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ABSTRACT. A detailed investigation is made of the continuity, spectrum and
mean ergodic properties of the Cesàro operator C when acting on the strong
duals of power series spaces of infinite type. There is a dramatic difference in
the nature of the spectrum of C depending on whether or not the strong dual
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1. INTRODUCTION AND NOTATION

The discrete Cesàro operator C is defined on the linear space CN (consisting
of all scalar sequences) by

(1.1) Cx :=
(

x1,
x1 + x2

2
, . . . ,

x1 + · · ·+ xn

n
, . . .

)
, x = (xn)n∈N ∈ CN.

The linear operator C is said to act in a vector subspace X ⊆ CN if it maps X
into itself. Of particular interest is the situation when X is a Fréchet space or an
(LF)-space. Two fundamental questions in this case are: is C : X → X continuous
and, if so, what is its spectrum? For a large collection of classical Banach spaces
X ⊆ CN where precise answers are known we refer to the Introductions in [4],
[6], for example. The discrete Cesàro operator C acting on the Fréchet sequence
space CN, on `p+ :=

⋂
q>p

`q, and on the power series spaces Λ0(α) := Λ1
0(α) of

finite type was investigated in [2], [5], [6], respectively. The aim of this paper is to
investigate the behaviour of C when it acts on the strong duals (Λ1

∞(α))′ of power
series spaces Λ1

∞(α) of infinite type. Power series spaces of infinite type play an
important role in the isomorphic classification of Fréchet spaces, [17], [21], [22].
The reason for concentrating on the infinite type dual spaces (Λ1

∞(α))′ is that the
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Cesàro operator C fails to be continuous on “most” of the finite type dual spaces
(Λ1

0(α))
′. This is explained more precisely in an Appendix (Section 5) at the end

of the paper.
In order to describe the main results we require some notation and defini-

tions.
Let X be a locally convex Hausdorff space (briefly, lcHs) and ΓX a system of

continuous seminorms determining the topology of X. Let X′ denote the space
of all continuous linear functionals on X. The family of all bounded subsets of
X is denoted by B(X). Denote the identity operator on X by I. Let L(X) denote
the space of all continuous linear operators from X into itself. For T ∈ L(X), the
resolvent set ρ(T) of T consists of all λ ∈ C such that R(λ, T) := (λI − T)−1 exists
in L(X). The set σ(T) := C \ ρ(T) is called the spectrum of T. The point spectrum
σpt(T) of T consists of all λ ∈ C such that (λI − T) is not injective. If we need
to stress the space X, then we also write σ(T; X), σpt(T; X) and ρ(T; X). Given
λ, µ ∈ ρ(T) the resolvent identity R(λ, T) − R(µ, T) = (µ − λ)R(λ, T)R(µ, T)
holds. Unlike for Banach spaces, it may happen that ρ(T) = ∅ (cf. Remark 2.6(ii))
or that ρ(T) is not open in C; see Proposition 2.9(i) for example. That is why
some authors prefer the subset ρ∗(T) of ρ(T) consisting of all λ ∈ C for which
there exists δ > 0 such that the open disc B(λ, δ) := {z ∈ C : |z− λ| < δ} ⊆ ρ(T)
and {R(µ, T) : µ ∈ B(λ, δ)} is equicontinuous in L(X). If X is a Fréchet space or
even an (LF)-space, then it suffices that such sets are bounded in Ls(X), where
Ls(X) denotes L(X) endowed with the strong operator topology τs which is de-
termined by the seminorms T 7→ qx(T) := q(Tx), for all x ∈ X and q ∈ ΓX .
The advantage of ρ∗(T), whenever it is non-empty, is that it is open and the
resolvent map R : λ 7→ R(λ, T) is holomorphic from ρ∗(T) into Lb(X), ([3],
Proposition 3.4). Here Lb(X) denotes L(X) endowed with the lcH-topology τb
of uniform convergence on members of B(X); it is determined by the seminorms
T 7→ qB(T) := sup

x∈B
q(Tx), for T ∈ L(X), for all B ∈ B(X) and q ∈ ΓX . Define

σ∗(T) := C \ ρ∗(T), which is a closed set containing σ(T). If T ∈ L(X) with X
a Banach space, then σ(T) = σ∗(T). In Remark 3.5(vi), p. 265 of [3] an exam-
ple of a continuous linear operator T on a Fréchet space X is presented such that
σ(T) ⊂ σ∗(T) properly. For undefined concepts concerning lcHs’ see [12], [17].

Each positive, strictly increasing sequence α = (αn) which tends to infinity
generates a power series space Λ1

∞(α) of infinite type; see Section 2. The strong
dual Eα ⊆ CN of Λ1

∞(α) is then a co-echelon space, i.e., a particular kind of induc-
tive limit of Banach spaces (of sequences), which is necessarily a Schwartz space
in our setting. It turns out (cf. Proposition 2.1) that always C ∈ L(Eα). Further-
more, it is known that the nuclearity of the space Eα is characterized by the con-
dition sup

n∈N

log(n)
αn

< ∞. Remarkably, this is equivalent to the operator C ∈ L(Eα)

being invertible, i.e., 0 ∈ ρ(C; Eα); see Proposition 2.4. Actually, the main results
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of this section (namely, Proposition 2.9 and Corollary 2.10) establish the equiva-
lence of the following assertions:

(i) Eα is nuclear;
(ii) σ(C; Eα) = σpt(C; Eα);

(iii) σ(C; Eα) = { 1
n : n ∈ N}.

Moreover, in this case we have σ∗(C; Eα) = {0} ∪ σ(C; Eα). So, whenever Eα

is nuclear, the spectra σpt(C; Eα), σ(C; Eα) and σ∗(C; Eα) are completely identified.
In particular, these spectra of C are independent of α.

The operator D ∈ L(CN) of differentiation (defined in the obvious way) is
closely connected to the Cesàro operator C ∈ L(CN) via the identity (valid in
L(CN))

C−1 = (I − Sr)DSr,

where Sr ∈ L(CN) is the right-shift operator. It is always the case that Sr ∈ L(Eα)
whenever αn ↑ ∞. Moreover, it follows from (i)–(iii) above that C−1 ∈ L(Eα)
precisely when Eα is nuclear. So, the above identity for C−1 suggests that there
should be a connection between the continuity of D on Eα and the nuclearity of
Eα. This is clarified by Proposition 2.5. Namely, D is continuous on Eα if and
only if Eα is both nuclear and sup

n∈N

αn+1
αn

< ∞. Remark 2.6(i) shows that these two

conditions are independent of one another.
Section 3 identifies the spectra of C ∈ L(Eα) in the case when Eα is not

nuclear. We have seen if Eα is nuclear, then σ(C; Eα) is a bounded, infinite and
countable set with no accumulation points. For Eα non-nuclear the spectrum of C
is very different. Indeed, in this case

σ(C; Eα)={0, 1}∪
{

λ∈C :
∣∣∣λ− 1

2

∣∣∣< 1
2

}
and σ∗(C; Eα)=

{
λ∈C :

∣∣∣λ− 1
2

∣∣∣6 1
2

}
whenever sup

n∈N

log(log(n))
αn

< ∞, whereas

σ(C; Eα) = σ∗(C; Eα) =
{

λ ∈ C :
∣∣∣λ− 1

2

∣∣∣ 6 1
2

}
otherwise; see Proposition 3.4. Again the spectra of C are independent of α.

J. von Neumann (1931) proved that unitary operators T in Hilbert space are

mean ergodic, i.e., the sequence of its averages 1
n

n
∑

m=1
Tm, for n ∈ N, converges

for the strong operator topology (to a projection). Ever since, intensive research
has been undertaken to identify the mean ergodicity of individual (and classes)
of operators both in Banach spaces and non-normable lcHs’; see [1], [15] for ex-
ample, and the references therein. In Section 4 it is shown, for every sequence α
with αn ↑ ∞, that the Cesàro operator C ∈ L(Eα) is always power bounded, (uni-
formly) mean ergodic and Eα = Ker(I − C) ⊕ (I − C)(Eα); see Proposition 4.1.
Actually, even the sequence {Cm}∞

m=1 of the iterates of C (not just its averages)
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turns out to be convergent, not only in Ls(Eα) but also in Lb(Eα); see Proposi-
tion 4.2. Furthermore, if Eα is nuclear, then the range (I − C)m(Eα) of the opera-
tor (I − C)m is a closed subspace of Eα for each m ∈ N (cf. Proposition 4.3). For
m = 1 this is an analogue, for the operator C ∈ L(Eα), of a result of M. Lin
for arbitrary uniformly mean ergodic Banach space operators T which satisfy
lim

n→∞
‖Tn‖

n = 0, [16].

2. THE SPECTRUM OF C IN THE NUCLEAR CASE

Let α := (αn) be a positive, strictly increasing sequence tending to infinity,
briefly, αn ↑ ∞. Let (sk) ⊆ (1, ∞) be another strictly increasing sequence satisfy-
ing sk ↑ ∞ . For each k ∈ N, define vk : N → (0, ∞) by vk(n) := s−αn

k for n ∈ N.
Then vk(n) > vk(n + 1), for n ∈ N, i.e., vk is a decreasing sequence, and vk > vk+1
pointwise on N for all k ∈ N. Set V := (vk) and note that vk ∈ c0 for all k ∈ N.

Define the co-echelon spaces Eα := ind
k

c0(vk), that is, Eα is the (increasing)

union of the weighted Banach spaces c0(vk), k ∈ N, endowed with the finest lcH-
topology such that each natural inclusion map c0(vk) ↪→ Eα is continuous. Since
lim

n→∞
vk+1(n)

vk(n)
= 0, for k ∈ N, implies that `∞(vk) ⊆ c0(vk+1) continuously, for k ∈

N, it follows that also Eα := ind
k

`∞(vk). Observing that the power series space

Λ1
∞(α) := proj

k
`1(v−1

k ) of infinite type is Fréchet–Schwartz (hence, distinguished),

([17], p. 357), it follows that Eα := ind
k

c0(vk) = ind
k

`∞(vk) = (Λ1
∞(α))′ is the

strong dual of Λ1
∞(α), ([17], Remark 25.13). The condition vk+1

vk
∈ c0 for k ∈ N

implies that Eα is always a (DFS)-space, ([17], p. 304), and in particular, a Montel
space, ([17], Remark 24.24). Note that power series spaces in Chapter 24 of [17] are
defined using `2-norms. It follows from Proposition 29.6 of [17] that Λ1

∞(α) is a
nuclear Fréchet space (equivalently, Eα is a (DFN)-space) if and only if sup

n∈N

log n
αn

<

∞. This criterion plays a relevant role throughout this section. As the space Eα

does not change if (sk) is replaced by any other strictly increasing sequence in
(1, ∞) tending to infinity, we sometimes choose sk := ek, k ∈ N. For each k ∈ N,
define the norm

qk(x) := sup
n∈N

vk(n)|xn|, x = (xn) ∈ `∞(vk),

whose restriction to c0(vk) is the norm of c0(vk). Observe, for each k ∈ N, that
c0(vk) ⊆ c0(vl) for every l ∈ N with l > k, and

(2.1) ql(x) 6 qk(x), x ∈ c0(vk).

As general references for co-echelon spaces we refer to [8], [9], [14], [17], for
example.
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PROPOSITION 2.1. For each αn ↑ ∞ the Cesàro operator satisfies C ∈ L(Eα).

Proof. Since each sequence vk, for k ∈ N, is decreasing, Corollary 2.3(i) of
[4] implies that the Cesàro operator at each step, namely C : c0(vk) → c0(vk), for
k ∈ N, is continuous. The result then follows from the general theory of (LB)-
spaces as Eα = ind

k
c0(vk).

LEMMA 2.2. Let αn ↑ ∞. The following conditions are equivalent:
(i) sup

n∈N

log n
αn

< ∞;

(ii) for each γ > 0 there exists M(γ) ∈ N such that sup
n∈N

nγe−M(γ)αn < ∞;

(iii) for some γ > 0 and M(γ) ∈ N we have sup
n∈N

nγe−M(γ)αn < ∞.

Proof. (i)⇒ (ii) Fix any γ > 0. By assumption there exists D > 0 such that
log n 6 Dαn for all n ∈ N. Let M(γ) ∈ N satisfy M(γ) > γD. Then γ log n 6
γDαn 6 M(γ)αn for all n ∈ N and hence, nγ 6 eM(γ)αn for all n ∈ N.

(ii)⇒ (iii) is clear.
(iii)⇒ (i) By assumption sup

n∈N
nγe−M(γ)αn < ∞. So, there exists D > 1 such

that nγ 6 DeM(γ)αn for all n ∈ N. It follows for each n ∈ N that log n
αn

6 log D
γαn

+ M
γ .

Since αn → ∞, we can conclude that sup
n∈N

log n
αn

< ∞.

We now turn our attention to the spectrum of C ∈ L(Eα), for which we
introduce the notation Σ := { 1

n : n ∈ N} and Σ0 := {0} ∪ Σ. The Cesàro matrix
C, when acting in CN, is similar to the diagonal matrix diag(( 1

n )). Indeed, C =

∆diag(( 1
n ))∆ with ∆ = ∆−1 = (∆nk)n,k∈N ∈ L(CN) the lower triangular matrix

where, for each n ∈ N, ∆nk = (−1)k−1(n−1
k−1), for 1 6 k < n and ∆nk = 0 if k > n,

([13], pp. 247–249). Thus σpt(C;CN) = Σ and each eigenvalue 1
n has multiplicity

1 with eigenvector ∆en, where en := (δnk)k∈N, for n ∈ N, are the canonical basis
vectors in CN. Moreover, λI − C is invertible for each λ ∈ C \ Σ. If X is a lcHs
continuously contained in CN and C(X) ⊆ X, then

(2.2) σpt(C; X) =
{ 1

n
: n ∈ N, ∆en ∈ X

}
⊆ Σ.

In case the space ϕ (of all finitely supported vectors in CN) is densely contained
in X, then ϕ ⊆ X′ and Σ ⊆ σpt(C′; X′) ⊆ σ(C; X), where C′ is the dual operator
of C. Observe that always ∆e1 = 1 := (1)n∈N ∈ c0(v1) ⊆ Eα whenever αn ↑ ∞.
Since ϕ is dense in Eα for every α with αn ↑ ∞, we conclude that always

(2.3) 1 ∈ σpt(C; Eα) ⊆ Σ ⊆ σ(C; Eα).

We point out that C does not act in the vector space ϕ := ind
k

Ck ⊆ CN because

e1 ∈ ϕ but Ce1 = ( 1
n ) /∈ ϕ.
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PROPOSITION 2.3. For α with αn ↑ ∞ the following assertions are equivalent:
(i) Eα is nuclear;

(ii) sup
n∈N

log n
αn

< ∞;

(iii) σpt(C; Eα) = Σ ;
(iv) σpt(C; Eα) \ {1} 6= ∅.

Proof. (i)⇔ (ii) See the introduction to this section.
(ii) ⇒ (iii) Observe that ∆em, for fixed m ∈ N, behaves asymptotically like

(nm−1)n∈N, i.e., |(∆em)| ' nm−1 for n → ∞. By Lemma 2.2 each ∆em ∈ Eα for
m ∈ N. Hence, (2.2) yields that σpt(C; Eα) = Σ.

(iii)⇒ (iv) Obvious.
(iv)⇒ (ii) For this proof select vk(n) := e−kαn , n ∈ N, for each k ∈ N. By (2.3)

and the assumption (iv) there exists m ∈ N with m > 1 such that 1
m ∈ σpt(C; Eα),

i.e., ∆em ∈ Eα. As seen in the proof of (ii)⇒ (iii) we then have (nm−1)n∈N ∈ Eα.
Hence, for some k ∈ N, (nm−1)n∈N ∈ c0(vk) and so there exists M > 1 such that
nm−1vk(n) = nm−1e−kαn 6 M for all n ∈ N. It follows from Lemma 2.2 that (ii)
holds.

PROPOSITION 2.4. Let αn ↑ ∞. The following conditions are equivalent:
(i) sup

n∈N

log n
αn

< ∞, i.e., Eα is nuclear;

(ii) C ∈ L(Eα) is invertible, i.e., 0 ∈ ρ(C; Eα).

Proof. Note that C : CN → CN is bijective with inverse C−1 : CN → CN

given by

(2.4) C−1y = (nyn − (n− 1)yn−1), y = (yn) ∈ CN,

with y0 := 0. Accordingly, 0 6∈ σ(C; Eα) if and only if C−1 : Eα → Eα is continuous
if and only if for each k ∈ N there exists l > k such that C−1 : c0(vk) → c0(vl) is
continuous.

For the rest of the proof we select vk(n) := e−kαn for k, n ∈ N, i.e., sk := ek.
(i)⇒ (ii) By Lemma 2.2 there exists m ∈ N with D := sup

n∈N
ne−mαn < ∞. Fix

k ∈ N and set l := m + k. Let y = (yn) ∈ c0(vk). For each n ∈ N, we have

vl(n)(C−1y) = e−lαn |nyn − (n− 1)yn−1| 6 e−lαn n|yn|+ e−lαn−1(n− 1)|yn−1|

6 D(e−kαn |yn|+ e−kαn−1 |yn−1|) 6 2Dqk(y).

Forming the supremum relative to n ∈ N yields ql(C
−1y) 6 2Dqk(y) for all y ∈

c0(vk). Accordingly, C−1 : c0(vk)→ c0(vl) is continuous. Since k ∈ N is arbitrary,
it follows that C−1 : Eα → Eα is continuous and so 0 ∈ ρ(C; Eα).

(ii)⇒ (i) By assumption C−1 : Eα → Eα is continuous. So, there exists l ∈ N
such that C−1 : c0(v1)→ c0(vl) is continuous, that is, there exists D > 1 such that
ql(C

−1y) 6 Dq1(y) for all y ∈ c0(v1). Since C−1en = nen− nen+1 and ql(C
−1en) =

max{nvl(n), nvl(n + 1)} = nvl(n) = ne−lαn , with q1(en) = v1(n) = e−αn , for all
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n ∈ N, it follows that ne−lαn 6 De−αn , for n ∈ N. Hence, ne(1−l)αn 6 D, for n ∈ N,
which implies that sup

n∈N

log n
αn

< ∞.

The operator of differentiation D acts on CN via

D(x1, x2, x3, . . .) := (x2, 2x3, 3x4, . . .), x = (xn) ∈ CN.

Clearly D ∈ L(CN). According to (2.4) and a routine calculation the inverse
operator C−1 ∈ L(CN) is given by

(2.5) C−1 = (I − Sr)DSr,

where Sr ∈ L(CN) is the right-shift operator, i.e., Srx := (0, x1, x2, . . .) for x ∈ CN.
Fix k ∈ N. Since vk is decreasing on N, it follows that

qk(Srx) := sup
n∈N

vk(n + 1)|xn| 6 sup
n∈N

vk(n)|xn| = qk(x), x ∈ c0(vk).

Hence, Sr : c0(vk)→ c0(vk) is continuous for each k ∈ N which implies (for every
αn ↑ ∞) that Sr ∈ L(Eα). Moreover, Proposition 2.4 shows that C−1 ∈ L(Eα) if
and only if Eα is nuclear. The identity (2.5) suggests there should be a connection
between the nuclearity of Eα and the continuity of D on Eα. The following result
addresses this point. Recall that Eα is shift stable if lim sup

n→∞

αn+1
αn

< ∞, [23].

PROPOSITION 2.5. For α with αn ↑ ∞ the following assertions are equivalent:
(i) D(Eα) ⊆ Eα, i.e., D acts in Eα;

(ii) the differentiation operator D ∈ L(Eα);
(iii) for every k ∈ N there exists l ∈ N with l > k such that D : c0(vk) → c0(vl) is

continuous;
(iv) for every k ∈ N there exist l ∈ N with l > k and M > 0 such that

nvl(n) 6 Mvk(n + 1), n ∈ N;

(v) the space Eα is both nuclear and shift stable.

Proof. (i)⇔ (ii) is immediate from the closed graph theorem for (LB)-spaces,
([17], Theorem 24.31 and Remark 24.36).

(ii)⇔ (iii) is a general fact about continuous linear operators between (LB)-
spaces.

(iii) ⇒ (iv) Fix k ∈ N. By (iii) there exists l ∈ N with l > k such that
D : c0(vk)→ c0(vl) is continuous. Hence, there is M > 0 satisfying

ql(Dx) = sup
n∈N

vl(n)|(Dx)| 6 Mqk(x) = M sup
n∈N

vk(n)|xn|, x ∈ c0(vk).

For each j ∈ N with j > 2 substitute x := ej in the previous inequality (noting that
Dx = Dej = (j− 1)ej−1) yields (j− 1)vl(j− 1) 6 Mvk(j). Since j > 2 is arbitrary,
this is precisely (iv).
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(iv)⇒ (iii) Given any k ∈ N select l > k and M > 0 which satisfy (iv). Fix
x ∈ c0(vk). Then, for each n ∈ N, we have via (iv) that

vl(n)|(Dx)| = nvl(n)|xn+1| 6 Mvk(n + 1).

Forming the supremum relative to n ∈ N of both sides of this inequality yields

ql(Dx) 6 Mqk(x), x ∈ c0(vk),

which is precisely (iii).
(iv)⇒ (v) For k = 1, condition (iv) ensures the existence of l > 1 and M > 1

such that

(2.6) nvl(n) 6 Mv1(n + 1) 6 Mv1(n), n ∈ N.

For the remainder of the proof of this proposition, choose sk := ek for k ∈ N. It
follows from (2.6) that ne−lαn 6 Me−αn for all n ∈ N. By Lemma 2.2 one can
conclude that Eα is nuclear.

To prove that Eα is shift stable observe that the left-inequality in (2.6) is
ne−lαn 6 Me−αn+1 for n ∈ N. Taking logarithms and rearranging yields

αn+1

αn
6 l +

log(M)

αn
− log(n)

αn
, n ∈ N.

Since sup
n∈N

log(n)
αn

< ∞ (as Eα is nuclear) and sup
n∈N

log(M)
αn

< ∞ it follows that sup
n∈N

αn+1
αn

< ∞, i.e., Eα is shift-stable.
(v) ⇒ (iv) Fix k ∈ N. Since Eα is shift stable, there exists h ∈ N such that

αn+1 6 hαn for n ∈ N. Because of the nuclearity of Eα, Lemma 2.2 implies the
existence of M ∈ N which satisfies L := sup

n∈N
ne−Mαn < ∞. Set l := M + hk. Then

l ∈ N and, for each n ∈ N, it follows that

nvl(n) = ne−lαn = ne−Mαn e−hkαn 6 Le−k(hαn) 6 Le−kαn+1 = Lvk(n + 1).

This is precisely condition (iv).

REMARK 2.6. (i) There exist nuclear spaces Eα for which D is not continuous
on Eα. Let αn := nn for n ∈ N. Then Eα is nuclear but, not shift stable. Propo-
sition 2.5 implies that D /∈ L(Eα). On the other hand, for αn := log(log(n)) for
n > 3, the space Eα is shift stable but, not nuclear; again D /∈ L(Eα).

(ii) Because v1 ↓ 0, it is clear that `∞ ⊆ `∞(v1) ⊆ Eα := ind
k

`∞(vk) for every α

with αn ↑ ∞. Accordingly, if xλ :=
(

λn−1

(n−1)!

)
n∈N

for λ ∈ C, then clearly {xλ : λ ∈
C} ⊆ `∞ and so {xλ : λ ∈ C} ⊆ Eα. Since Dxλ = λxλ for each λ ∈ C, we have
established (via Proposition 2.5) the following fact.

Let α with αn ↑ ∞ be a sequence such that Eα is both nuclear and shift stable. Then
D ∈ L(Eα) and

σpt(D; Eα) = σ(D; Eα) = σ∗(D; Eα) = C.
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In order to determine σ(C; Eα) we require some further preliminaries. De-
fine the continuous function a : C \ {0} → R by a(z) := Re( 1

z ) for z ∈ C \ {0}.
The following result is a refinement of Lemma 7 in [19].

LEMMA 2.7. Let λ ∈ C \Σ0. Then there exists δ = δλ > 0 and positive constants
dδ, Dδ such that B(λ, δ) ∩ Σ0 = ∅ and

(2.7)
dδ

Na(µ)
6

N

∏
n=1

∣∣∣1− 1
nµ

∣∣∣ 6 Dδ

Na(µ)
, ∀N ∈ N, µ ∈ B(λ, δ).

Proof. Fix λ ∈ C \ Σ0 and write 1
λ = α + iβ with α, β ∈ R, i.e., α = a(λ).

Observe that

1− 2α

n
+

(α2 + β2)

n2 =
(

1− α

n

)2
+

β2

n2 > 0, n ∈ N.

Using the inequality (1 + x) 6 ex for x ∈ R we conclude that (1 + x)1/2 6 ex/2

for all x > −1. In particular, for x := − 2α
n + (α2+β2)

n2 it follows that(
1− 2α

n
+

(α2 + β2)

n2

)1/2
6 exp

(
− α

n
+

(α2 + β2)

2n2

)
, n ∈ N.

Fix N ∈ N. Since
N
∑

n=1

1
n2 < 2, we conclude that

N

∏
n=1

∣∣∣1− 1
nλ

∣∣∣ = N

∏
n=1

(
1− 2α

n
+

(α2 + β2)

n2

)1/2

6 exp
( N

∑
n=1
− α

n
+

(α2 + β2)

2n2

)
6 exp(α2 + β2) exp

(
− α

N

∑
n=1

1
n

)
= exp

( 1
|λ|2

)
exp

(
− α

N

∑
n=1

1
n

)
.

By considering separately the cases when α 6 0 and α > 0 and employing the
inequalities

(2.8) log(k + 1) 6
k

∑
n=1

1
n
6 1 + log(k), k ∈ N,

it turns out that

exp
(
− α

N

∑
n=1

1
n

)
6

e|a(λ)|

Na(λ)
6

e1/|λ|

Na(λ)
.

Accordingly, we have that

(2.9)
N

∏
n=1

∣∣∣1− 1
nλ

∣∣∣ 6 exp
(

1
|λ| +

1
|λ|2
)

Na(λ)
, N ∈ N.
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From above, for each n ∈ N, we have |1 − 1
nλ |
−1 = (1 + xn)−1/2, where

xn := − 2α
n + (α2+β2)

n2 satisfies xn > −1. Applying Taylor’s formula to the function
f (x) = (1 + x)−1/2 for x > −1 yields, for each n ∈ N, that

(1 + xn)
−1/2 = f (0) + f ′(0)xn +

f ′′(θnxn)

2!
x2

n = 1− 1
2

xn +
3
4
(1 + θnxn)

−5/2x2
n

for some θn ∈ (0, 1). Substituting for xn its definition and rearranging we get

(1+xn)
−1/2=1+

α

n
− (α2+β2)

2n2 +
3
4

(
1−θn+θn

∣∣∣1− 1
λn

∣∣∣)−5/2(
− 2α

n
+
(α2+β2)

n2

)2
,

for each n ∈ N. Defining d(λ) := dist(λ, Σ0) 6 |λ| we have∣∣∣1− 1
λn

∣∣∣ = 1
|λ| ·

∣∣∣λ− 1
n

∣∣∣ > d(λ)
|λ| , n ∈ N.

Hence, for each n ∈ N, it follows that

1− θn + θn

∣∣∣1− 1
λn

∣∣∣ > 1− θn + θn
d(λ)
|λ| > min

{
1,

d(λ)
|λ|

}
=

d(λ)
|λ| ,

where we have used the inequality

1− x + γx > min{1, γ}, ∀γ ∈ R, x ∈ [0, 1].

Accordingly,
(
1− θn + θn

∣∣1− 1
λn

∣∣)−5/2
6
( |λ|

d(λ)

)5/2, for n ∈ N, which implies (see
above), for each n ∈ N, that∣∣∣1− 1

nλ

∣∣∣−1
6 1 +

α

n
+

1
n2

(
− (α2 + β2)

2
+

3
4

( |λ|
d(λ)

)5/2(
− 2α +

(α2 + β2)

n

)2)
6 1 +

α

n
+

3
4n2

( |λ|
d(λ)

)5/2
(2|α|+ α2 + β2)2.

But, (2|α|+ α2 + β2)2 6
( 2
|λ| +

1
|λ|2
)2

6 4
( 1
|λ| +

1
|λ|2
)2 and so∣∣∣1− 1

nλ

∣∣∣−1
6 1 +

α

n
+

D(λ)

n2 , n ∈ N,

with D(λ) := 3(1+|λ|)2

|λ|3/2(d(λ))5/2 . Accordingly, for fixed N ∈ N, we have

N

∏
n=1

∣∣∣1− 1
λn

∣∣∣−1
6

N

∏
n=1

(
1 +

α

n
+

D(λ)

n2

)
6 exp

(
α

N

∑
n=1

1
n

)
exp

(
D(λ)

N

∑
n=1

1
n2

)
6 e2D(λ) exp

(
α

N

∑
n=1

1
n

)
.

By considering separately the cases when α < 0 and α > 0 and applying (2.8)
yields

exp
(

α
N

∑
n=1

1
n

)
6 e|α|Nα 6 e1/|λ|Na(λ).



THE CESÀRO OPERATOR ON DUALS OF POWER SERIES SPACES OF INFINITE TYPE 383

Accordingly,
N
∏

n=1

∣∣1− 1
λn

∣∣−1
6 Na(λ) exp

(
2D(λ) + 1

|λ|
)

and hence,

(2.10)
exp

(
− 1
|λ| − 2D(λ)

)
Na(λ)

6
N

∏
n=1

∣∣∣1− 1
nλ

∣∣∣, N ∈ N.

It follows from (2.9) and (2.10), for any given λ ∈ C \ Σ0, that

(2.11)
u(λ)
Na(λ)

6
N

∏
n=1

∣∣∣1− 1
λn

∣∣∣ 6 v(λ)
Na(λ)

, N ∈ N,

where v(λ) := exp
( 1
|λ| +

1
|λ|2
)

and u(λ) := exp
(
− 1
|λ| −

6(1+|λ|2)
|λ|3/2(d(λ))5/2

)
.

Fix now a point λ ∈ C \ Σ0 and choose any δ > 0 satisfying B(λ, δ) ∩ Σ0 =
∅. According to (2.11) we have

(2.12)
u(µ)
Na(µ)

6
N

∏
n=1

∣∣∣1− 1
nµ

∣∣∣ 6 v(µ)
Na(µ)

, ∀N ∈ N, µ ∈ B(λ, δ).

By the continuity (and form) of the functions u and v on C \ Σ0 and the compact-
ness of the set B(λ, δ) ⊆ (C \ Σ0) it follows that Dδ := sup{v(µ) : µ ∈ B(λ, δ)} <
∞ and dδ := inf{u(µ) : µ ∈ B(λ, δ)} > 0. It is then clear that (2.4) follows from
(2.12).

LEMMA 2.8. Let w = (wn) be any strictly positive, decreasing sequence. Then

(2.13) σ(C; c0(w)) ⊆
{

λ ∈ C :
∣∣∣λ− 1

2

∣∣∣ 6 1
2

}
.

Moreover, for each λ ∈ C satisfying
∣∣λ − 1

2

∣∣ > 1
2 there exist constants δλ > 0 and

Mλ > 0 such that

‖(µI − C)−1‖op 6
Mλ

1− a(µ)
, µ ∈ B(λ, δλ),

where ‖ · ‖op denotes the operator norm in L(c0(w)).

Proof. According to Corollary 2.3(i) of [4] the Cesàro operator C : c0(w) →
c0(w) is continuous. Then Corollary 3.6 of [4] implies that (2.13) is satisfied.

Set A :=
{

λ ∈ C :
∣∣λ − 1

2

∣∣ 6 1
2
}

and fix λ ∈ C \ A. Define δλ :=
1
2 dist(λ, A) > 0 and Cλ := B(λ, δ), in which case (2.13) implies that

dist(Cλ, σ(C; c0(w))) > dist(Cλ, A) = δλ.

According to Lemma 6.11, p. 590 of [10] there is a constant K > 0 such that (setting
ε := δλ in that lemma)

(2.14) ‖(µI − C)−1‖op <
K
δλ

, µ ∈ Cλ.
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Now, each µ ∈ B(λ, δλ) satisfies a(µ) < 1, ([4], Remark 3.5), and so

(2.15)
K
δλ

=
Kδ−1

λ (1− a(µ))
1− a(µ)

6
Kδ−1

λ

(
1 + 1

|µ|
)

1− a(µ)
6

Mλ

1− a(µ)
,

where Mλ := sup
{ K

δλ

(
1 + 1

|z|
)

: z ∈ Cλ

}
< ∞ as the set Cλ ⊆ (C \ {0}) is

compact and the function z 7→ K
δλ

(
1 + 1

|z|
)

is continuous on C \ {0}. The desired
inequality follows from (2.14) and (2.15).

Recall that a Hausdorff inductive limit E = ind
k

Ek of Banach spaces is called

regular if every B∈B(E) is contained and bounded in some step Ek. In particular,
for every α with αn↑∞ the space Eα=ind

k
c0(vk) is regular, ([17], Proposition 25.19).

PROPOSITION 2.9. Let α satisfy αn ↑ ∞ with Eα nuclear. Then
(i) σ(C; Eα) = σpt(C; Eα) = Σ, and

(ii) σ∗(C; Eα) = σ(C; Eα) ∪ {0} = Σ0.

Proof. By Proposition 2.3 we have Σ = σpt(C; Eα) ⊆ σ(C; Eα) and hence,

Σ0 = Σ ⊆ σ(C; Eα) ⊆ σ∗(C; Eα).

Moreover, Proposition 2.4 yields 0 6∈ σ(C; Eα). So, it remains to show that (C \
Σ0) ⊆ ρ∗(C; Eα). To this end, we need to show, for each λ ∈ C \ Σ0, that there
exists δ > 0 with the property that (C− µI)−1 : Eα → Eα is continuous for each
µ ∈ B(λ, δ) and the set {(C− µI)−1 : µ ∈ B(λ, δ)} is equicontinuous in L(Eα).
We recall that (C− µI)−1 : CN → CN exists in L(CN) for each µ ∈ C \ Σ.

For this proof we select the weights vk(n) = e−kαn , n ∈ N, for each k ∈ N.
Fix λ ∈ C \ Σ0. First, choose δ1 > 0 such that B(λ, δ1) ∩ Σ0 = ∅. Later δ > 0 will
be selected in such a way that 0 < δ < δ1.

According to Lemma 5.4 in the Appendix it suffices to find a δ > 0 satisfying
the following condition: for each k ∈ N there exists l ∈ N with l > k and Dk > 0
such that

(2.16) ql((C− µI)−1x) 6 Dkqk(x), ∀µ ∈ B(λ, δ), x ∈ c0(vk).

(i) Suppose that
∣∣λ− 1

2

∣∣ > 1
2 (equivalently, a(λ) < 1, ([4], Remark 3.5)). To

establish the condition (2.16) we proceed as follows. Fix k ∈ N. Since a(λ) < 1,
we can select ε > 0 such that a(λ) < 1 − ε. By continuity of the function a :
C \ {0} → R there exists δ2 ∈ (0, δ1) such that a(µ) < 1− ε for all µ ∈ B(λ, δ2).
Applying Lemma 2.8 (with vk in place of w), it follows that there exist δ ∈ (0, δ2)
and Mk,λ > 0 satisfying

qk((C− µI)−1x) 6
Mk,λ

1− a(µ)
qk(x) 6

Mk,λ

ε
qk(x)

for all µ ∈ B(λ, δ) and x ∈ c0(vk). So, inequality (2.16) is then satisfied with l := k
and Dk := Mk,λ

ε . Since k ∈ N is arbitrary, condition (2.16) holds.
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(ii) Suppose now that
∣∣λ− 1

2

∣∣ 6 1
2 (equivalently, a(λ) > 1, ([4], Remark 3.5)).

We recall the formula for the inverse operator (C− µI)−1 : CN → CN whenever
µ 6∈ Σ0, ([19], p. 266). For n ∈ N the n-th row of the matrix for (C− µI)−1 has the
entries

−1
nµ2 ∏n

k=m
(
1− 1

µk
) , 1 6 m < n;

n
1− nµ

=
1

1
n − µ

, m = n,

and all the other entries in row n are equal to 0. So, we can write

(2.17) (C− µI)−1 = Dµ −
1

µ2 Eµ, µ ∈ C \ Σ0,

where the diagonal operator Dµ = (dnm(µ))n,m∈N is given by dnn(µ) := 1
(1/n)−µ

and dnm(µ) := 0 if n 6= m. The operator Eµ = (enm(µ))n,m∈N is then the lower
triangular matrix with e1m(µ) = 0 for all m ∈ N, and for every n > 2 with
enm(µ) := 1

n ∏n
k=m

(
1− 1

µk

) if 1 6 m < n and enm(µ) := 0 if m > n.

Since d0(λ) := dist(B(λ, δ1), Σ0) > 0, we have |dnn(µ)| 6 1
d0(λ)

for all µ ∈
B(λ, δ1) and n ∈ N. Fix k ∈ N. Then, for every x ∈ c0(vk) and µ ∈ B(λ, δ1), we
have

qk(Dµ(x)) = sup
n∈N
|dnn(µ)xn|vk(n) 6

1
d0(λ)

sup
n∈N
|xn|vk(n) =

1
d0(λ)

qk(x).

So, {Dµ : µ ∈ B(λ, δ1)} ⊆ L(c0(vk)). Moreover, for every l ∈ N with l > k it
follows that

(2.18) ql(Dµ(x)) 6 qk(Dµ(x)) 6
1

d0(λ)
qk(x), ∀x ∈ c0(vk), µ ∈ B(λ, δ1).

Via (2.17) it remains to investigate the operator Eµ : Eα → Eα in order to
show the validity of condition (2.16) for (C − µI)−1. To this end we first ob-
serve, for each k ∈ N, that c0(vk) is isometrically isomorphic to c0 via the lin-
ear multiplication operator Φk : c0(vk) → c0 given by Φk(x) := (vk(n)xn), for
x = (xn) ∈ c0(vk). Of course, each Φk is also a bicontinuous isomorphism of CN

onto CN. So, it suffices to show, for every k ∈ N, that there exist l ∈ N with l > k
and Dk > 0 such that ‖ΦlEµΦ−1

k x‖0 6 Dk‖x‖0 for all x ∈ c0 and µ ∈ B(λ, δ1);
here ‖ · ‖0 denotes the usual norm of c0. For each k, l ∈ N with l > k, define
Ẽµ,k,l := ΦlEµΦ−1

k ∈ L(CN), for µ ∈ C \ Σ0.
Fix k ∈ N. For each l > k the operator Ẽµ,k,l , for µ ∈ B(λ, δ1), is the restric-

tion to c0 of

Ẽµ,k,l(x) = ((Ẽµ,k,l(x))) =
(

vl(n)
n−1

∑
m=1

enm(µ)

vk(m)
xm

)
, x = (xn) ∈ CN,
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with (Ẽµ,k,l(x))1 := 0. Moreover, observe that Ẽµ,k,l = (ẽ k,l
nm(µ))n,m∈N is the lower

triangular matrix given by ẽ k,l
1m(µ) = 0 for m ∈ N and ẽ k,l

nm(µ) = vl(n)
vk(m)

enm(µ) for
n > 2 and 1 6 m < n.

So, it suffices to verify, for some l > k and δ > 0, that Ẽµ,k,l ∈ L(c0) for
µ ∈ B(λ, δ) and {Ẽµ,k,l : µ ∈ B(λ, δ)} is equicontinuous in L(c0). To prove this
first observe from the definition of enm(µ) that Lemma 2.7 implies, for every l > k,
every m, n ∈ N and all µ ∈ B(λ, δ2) that

(2.19) |ẽ k,l
nm(µ)| =

vl(n)
vk(m)

|enm(µ)| 6 D′λ
na(µ)−1vl(n)
ma(µ)vk(m)

,

for some constant D′λ > 0 and δ2 ∈ (0, δ1). Because the function a : C \ {0} → R
is continuous, there exists δ ∈ (0, δ2) such that a(λ)− 1

2 < a(µ) < a(λ) + 1
2 , for

all µ ∈ B(λ, δ). This implies, for each µ ∈ B(λ, δ) that a(µ) > a(λ)− 1
2 > 1

2 ; recall
that a(λ) > 1. Let c := max

{
2, a(λ) + 1

2
}

. According to Lemma 2.2 there exists
t ∈ N such that Sλ := sup

n∈N
nce−tαn < ∞. Set l := k + t. By (2.19) and the fact that

ẽ k,l
nm(µ) = 0 for 1 6 m < n, it follows for every n ∈ N and µ ∈ B(λ, δ) that

∞

∑
m=1
|ẽ k,l

nm(µ)| =
n−1

∑
m=1
|ẽ k,l

nm(µ)| 6 D′λna(µ)−1vl(n)
n−1

∑
m=1

1
ma(µ)vk(m)

= D′λna(µ)−1e−lαn
n−1

∑
m=1

ekαm

ma(µ)
6 D′λna(µ)−1e−lαn

n−1

∑
m=1

ekαm

6 D′λna(µ)−1e−lαn(n− 1)ekαn 6 D′λna(µ)e(k−l)αn

= D′λna(µ)e−tαn 6 D′λnce−tαn 6 D′λSλ.

Hence, for every µ ∈ B(λ, δ), we have the inequality

sup
n∈N

∞

∑
m=1
|ẽ k,l

nm(µ)| 6 D′λSλ,

that is, condition (ii) of Lemma 2.1 in [4] is satisfied for all µ ∈ B(λ, δ). More-
over, since na(µ)−1vl(n) = na(µ)−1e−lαn = na(µ)−1−cnce−tαn e−kαn → 0 for n → ∞
(because Sλ = sup

n∈N
nce−tαn < ∞, e−kαn 6 1, and a(µ) < a(λ) + 1

2 6 c + 1), the

inequality (2.19) implies for each fixed µ ∈ B(λ, δ) and m ∈ N that

lim
n→∞

ẽ k,l
nm(µ) = 0.

Also the condition (i) of Lemma 2.1 in [4] is satisfied, for all µ ∈ B(λ, δ). Accord-
ingly, Lemma 2.1 of [4] implies, for every µ ∈ B(λ, δ), that Ẽµ,k,l ∈ L(c0) with
‖Ẽµ,k,l‖op 6 D′λSλ, that is, {Ẽµ,k,l : µ ∈ B(λ, δ)} is equicontinuous in L(c0). Fi-
nally, in view of (2.18), we have shown that condition (2.16) is indeed satisfied.
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COROLLARY 2.10. For α with αn ↑ ∞ the following assertions are equivalent:
(i) Eα is nuclear;

(ii) σ(C; Eα) = σpt(C; Eα);
(iii) σ(C; Eα) = Σ.

Proof. (i)⇒ (ii) and (i)⇒ (iii) are clear from Proposition 2.9(i).
(ii)⇒ (i) The equality in (ii) together with the fact that σpt(C; Eα) ⊆ Σ (see

the discussion prior to Proposition 2.3) implies 0 ∈ ρ(C; Eα). Hence, Eα is nuclear;
see Proposition 2.4.

(iii) ⇒ (i) The equality in (iii) implies 0 ∈ ρ(C; Eα) and so Eα is nuclear
(cf. Proposition 2.4).

Recall that an operator T ∈ L(X), with X a lcHs, is compact (respectively
weakly compact) if there exists a neighbourhood U of 0 such that T(U) is a rela-
tively compact (respectively relatively weakly compact) subset of X.

COROLLARY 2.11. Let α satisfy αn ↑ ∞ with Eα nuclear. Then the Cesàro opera-
tor C ∈ L(Eα) is neither compact nor weakly compact.

Proof. Since Eα is Montel, there is no distinction between C being compact
or weakly compact. So, suppose that C is compact. Then σ(C; Eα) is necessarily a
compact set in C, ([11], Theorem 9.10.2), which contradicts Proposition 2.9(i).

The identity C = ∆diag
(( 1

n
))

∆ holds in L(CN) and all the three operators
C, ∆ and diag(( 1

n )) are continuous; see the discussion prior to Proposition 2.3. For
every positive sequence αn ↑ ∞ we also have that C ∈ L(Eα) (cf. Proposition 2.1)
and diag

(( 1
n
))
∈ L(Eα) (because diag

(( 1
n
))
∈ L(c0(vk)) for every k ∈ N). If ∆

acts in Eα, then ∆en ∈ Eα for all n ∈ N and so σpt(C; Eα) = Σ; see (2.2). Accord-
ingly, Eα is necessarily nuclear via Proposition 2.3. However, this condition alone
is not sufficient for the continuity of ∆.

PROPOSITION 2.12. For α with αn ↑ ∞ the following assertions are equivalent:
(i) the operator ∆ ∈ L(Eα);

(ii) sup
n∈N

n
αn

< ∞.

Proof. For each k ∈ N, the surjective isometric isomorphism Φk : c0(vk) →
c0 was defined in the proof of Proposition 2.9. Because Eα = ind

k
c0(vk) it follows

that ∆ ∈ L(Eα) if and only if for each k ∈ N there exists l ∈ N with l > k such that
∆ : c0(vk)→ c0(vl) is continuous. Moreover, the continuity of ∆ : c0(vk)→ c0(vl)

is equivalent to continuity of the operator Dk,l : c0 → c0, where Dk,l := Φl∆Φ−1
k .

Note that Φl = diag((vl(n))) and Φ−1
k = diag

(( 1
vk(n)

))
are diagonal matrices

and ∆ = (∆nm)n,m∈N is a lower triangular matrix. A direct calculation shows
that Dk,l = (dk,l

nm)n,m∈N is the lower triangular matrix where, for each n ∈ N,
dk,l

nm = (−1)m−1 vl(n)
vk(m) (

n−1
m−1), for 1 6 m < n and dk,l

nm = 0 if m > n. It follows from
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Theorem 4.51-C of [20] that a matrix A = (anm)n,m∈N acts continuously on c0 if
and only if the matrix (|anm|)n,m∈N does so and hence, by the same result in [20],
that ∆ ∈ L(Eα) if and only if for each k ∈ N there exists l ∈ N with l > k such that
the lower triangular matrix (|dk,l

nm|)n,m∈N satisfies both

lim
n→∞

|dk,l
nm| = lim

n→∞

vl(n)
vk(m)

(
n− 1
m− 1

)
= 0, ∀m ∈ N, and(2.20)

sup
n∈N

∞

∑
m=1
|dk,l

nm| = sup
n∈N

n

∑
m=1

vl(n)
vk(m)

(
n− 1
m− 1

)
< ∞.(2.21)

Actually, (2.21) implies (2.20). Indeed, if (2.21) holds, then there exists L > 0

satisfying vl(n)
n
∑

m=1

1
vk(m) (

n−1
m−1) 6 L for all n ∈ N and hence, as 1

vk(m)
= ekαm > 1

for all m ∈ N, also 2n−1vl(n) = vl(n)
n
∑

m=1
(n−1

m−1) 6 L for all n ∈ N. Then, for fixed

m ∈ N, it follows that

nm−1vl(n) =
nm−1

2n−1 · 2
n−1vl(n) 6

L · nm−1

2n−1 , n ∈ N.

Since ( nm−1

2n−1 )n∈N is a null sequence and (n−1
m−1) ' nm−1 for n → ∞ the condition

(2.20) follows. So, we have established that the continuity of ∆ : Eα → Eα is
equivalent to the following:

Condition (δ): For every k ∈ N there exists l > k such that (2.21) is satisfied.

(i) ⇒ (ii) Since Condition (δ) holds, for the choice k = 1 there exist l ∈ N
with l > 1 and M > 1 such that

2n−1vl(n) = vl(n)
n

∑
m=1

(
n− 1
m− 1

)
6

n

∑
m=1

vl(n)
v1(m)

(
n− 1
m− 1

)
6 M, n ∈ N.

Hence, 2nvl(n) 6 2M from which it follows that

exp(n log(2)− lan) 6 2M = exp(log(2M)), n ∈ N.

Rearranging this inequality yields

n
αn

6
l

log(2)
+

log(2M)

αn log(2)
, n ∈ N.

Since αn ↑ ∞, it follows that sup
n∈N

n
αn

< ∞.

(ii) ⇒ (i) Choose M ∈ N such that n 6 Mαn for n ∈ N. In order to verify
Condition (δ) fix k ∈ N. Then l := (k + M) ∈ N and l > k. Since vk is decreasing
on N we have

n

∑
m=1

vl(n)
vk(m)

(
n− 1
m− 1

)
6

vl(n)
vk(n)

n

∑
m=1

(
n− 1
m− 1

)
6 2n vl(n)

vk(n)
, n ∈ N.
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Furthermore, for each n ∈ N, it is also the case that

2n vl(n)
vk(n)

= 2ne−αn(l−k) = en log(2)e−Mαn 6 ene−Mαn 6 1.

The previous two sets of inequalities imply (2.21) and hence, Condition (δ) is
satisfied, i.e., ∆ ∈ L(Eα).

REMARK 2.13. (i) Clearly sup
n∈N

n
αn

< ∞ implies Eα is a nuclear space

(cf. Proposition 2.4). On the other hand, the sequence αn := log(n), n ∈ N, has
the property that Eα is nuclear, but ∆ /∈ L(Eα) by Proposition 2.12.

(ii) The continuity of the operators ∆ and D on Eα is unrelated. Indeed, con-
sider αn :=

√
n, for n ∈ N. Then D is continuous because Eα is both nuclear and

shift stable (cf. Proposition 2.5) whereas ∆ is not continuous (cf. Proposition 2.12).
On the other hand, ∆ is continuous on Eα for αn := nn, n ∈ N (via Proposi-
tion 2.12), but D fails to be continuous on this space; see Remark 2.6.

We end this section with an application. Consider the space of germs of
holomorphic functions at 0, namely the regular (LB)-space defined by H0 :=
ind

k
A
(

B(0, 1
k )
)
. Here, for each k ∈ N, A

(
B(0, 1

k )
)

is the disc algebra consisting

of all holomorphic functions on the open disc B(0, 1
k ) ⊆ C which have a continu-

ous extension to its closure B(0, 1
k ): it is a Banach algebra for the norm

‖ f ‖k := sup
|z|61/k

| f (z)| = sup
|z|=1/k

| f (z)|, f ∈ A
(

B
(

0,
1
k

))
.

It is known that the linking maps A
(

B(0, 1
k )
)
→ A(B

(
0, 1

k+1 )
)

for k ∈ N, which
are given by restriction, are injective and absolutely summing. By Köthe duality
theory, H0 is isomorphic to the strong dual of the nuclear Fréchet space H(C).
In particular, H0 is a (DFN)-space. We refer to Section 2, Example 5 of [8] and
Chapter 5.27, Sections 3,4 of [14] for further information concerning spaces of
holomorphic germs and their strong duals. Define α = (αn) by αn := n for
n ∈ N in which case lim

n→∞
log(n)

αn
= 0. Then H(C) is isomorphic to the power

series space Λ1
∞(α) of infinite type, ([17], Example 29.4(2)), and its strong dual Eα

is isomorphic to H0. Indeed, a topological isomorphism of H0 onto Eα is given by

the linear map which sends f (z) =
∞
∑

n=0
anzn (an element of A

(
B(0, 1

k )
)

for some

k ∈ N) to (an−1)n∈N ∈ Eα. The proof of this (known) fact relies on the following
estimates.

(i) If f ∈ A(B(0, ε)) for some 0 < ε < 1 (with f (z) =
∞
∑

n=0
anzn), then the

Cauchy estimates for f imply |an| 6 1
εn max
|z|=ε
| f (z)| for n ∈ N0 := {0} ∪N. Hence,
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if f ∈ A
(

B(0, 1
k )
)

for some k ∈ N, then

|an| 6 kn max
|z|=1/k

| f (z)| = kn‖ f ‖k, n ∈ N0.

(ii) Let a := (an)n∈N0 ∈ `∞(vk) for some k ∈ N, where vk(n) := 1
(1+k)n for

n ∈ N0, k ∈ N; we have taken here sk := log(k + 1). Then |an| 6 qk(a)kn for

n ∈ N0 and each fixed k ∈ N. Hence, if |z| 6 1
2k , then f (z) =

∞
∑

n=0
anzn satisfies

| f (z)| 6
∞

∑
n=0
|an| · |z|n 6 qk(a)

∞

∑
n=0

kn 1
(2k)n = 2qk(a).

Accordingly, f ∈ A
(

B(0, 1
2k )
)
.

The above facts, combined with Proposition 2.9 and Corollary 2.11, yield
the following result.

PROPOSITION 2.14. The Cèsaro operator C : H0→H0 is continuous with spectra

σ(C; H0) = σpt(C; H0) = Σ and σ∗(C; H0) = Σ0.

In particular, C is not (weakly) compact.

3. THE SPECTRUM OF C IN THE NON-NUCLEAR CASE

The aim of this section is to give a complete description of the spectrum of
C ∈ L(Eα) for the case when Eα is not nuclear. It turns out that σ(C; Eα) and
σ∗(C; Eα) are dramatically different to that when Eα is nuclear. The following
fact, which we record for the sake of explicit reference, is immediate from (2.3)
and Propositions 2.3 and 2.4.

PROPOSITION 3.1. For α with αn ↑ ∞ the following assertions are equivalent:
(i) Eα is not nuclear;

(ii) σpt(C; Eα) = {1};
(iii) 0 ∈ σ(C; Eα).

The following general result will be useful in the sequel. For each r > 0 we
adopt the notation D(r) :=

{
λ ∈ C :

∣∣λ− 1
2r

∣∣ < 1
2r
}

.

PROPOSITION 3.2. Let α satisfy αn ↑ ∞. Then

Σ ⊆ σ(C; Eα) ⊆ D(1).

Proof. Since C ∈ L(Eα), its dual operator C′ is defined, continuous on the
strong dual E′α =

⋂
k∈N

`1
( 1

vk

)
= proj

k
`1
( 1

vk

)
of Eα = ind

k
c0(vk) and is given by the

formula

C′y :=
( ∞

∑
j=n

yj

j

)
n∈N

, y = (yn) ∈ E′α;
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see (3.7) in p. 774 of [4], for example, after noting that E′α ⊆ `1
( 1

v1

)
. Given λ ∈ Σ

there is m ∈ N with λ = 1
m . Define u(m) by u(m)

n :=
n−1
∏

k=1

(
1− 1

λk
)

for 1 < n 6 m

(with u(m)
1 := 1) and u(m)

n := 0 for n > m. It is routine to verify that u(m) ∈ E′α (as
u(m) ∈ ϕ) and C′u(m) = 1

m u(m), i.e., λ ∈ σpt(C′; E′α). It follows that λ ∈ σ(C; Eα).
Indeed, if not, then λ ∈ ρ(C; Eα) and so (C− λI)(Eα) = Eα. This implies, for each
z ∈ Eα that there exists x ∈ Eα satisfying (C− λI)x = z. Hence,

〈z, u(m)〉 = 〈(C− λI)x, u(m)〉 = 〈x, (C′ − λI)u(m)〉 = 0,

that is, 〈z, u(m)〉 = 0 for all z ∈ Eα. Since u(m) 6= 0, this is a contradiction. So,
λ ∈ σ(C; Eα). This establishes that Σ ⊆ σ(C; Eα).

According to Lemma 2.8 we see that σ(Ck; c0(vk)) ⊆ D(1) for all k ∈ N,
where Ck : c0(vk)→ c0(vk) is the restriction of C ∈ L(CN). Hence,

⋂
m∈N

( ∞⋃
k=m

σ(Ck; c0(vk))
)
⊆ D(1)

and so σ(C; Eα) ⊆ D(1); see Lemma 5.5 in the Appendix.

The following result identifies a large part of σ(C; Eα).

PROPOSITION 3.3. Let α satisfy αn ↑ ∞ and such that Eα is not nuclear. Then

{0, 1} ∪ D(1) ⊆ σ(C; Eα) ⊆ D(1).

Proof. It follows from Propositions 3.1 and 3.2 that Σ0 ⊆ σ(C; Eα) ⊆ D(1).
So, it remains to verify that (D(1) \ Σ) ⊆ σ(C; Eα). This is achieved via a contra-
diction argument.

Let λ ∈ D(1) \ Σ and suppose that λ ∈ ρ(C; Eα). Note that β := Re
( 1

λ

)
> 1.

Since (C− λI)−1 : Eα → Eα is continuous, for k = 1 there exists l ∈ N with l > 1
such that (C− λI)−1 : c0(v1)→ c0(vl) is continuous. In the notation of the proof
of Proposition 2.9 it follows that the linear map Ẽλ,1,l : c0 → c0 is continuous,
where Ẽλ,1,l = (ẽ 1,l

nm(λ))n,m∈N is the lower triangular matrix given by

(3.1) ẽ 1,l
nm(λ) =

vl(n)
v1(m)

enm(λ), ∀n > 2, 1 6 m < n,

and ẽ 1,l
nm(λ) = 0 otherwise. Here en,m(λ) = 1

n ∏n
k=m

(
1− 1

λk

) if 1 6 m < n and

enm(λ) = 0 if m > n. According to the inequality (3.10) in p. 776 of [4], there exist
positive constants c, d such that

(3.2)
c

n1−β
6 |en1(λ)| 6

d
n1−β

, n > 2.
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Since Ẽλ,1,l∈L(c0), a well known criterion, ([4], Lemma 2.1; [20], Theorem 4.51-C)
implies that necessarily

(3.3) lim
n→∞

ẽ 1,l
nm(λ) = 0, m ∈ N.

It now follows from (3.1), the left-inequality in (3.2), and (3.3) with m = 1, that

lim
n→∞

nβ−1e−lαn = lim
n→∞

nβ−1vl(n) = 0.

Since β > 1, it follows from Lemma 2.2 that sup
n∈N

log(n)
αn

< ∞ which contradicts

the non-nuclearity of Eα (cf. Proposition 2.3). Hence, no λ ∈ D(1) \ Σ exists with
λ ∈ ρ(C; Eα).

We now come to the main result of this section.

PROPOSITION 3.4. Let α satisfy αn ↑ ∞ and such that Eα is not nuclear.
(i) if sup

n∈N

log(log(n))
αn

< ∞, then

σ(C; Eα) = {0, 1} ∪ D(1) and σ∗(C; Eα) = D(1);

(ii) if sup
n∈N

log(log(n))
αn

= ∞, then

σ(C; Eα) = D(1) = σ∗(C; Eα).

Proof. In the notation of the proof of Proposition 2.9, for each λ ∈ C \Σ0 the
inverse operator (C− λI)−1 ∈ L(CN) satisfies

(C− λI)−1 = Dλ −
1

λ2 Eλ;

see (2.17). It is also argued there (as a consequence of the fact that the diagonal in
Dλ is a bounded sequence) that (C− λI)−1 : Eα → Eα is continuous if and only if
Eλ ∈ L(Eα); the nuclearity of Eα is not used for this part of the argument. More-
over, since Eα is an inductive limit, general theory yields that Eλ ∈ L(Eα) if and
only if for each k ∈ N there exists l ∈ N with l > k such that Eλ : c0(vk) → c0(vl)

is continuous. With Ẽλ,k,l = (ẽ k,l
nm(λ))n,m∈N, where ẽ k,l

nm(λ) := vl(n)
vk(m)

enm(λ) for
n, m ∈ N, it follows via the argument used in case (ii) of the proof of Propo-
sition 2.9 (see also the proof of Proposition 3.3, where k = 1 can be replaced
by an arbitrary k ∈ N) that Eλ : c0(vk) → c0(vl) is continuous if and only if
Ẽλ,k,l : c0 → c0 is continuous. Via Theorem 4.51-C of [20] this is equivalent to
both of the following conditions being satisfied:

lim
n→∞

|ẽ k,l
nm(λ)| = lim

n→∞

vl(n)
vk(m)

|enm(λ)| = 0, ∀m ∈ N, and(3.4)

sup
n∈N

∞

∑
m=1

vl(n)
vk(m)

|enm(λ)| = sup
n∈N

n−1

∑
m=1

vl(n)
vk(m)

|enm(λ)| < ∞.(3.5)
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Next, if λ /∈ {0, 1} belongs to the boundary ∂D(1) of D(1), then β :=
Re
( 1

λ

)
= 1 and λ /∈ Σ0. Accordingly, Lemma 3.3 of [4] ensures the existence

of positive constants c, d such that c 6 |en1(λ)| 6 d for all n ∈ N and

(3.6)
c
m

6 |enm(λ)| 6
d
m

, ∀n ∈ N, 2 6 m < n.

In order to deduce (3.6) from Lemma 3.3 of [4] we have used the formula

|enm(λ)| =
1

(m− 1)
·
(m− 1)∏m−1

k=1

∣∣1− 1
λk

∣∣
n ∏n

k=1
∣∣1− 1

λk

∣∣ , ∀n ∈ N, 2 6 m < n.

Henceforth we use vr(n) := e−rαn for all r, n ∈ N. Note that (3.4) is satisfied for
every λ ∈ ∂D(1) \ {0, 1}. Indeed, for fixed m ∈ N, we have via (3.6) that

vl(n)
vk(m)

|enm(λ)| 6
dekαm

melαn
6

d′

elαn
, n ∈ N,

from which (3.4) is clear.
(i) Since sup

n∈N

log(log(n))
αn

< ∞, there exists M ∈ N such that log(log(n)) 6

Mαn, equivalently log(n) 6 eMαn for n ∈ N. Fix λ ∈ ∂D(1) \ {0, 1}; in particular,
λ /∈ Σ0. Given k ∈ N define l := k + M. Then, for every n > 2, it follows from
(2.8), (3.6) and (l − k) = M that

n−1

∑
m=1

vl(n)
vk(m)

|enm(λ)| 6
d

elαn

n−1

∑
m=1

ekαm

m
6

dekαn

elαn

n−1

∑
m=1

1
m

6
1 + log(n)

eMαn
= e−Mαn +

log(n)
eMαn

6 2.

Accordingly, (3.5) is satisfied. Since (3.4) holds, we conclude that Ẽλ,k,l : c0→ c0 is
continuous, equivalently that (C−λI)−1∈L(Eα). It follows that ∂D(1) \ {0, 1} ⊆
ρ(C; Eα) and so σ(C; Eα) = {0, 1} ∪ D(1); see Proposition 3.3.

It was shown in the proof of Proposition 3.2 that
∞⋃

k=1
σ(Ck; c0(vk)) ⊆ D(1).

Since σ(C; Eα) = {0, 1} ∪ D(1), we have σ(C; Eα) = D(1) and so
∞⋃

k=1

σ(Ck; c0(vk)) ⊆ σ(C; Eα).

It follows from Lemma 5.5(iii) in the Appendix that σ∗(C; Eα) = D(1).
(ii) Fix λ ∈ ∂D(1) \ {0, 1}. Observe first, for k = 1 and l ∈ N arbitrary, that it

follows from (2.8) and (3.6) that

(3.7)
n−1

∑
m=1

vl(n)
vk(m)

|enm(λ)| >
c

elαn

n−1

∑
m=1

eαm

m
>

ceα1

elαn

n−1

∑
m=1

1
m

>
c log(n)

elαn
,

for all n > 2. Suppose now that λ ∈ ρ(C; Eα). Then for k = 1 there exists l ∈ N
with l > 1 such that (3.5) is satisfied. It then follows from (3.7) that sup

n∈N

log(n)
elαn < ∞.
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So, there exists K > 1 such that log(n) 6 Kelαn , equivalently that

log(log(n)) 6 lαn + log(K), n > 3.

A rearrangement yields

log(log(n))
αn

6 l +
log(K)

αn
, n > 3,

and so sup
n∈N

log(log(n))
αn

< ∞; contradiction! So, no λ ∈ ∂D(1) \ {0, 1} exists which

satisfies λ ∈ ρ(C; Eα), i.e., ∂D(1) \ {0, 1} ⊆ σ(C; Eα). It now follows from Propo-
sition 3.3 that σ(C; Eα) = D(1).

It was observed in the proof of part (i) that
∞⋃

k=1
σ(Ck; c0(vk)) ⊆ D(1). Since

D(1) = σ(C; Eα) = σ(C; Eα), it again follows from Lemma 5.5(iii) in the Appendix
that σ∗(C; Eα) = σ(C; Eα).

REMARK 3.5. (i) Let α satisfy αn ↑ ∞. Then σ(C; Eα) is a compact subset of C
if and only if sup

n∈N

log(log(n))
αn

= ∞. This follows from Corollary 2.10, Proposition 3.4

and the fact that the condition sup
n∈N

log(log(n))
αn

= ∞ implies sup
n∈N

log(n)
αn

= ∞, i.e., Eα

is automatically non-nuclear.
(ii) The sequence αn := log(log(n)) for n > 33 > ee (with 1 < α1 < · · · <

α26 < log(log(33)) arbitrary) satisfies 1 < αn ↑ ∞ with Eα not nuclear and
sup
n∈N

log(log(n))
αn

< ∞. Proposition 3.4(i) shows that σ(C; Eα) = {0, 1} ∪ D(1). On

the other hand, the sequence αn := log(log(log(n))) for n > 327 > eee
(with

1 < α1 < · · · < α327−1 < log(log(log(327))) arbitrary) satisfies 1 < αn ↑ ∞ with

Eα not nuclear and sup
n∈N

log(log(n))
αn

= ∞. In this case Proposition 3.4(ii) reveals that

σ(C; Eα) = D(1).

4. MEAN ERGODICITY OF THE CESÀRO OPERATOR

An operator T ∈ L(X), with X a lcHs, is power bounded if {Tn}∞
n=1 is an

equicontinuous subset of L(X). Given T ∈ L(X), the averages

T[n] :=
1
n

n

∑
m=1

Tm, n ∈ N,

are called the Cesàro means of T. The operator T is said to be mean ergodic (re-
spectively uniformly mean ergodic) if {T[n]}∞

n=1 is a convergent sequence in Ls(X)

(respectively, in Lb(X)). A relevant text for mean ergodic operators is [15].
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PROPOSITION 4.1. Let αn ↑ ∞. The Cesàro operator C ∈ L(Eα) is power
bounded and uniformly mean ergodic. In particular,

(4.1) Eα = Ker(I − C)⊕ (I − C)(Eα)

with
(4.2)

Ker(I − C) = {1} and (I − C)(Eα) = {x ∈ Eα : x1 = 0} = span{en}n>2.

Proof. Since each weight vk for k ∈ N is decreasing, it is known that C ∈
L(c0(vk)) and qk(Cx) 6 qk(x) for all x ∈ c0(vk), ([4], Corollary 2.3(i)). It follows,
via (2.1), for every k ∈ N that

qk(C
mx) 6 qk(x), ∀x ∈ c0(vk), m ∈ N.

Accordingly, for each k ∈ N, (5.5) is satisfied with l := k and D = 1. Then
Lemma 5.4 in the Appendix implies thatH := {Cm : m ∈ N} ⊆ L(Eα) is equicon-
tinuous, i.e., the Cesàro operator C is power bounded in Eα. Since Eα is Montel, it
follows via Proposition 2.8 of [1] that the Cesàro operator C is uniformly mean er-
godic in Eα and hence, (4.1) is also satisfied, ([1], Theorem 2.4). The facts that each
x ∈ Eα belongs to c0(vk) for some k ∈ N, that the inclusion c0(vk) ⊆ Eα is contin-
uous and that the canonical vectors en := (δnk)k∈N, for n ∈ N, form a Schauder
basis in c0(vk) implies {en : n ∈ N} is a Schauder basis for Eα. The proof of the
identities in (4.2) now follow by applying the same (algebraic) arguments as used
in the proof of Proposition 4.1 in [2].

PROPOSITION 4.2. Let αn ↑ ∞. The sequence {Cm}m∈N converges in Lb(Eα) to
the projection onto span{1} along (I − C)(Eα).

Proof. Using Proposition 4.1 we proceed as in the proof of the analogous
result when C acts in the Frèchet space Λ0(α), ([6], Proposition 3.2). Indeed, for
each x ∈ Eα, we have that x = y + z with y ∈ Ker(I − C) = span{1} and z ∈
(I − C)(Eα) = span{en}n>2. So, for each m ∈ N we have Cmx = Cmy + Cmz, with
Cmy = y → y in Eα as m → ∞. The claim is that the sequence {Cmz}m∈N is also
convergent in Eα. Indeed, proceeding as in the proof of Proposition 3.2 of [6] one
shows, for each r > 2 and m, n ∈ N, that |(Cmer)(n)| 6 1

r−1 am, where (am)m∈N is
a sequence of positive numbers satisfying lim

m→∞
am = 0. Since v1(n)|(Cmer)(n)| 6

v1(n)
r−1 am, for each r > 2 and n, m ∈ N, with 1 > v1(1) > v1(n) for all n ∈ N it

follows that q1(C
mer) 6 1

r−1 am. We deduce, for each r > 2, that Cmer → 0 in c0(v1)
and hence, also in Eα as m → ∞. Since {Cm}m∈N ⊆ L(Eα) is equicontinuous
and (by (4.2)) the linear span of {en}n>2 is dense in (I − C)(Eα), it follows that
Cmz → 0 in Eα as m → ∞ for each z ∈ (I − C)(Eα). So, it has been shown that
Cmx = Cmy +Cmz→ y in Eα as m→ ∞, for each x ∈ Eα, i.e., {Cm}m∈N converges
in Ls(Eα). Since Eα is a Montel space, {Cm}m∈N also converges in Lb(Eα).
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PROPOSITION 4.3. Let αn ↑ ∞ with Eα nuclear. Then the range (I − C)m(Eα) is
a closed subspace of Eα for each m ∈ N.

Proof. Consider first m = 1. Set X(α) := {x ∈ Eα : x1 = 0}. The claim is
that

(4.3) (I − C)(Eα) = (I − C)(X(α)).

First recall that each sequence vk, for k ∈ N, is strictly positive and decreasing
with vk ∈ c0 and so (I − C)(c0(vk)) = {x ∈ c0(vk) : x1 = 0} =: Xk and (I −
C)(Xk) = (I − C)(c0(vk)), ([4], Lemmas 4.1 and 4.5). Now, if x ∈ X(α), then
x ∈ Xk for some k ∈ N and hence,

(I − C)x ∈ (I − C)(Xk) = (I − C)(c0(vk)) ⊆ (I − C)(Eα).

This establishes one inclusion in (4.3). For the reverse inclusion let x ∈ Eα. Then
x ∈ c0(vk) for some k ∈ N and hence, (I−C)x ∈ (I−C)(c0(vk)) = (I−C)(Xk) ⊆
(I − C)(X(α)). Thus, the reverse inclusion in (4.3) is also valid.

Because of (4.3) and the containment (I − C)(Eα) ⊆ (I − C)(Eα) = X(α),
which is immediate from Proposition 4.1, to show that (I −C)(Eα) is closed in Eα

it suffices to show that the continuous linear restriction operator

(I − C)|X(α) : Xα → Xα

is bijective, actually surjective. Indeed, if we show that (I − C)(X(α)) = X(α),
then (I − C)(Eα) = X(α) by (4.3) and hence, (I − C)(Eα) is a closed subspace
of Eα.

To establish that (I − C)|Xα is bijective we require the identity (X(α), τ) =
ind

k
Xk, where τ is the relative topology in X(α) induced from Eα. This identity

follows from the general fact that if (E, τ̃) = ind
n

En is a (LB)-space and F ⊆ E

is a closed subspace with finite codimension, then (F, τ̃|F) = ind
n

(F ∩ En) is also

a (LB)-space, ([18], Lemma 6.3.1). Actually, setting ṽk(n) := vk(n + 1) for all
k, n ∈ N, we have that X(α) is topologically isomorphic to E(α̃) := ind

k
c0(ṽk).

Indeed, the left-shift operator S : X(α) → E(α̃) given by S(x) := (x2, x3, . . .)
for x = (xn)n∈N ∈ X(α) is such an isomorphism (because, for each k ∈ N, the
left shift operator S : Xk → c0(vk) is a surjective isometry). Consider now the
operator A := S ◦ (I − C)|X(α) ◦ S−1 ∈ L(E(α̃)). The claim is that A is bijective
with A−1 ∈ L(E(α̃)).

To establish the above claim observe, when interpreted to be acting in the
space CN, that the operator A : CN → CN is bijective (which is a routine verifica-
tion) and its inverse B := A−1 : CN → CN is determined by the lower triangular
matrix B = (bnm)n,m∈N with entries given as follows: for each n ∈ N we have
bnm = 0 if m > n, bnm = n+1

n if m = n and bnm = 1
m if 1 6 m < n. To show that B

is also the inverse of A acting on E(α̃), we only need to verify that B ∈ L(E(α̃)).
To establish this it suffices to show, for each k ∈ N, that there exists l > k such that
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Φṽl
◦ B ◦Φ−1

ṽk
∈ L(c0), where for each h ∈ N the operator Φṽh

: c0(ṽh)→ c0 given
by Φṽh

(x) = (ṽh(n + 1)xn) for x ∈ c0(ṽh) is a surjective isometry. To this end,
given k ∈ N set l := k + 1, say. Then the lower triangular matrix corresponding
to Φṽl

◦ B ◦ Φ−1
ṽk

is given by D :=
( vl(n+1)

vk(m+1) bnm
)

n,m∈N. Moreover, for each fixed
m ∈ N, we have

lim
n→∞

vl(n + 1)
vk(m + 1)

bnm =
1

mvk(m + 1)
lim

n→∞
vl(n + 1) = 0

and, for each n ∈ N, that

∞

∑
m=1

vl(n + 1)
vk(m + 1)

bnm =
(n + 1)

n
vl(n + 1)
vk(n + 1)

+ vl(n + 1)
n−1

∑
m=1

1
mvk(m + 1)

6 2 + (sl)
−αn+1

n−1

∑
m=1

sαm+1
k
m

6 2 +
( sk

sl

)αn+1 n−1

∑
m=1

1
m

6 2 +
( sk

sl

)αn+1
(1 + log(n)) 6 2 + 2aαn+1 log(n + 1),

where a := sk
sl
∈ (0, 1). Since Eα is nuclear, there exists M > 1 such that log(n) 6

Mαn for all n ∈ N and hence, aαn log(n) 6 Mαnaαn for n ∈ N. Since f (x) := xax,
for x ∈ (0, ∞), satisfies f ′(x) < 0 for x > 1

log
(

1
a

) , the function f is decreasing on(
1

log
(

1
a

) , ∞
)

which implies sup
n∈N

aαn log(n) < ∞, i.e.,
∞
∑

m=1

vl(n+1)
vk(m+1) < ∞ for each n ∈

N. Thus, both the conditions (i), (ii) of Lemma 2.1 in [4] are satisfied. Accordingly,
Φṽl
◦ B ◦Φ−1

ṽk
∈ L(c0). The proof that (I − C)(Eα) is closed is thereby complete.

Since (I−C)(Eα) is closed, (4.1) implies Eα = Ker(I−C)⊕ (I−C)(Eα). The
proof of (2)⇒ (5) in Remark 3.6 of [2] then shows that (I − C)m(Eα) is closed in
Eα for all m ∈ N.

An operator T ∈ L(X), with X a separable lcHs, is called hypercyclic if there
exists x ∈ X such that the orbit {Tnx : n ∈ N0} is dense in X. If, for some
z ∈ X the projective orbit {λTnz : n ∈ N0, λ ∈ C} is dense in X, then T is called
supercyclic. Clearly, hypercyclicity implies supercyclicity.

PROPOSITION 4.4. Let α satisfy αn ↑ ∞. Then C ∈ L(Eα) is not supercyclic and
hence, also not hypercyclic.

Proof. It is known that C is not supercyclic in CN, ([5], Proposition 4.3). Since
Eα is dense (as it contains ϕ) and continuously included in CN, the supercyclicity
of C in any one of the spaces Eα would imply that C ∈ L(CN) is supercyclic.
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5. APPENDIX

In this section we elaborate on the point raised in Section 1 that the be-
haviour of the Cesàro operator on the strong dual (Λ1

0(α))
′ of power series spaces

Λ1
0(α) of finite type, is not so relevant in relation to continuity. It turns out that C

fails to act in (Λ1
0(α))

′ for every α with αn ↑ ∞ such that (Λ1
0(α))

′ is nuclear. More-
over, there exist αn ↑ ∞ such that (Λ1

0(α))
′ is not nuclear and C ∈ L((Λ1

0(α))
′)

(cf. Example 5.2) as well as other αn ↑ ∞ such that (Λ1
0(α))

′ is not nuclear and
C /∈ L((Λ1

0(α))
′); see Example 5.3.

In order to be able to formulate the above claims more precisely, let (vk)k∈N
be a sequence of functions vk : N→ (0, ∞) satisfying vk(n) ↑n ∞, for each k ∈ N,
with vk > vk+1 pointwise on N and lim

n→∞
vk+1(n)

vk(n)
= 0 for all k ∈ N. Then `∞(vk) ⊆

c0(vk+1) continuously for each k ∈ N and so

k0(V) := ind
k

c0(vk) = ind
k

`∞(vk).

In the notation of Köthe echelon spaces

λ1

(1
v

)
:= proj

k
`1

( 1
vk

)
is a Fréchet–Schwartz space whose strong dual space, i.e., the co-echelon space(

λ1

(1
v

))′
β
= ind

k
`∞(vk) = k0(V),

is a (DFS)-space. It is known that the regular (LB)-space k0(V) is nuclear if and
only if the Fréchet–Schwartz space λ1

( 1
v
)

is nuclear if and only if the Grothen-
dieck–Pietsch criterion is satisfied: for every k ∈ N there exists l ∈ N with l > k
such that the sequence

( vl(n)
vk(n)

)
n∈N ∈ `1, ([12], Section 21.6). In case vk(n) := eαn/k,

for k, n ∈ N, with αn ↑ ∞, then k0(V) is the strong dual of the finite type power
series space (of order 1) Λ1

0(α) := proj
k

`1
( 1

vk

)
. This Fréchet space is nuclear if

and only if lim
n→∞

log(n)
αn

= 0, ([17], Proposition 29.6). Whenever this nuclearity

condition is satisfied we have Λ1
0(α) = proj

j
c0
( 1

vk

)
which is precisely the power

series space Λ0(α) in which the operator C was investigated in [6].
For the rest of this section, whenever αn ↑ ∞ we only consider the weights

vk(n) := eαn/k for k, n ∈ N.

PROPOSITION 5.1. Let the sequence αn satisfy αn ↑ ∞ and lim
n→∞

log(n)
αn

= 0. Then

the Cesàro operator C does not act in k0(V) = ind
k

c0(vk).
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Proof. Since lim
n→∞

log(n)
αn

= 0, it follows from Lemma 2.2 of [6] that

lim
n→∞

nte−αn = 0

for each t ∈ N, which implies lim
n→∞

ne−αn/l = 0 for each l ∈ N. In particular,

(5.1) sup
n∈N

eαn/l

n
= ∞, ∀l ∈ N.

Suppose that C ∈ L(k0(V)), i.e., for every k ∈ N there exists l ∈ N with
l > k such that C : c0(vk) → c0(vl) is continuous. Then, for k := 1 there exists
l1 > 1 such that C : c0(v1)→ c0(vl1) is continuous, equivalently

(5.2) M := sup
n∈N

vl1(n)
n

n

∑
m=1

1
v1(m)

< ∞,

([4], Proposition 2.2(i)). But, via (5.2), we then have for each n ∈ N that

eαn/l1

n
= v1(1) ·

vl1(n)
nv1(n)

6 v1(1) ·
vl1(n)

n

n

∑
m=1

1
v1(m)

6 Mv1(1).

This contradicts (5.1) for l := l1. Hence, C does not act in k0(V).

EXAMPLE 5.2. Define αn := log(n + 1) for n ∈ N. Since lim
n→∞

log(n)
αn

= 1 6= 0,

the space k0(V) is not nuclear. To see that C ∈ L(k0(V)) fix any k ∈ N and set
l := k + 1. Noting that vr(n) = (n + 1)1/r for r, n ∈ N, it follows that

(5.3)
vl(n)

n

n

∑
m=1

1
vk(m)

=
(n + 1)1/l

n

n

∑
m=1

1
(m + 1)1/k 6

2(n + 1)1/l

(n + 1)

n+1

∑
m=1

1
m1/k ,

for each n ∈ N. If k = 1, then l = 2 and it follows from (5.3) and the inequality
n+1
∑

m=1

1
m 6 1+ log(n+ 1) that the left-side of (5.3) is at most 2(1+log(n+1))

(n+1)1/2 , for n ∈ N.

For k > 1, using the inequality
n+1
∑

m=1

1
mδ 6 1 + (n+1)1−δ

1−δ , n ∈ N (valid for each

δ ∈ (0, 1)), with δ := 1
k it follows from (5.3) (with l = k + 1) that

vl(n)
n

n

∑
m=1

1
vk(m)

6 (n + 1)(1/(k+1))−1 +
k(n + 1)(1/(k+1))−(1/k)

(k− 1)
, n ∈ N.

In both the cases (i.e., k = 1 and k > 1) we see that sup
n∈N

vl(n)
n

n
∑

m=1

1
vk(m)

< ∞ and so

C : c0(vk) → c0(vl) is continuous, ([4], Proposition 2.2(i)). Since this is valid for
every k ∈ N and with l := k + 1, it follows that C ∈ L(k0(V)).

EXAMPLE 5.3. Let (j(k))k∈N ⊆ N be the sequence given by j(1) := 1 and
j(k + 1) := 2(k + 1)(j(k))k, for k > 1. Observe that j(k + 1) > k(j(k))k + 1 > j(k)
for all k ∈ N. Define β = (βn)n∈N via βn := k(j(k))k for n = j(k), . . . , j(k + 1)− 1.
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Then β is non-decreasing with lim
n→∞

βn = ∞. Let γ = (γn)n∈N be any strictly

increasing sequence satisfying 2 < γn ↑ 3. Then the sequence αn := log(βn + γn),
for n ∈ N, satisfies 1 < αn ↑ ∞ and lim

n→∞
log(n)

n 6= 0, ([6], Remark 2.17). In

particular, k0(V) it not nuclear. To establish that C does not act in k0(V) is suffices
to show, for k := 1, that

(5.4) sup
n∈N

vl(n)
n

n

∑
m=1

1
v1(m)

= ∞, ∀l ∈ N.

So, fix any l ∈ N. Select n = j(k), for any k ∈ N, and observe (for this n) that

vl(n)
n

n

∑
m=1

1
v1(m)

=
(β j(k) + γj(k))

1/l

j(k)

j(k)

∑
m=1

1
βm + γm

>
(β j(k) + γj(k))

1/l

j(k)
· 1
(β1 + γ1)

>
(k(j(k))k + γj(k))

1/l

4j(k)
>

k1/l(j(k))(k/l)−1

4
>

k1/lk(k/l)−1

4
,

where we have used 1
β1+γ1

> 1
4 and j(k) > k. Accordingly,

sup
n∈N

vl(n)
n

n

∑
m=1

1
v1(m)

> sup
k∈N

vl(j(k))
j(k)

j(k)

∑
m=1

1
v1(m)

> sup
k∈N

k1/lk(k/l)−1

4
= ∞.

So, (5.4) is satisfied and hence, C does not act in k0(V).
The final two (abstract) results are recorded here in order not to disturb the

flow of the text in earlier sections (where these results are needed). We begin with
a fact which is surely known; a proof is included for the sake of self containment.

LEMMA 5.4. Let E = ind
k
(Ek, ‖ · ‖k) be a regular inductive limit of Banach

spaces. Then a subset H ⊆ L(E) is equicontinuous if and only if the following con-
dition is satisfied: for every k ∈ N there exists l ∈ N with l > k and D > 0 such
that

(5.5) ‖Tx‖l 6 D‖x‖k, ∀T ∈ H, x ∈ Ek.

Proof. First, assume that H is equicontinuous. Fix k ∈ N, in which case the
closed unit ball Bk of Ek is bounded in E. The claim is that C :=

⋃
T∈H

T(Bk) is

bounded in E. Indeed, by equicontinuity of H, given any 0-neighbourhood V
in E there exists a 0-neighbourhood U in E such that T(U) ⊆ V for all T ∈ H.
Since Bk is bounded in E, there exists λ > 0 such that Bk ⊆ λU and hence,
T(Bk) ⊆ λT(U) ⊆ λV for all T ∈ H. It follows that C ⊆ λV. Since V is arbitrary,
it follows that C is bounded in E. But, E is regular and so there exists l > k
such that C is contained and bounded in El . Thus, there exists D > 0 such that
‖Tx‖l 6 D for all x ∈ Bk and T ∈ H. Accordingly, the stated condition (5.5) is
satisfied.

Assume that the stated condition (5.5) is satisfied. Since E is barrelled, the
Banach–Steinhaus principle is available and so it suffices to show that the set
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{Ty : T ∈ H} is bounded in E for each y ∈ E. So, fix y ∈ E in which case y ∈ Ek
for some k ∈ N. Selecting l > k and D > 0 according to condition (5.5), we have
‖Ty‖l 6 D‖y‖k for all T ∈ H. Hence, the set {Ty : T ∈ H} is bounded in El and
so, also in E.

The following result occurs in Lemma 5.2 of [7].

LEMMA 5.5. Let E = ind
n

(En, ‖ · ‖n) be a Hausdorff inductive limit of Banach

spaces. Let T ∈ L(E) satisfy the following condition:
(A) for each n ∈ N the restriction Tn of T to En maps En into itself and belongs to

L(En).
Then the following properties are satisfied:

(i) σpt(T; E) =
⋃

n∈N
σpt(Tn; En);

(ii) σ(T; E) ⊆ ⋂
m∈N

( ∞⋂
n=m

σ(Tn; En)
)

. Moreover, if λ ∈
∞⋂

n=m
ρ(Tn; En) for some

m ∈ N, then R(λ, Tn) coincides with the restriction of R(λ, T) to En for each n > m;

(iii) if
∞⋃

n=m
σ(Tn; En) ⊆ σ(T; E) for some m ∈ N, then σ∗(T; E) = σ(T; E).
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