +

m−1

∑
k=0

p̃k(τ)

p̃m(τ)
zk

1

)
and factor it as

p̃(z1, τ) = p̃m(τ)
m

∏
k=1

(z1 − αk(τ)),

where α1(τ), . . . , αm(τ) are the zeros of p̃(·, τ). Now we use the fact that the zeros
of a polynomial depend continuously on its coefficients, see [27].

Fix ε > 0. Since the coefficients
{

p̃k(τ)
p̃m(τ)

}
are continuous on T, there exist

δ1, δ2 > 0 such that if |τ − τ̃2| < δ1, then∣∣∣ p̃k(τ)

p̃m(τ)
− p̃k(τ̃2)

p̃m(τ̃2)

∣∣∣ < δ2 for k = 1, . . . , m− 1

and reordering the αk(τ) if necessary

|αk(τ)− αk(τ̃2)| < ε for k = 1, . . . , m.

Without loss of generality, we can assume α1(τ̃2) = τ̃1. Since ε > 0 was arbitrary
and EΘ is finite, the above argument shows that

τ̃1 ∈ Clos{α1(τ) : τ ∈ T \ EΘ} ⊆ Clos
( ⋃

τ∈T\EΘ

W(SΘτ
)
)
⊆ Clos(W(S1

Θ)),

where we used equation (1.1) to show that each α1(τ) ∈ W(SΘτ
) and Theorem 3.5

to conclude the last containment.

4. EXAMPLE: S1
Θ FOR SIMPLE RATIONAL INNER FUNCTIONS

In this section, we illustrate Theorem 3.2 using a particular class of rational

inner functions. Specifically, let Θ =
m
∏
i=1

θi, where each θi is a degree (1, 1) rational

inner function with a singularity on T2. In what follows, we will decompose KΘ

into specific Mz1 - and Mz2 -invariant subspaces S1 and S2 (also called z1- and z2-
invariant), find an orthonormal basis of H(K2) := S2 	 z2S2, and use this basis
to compute the matrix-valued function MΘ from Theorem 3.2.
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4.1. PRELIMINARIES. We first require preliminary information about degree (1, 1)
rational inner functions with a singularity on T2 and their associated model
spaces. To indicate that these are particularly simple functions, we denote them
with θ rather than Θ. Then for such a θ, there is a polynomial p(z) = a + bz1 +
cz2 + dz1z2 with no zeros in D2 ∪ (T×D) ∪ (D×T) such that

θ(z) =
p̃(z)
p(z)

=
az1z2 + bz2 + cz1 + d
a + bz1 + cz2 + dz1z2

.

In this situation, it is particularly easy to identify shift-invariant subspaces S1 and
S2 associated to the two-variable model space Kθ .

LEMMA 4.1. Let θ = p̃
p be a degree (1, 1) rational inner function with p(z) =

a + bz1 + cz2 + dz1z2. Assume p vanishes at τ = (τ1, τ2) ∈ T2. Then Kθ = S1 ⊕ S2,
where

(4.1) S1 = H
( g(z)g(w)

1− z1w1

)
and S2 = H

( f (z) f (w)

1− z2w2

)
with the functions in the reproducing kernels given by

g(z) =
γ(z1 − τ1)

p(z)
and f (z) =

λ(z2 − τ2)

p(z)
,

for any λ, γ satisfying |λ|2 = |ac − db| and |γ|2 = |ab − dc|. Moreover, S1 and S2
are the only subspaces of Kθ satisfying Kθ = S1 ⊕ S2 that are respectively z1- and
z2-invariant.

Proof. Define f and g as above. As mentioned earlier, by [4], [7], there are
canonical subspaces Smax

1 and Smin
2 with Kθ = Smax

1 ⊕ Smin
2 that are respectively

z1- and z2-invariant. As they are subspaces of H2(D2), we can write them as

Smax
1 = H

( K1(z, w)

1− z1w1

)
and Smin

2 = H
( K2(z, w)

1− z2w2

)
,

for Agler kernels (K1, K2) of θ defined as in (2.1). Our first goal is to show that
K1(z, w) = g(z)g(w) and K2(z, w) = f (z) f (w). Now, by Theorems 2.1 and 2.2,
there are polynomials

r(z1) = A + Bz1 and q(z2) = C + Dz2

such that K1(z, w) = r(z1)
p(z)

r(w1)
p(w)

and K2(z, w) = q(z2)
p(z)

q(w2)
p(w)

. The definition of Agler
kernels implies that (K1, K2) satisfy the formula

(4.2) 1− θ(z)θ(w) = (1− z1w1)
q(z2)

p(z)
q(w2)

p(w)
+ (1− z2w2)

r(z1)

p(z)
r(w1)

p(w)
.

Multiplying through by p(z)p(w) and letting (w1, w2)→ (τ1, τ2) gives

0 = q(τ2)(1− z1τ1)q(z2) + r(τ1)(1− z2τ2)r(z1).
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This implies that q(τ2) = 0 and so, q(z2) = F(z2 − τ2) for some constant F. Sim-
ilarly, r(z1) = G(z1 − τ1) for some constant G. To show that K1 and K2 have the
desired expressions in terms of g and f , we just need to show that |F|2 = |λ|2 and
|G|2 = |γ|2.

Substituting the formulas for q and r into (4.2) and multiplying through by
p(z)p(w) gives

p(z)p(w)− p̃(z) p̃(w)

= (1− z1w1)|F|2(z2 − τ2)(w2 − τ2) + (1− z2w2)|G|2(z1 − τ1)(w1 − τ1).

Recalling that p(z) = a + bz1 + cz2 + dz1z2 and p̃(z) = az1z2 + bz2 + cz1 + d, we
can equate the coefficients of the monomials 1, z1w1, z1 and z2 from both sides of
the above equation to conclude:

|a|2 − |d|2 = |F|2 + |G|2, |b|2 − |c|2 = −|F|2 + |G|2,

ab− dc = −τ1|G|2, ac− db = −τ2|F|2.

The last two equations show |F|2 = |λ|2 and |G|2 = |γ|2, implying that K1(z, w) =

g(z)g(w) and K2(z, w) = f (z) f (w). In combination with the first equation, one
can also obtain the useful formulas

(4.3) τ1 =
−2(ab− cd)

|a|2 + |b|2 − |c|2 − |d|2 and τ2 =
−2(ac− bd)

|a|2 + |c|2 − |b|2 − |d|2 .

To finish the proof, observe that p and p̃ have two common zeros (including inter-
section multiplicity) on T2. As θ is a degree (1, 1) rational inner function, Corol-
lary 13.6 in [22] implies that θ has a unique pair of Agler kernels and hence, a
unique pair of decomposing subspaces S1 and S2 that are respectively z1- and
z2-invariant. This unique pair S1 and S2 must then be the subspaces Smax

1 and
Smin

2 found earlier.

It is worth pointing out that for the function f in Lemma 4.1, we can choose
any λ satisfying |λ|2 = |ac− db|. However, in the sequel, we will typically choose
the particular λ satisfying λ2 = ac− db. We now obtain additional information
about M∗z1

applied to θ and this particular function f from Lemma 4.1.

LEMMA 4.2. Let θ = p̃
p be a degree (1, 1) rational inner function with p(z) =

a + bz1 + cz2 + dz1z2. Assume p vanishes at τ = (τ1, τ2) ∈ T2 and let f be defined as
in Lemma 4.1 with λ further satisfying λ2 = ac− db. Then

(M∗z1
f )(z) = f (z)

(
− b + dz2

a + cz2

)
; (M∗z1

θ)(z) = f (z)λ
( z2 − τ2

a + cz2

)
.
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Proof. First, simple computations using the definition of f and p give

(M∗z1
f )(z) =

λ(z2 − τ2)

z1

( 1
p(z)

− 1
p(0, z2)

)
= λ(z2 − τ2)

−b− dz2

p(z)p(0, z2)

= f (z)
(
− b + dz2

a + cz2

)
.

Similarly, one can compute

(M∗z1
θ)(z) =

1
z1

( p̃(z)
p(z)

− p̃(0, z2)

p(0, z2)

)
.

Using the definitions of p and p̃, one can obtain a common denominator, collect
like terms, and cancel the z1 from the denominator to obtain:

(4.4) (M∗z1
θ)(z) =

(ac− db)z2
2 + (|a|2 + |c|2 − |b|2 − |d|2)z2 + (ac− bd)

p(z)p(0, z2)
.

Recall that τ2 ∈ T. Then using the formula for τ2 from (4.3), one can conclude
that ac− bd 6= 0 and

(4.5) τ2 =
1
τ2

= −|a|
2 + |c|2 − |b|2 − |d|2

2(ac− bd)
and τ2

2 =
τ2

τ2
=

ac− bd
ac− db

.

Taking the numerator from (4.4) and factoring out (ac− db) gives

(ac− db)z2
2 + (|a|2 + |c|2 − |b|2 − |d|2)z2 + (ac− bd)

= (ac− db)
(

z2
2 +
|a|2 + |c|2 − |b|2 − |d|2

ac− db
z2 +

ac− bd
ac− db

)
= λ2(z2

2 − 2τ2z2 + τ2
2 ).

Combining our formulas gives

(M∗z1
θ)(z) = λ2 (z2 − τ2)

2

p(z)p(0, z2)
= λ f (z)

( z2 − τ2

a + cz2

)
,

the desired equality.

4.2. MΘ FOR PRODUCT Θ. Let us now return to the question posed at the begin-

ning of the section. Let Θ =
m
∏
i=1

θi, where each θi is a degree (1, 1) rational inner

function with a singularity on T2. We can now use Lemma 4.1 to decompose KΘ

into specific z1- and z2- invariant subspaces S1 and S2 and find an orthonormal
basis ofH(K2) := S2	 z2S2. Then using Lemma 4.2, we will compute the matrix
function MΘ from Theorem 3.2.

For each i, let S1,θi , S2,θi , and fi denote the canonical subspaces and re-
producing function associated to θi in Lemma 4.1. Then we have the following
proposition.
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PROPOSITION 4.3. Let Θ =
m
∏
i=1

θi, where each θi is a degree (1, 1) rational inner

function p̃i
pi

where pi(z) = ai + biz1 + ciz2 + diz1z2 with a singularity at (τ1,i, τ2,i) ∈
T2. Define

(4.6) S1 :=
m⊕

i=1

(( i−1

∏
k=1

θk

)
S1,θi

)
and S2 :=

m⊕
i=1

(( i−1

∏
k=1

θk

)
S2,θi

)
.

Then KΘ = S1 ⊕ S2 and S1, S2 are respectively z1- and z2-invariant. Furthermore, if
H(K2) = S2 	 z2S2, then the set

(4.7)
{

f1, θ1 f2, θ1θ2 f3, . . . ,
( m−1

∏
k=1

θk

)
fm

}
is an orthonormal basis forH(K2), where each fi(z) =

λi(z2−τ2,i)
pi(z)

and λ2
i = aici − dibi.

Proof. Observe that

(4.8) KΘ = Kθ1 ⊕ θ1Kθ2 ⊕ (θ1θ2)Kθ3 ⊕ · · · ⊕
( m−1

∏
k=1

θk

)
Kθm =

m⊕
i=1

( i−1

∏
k=1

θk

)
Kθi .

This can be seen by observing that the subspaces in (4.8) are orthogonal to each
other and their reproducing kernels add to that of KΘ. Now by Lemma 4.1, we
can write each Kθi = S1,θi ⊕ S2,θi , where these subspaces are respectively z1- and
z2-invariant. Define S1 and S2 as in (4.6). Then, S1 is an orthogonal sum of
z1-invariant subspaces and so is also a z1-invariant subspace. Similarly, S2 is
z2-invariant. By (4.8), it immediately follows that KΘ = S1 ⊕ S2. To prove the
orthonormal basis result, observe that the components of S2 in (4.6) are pairwise-
orthogonal and each is z2-invariant. Thus

S2	z2S2=
m⊕

i=1

(( i−1

∏
k=1

θk

)
S2,θi	z2

(( i−1

∏
k=1

θk

)
S2,θi

))
=

m⊕
i=1

( i−1

∏
k=1

θk

)
(S2,θi	z2S2,θi ),

where we used the fact that each
i−1
∏

k=1
θk is inner. By the reproducing kernel formula

in Lemma 4.1, each singleton set { fi} is an orthonormal basis for S2,θi	z2S2,θi .

Thus each singleton set
{( i−1

∏
k=1

θk

)
fi

}
is an orthonormal basis for

( i−1
∏

k=1
θk

)
(S2,θi	

z2S2,θi ). Since the decomposition of S2	 z2S2 into components in the above equa-

tion is orthogonal, the set
{

f1, θ1 f2, . . . ,
( m−1

∏
k=1

θk

)
fm

}
gives the desired orthonor-

mal basis.

Recall that deg Θ = (m, m). By Theorem 3.2, the operator S1
Θ := PS2 Mz1 |S2

is unitarily equivalent to a z2 matrix-valued Toeplitz operator with m×m symbol
MΘ, whose entries are rational in z2 and continuous on D. For this particular Θ
and S2, we can compute MΘ.
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THEOREM 4.4. Let Θ =
m
∏
i=1

θi, where each θi is a degree (1, 1) rational inner

function p̃i
pi

where pi(z) = ai + biz1 + ciz2 + diz1z2 has a zero at τi = (τ1,i, τ2,i) ∈ T2.
Let S2 be as in (4.6). Then, the m×m matrix-valued function MΘ from Theorem 3.2 is
given entry-wise by

MΘ(z2)ji =


λj

( z2−τ2,j
aj+cjz2

)
λi

(
z2−τ2,i
ai+ciz2

) j−1
∏

k=i+1

(
bkz2+dk
ak+ckz2

)
if j > i,(

− bi+diz2
ai+ciz2

)
if j = i,

0 if j < i,

where each λi satisfies λ2
i = aici − dibi.

Proof. By the proof of Theorem 3.2, we need only show that this MΘ satisfies
the correct formula. Specifically, let{

f1, θ1 f2, θ1θ2 f3, . . . ,
( m−1

∏
k=1

θk

)
fm

}
denote the orthonormal basis of H(K2) = S2 	 z2S2 from Proposition 4.3. Then
by the proof of Theorem 3.2, MΘ = H∗ where H is the m× m matrix of unique
functions hij ∈ H2

2(D) satisfying

M∗z1

(( j−1

∏
k=1

θk

)
f j

)
= f1h1j + · · ·+

( m−1

∏
k=1

θk

)
fmhmj, for j = 1, . . . , m.

Then to identify each hij we need only write

M∗z1

(( j−1

∏
k=1

θk

)
f j

)
=
( i−1

∏
k=1

θk

)
fih + g,

where h ∈ H2
2(D) and g ⊥

( i−1
∏

k=1
θk

)
Kθi . Then, we would have hij = h.

To begin computing the hij, fix i, j with i > j. Observe that the following
subspace of S2

j⊕
`=1

( `−1

∏
k=1

θk

)
Kθ`

is the two-variable model space associated to the inner function
j−1
∏

k=1
θk and hence

is invariant under M∗z1
. Thus if i > j, the fact that

M∗z1

(( j−1

∏
k=1

θk

)
f j

)
∈

j⊕
`=1

( `−1

∏
k=1

θk

)
Kθ` ⊥

( i−1

∏
k=1

θk

)
Kθi
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implies that hij ≡ 0. For the other cases, we will use the identity

(4.9) M∗z1
(GH) = HM∗z1

(G) + G(0, z2)M∗z1
(H),

for any G, H ∈ H2(D2) with GH ∈ H2(D2). Now fix i = j and observe that by
(4.9) and Lemma 4.2,

M∗z1

(( j−1

∏
k=1

θk

)
f j

)
=
( j−1

∏
k=1

θk

)
M∗z1

( f j) + f j(0, z2)M∗z1

( j−1

∏
k=1

θk

)
=
( j−1

∏
k=1

θk

)
f j

(
−

bj + djz2

aj + cjz2

)
+ f j(0, z2)M∗z1

( j−1

∏
k=1

θk

)
.

The second term is in the model space associated to
j−1
∏

k=1
θk and hence, is orthogo-

nal to
( j−1

∏
k=1

θk

)
Kθj . This follows from Proposition 3.5 in [6], which shows that if φ

is an inner function on D2, then (M∗z1
φ)H2

2(D) ⊆ Kφ. Thus, we can conclude that

hjj(z2) = −
bj + djz2

aj + cjz2
.

Lastly, fix i, j with i < j. Then by applying (4.9) again, we have

M∗z1

(( j−1

∏
k=1

θk

)
f j

)
=
( i

∏
k=1

θk

)
M∗z1

(( j−1

∏
k=i+1

θk

)
f j

)
+
(( j−1

∏
k=i+1

θk

)
f j

)
(0, z2)M∗z1

( i

∏
k=1

θk

)
=
( i

∏
k=1

θk

)
M∗z1

(( j−1

∏
k=i+1

θk

)
f j

)
+
(( j−1

∏
k=i+1

θk

)
f j

)
(0, z2)

( i−1

∏
k=1

θk

)
M∗z1

(θi)

+
((j−1

∏
k=i

θk

)
f j

)
(0, z2)M∗z1

( i−1

∏
k=1

θk

)
.

Let us consider the terms in the last sum. The first term lies in
( i−1

∏
k=1

θk

)
θi H2(D2)

and so is orthogonal to
( i−1

∏
k=1

θk

)
Kθi . Similarly, the third term is in the model

space associated to
( i−1

∏
k=1

θk

)
by Proposition 3.5 in [6] and so is orthogonal to( i−1

∏
k=1

θk

)
Kθi . Thus, the second term is the only one that contributes to hij. By

Lemma 4.2, we can replace M∗z1
θi in the second term to obtain

(( j−1

∏
k=i+1

θk

)
f j

)
(0, z2)λi

( z2 − τ2,i

ai + ciz2

)( i−1

∏
k=1

θk

)
fi.
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It follows that

hij(z2) =
(( j−1

∏
k=i+1

θk

)
f j

)
(0, z2)λi

( z2 − τ2,i

ai + ciz2

)
= λj

( z2 − τ2,j

aj + cjz2

)
λi

( z2 − τ2,i

ai + ciz2

) j−1

∏
k=i+1

( bkz2 + dk
ak + ckz2

)
,

where we used the formulas for each θk and f j. Thus, H is defined entry-wise by

H(z2)ij =


λj

( z2−τ2,j
aj+cjz2

)
λi

(
z2−τ2,i
ai+ciz2

) j−1
∏

k=i+1

(
bkz2+dk
ak+ckz2

)
if i < j,(

− bi+diz2
ai+ciz2

)
if i = j,

0 if i > j.

Then the fact that MΘ = H∗ gives the desired formula.

To make this concrete, we compute several MΘ using the formula from The-
orem 4.4.

EXAMPLE 4.5. First, let Θ be the following degree (2, 2) rational inner func-
tion:

Θ(z) = θ1(z)θ2(z) =
(2z1z2 − z1 − z2

2− z1 − z2

)(3z1z2 − 2z1 − z2

3− z1 − 2z2

)
.

Then τ2,1 = τ2,2 = 1 and we can take λ1 = i
√

2 and λ2 = i
√

6. Then, by Theo-
rem 4.4,

MΘ(z2) =

[ 1
2−z2

0
−
√

12(1−z2)
2

(2−z2)(3−2z2)
1

3−2z2

]
.

Thus, S1
Θ is unitarily equivalent to the matrix-valued Toeplitz operator with this

symbol.

EXAMPLE 4.6. Now, let Θ be the following degree (3, 3) rational inner func-
tion:

Θ(z) = θ1(z)θ2(z)θ3(z)

=
(2z1z2 − z1 − z2

2− z1 − z2

)(3z1z2 − 2z1 − z2

3− z1 − 2z2

)(3z1z2 − z1 − z2 − 1
3− z1 − z2 − z1z2

)
.

Then τ2,1 = τ2,2 = τ2,3 = 1 and we have λ1 = i
√

2, λ2 = i
√

6, and λ3 = 2i. By
Theorem 4.4,

MΘ(z2) =


1

2−z2
0 0

−
√

12(1−z2)
2

(2−z2)(3−2z2)
1

3−2z2
0

2
√

2(1−z2)
2(1+z2)

(2−z2)(3−z2)(3−2z2)
−2
√

6(1−z2)
2

(3−2z2)(3−z2)
1+z2
3−z2

 ,
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so S1
Θ is unitarily equivalent to the matrix-valued Toeplitz operator with this sym-

bol.
It is worth pointing that out that these MΘ are lower triangular (rather than

upper triangular like (1.1)) because in our computations, we ordered our bases in
a different way than is typically done in the one-variable situation.

5. ZERO INCLUSION QUESTION FOR THE NUMERICAL RANGE

In this section, we study the question of when zero is in the numerical range
associated to a product of two degree (1, 1) rational inner functions: using S2
as defined in (4.6) and recalling that S1

Θ := PS2 Mz1 |S2 , we are interested in the
question of when zero is inW(S1

Θ).
We begin with some notation. Let Θ = θ1θ2, where each θj is a degree (1, 1)

rational inner function
p̃j
pj

and each pj(z) = aj + bjz1 + cjz2 + djz1z2 has a zero at

τj = (τ1,j, τ2,j) ∈ T2. By Corollary 3.4,

Clos(W(S1
Θ)) = Conv

( ⋃
τ∈T
W(MΘ(τ))

)
,

where MΘ is the 2 × 2 matrix-valued function given in Theorem 4.4. For our
Θ = θ1θ2,

(5.1) MΘ(z2) =

 −
(

b1+d1z2
a1+c1z2

)
0

λ1λ2

(
z2−τ2,1
a1+c1z2

)
·
(

z2−τ2,2
a2+c2z2

)
−
(

b2+d2z2
a2+c2z2

)
 ,

where λ2
j = ajcj − djbj, for j = 1, 2. In future computations, we let f j,z2 denote

(j, j)-entry of MΘ(z2) and let β j denote the center of the circle Cj :=
{
− bj+djz

aj+cjz
:

z ∈ T
}

for j = 1, 2. By Theorem 3.7, the numerical radius w(S1
Θ) = 1 and so the

entries (eigenvalues) f1,z2 and f2,z2 as well as the entire circles C1 and C2 are in D.
For each z2 ∈ T, define

Uαz2
:=
[

0 eiαz2

1 0

]
,

where αz2 ∈ R is chosen so that

(5.2) M̂Θ(z2) := U∗αz2
MΘ(z2)Uαz2

has positive (1, 2)-entry. Since Uαz2
is unitary, M̂Θ(z2) and MΘ(z2) have the same

numerical range. We will often apply the elliptical range theorem (see, for exam-
ple, [23]), which says that the numerical range of a 2× 2 upper-triangular matrix

(5.3) A =

[
a c
0 b

]
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is an elliptical disk with foci at a and b and minor axis of length |c| = (trace(A∗A)

−|a|2 − |b|2)1/2. In particular, the numerical range of M̂Θ(z2), and hence of
MΘ(z2), is an elliptical disk with foci f1,z2 and f2,z2 and minor axis length:

(5.4) mz2 := |λ1 λ2|
∣∣∣ z2 − τ2,1

a1 + c1z2

∣∣∣ · ∣∣∣ z2 − τ2,2

a2 + c2z2

∣∣∣.
5.1. WHEN IS 0 IN THE NUMERICAL RANGE? Now let us consider the zero inclu-
sion question.

PROPOSITION 5.1. Let Θ = θ1θ2, where each θj is a degree (1, 1) rational inner

function
p̃j
pj

where pj(z) = aj + bjz1 + cjz2 + djz1z2 has a zero at τj = (τ1,j, τ2,j) ∈ T2.

If there exists γ ∈ T \ {τ2,j}j=1,2 such that either

(5.5) | f1,γ|+ | f2,γ| < |1− f 1,γ f2,γ|
or

(5.6) |βj − f j,γ| > |βj| for j = 1 or j = 2,

then 0 ∈ W(S1
Θ)

0. Furthermore, if ajbj − cjdj ∈ R, then (5.6) holds if and only if

|ajdj − bjcj| > |ajbj − cjdj|.
Proof. We first perform a general computation for any z2 ∈ T. By the dis-

cussions preceding (5.4), the numerical range of MΘ(z2) is an elliptical disk with
foci f1,z2 and f2,z2 and minor axis mz2 given in (5.4). We will show that mz2 also
satisfies

(5.7) mz2 =
√

1− | f1,z2 |2
√

1− | f2,z2 |2.

To this end, observe that

1− | f j,z2 |
2 =
|aj|2 + |cj|2 − |bj|2 − |dj|2 + (ajcj − bjdj)z2 + (ajcj − bjdj)z2

|aj + cjz2|2
.

From (4.5), we know that each τ2,j =
1

τ2,j
= − |aj |2+|cj |2−|bj |2−|dj |2

2(ajcj−bjdj)
. This implies that

1− | f j,z2 |
2 = (|aj|2 + |cj|2 − |bj|2 − |dj|2)

1− τ2,j
2 z2 −

τ2,j
2 z2

|aj + cjz2|2
.

Since both τ2,j ∈ T and z2 ∈ T, and as | f j,z2 | 6 1, we have

1−| f j,z2 |
2=

(ajcj−bjdj)z2(z2−τ2,j)
2

|aj + cjz2|2
=
|ajcj−bjdj| |z−τ2,j|2

|aj + cjz2|2
=
|λj|2 |z−τ2,j|2

|aj + cjz2|2
,

where λj is defined as in Theorem 4.4. This proves (5.7). Then a simple compu-
tation using the definition of an ellipse shows that the ellipse bounding MΘ(z2)
has major axis given by

(5.8) Mz2 := |1− f 1,z2
f2,z2 |.
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Now, to establish the first claim, assume there is some γ ∈ T \ {τ2,j}j=1,2 sat-
isfying (5.5). One can see that the ellipse boundingW(MΘ(z2)) is non-degenerate
because (5.4) implies mγ 6= 0. Then combining condition (5.5) with the formula
for the major axis (5.8) immediately gives 0 ∈ W(MΘ(γ))

0 ⊆ W(S1
Θ)

0.
To establish the second claim, assume there is some γ ∈ T \ {τ2,j}j=1,2 such

that a focus f j,γ satisfies (5.6). Then, since βj is the center of the circle on which the

f j,z2 lie, |βj − f j,z2 | > |βj| for all z2 ∈ T. Thus, the convex hull of the foci contains

zero and since each |βj − f j,z2 | > 0, we know that zero lies inW(S1
Θ)

0.

Now suppose that ajbj− cjdj ∈ R and consider the circle
{
− bj+djz

aj+cjz
: z ∈ T

}
with center β j. If z ∈ T and w = − bj+djz

aj+cjz
, then a computation gives

z = −
bj + ajw
dj + cjw

.

Since |z|2 = 1, we have

1 = −
bj + ajw
dj + cjw

· −
bj + ajw
dj + cjw

,

which implies

(|aj|2 − |cj|2)|w|2 + 2(ajbj − cjdj)<w + (|bj|2 − |dj|2) = 0.

Writing w = x + iy, completing the square and computing, we see that the center
β j satisfies

β j = −
ajbj − cjdj

|aj|2 − |cj|2
,

so β j = βj by our assumption that ajbj − cjdj is real. The radius of the circle is∣∣∣ |dj|2 − |bj|2

|aj|2 − |cj|2
+

(ajbj − cjdj)
2

(|aj|2 − |cj|2)2

∣∣∣1/2
=
|ajdj − bjcj|
|aj|2 − |cj|2

,

where we used the fact that our assumptions imply |aj| 6= |cj|. Thus, condi-
tion (5.6) holds if and only if

|ajdj − bjcj| > |ajbj − cjdj|,

as desired.

REMARK 5.2. In the first part of Proposition 5.1, when zero lies in the in-
terior of a single ellipse, we can say more if the foci f1,γ and f2,γ lie on a line
through the origin. First, if the line segment joining the foci contains the origin in
its interior, then condition (5.5) implies that the ellipse is nondegenerate and zero
immediately lies in the interior of the ellipse. A similar argument can be made if
one or both of the foci is zero.
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If the foci lie on a line that passes through the origin and are in the same
quadrant, we can write f1,γ = r1eiφ and f2,γ = r2eiφ with r1, r2 > 0. Since the
numerical radius is at most 1, we know that rj 6 1 for j = 1, 2. If either r1 = 1
or r2 = 1, then condition (5.5) cannot hold. Thus 0 6 rj < 1 for j = 1, 2 and
condition (5.5) holds if and only if r1 + r2 < 1− r1r2, which happens precisely
when r1 < 1−r2

1+r2
.

Before proceeding further, we require the following lemma.

PROPOSITION 5.3. Let Θ = p̃
p be a rational inner function on D2, where p(z) =

a + bz1 + cz2 is a polynomial with a zero on T2. Then |a| = |b|+ |c|.
Proof. Since Θ is holomorphic, the polynomial p does not vanish inside D2.

If |a| < |b| + |c|, we could choose z1 and z2 to make p vanish in D2, so this is
impossible. Thus, we know that |a| > |b| + |c|. But p has a zero (τ1, τ2) on T.
Thus, a = −bτ1 − cτ2 and so |a| 6 |b|+ |c|. Combining these two inequalities,
we obtain |a| = |b|+ |c|.

In the following proposition, we restrict to the situation where Θ = θ1θ2

and each θj =
p̃j
pj

with pj(z) = aj + bjz1 + cjz2. We further require that bj < 0

and aj, cj > 0. Given these assumptions, one can divide through by |bj| and
automatically assume bj = −1.

We can now answer the zero inclusion question using the coefficients of the
polynomials defining Θ as in the following proposition.

PROPOSITION 5.4. Let Θ = θ1θ2, where each θj is a degree (1, 1) rational inner

function
p̃j
pj

where pj(z) = aj − z1 + cjz2 has a zero at τj = (τ1,j, τ2,j) ∈ T2 and
aj, cj > 0. Then

(i) 0 ∈ W(S1
Θ)

0 if and only if c1c2 > 1
2 ;

(ii) 0 ∈ ∂W(S1
Θ) if and only if c1c2 = 1

2 .

Proof. First observe that (4.3) and our assumptions on the coefficients aj, cj

imply that 1
aj−cj

= 1 and τ2,j = −1 for j = 1, 2. Corollary 3.4 implies that

Clos(W(S1
Θ)) = Conv

( ⋃
z∈T
W(MΘ(z))

)
= Conv

( ⋃
z∈T
W(MΘ(z))

)
,

and to simplify notation, we will often work with MΘ(z). Observe that the circles

of foci
{

1
aj+cjz

: z ∈ T
}

lie inW(S1
Θ) and cannot contain ∞ since S1

Θ is a contrac-

tion. The circles pass through the points 1
aj+cj

∈ R, when z = 1, and 1
aj−cj

= 1,
when z = −1.
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Now we show that 0 ∈ W(S1
Θ)

0 if and only if c1c2 > 1
2 . As pointed out after

(5.2), MΘ(z) has the same numerical range as

M̂Θ(z) =

[
1

a2+c2z

√
|a1a2c1c2| |z+1|2

|a1+c1z| |a2+c2z|
0 1

a1+c1z

]

and so we work with M̂Θ(z). In particular H(MΘ(z)) := 1
2 (M̂Θ(z) + M̂Θ(z)∗)

is a Hermitian matrix and therefore its numerical range is a real line segment.
The endpoints are the minimum and maximum eigenvalues of H(MΘ(z)), see
p. 12 of [18] or [20]. Furthermore,W(H(MΘ(z))) is the projection ofW(M̂Θ(z))
and hence, of W(MΘ(z)), onto the real axis. We now study the eigenvalues of
H(MΘ(z)), which give the minimum and maximum real parts of the elements in
W(MΘ(z)).

First, the trace of H(MΘ(z)), which is the sum of the two eigenvalues of
H(MΘ(z)), equals

a1 + c1<z
|a1 + c1z|2 +

a2 + c2<z
|a2 + c2z|2 > 0,

since aj− cj = 1. This shows that at least one eigenvalue of H(MΘ(z)) is positive.
Then, the minimum eigenvalue will be negative if and only if det(H(MΘ(z)) < 0.
In this case, we have

det(H(MΘ(z)))=det

 a2+c2<z
|a2+c2z|2

√
|a1a2c1c2|

2

(
|z+1|2

|a1+c1z| |a2+c2z|

)
√
|a1a2c1c2|

2

(
|z+1|2

|a1+c1z| |a2+c2z|

)
a1+c1<z
|a1+c1z|2

 .

Let x = <z. Then some H(MΘ(z)) will have a negative eigenvalue if and only if
there exists x ∈ (−1, 1] with

f (x) = (1 + c1 + c1x)(1 + c2 + c2x)− ((c1 + c2
1)(c2 + c2

2))(1 + x)2 < 0.

The two zeros of f occur at

1
c1c2
− 1 and − 1− 1

c1 + c2 + c1c2
.

Thus, f has a zero between−1 and 1 if and only if c1c2 > 1
2 and f will be negative

at some point x ∈ (−1, 1) if and only if one zero lies strictly between −1 and 1.
Therefore:

(i) If c1c2 < 1
2 , then there is no such value of x. This implies that for each

z ∈ T, the matrix H(MΘ(z)) has only positive eigenvalues and so,W(MΘ(z)) ⊆
{x + iy : x > 0}. From this, we can conclude that 0 /∈ W(S1

Θ)
0.

(ii) If c1c2 > 1
2 , then f is negative at some point strictly between 1

c1c2
− 1 and

1. Therefore, for some z0 ∈ T (with z0 6= ±1) one eigenvalue of H(MΘ(z0)) is
positive and one is negative. Thus,W(MΘ(z0)) contains a point λz0 with negative
real part.
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Recall that the numerical range of any MΘ(z) is the elliptical disk with foci
at 1

aj+cjz
and minor axis of length√

|a1a2c1c2|
|z + 1|2

|a1 + c1z| |a2 + c2z| .

This implies that W(MΘ(z0)) is the reflection of W(MΘ(z0)) across the x-axis
and thus λz0 ∈ W(S1

Θ). If λz0 /∈ R, the triangle joining λz0 , λz0 and 1 must be
contained inW(S1

Θ), which implies 0 ∈ W(S1
Θ)

0.
Now let λz0 ∈ R. By assumption, we also have λz0 negative. By earlier

arguments, the circle
{

1
a1+c1z : z ∈ T

}
⊂ W(S1

Θ). This circle passes through the

points 1 and 1
a1+c1

so it contains points in the first and fourth quadrants. Denote
two such points by λI and λIV. Then, the triangle joining λz0 , λI, and λIV is
contained in the numerical range and so 0 ∈ W(S1

Θ)
0.

(iii) If c1c2 = 1
2 , then f (x) > 0 for all x ∈ (−1, 1) and there are no values

in any W(MΘ(z)) with negative real part; i.e.,
⋃

z∈T
W(MΘ(z)) ⊆ {z ∈ C : z =

x + iy, x > 0}. On the other hand, if we consider z = 1, we can see that zero
satisfies the equation∣∣∣0− 1

a1 + c1

∣∣∣+ ∣∣∣0− 1
a2 + c2

∣∣∣ = ∣∣∣1− ( 1
a1 + c1

)( 1
a2 + c2

)∣∣∣.
Thus 0 ∈ W(MΘ(1)) and therefore 0 ∈ ∂W(S1

Θ).

From these arguments, we know that if c1c2 > 1
2 , then 0 ∈ W(S1

Θ)
0 and

if c1c2 < 1
2 , then 0 /∈ W(S1

Θ)
0. Furthermore, if c1c2 = 1

2 , then 0 ∈ ∂W(S1
Θ).

Thus, we have proven most of Proposition 5.4. It just remains to show that if
0 ∈ ∂W(S1

Θ), then c1c2 = 1
2 .

Assume 0 ∈ ∂W(S1
Θ). If c1c2 > 1

2 , then 0 ∈ W(S1
Θ)

0, a contradiction. If
c1c2 < 1

2 , the zeros of f are at

1
c1c2
− 1 > 1 and − 1− 1

c1 + c2 + c1c2
< −1.

Since f (x) = α1 + α2x + α3x2 with α3 = c1c2 − c1c2(1 + c1)(1 + c2) < 0, the
minimum value of f on [−1, 1] must be either f (−1) = 1 or

f (1) = (1 + 2c1)(1 + 2c2)− 4c1c2(1 + c1)(1 + c2)

= (1− 4c2
1c2

2) + 2c1(1− 2c1c2) + 2c2(1− 2c1c2) > 0.

Now define the quantity

m := min{ f (−1), f (1)} > 0.

Fix z ∈ T and let λ1, λ2 be the two eigenvalues of H(MΘ(z)). Since S1
Θ is a con-

traction, we know λ1, λ2 6 1. Without loss of generality, assume λ1=min{λ1, λ2}.
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By assumption, λ2 6= 0, since f (<z) 6= 0. Then we can conclude that

λ1 =
det(H(MΘ(z))

λ2
> det(H(MΘ(z)) > m.

This immediately implies that for each z ∈ T, we have W(MΘ(z)) ⊆ {x + iy :
x > m} and zero cannot lie in the convex hull of the union of these sets. So, if
zero lies in the boundary of the numerical range, then c1c2 = 1

2 .

6. BOUNDARY OF THE NUMERICAL RANGE

6.1. INITIAL REDUCTIONS AND FORMULAS. We now analyze the boundary of
W(S1

Θ) or equivalently, the boundary of Clos(W(S1
Θ)), for a special class of ratio-

nal inner functions. Specifically, let Θ = θ2
1 , where θ1 has a zero on T2 and θ1 = p̃

p
for p(z) = a− z1 + cz2 with a, c 6= 0. The following remark shows that, without
loss of further generality, we can assume a, c > 0.

REMARK 6.1. Assume θ1 = p̃
p for some p(z) = a− z1 + cz2 and set Θ = θ2

1 .
Then by Corollary 3.4,

Clos(W(S1
Θ)) = Conv

( ⋃
τ∈T
W(MΘ(τ))

)
,

where MΘ is the 2 × 2 matrix-valued function from Theorem 4.4. Now write
a = |a|eiθ , c = |c|eiψ, and w = ei(ψ−θ)z and observe that (4.3) implies that τ2 =

−ei(θ−ψ). With these substitutions, M∗Θ changes from

M∗Θ(z) =

[
1

a+cz ac (z−τ2)
2

(a+cz)2

0 1
a+cz

]
to M̃∗Θ(w) = e−iθ

 1
|a|+|c|w |ac|e−iψ (w+1)2

(|a|+|c|w)2

0 1
|a|+|c|w

 .

Since, when computing numerical ranges, the variables z and w above will take
all values in T, we can conclude

Clos(W(S1
Θ)) = Conv

( ⋃
τ∈T
W(MΘ(τ))

)
= Conv

( ⋃
τ∈T
W(M̃Θ(τ))

)
.

So, if we set q(z) = |a| − z1 + |c|z2 and φ1 = q̃
q and define Φ = φ2

1, then

Clos(W(S1
Φ)) equals Clos(W(S1

Θ)).

Henceforth, we assume that p(z) = a − z1 + cz2 where a, c > 0. By (4.3)
and Proposition 5.3, this forces τ2 = −1 and a − c = 1. Furthermore, by the
elliptical range theorem, the boundary of eachW(MΘ(τ)) is a circle with center
cτ := 1

a+cτ and radius rτ half the modulus of the (2, 1)-entry of MΘ(τ). Thus,
we need to understand a family of circles. For later computations, we require the
following alternate parameterization.
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REMARK 6.2. The set of circles {∂W(MΘ(τ))}τ∈T is equal to the set of cir-
cles {Cθ}θ∈[0,2π), where each Cθ has center and radius given by

(6.1) c(θ) :=
a + ceiθ

a + c
and r(θ) :=

ac
(a + c)2 (1− cos θ).

To see this, define the Blaschke factor

B(z) := −
c
a + z

1 + c
a z

= − c + az
a + cz

.

Then B maps T one-to-one and onto itself. Now fix τ ∈ T, set λ = B(τ) ∈ T, and
choose θ to be the unique angle in [0, 2π) with λ = eiθ . Observe that

a + cλ =
a(a + cτ)− c(c + aτ)

a + cτ
=

(a + c)(a− c)
a + cτ

=
a + c

a + cτ
,

where we used a− c = 1. Then the center of ∂W(MΘ(τ)) is

cτ =
1

a + cτ
· a + cλ

a + cλ
=

a + cλ

a + c
= c(θ).

To consider the radius, first observe that since λ ∈ T, we have 2(1 − cos θ) =
|1− λ|2. Moreover

|1− λ|2 =
∣∣∣1 + c + aτ

a + cτ

∣∣∣2 = (a + c)2
∣∣∣ 1 + τ

a + cτ

∣∣∣2.

Using that equation, we can write the radius of ∂W(MΘ(τ)) as

rτ =
ac
2

∣∣∣ 1 + τ

a + cτ

∣∣∣2 =
ac|1− λ|2
2(a + c)2 =

ac(1− cos θ)

(a + c)2 = r(θ),

which proves the claim.

6.2. CIRCULAR NUMERICAL RANGES. In the one-variable situation, if B is a
degree-2 Blaschke product, then the numerical range of SB is a circular disk if
and only if the two zeros of B are the same. One might conjecture that a similar
statement should hold in two variables, namely if θ = θ2

1 , then Clos(W(S1
Θ)) is

circular. In this section, we show this is not the case.
Now fix τ ∈ T. Then ∂W(MΘ(τ)) is a circle with radius

rτ =
ac
2
|τ + 1|2
|a + cτ|2 = ac

1 + x
(a + cx)2 + c2(1− x2)

,

where τ = x + iy. One can check that rτ increases as x increases. Therefore, the
maximum and minimum values of rτ occur when τ = 1 and τ = −1, respectively.
Now consider the alternate formulas given in (6.1). First, since the centers are
exactly the points

c(θ) =
a + ceiθ

a + c
=
( a

a + c
+

c
a + c

cos θ,
c

a + c
sin θ

)
,
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c(θ) and c(2π − θ) are reflections of each other across the real axis. Moreover,
(6.1) also implies that r(θ) = r(2π − θ) and so the set of circles {Cθ}θ∈[0,2π) is
symmetric with respect to the real axis. This immediately implies Clos(W(S1

Θ))
must also be symmetric with respect to the real axis.

Thus, if Clos(W(S1
Θ)) were circular, the real line would contain the diame-

ter. Furthermore, the value 1
a−c = 1 obtained when τ = −1 is in the numerical

range and the numerical radius is 1. So 1 is the maximum value on the real axis.
The smallest value on the real axis occurs when τ = 1 or equivalently, when
θ = π. Then (6.1) shows that the center c1 = 1

a+c is real and has real part smaller
than any other cτ . Similarly, the radius r1 = 2ac

(a+c)2 is maximal and so, the smallest

value of Clos(W(S1
Θ)) on the real axis is

1
a + c

− 2ac
(a + c)2 =

a + c− 2ac
(a + c)2 .

Thus, these are the extreme real values of the numerical range, and if the numer-
ical range were circular, they would be the endpoints of a diameter. Then the
center of the circle would be the point (α, 0), with α given by

α :=
1
2

(
1+

a+c−2ac
(a + c)2

)
=

a2+a+c(1+c)
2(a+ c)2 =

a2+a+(a−1)a
2(a+c)2 =

a2

(a+c)2 ,(6.2)

where we used a = c + 1. Similarly, the radius r would be

r :=
1
2

(
1− a + c− 2ac

(a + c)2

)
=

a2 − a + 4ac + c2 − c
2(a + c)2

=
4ac + c2 − c + (c + 1)2 − (c + 1)

2(a + c)2 =
2ac + c2

(a + c)2 .

We can now find a point Q that is in the numerical range but is not in that circle.
Specifically, consider θ = π

2 and using (6.1), define the point Q by

Q := c
(π

2

)
+ r
(π

2

)
ei(π/2) =

( a
a + c

,
c2 + 2ac
(a + c)2

)
,

which is on Cπ/2 and hence is in Clos(W(S1
Θ)). If the numerical range were cir-

cular, the point Q would lie in or on the circle bounding the numerical range with
center (α, 0) and radius r. Computing the distance from Q to the center gives

dist2(Q, (α, 0)) =
( a

a + c
− a2

(a + c)2

)2
+

(c2 + 2ac)2

(a + c)4 =
(ac)2

(a + c)4 +
(c2 + 2ac)2

(a + c)4 .

For Q to be in the circle, we must have

dist2(Q, (α, 0)) 6 r2 =
(2ac + c2)2

(a + c)4 ,

which is impossible. Thus, Clos(W(S1
Θ)) cannot be circular.
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6.3. THE BOUNDARY OF THE NUMERICAL RANGE. The goal of this section is to
prove the following theorem.

THEOREM 6.3. Let Θ = θ2
1 be a degree (2, 2) rational inner function, where θ1 =

p̃
p for a polynomial p(z) = a− z1 + cz2 with no zeros on D2, a zero on T2, and a, c > 0.
Then the boundary ofW(S1

Θ) is given by the curve E = (x(θ), y(θ)) where

x(θ) =
a + c cos θ

a + c
+

ac(1− cos θ)

(a + c)2 cos
(

θ − arcsin
( a

a + c
sin θ

))
,

y(θ) =
c sin θ

a + c
+

ac(1− cos θ)

(a + c)2 sin
(

θ − arcsin
( a

a + c
sin θ

))
,

for θ ∈ [0, 2π).

We prove Theorem 6.3 using the theory of envelopes of families of curves.
The proof takes a bit of work, so we break it into sections.

6.3.1. INTRODUCTION TO ENVELOPES. Let f (x, y, θ) = 0 be a family of (distinct)
curves parameterized by θ. One may think of the envelope E of a family of curves
as a curve that is tangent to each member of the family. There are several com-
peting definitions for the notion of an envelope, one of which is the curve that
satisfies the envelope algorithm that we describe below. We take that as our def-
inition, noting that in this case, the standard ways of thinking about envelopes
agree. A discussion of these notions can be found in Courant ([10], p. 171). We
also refer readers interested in envelopes to [19].

Assume the family of curves f (x, y, θ) = 0 satisfies f 2
x + f 2

y 6= 0. Let E be a
curve parameterized as (x(θ), y(θ)) where x(θ) and y(θ) are continuously differ-
entiable functions. Then we say that E satisfies the envelope algorithm if the points
on E satisfy the equations

(6.3) f (x, y, θ) = 0 and fθ(x, y, θ) = 0

and the functions x(θ) and y(θ) satisfy

(6.4)
(dx

dθ

)2
+
(dy

dθ

)2
6= 0.

An alternate way to compute an envelope E involves using intersections of the
curves f (x, y, θ) = 0 associated to different θ. For this method, assume an enve-
lope E exists and can be parameterized as (x(θ), y(θ)) for x(θ), y(θ) continuously
differentiable functions satisfying (6.4). Then, fix h and θ and locate the inter-
section point of the curves f (x, y, θ + h) = 0 and f (x, y, θ) = 0; call this point
ph,θ . Then pθ := lim

h→0
ph,θ gives the point on the envelope E tangent to the curve

f (x, y, θ) = 0.
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6.3.2. NOTATION AND SUMMARY. To study W(S1
Θ), Corollary 3.4 implies that

we need to study the family of circles {∂W(MΘ(τ))}τ∈T. By Remark 6.2, it is
equivalent to consider the family of circles {Cθ}θ∈[0,2π), where each Cθ has center
and radius given by

c(θ) = c1(θ) + ic2(θ) =
a + c cos θ

a + c
+ i

c sin θ

a + c
, r(θ) =

ac
(a + c)2 (1− cos θ).

To align with the envelope notation, observe that the family of circles {Cθ}θ∈[0,2π)

is also the set of curves satisfying f (x, y, θ) = 0 for

(6.5) f (x, y, θ) = (x− c1(θ))
2 + (y− c2(θ))

2 − r(θ)2, θ ∈ [0, 2π).

For each θ ∈ [0, 2π), let Dθ denote the open disk with boundary Cθ . Let C :=
{c(θ) : θ ∈ [0, 2π)} denote the circle of centers of the Cθ and letD denote the open
disk with boundary C. Set Ω = D ∪ ⋃

θ∈[0,2π)
Dθ and let B denote the boundary of

Ω. Then the closure of the numerical rangeW(S1
Θ) is the closed convex hull of Ω.

In what follows, we find an envelope of the family of curves {Cθ}θ∈[0,2π)

and use it to compute the boundary ofW(S1
Θ). First, observe that our family of

curves satisfies f 2
x + f 2

y 6= 0 for θ 6= 0. Then to find an envelope of {Cθ}θ∈[0,2π),
we need only find a curve E satisfying (6.3) and (6.4). Specifically, we will find
all points satisfying (6.3). These points will yield two curves E1 and E2. We will
show E1 also satisfies (6.4) and thus gives an envelope for our family of curves.
We further show that E1 is a convex curve bounding the set Ω. This implies Ω is
convex and so Ω = Clos(W(S1

Θ)). Thus E1 gives the boundary of Clos(W(S1
Θ)),

and hence ofW(S1
Θ), as desired.

6.3.3. FINDING THE ENVELOPE. We first identify all points satisfying (6.3), which
gives the two equations f (x, y, θ) = 0 and

(6.6) − (x− c1(θ))c′1(θ)− (y− c2(θ))c′2(θ)− r(θ)r′(θ) = 0.

Observe that we can write each circle Cθ parametrically as

x(s) = c1(θ) + r(θ) cos(s), y(s) = c2(θ) + r(θ) sin(s), s ∈ [0, 2π).

Then (6.6) is equivalent to

−r(θ) cos(s)
c sin θ

a + c
+ r(θ) sin(s)

c cos θ

a + c
+ r(θ)

ac
(a + c)2 sin θ = 0.

For θ 6= 0, we have r(θ) 6= 0 and so this is equivalent to

(6.7) sin(s− θ) = cos θ sin(s)− sin θ cos(s) = − a
a + c

sin θ.

Note that the above equation has two solutions for s:

(6.8) s1(θ) := θ−arcsin
( a

a+c
sin θ

)
and s2(θ) := θ−π+arcsin

( a
a+c

sin θ
)

.
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Then the curves E1(θ) = (x1(θ), y1(θ)) and E2(θ) = (x2(θ), y2(θ)) defined by

xj(θ) := c1(θ) + r(θ) cos(sj(θ)) and yj(θ) := c2(θ) + r(θ) sin(sj(θ)),

θ ∈ (0, 2π), j = 1, 2

give two curves whose points satisfy (6.3).
Since we are concerned with the convex hull of the family of circles

{Cθ}θ∈[0,2π), we consider the outer curve E1. To show that E1 satisfies (6.4), we
need to do a little more work. First, observe that (6.7) implies the following two
equations:

(6.9) cos(θ − s1(θ))(1− s′1(θ)) =
a

a + c
cos θ and <(c′(θ)e−is1(θ)) = −r′(θ).

We can obtain more information by writing

E1(θ) = c(θ) + r(θ)eis1(θ) =
a + ceiθ

a + c
+

ac(1− cos θ)

(a + c)2 eis1(θ)

and then computing derivatives as follows:

x′1(θ)+iy′1(θ)=eis1(θ)(c′(θ)e−is1(θ) + r′(θ) + ir(θ)s′1(θ))

=eis1(θ)(<(c′(θ)e−is1(θ)+r′(θ))+i=(c′(θ)e−is1(θ)+r′(θ))+ir(θ)s′1(θ)).

Then, using (6.9) and the fact that r′(θ) is real, we have

x′1(θ) + iy′1(θ) = ieis1(θ)
(
=
( c

a + c
ieiθe−is1(θ) + r′(θ)

)
+ r(θ)s′1(θ)

)
= ieis1(θ)

( c
a + c

cos(θ − s1(θ)) +
ac

(a + c)2 (1− cos(θ))s′1(θ)
)

,

which allows us to conclude that

x′1(θ) = − sin(s1(θ))
( c

a + c
cos(θ − s1(θ)) +

ac
(a + c)2 (1− cos θ)s′1(θ)

)
,(6.10)

y′1(θ) = cos(s1(θ))
( c

a + c
cos(θ − s1(θ)) +

ac
(a + c)2 (1− cos θ)s′1(θ)

)
.(6.11)

To conclude (6.4) for E1, one just needs to show that

(6.12)
c

a + c
cos(θ − s1(θ)) +

ac
(a + c)2 (1− cos θ)s′1(θ) 6= 0,

for θ 6= 0. This is almost immediate. First observe that since
∣∣∣ a

a+c

∣∣∣ < 1, for θ ∈
[0, 2π),

−π

2
< arcsin

( a
a + c

sin θ
)
<

π

2
,

and so θ − s1(θ) ∈ (−π
2 , π

2 ). This implies cos(θ − s1(θ)) > 0. Moreover, one can
compute

s′1(θ) = 1− a
a + c

cos θ√
1− a2

(a+c)2 sin2 θ
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and observe that s′1 is continuous and s′1(
π
2 ) = 1 > 0. One can show that s′1(θ) = 0

leads to the contradiction 1 = a
a+c . Thus, s′1 > 0 as well and we can conclude that

(6.12) is strictly positive. This implies E1 satisfies (6.4) and thus is an envelope for
the family {Cθ}θ∈[0,2π).

Finally, a word about θ = 0. Because the circle C0 is the single point (1, 0),
it does not make sense to say a curve is tangent to C0. However, the formulas
(xj(θ), yj(θ)) for each Ej extend to continuously differentiable functions on inter-
vals containing zero in their interior. In particular, we can certainly extend E1 and
E2 to θ = 0 by specifying Ej(0) = 1 for j = 1, 2.

6.3.4. LOCATION OF E1, E2 . Let us briefly consider the relationship between the
curves E1, E2 and intersections of the circles {Cθ}θ∈[0,2π). We use this relationship
to show that with the exception of the point (1, 0), the curve E1 lies completely
outside of D and the curve E2 lies completely in the interior of D.

Fix θ 6= 0. Then for h with |h| sufficiently small, the circles Cθ and Cθ+h inter-
sect in two points. To verify this, observe that the disks Dθ and Dθ+h will overlap
for |h| sufficiently small. Moreover, the circle formula (6.5) paired with the for-
mulas for c(θ) and r(θ) can be used to show that no circle Cθ is fully contained
in a different circle C

θ̃
. Thus, there must be two intersection points; call them p1

θ,h
and p2

θ,h.
Basic geometry shows that the points p1

θ,h and p2
θ,h will be symmetric across

the straight line connecting the centers c(θ) and c(θ + h). Since r(θ) 6= 0, we can
conclude that one point, say p1

θ,h, is in Dc
and the other point p2

θ,h is in D. Now
write the intersection points as

pj
θ,h = c(θ) + r(θ)eisj

h ,

where sj
h is an angle depending on j and h. Substituting this formula for pj

θ,h into
the equation for Cθ+h gives:

(c1(θ)+r(θ) cos(sj
h)−c1(θ + h))2+(c2(θ)+r(θ) sin(sj

h)−c2(θ + h))2−r(θ + h)2=0,

and one can use trigonometric approximations to show that

lim
h→0

sin(sj
h − θ) = − a

a + c
sin θ.

This shows that the sets {p1
θ,h}, {p2

θ,h} converge to points p1
θ and p2

θ on Cθ satisfy-
ing (6.7). This implies that the sets {p1

θ , p2
θ} and {E1(θ), E2(θ)} are equal.

Now we can examine the location of the curves E1 and E2. First since E1(θ)

and E2(θ) are limits of the {pj
θ,h}, they are symmetric points across C. Thus, if

either of E1(θ), E2(θ) is on C, we must have E1(θ) = E2(θ). However, using (6.8),
one can show that E1(θ) = E2(θ) only at θ = 0. Thus, E1 and E2 only touch C at
θ = 0.
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Then by the properties of p1
θ and p2

θ , except at θ = 0, one of the curves E1, E2

is always in Dc
and one is always in D. By checking at θ = π, we can conclude

E1(θ) = p1
θ ∈ D

c
for 0 < θ < 2π, E1(0) = (1, 0);

E2(θ) = p2
θ ∈ D for 0 < θ < 2π, E2(0) = (1, 0).

6.3.5. THE BOUNDARY OF Ω. Recall that B denotes the boundary of Ω = D ∪⋃
θ∈[0,2π)

Dθ . We will show that B = E1. Our initial goal is to show B ⊆ E1.

First, it is easy to conclude that B ⊆ ⋃
θ∈[0,2π)

Cθ . To see this, note that B is in

the boundary of
⋃

θ∈[0,2π)
Dθ . Then if {c(θn) + λnr(θn)eisn} with 0 6 λn 6 1 is a

sequence converging to a point on B, one can use convergent subsequences of the
{θn}, {sn}, and {λn} to conclude that it must converge to a point on some Cθ .

Since Ω is in the closure of the numerical range of a contraction, we also
know E1(0) = (1, 0) = C0 ∈ B. Now, we determine the points that the Cθ with
θ 6= 0 can contribute to B. Fix θ 6= 0. Set Bθ = B ∩ Cθ . Further, define

Ωθ
N := Dθ ∪D ∪

( N−1⋃
`=0

D2π`/N

)
.

Let BN denote the boundary of Ωθ
N ; then BN is composed of arcs of circles from

the boundaries of the disks comprising Ωθ
N . Let Bθ

N be the contribution of Cθ to
BN . Since Ω is open, we know that

Bθ
N := BN ∩ Cθ = Cθ ∩ (Ωθ

N)
c.

One can use the definition of boundary and the density of the roots of unity in T
to show

Bθ = lim
N→∞

Bθ
N .

Fix N and assume Bθ
N 6= ∅. By earlier discussions, for N sufficiently large (i.e. the

difference between the angles sufficiently small), Cθ will have one intersection
point in Dc

, call it pψ, with each close Cψ bounding a disk from Ωθ
N . Then a

whole segment of Cθ between pψ and the point on Cθ ∩ C closest to c(ψ) will be
contained in Dψ. This implies that Bθ

N must be an arc on Cθ whose endpoints are
intersection points of Cθ and two nearby circles Cψ1 and Cψ2 .

By earlier remarks about intersection points, as N → ∞, the intersection
points in Dc

between Cθ and the closest Cψ’s will approach E1(θ). Thus we can
conclude that either Bθ = ∅ or Bθ = E1(θ). This proves the claim that B ⊆ E1.

To showB = E1, proceed by contradiction and assume there is some E1(θ) =
(x1(θ), y1(θ)) 6∈ B. Without loss of generality, assume 0 < θ < π. Earlier
arguments showed that s′1 is always positive, so s1 is strictly increasing. Thus,
s1(θ) ∈ (s1(0), s1(π)) = (0, π). This implies sin(s1(θ)) > 0 and by (6.10), x1 is
strictly decreasing on [0, π]. Moreover, on (0, π), we have y1 > 0 and on (π, 2π),
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we have y1 < 0. Thus, there is no point on E1 with x-coordinate x1(θ) and y-
coordinate strictly larger than y1(θ).

To obtain the contradiction, define α = sup{ε : (x1(θ), y1(θ) + ε) ∈ Ω}.
Since Ω is bounded, such an α exists and since E1(θ) 6∈ B, we know α > 0. But,
then (x1(θ), y1(θ) + α) ∈ B and since B ⊆ E1, we must have (x1(θ), y1(θ) + α) ∈
E1. But, this contradicts our previous statement about E1. Then it follows that
B = E1.

6.3.6. THE PROOF OF THEOREM 6.3. Let Ω̂ be the closed convex hull of Ω. By
previous facts, this implies Ω̂ =Clos(W(S1

Θ)). We will show that E1 is the bound-
ary of Ω̂ and hence, of Clos(W(S1

Θ)) andW(S1
Θ).

First we show E1 is the boundary of some convex set. To show this, we
use the parallel tangents condition, which says that a curve C is the boundary
of a convex set if and only if there are no three points on C such that the tan-
gents at these points are parallel. Observe that the tangents of E1 are given by
(x′1(θ), y′1(θ)) for θ ∈ [0, 2π). By way of contradiction, assume there are three
points whose tangents are parallel, say at θ1, θ2, θ3 ∈ [0, 2π). This implies that

(6.13)
y′1(θ1)

x′1(θ1)
=

y′1(θ2)

x′1(θ2)
=

y′1(θ3)

x′1(θ3)
.

By (6.10) and (6.11), we know y′1(θ)
x′1(θ)

= − cot(s1(θ)) for θ ∈ [0, 2π). Then, since

s1 is a one-to-one function mapping [0, 2π) onto [0, 2π), equation (6.13) says that
there are three distinct angles ψ1, ψ2, ψ3 ∈ [0, 2π) satisfying

cot(ψ1) = cot(ψ2) = cot(ψ3),

which contradicts properties of cotangent. Thus, E1 is the boundary of a convex
set S.

As E1 is a bounded closed curve and S is convex, its closure S must be the
closed convex hull of E1. Similarly, as Ω is composed of circular disks including
D, one can show that Ω is contained in the closed convex hull of E1. But, then
Ω ⊆ S ⊆ Ω̂, which implies that Ω̂ = S. Thus, E1 is the boundary of Ω̂ and hence,
the boundary of Clos(W(S1

Θ)) andW(S1
Θ).

Finally, we remark that the boundary of the numerical range is not, in gen-
eral, the set of extreme points that one obtains from the circles. Here, by an ex-
treme point, we mean the point on Cθ furthest away from the center of C. In
Figure 1 for a = 2 and c = 1, we present some of the circles {Cθ}, the curve con-
sisting of the extreme points of the Cθ , and the boundary of the numerical range
of S1

Θ.
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