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ABSTRACT. We study the Jacobson radical of the semicrossed productA×α P
when A is a simple C∗-algebra and P is either a semigroup contained in an
abelian group or a free semigroup. A full characterization is obtained for a
large subset of these semicrossed products and we apply our results to a num-
ber of examples.
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INTRODUCTION

A C∗-dynamical system is a triple (A, α, P) consisting of a C∗-algebra A, a
semigroup P, and an action α of P on A by ∗-endomorphisms. The semicrossed
product A ×α P of A by P is a universal operator algebra associated to a C∗-
dynamical system. In this paper we characterize the Jacobson radical of several
classes of semicrossed products of simple C∗-algebras by either semigroups con-
tained in an abelian group or free semigroups.

A full characterization of the Jacobson radical when A = C0(X) is a com-
mutative C∗-algebra and P = Zn

+ was achieved in [4]. In the case n = 1 the
C∗-dynamical system (A, α,Z+) becomes a topological dynamical system (X, φ),
where φ is a continuous surjection, and the Jacobson radical is generated in a cer-
tain way by functions that vanish on the recurrent points of (X, φ). For n > 2
their characterization uses a variation on recurrence. When A is simple, the no-
tion of recurrent points does not seem to arise. However some form of recurrence
will likely be needed in the non-simple case.

Our main results show that if (A, α, P) is a C∗-dynamical system whereA is
a simple unital C∗-algebra, P is either a semigroup contained in an abelian group
or a free semigroup, and either
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(i) A is purely infinite (Theorem 2.7), or
(ii) there exists a a faithful conditional expectation Es : αs(1)Aαs(1) → αs(A)

for each s ∈ P (Theorem 2.11),

then the Jacobson radical of A×α P is generated by monomials a⊗ es where a ∈
A(1− αs(1)) (equivalently monomials such that (a⊗ es)x = 0 for all x ∈ A×α P).
These theorems yield a number of corollaries including the case where each αs
is an automorphism (Corollary 2.12) and the case where the range of each αs is
hereditary (Corollary 2.16). We also apply our results to several examples includ-
ing some standard ∗-endomorphisms of the Cuntz algebra and various shifts on
the CAR algebra.

One obstruction to characterizing the Jacobson radical in the non-unital case
is that it is not clear that for fixed s ∈ P the set {a ∈ A : a⊗ es ∈ rad(A×α P)} is
not all of A. However in two cases we are able to say that the above set is either
{a ∈ A : aαs(A) = {0}} or all of A. In Proposition 3.2 we show that this holds
when (A, α, P) is an automorphic C∗-dynamical system where A is simple and P
is either contained in an abelian group or a free semigroup. Because αs(A) = A,
in this case we have that the set is either zero or all or A. With the additional
assumption that P = Z+ we get that the radical of A ×α Z+ is either zero or
the ideal generated by A ⊗ e1 (Corollary 3.3). In Corollary 3.5 we see that the
above also holds when (A, α, P) is a C∗-dynamical system where A is a simple
separable C∗-algebra, P is contained in an abelian group, and the range of each
αs is hereditary. These results agree with the unital case because the condition
aαs(A) = {0} is the same as a ∈ A(1 − αs(1)). As a final example we apply
our results to the action obtained by conjugating the compact operators by the
unilateral shift.

1. PRELIMINARIES

A semigroup is a set P that is closed under an associative binary operation
with identity e. We will restrict ourselves to two classes, namely semigroups that
are contained in abelian groups and free semigroups (which are also contained in
groups). Such semigroups satisfy left and right cancellation, that is the equalities
st = sr and ts = rs both imply t = r for all s, t, r ∈ P.

The free semigroup F+
I over the generating set I is the set of (finite) words with

alphabet I with multiplication defined by concatenation. The empty word e is
the identity. The map ` : F+

I → Z+, where Z+ is the semigroup of non-negative
integers under addition, taking a word w = i1i2 · · · ik to k, the length of w, is a
semigroup homomorphism.

An action of a semigroup P on a C∗-algebra A is a semigroup homomor-
phism α : P→ End(A) from P into the group of ∗-endomorphisms ofA. Because
we will be assuming that our C∗-algebras are simple, each αs will be an injective
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∗-endomorphism. A C∗-dynamical system is a triple (A, α, P) consisting of a C∗-
algebra A, a semigroup P, and an action α : P → End(A) of P on A. A covariant
pair (π, T) for (A, α, P) is a representation π : A → B(H) of A and a contractive
representation T : P→ B(H) of P that together satisfy the covariance relation

Tsπ(a) = παs(a)Ts for all a ∈ A and s ∈ P.

To construct a universal operator algebra with respect to the covariant pairs
of (A, α, P) we begin with the algebra c00(A, α, P) which is just the vector space
A⊗ c00(P) with multiplication given by the rule

(a⊗ es)(b⊗ et) = (aαs(b))⊗ est for all s, t ∈ P and a, b ∈ A.

Each covariant pair gives rise to a representation π × T : c00(A, α, P) → B(H)
defined by (π × T)(a⊗ es) = π(a)Ts, which together can be used to construct a
family of matrix norms. For each n > 1 we define a norm on Mn(c00(A, α, P)) by∥∥∥ ∑

s∈P
As ⊗ es

∥∥∥ = sup
{∥∥∥ ∑

s∈P
(In ⊗ Ts)π

(n)(As)
∥∥∥
B(H(n))

: (π, T) a covariant pair
}

where As ∈ Mn(A) and As = 0 except finitely often. The semicrossed product
A×α P of A by P is the operator algebra completion of c00(A, α, P) (or a quotient
of it) with respect to the family of matrix norms given above.

It is clear from the definition that A ×α P has the universal property that
each covariant pair (π, T) gives rise to a completely contractive representation,
which we also denote by π × T, on A ×α P that extends the representation on
c00(A, α, P).

REMARK 1.1. (i) When P is an abelian semigroup we could define covariant
pairs using the left covariance relation

π(a)Ts = Tsπαs(a) for all a ∈ A and s ∈ P.

We would then complete the algebra c00(P, α,A), which has the vector space
structure of c00(P)⊗A with multiplication defined by

(es ⊗ a)(et ⊗ b) = es+t ⊗ (αt(a)b) for all s, t ∈ P and a, b ∈ A
(where associativity comes from P being abelian), with respect to the family of
matrix norms obtained from the left covariant pairs to get the left semicrossed
product. This is arguably the better choice when P is abelian and is used more
often, see [3]. With minor changes reflecting that multiplication in the left semi-
crossed product is dual to that of the right semicrossed product, our statements
and proofs can be reformulated to handle the left semicrossed product.

(ii) When P is not abelian, the right covariance relation is superior because it
yields an associative algebra, (see discussion in Section 5.1 of [3]). To avoid giving
two nearly identical proofs, it is convenient for us to use the right covariance
relation in the commutative case as well.

(iii) For both the left and right semicrossed products we could impose restric-
tions on the covariant pairs used in the supremum definition of the matrix norms.
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For example taking the supremum over covariant pairs (π, T) for which T is a
co-isometric representation of P gives us the co-isometric semicrossed product
A×co

α P. The isometric and unitary semicrossed products are defined similarly,
(see [3] for details). Our results would remain the same in all cases.

The next example shows that for C∗-dynamical systems (A, α, P) where P
has the right cancellation property, covariant pairs always exist and A×α P con-
tains a faithful copy of A.

EXAMPLE 1.2 (The orbit representation). Let (A, α, P) be a C∗-dynamical
system and π : A → B(H) be a faithful representation of A. Let H̃ = H⊗ `2(P)
and define π̃ : A → B(H̃) and T : P→ B(H̃) by

π̃(a)(ξ ⊗ δt) = (παt(a)ξ)⊗ δt, and

Ts(ξ ⊗ δt) =

{
ξ ⊗ δr if t = rs for some r ∈ P,
0 otherwise.

Note that Ts is well-defined because right cancellation holds in P. We claim that
(π̃, T) is a covariant pair for (A, α, P). It is clear that π̃ is a (faithful) representation
of A and that Ts is a co-isometry, and is therefore contractive, for each s ∈ P. We
verify that T is a semigroup homomorphism

Ts1 Ts2(ξ ⊗ δt) =

{
Ts1(ξ ⊗ δr2) if t = r2s2 for some r2 ∈ P,
0 otherwise,

=

{
ξ ⊗ δr1 if t = r1s1s2 for some r1 ∈ P,
0 otherwise,

= Ts1s2(ξ ⊗ δt)

and that the covariance relation is satisfied:

Tsπ̃(a)(ξ ⊗ δt) =

{
(παrs(a)ξ)⊗ δr if t = rs for some r ∈ P,
0 otherwise,

=

{
π̃αs(a)(ξ ⊗ δr) if t = rs for some r ∈ P,
0 otherwise,

= π̃αs(a)Ts(ξ ⊗ δt).

2. THE UNITAL CASE

Recall that the (Jacobson) radical rad(B) of a Banach algebra B is the inter-
section of the kernels of all irreducible representations. An element x ∈ B is said
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to be quasi-nilpotent if its spectral radius is zero. It is well known ([1], Proposi-
tion 25.1) that the radical of a Banach algebra can be characterized using quasi-
nilpotence in the following way

rad(B) =
{

x ∈ B : lim
n→∞

‖(xy)n‖1/n = 0 for all y ∈ B
}

=
{

x ∈ B : lim
n→∞

‖(yx)n‖1/n = 0 for all y ∈ B
}

.

In particular, taking y = x shows that every x ∈ rad(B) is quasi-nilpotent. The
fact that the radical is an automorphism invariant ideal follows immediately from
this characterization.

Our main results show that under certain assumptions on a C∗-dynamical
system (A, α, P), the radical of the semicrossed product A×α P is generated by
the monomials a⊗ es satisfying (a⊗ es)x = 0 for all x ∈ A×α P.

When P is abelian there are conditional expectations from A×α P onto the
monomials that leave the radical invariant. This tells us that the radical is gener-
ated by its monomials. It is therefore natural to consider the set

Js = {a ∈ A : a⊗ es ∈ rad(A×α P)}

consisting of the coefficients of the s-monomials in rad(A×α P). These sets turn
out to be A–αs(A)-bimodules, and those bimodules are well behaved in simple
C∗-algebras. For example Js ∩ αs(A) is an ideal of αs(A), and when A is sim-
ple the intersection must be either {0} or all of αs(A). The case when P is a free
semigroup is more complicated because we do not have such conditional expec-
tations. To get around this we will need to define the s-Fourier coefficient of an
element in A×α P.

First the case when P is contained in an abelian group G. Given a covariant
pair (π, T) of (A, α, P) and a member ĝ of the dual Ĝ we get another covariant
pair (π, ĝT) by setting

ĝTs = 〈ĝ, s〉Ts.

By applying the universal property of the semicrossed product A×α P, we can
construct a continuous action γ : Ĝ → Aut(A ×α P) of Ĝ on A ×α P by auto-
morphisms defined on the generators to be γĝ(at ⊗ et) = 〈ĝ, t〉at ⊗ et. This action
yields a conditional expectation Fs : A×α P→ A⊗ es given by the formula

Fs(x) =
∫
Ĝ

〈ĝ, s〉γĝ(x)dµ = as ⊗ es,

where µ is the Haar measure, x ∈ A ×α P, and as ∈ A is called the s-Fourier
coefficient of x. We note that on the monomials this formula becomes

Fs(a⊗ et) =

{
a⊗ et if t = s,
0 otherwise.
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Since rad(A×α P) is an automorphism invariant ideal, x ∈ rad(A×α P) implies
Fs(x) ∈ rad(A×α P).

Now let P be a free semigroup and fix s ∈ P. By a similar argument as in the
abelian case, we get a continuous action γ : T→ Aut(A×α P) of the dual of Z on
A×α P by automorphisms defined on the generators by γz(at ⊗ et) = z`(t)at ⊗ et.
This action gives us a conditional expectation F`(s) : A×α P→ A×α P, similar to
the one above, defined by the formula

F`(s)(x) =
∫
T

z`(s)γz(x)dm(z),

where m is normalized Lebesgue measure. On the monomials this formula be-
comes

F`(s)(a⊗ et) =

{
a⊗ et if `(t) = `(s),
0 otherwise.

As above F`(s)(x) ∈ rad(A×α P) whenever x ∈ rad(A×α P).
Let π : A → B(H) be a faithful representation. As in Example 1.2, we let

H̃ = H⊗ `2(P), π̃ : A → B(H̃), and T : P→ B(H̃) to be the orbit representation.
Recall that Tt is the co-isometry defined by the formula

Tt(ξ ⊗ δr) =

{
ξ ⊗ δr1 if r = r1t for some r1 ∈ P,
0 otherwise,

and that T∗t is the isometry T∗t (ξ ⊗ δr) = ξ ⊗ δrt. Observe that the isometries
corresponding to words of the same length {T∗t : `(t) = `(s)} have orthogonal
ranges. It now follows that if y = ∑ bt ⊗ et ∈ span{a ⊗ et : `(t) = `(s)}, then
(π̃ × T)(y)T∗s = π̃(bs). We define the s-Fourier coefficient of x to be the unique
as ∈ A that satisfies (π̃ × T) ◦ F`(s)(x)T∗s = π̃(as).

Together these few paragraphs prove the following lemma.

LEMMA 2.1. Let (A, α, P) be a C∗-dynamical system. If x ∈ A×α P and s ∈ P,
then ‖x‖ > ‖as‖, where as ∈ A is the s-Fourier coefficient of x.

DEFINITION 2.2. Let (A, α, P) be a C∗-dynamical system. For each s ∈ P
define Js⊆A to be the set of s-Fourier coefficients of the elements in rad(A×α P).

It turns out that the above sets are very well behaved. The following lemma
shows Js is an A–αs(A)-bimodule. In particular each Js is a left ideal in A and
Js ∩ αs(A) is a two-sided ideal in αs(A).

LEMMA 2.3. Let (A, α, P) be a C∗-dynamical system. For all s ∈ P, the set Js is
an A–αs(A)-bimodule.

Proof. Let x ∈ rad(A ×α P) with s-Fourier coefficient as ∈ Js. The case
when P is abelian is easy because Fs(x) = as ⊗ es ∈ rad(A×α P). We simply use
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the fact that the radical is an ideal to get

(b⊗ ee)(a⊗ es)(c⊗ ee) = basαs(c)⊗ es ∈ rad(A×α P)

for all b, c ∈ A, whence basαs(c) ∈ Js.
Now let P be a free semigroup. For all a, b, c ∈ A and t ∈ P with `(t) = `(s)

we have

(b⊗ ee)(a⊗ et)(c⊗ ee) = baαs(c)⊗ et ∈ span{a⊗ et : `(t) = `(s)}.

It now follows that if y ∈ span{a⊗ et : `(t) = `(s)}, then

F`(s)((b⊗ ee)y(c⊗ ee)) = (b⊗ ee)y(c⊗ ee).

Passing to limits gives us that

F`(s)((b⊗ ee)F`(s)(x)(c⊗ ee)) = (b⊗ ee)F`(s)(x)(c⊗ ee),

which is in rad(A ×α P) because the radical is invariant under F`(s). Now the
calculation

(π̃ × T) ◦ F`(s)((b⊗ ee)F`(s)(x)(c⊗ ee))T∗s = (π̃ × T)((b⊗ ee)F`(s)(x)(c⊗ ee))T∗s
= π̃(b)((π̃ × T) ◦ F`(s)(x)T∗s )π̃αs(c)

= π̃(b)π̃(as)π̃αs(c) = π̃(basαs(c)),

which uses the covariance relation (Tsπ̃(c)∗)∗ = (π̃αs(c)∗Ts)∗ in the second line,
shows us that the s-Fourier coefficient of the product (b ⊗ ee)F`(s)(x)(c ⊗ ee) is
basαs(c) ∈ Js.

The following lemma says that if a ∈ Js, then a⊗ es is quasi-nilpotent.

LEMMA 2.4. Let (A, α, P) be a C∗-dynamical system where P is either contained
in an abelian group or a free semigroup. If a ∈ Js, then

(2.1) lim
n→∞

‖aαs(a) · · · αs(n−1)(a)‖1/n = 0.

Proof. Let a ∈ Js. When P is abelian we may use the conditional expectation
Fs to show that a⊗ es ∈ rad(A×α P). The nth power of a⊗ es is

aαs(a) · · · αsn−1(a)⊗ esn

and we apply Lemma 2.1 to get the limit in the statement as a lower bound on
the spectral radius of a⊗ es, which must be zero.

When P is a free semigroup we use the conditional expectation F`(s) to find
an element x ∈ span{b ⊗ et : `(t) = `(s)}, with s-Fourier coefficient a, in the
radical. Observing that for all b1, b2 ∈ A and t1, t2 ∈ P,

(b1 ⊗ et1)(b2 ⊗ et2) = b1αt1(b2)⊗ et1t2 ∈ span{b⊗ et : `(t) = `(t1t2)},

we see that yn ∈ span{b⊗ et : `(t) = `(sn)} whenever y ∈ span{b⊗ et : `(t) =
`(s)}. Passing to limits yields xn ∈ span{b⊗ et : `(t) = `(sn)}. Proceeding by
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induction on n, assume that the sn-Fourier coefficient of xn is aαs(a) · · · αs(n−1)(a).
Then the calculation

(π̃ × T) ◦ F`(sn+1)(xnx)T∗sn+1 = (π̃ × T)(xn)(π̃ × T)(x)T∗s T∗sn

= (π̃ × T)(xn)π̃(a)T∗sn

= (π̃ × T)(xn)T∗sn π̃αsn(a)

= π̃(aαs(a) · · · αs(n−1)(a))π̃αsn(a)

shows that the sn+1-Fourier coefficient of xn+1 is aαs(a) · · · αs(n)(a). As above we
apply Lemma 2.1 to complete the proof.

REMARK 2.5. When P is a finitely generated free semigroup there are only
finitely many words of a particular length. This means that for x ∈ A×α P,

F`(s)(x) = a⊗ es + ∑
t∈Ps

at ⊗ et,

where Ps = {t ∈ P \ {s} : `(t) = `(s)}, is a finite sum and the proofs of Lem-
mas 2.3 and 2.4 simplify. In both proofs, given as ∈ Js we can find a finite sum

as ⊗ es + ∑
t∈Ps

at ⊗ et ∈ rad(A×α P).

By multiplying the sum on the left and right by b⊗ee and c⊗ee respectively we get

basαs(c)⊗ es + ∑
t∈Ps

batαt(c)⊗ et ∈ rad(A×α P)

and Lemma 2.3 follows. To get Lemma 2.4 we could observe that the nth power
of the sum can be written as

(aαs(a) · · · αsn−1(a))⊗ esn + ∑
t∈Psn

at ⊗ et

before applying Lemma 2.1.

Lemma 2.4 gives us a way to show when an a ∈ A is not in Js. The next
lemma makes use of the fact that any monomial a⊗ es that satisfies (a⊗ es)x = 0
for all x ∈ A ×α P is in rad(A ×α P) to show in particular that Js is non-zero
whenever αs is a non-unital ∗-endomorphism of a unital C∗-algebra.

LEMMA 2.6. Let (A, α, P) be a C∗-dynamical system where A is a unital C∗-
algebra and P is either contained in an abelian group or a free semigroup. If ps = αs(1),
then a(1− ps)⊗ es ∈ rad(A×α P) for all a ∈ A. In particular A(1− ps) ⊆ Js.

Proof. For all a ∈ A(1− ps) and finite sums ∑
t∈P

at⊗ et ∈ A×α P the product

a⊗ es

(
∑
t∈P

at ⊗ et

)
= ∑

t∈P
aαs(at)⊗ est

is zero because
aαs(at) = a(1− ps)psαs(at) = 0.
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Passing to limits we see that (a⊗ es)x = 0 for all x ∈ A×α P. Since a⊗ es satisfies
the condition in the quasi-nilpotence characterization of the radical, that element
must be in rad(A×α P).

The obvious question raised by the above lemma is: does Js = A(1− ps)?
Although we cannot give a general answer, in the unital case we can prove this
equality for two large sets of examples. The first is when A is a purely infinite
simple unital C∗-algebra.

THEOREM 2.7. Let (A, α, P) be a C∗-dynamical system where A is a purely infi-
nite simple unital C∗-algebra and P is either a subsemigroup of an abelian group or a free
semigroup. Then rad(A×α P) is generated by monomials of the form a(1− ps)⊗ es,
where a ∈ A and ps = αs(1).

Proof. Fix s ∈ P. The projection ps decomposesA asAps⊕A(1− ps). Since
we already know from Lemma 2.6 that a(1− ps)⊗ es ∈ rad(A×α P) for all a ∈ A,
it remains to show that Js ∩Aps is zero. Suppose that a ∈ Js ∩Aps is non-zero.
Then sinceA is a purely infinite simple unital C∗-algebra there exist b, c ∈ A such
that bac = 1 ([2], Theorem V.5.5). But then baps = ba ∈ Js is an element of Js
that does not satisfy (2.1). Indeed estimating

‖baαs(ba) · · · αsn(ba)‖ > ‖baαs(ba) · · · αsn−1(ba)αsn(bac)‖‖c‖−1

= ‖baαs(ba) · · · αsn−1(baps)psn‖‖c‖−1

= ‖baαs(ba) · · · αsn−1(ba)‖‖c‖−1,

we see by induction that

lim
n→∞

‖baαs(ba) · · · αsn−1(ba)‖1/n > lim
n→∞

‖c‖−1 > 0.

EXAMPLE 2.8. Let On be the Cuntz algebra on 2 6 n 6 ∞ generators, that
is the universal C∗-algebra generated by isometries {si}n

i=1 satisfying
n

∑
i=1

sis∗i = 1 when n < ∞, or
r

∑
i=1

sis∗i 6 1 for all r ∈ N when n = ∞.

It is well known that On is a purely infinite simple unital C∗-algebra. We asso-
ciate an isometry sw ∈ On to each word w = i1i2 · · · ik ∈ P where P is the free
semigroup on the generating set {1, . . . , n} when n is finite, or N when n is infi-
nite, with the convention that se = 1. Observing that sw1 sw2 = sw1w2 , we get an
action of P on On by setting αw(a) = swas∗w for each w ∈ P. The C∗-dynamical
system (On, α, P) satisfies the hypotheses of Theorem 2.7 and we conclude that
rad(On ×α P) is generated by monomials of the form a(1− sws∗w)⊗ ew.

The following is an immediate corollary to Theorem 2.7.

COROLLARY 2.9. Let (A, α, P) be a C∗-dynamical system where A is a purely
infinite simple unital C∗-algebra and P is either contained in an abelian group or a free
semigroup. If each ∗-endomorphism αs is unital then A×α P is semi-simple.
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EXAMPLE 2.10. Let On be the Cuntz algebra with 2 6 n < ∞ generators
{si}n

i=1. Define a unital ∗-endomorphism α : On → On by

α(a) =
n

∑
i=1

sias∗i .

Setting αn = αn we get a unital action of Z+ on On. Since (On, α,Z+) satisfies the
hypotheses of the above corollary we conclude that On ×α Z+ is semi-simple.

Our first theorem assumed a restriction on the C∗-algebra. Our second the-
orem will instead impose a restriction on the action of P on A.

THEOREM 2.11. Let (A, α, P) be a C∗-dynamical system whereA is a simple uni-
tal C∗-algebra and P is either contained in an abelian group or a free semigroup. Suppose
that for all s ∈ P there exists a faithful conditional expectation Es : psAps → αs(A)
where ps = αs(1). Then rad(A ×α P) is generated by monomials of the form a(1−
ps)⊗ es, where a ∈ A.

Proof. Fix s ∈ P. The projection ps decomposes A as Aps ⊕A(1− ps). By
Lemma 2.6 we already know that a(1− ps) ⊗ es ∈ rad(A ×α P) for all a ∈ A.
Since every a ∈ Js ∩ Aps satisfies a∗a ∈ Js ∩ psAps, it suffices to show that
Js ∩ psAps is zero.

Because Es is a conditional expectation it is an αs(A)-bimodule map. Using
the bimodule property of Lemma 2.3 we observe that, since Js ∩ psAps is an
αs(A)-bimodule, it must be mapped to an αs(A)-bimodule in αs(A). It follows
that Es(Js ∩ psAps) is a two-sided ideal in αs(A) which is non-zero because Es is
faithful. By simplicity Es(Js ∩ psAps) = αs(A), and we can find a ∈ Js ∩ psAps
such that Es(a) = ps. But then

‖aαs(a) · · · αsn(a)‖ > ‖α−1
s Es(aαs(a) · · · αsn(a))‖ = ‖α−1

s (Es(a)αs(a) · · · αsn(a))‖

= ‖α−1
s (psαs(a) · · · αsn(a))‖ = ‖aαs(a) · · · αsn−1(a)‖,

and we see by induction that lim
n→∞

‖aαs(a) · · · αsn−1(a)‖1/n > 1. This contradicts

(2.1) and we conclude that Js ∩Aps is zero.

The following corollary is immediate.

COROLLARY 2.12. Let (A, α, P) be a C∗-dynamical system where A is a simple
unital C∗-algebra and P is either contained in an abelian group or a free semigroup. If
every αs is an automorphism, then A×α P is semi-simple.

COROLLARY 2.13. Let (A, α, P) be a C∗-dynamical system where A is a simple
unital C∗-algebra and P is either a subsemigroup of an abelian group or a free semigroup.
Suppose that for all s ∈ P there exists a faithful conditional expectation Es : A → αs(A).
Then each αs is unital and A×α P is semi-simple.

Proof. Fix s ∈ P, let Es : A → αs(A) be a faithful conditional expectation,
and let ps = αs(1). Observe that since Es is an αs(A)-bimodule map, both Es(1)
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and Es(ps) = αs(1) are units for αs(A) and are therefore equal. It follows that
Es(1− ps) = 0 and since Es is faithful ps = 1 as desired. The result now follows
from Theorem 2.11.

EXAMPLE 2.14 (The shift on the CAR algebra). Let A =
⊗

n>1
M2 be the CAR

algebra expressed as a tensor product. Extend the map

α : a1 ⊗ a2 ⊗ · · · 7→ 1M2 ⊗ a1 ⊗ a2 ⊗ · · ·
defined on the elementary tensors to get a unital ∗-endomorphism α : A → A
which we call the shift. By setting αn = αn we get a unital action of Z+ on A.
Identifying A ∼= M2 ⊗A and α1(A) ∼= C1M2 ⊗A we can define a faithful condi-
tional expectation E1 : A → α1(A) by

E1(a⊗ b) = tr(a)1M2 ⊗ b,

where tr : M2 → C is the unique faithful tracial state on M2. One can easily check
that for n > 2

En = αn−1 (E1α−1) · · · (E1α−1)︸ ︷︷ ︸
(n−1)-times

E1

is a faithful conditional expectation from A onto αn(A). Thus (A, α,Z+) satisfies
the hypothesis of Corollary 2.13 and we conclude that A×α Z+ is semi-simple.

We say that a conditional expectation E : A → B is finite index if there exists
a quasi-basis, i.e. a set {(ui, u∗i )}n

i=1 ⊆ A×A such that

a =
n

∑
i=1

uiE(u∗i a) =
n

∑
i=1

E(aui)u∗i .

When a quasi-basis exists we define the index of E to be

Ind(E) =
n

∑
i=1

uiu∗i .

It is well known that Ind(E) does not depend on the choice of quasi-basis ([9],
Proposition 1.2.8). We call a ∗-endomorphism α finite index if there exists a finite
index conditional expectation fromA onto the range of α. Such ∗-endomorphisms
were considered by Exel in [6].

COROLLARY 2.15. Let (A, α, P) be a C∗-dynamical system where A is a simple
unital C∗-algebra and P is either contained in an abelian group or a free semigroup. Sup-
pose that for each s ∈ P there exists a finite index conditional expectation Es : psAps →
αs(A) where ps = αs(1). Then rad(A ×α P) is generated by monomials of the form
a(1− ps)⊗ es, where a ∈ A. Moreover if each αs is finite index, then A×α P is semi-
simple.

Proof. Let Es : psAps → αs(A) be a finite index conditional expectation. By
Proposition 2.6.2 of [9], for all positive a ∈ A we have Es(a) > ‖ Ind(Es)‖−1a. It
follows that Es is faithful and we may apply Theorem 2.11 and Corollary 2.13.
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We get another special case of Theorem 2.11 when each ∗-endomorphism
has hereditary range, a condition which has been considered before in [5], [8].
Corollary 2.16 will follow from the fact that αs(A) is hereditary if and only if
αs(A) = psAps.

COROLLARY 2.16. Let (A, α, P) be a C∗-dynamical system where A is a simple
unital C∗-algebra and P is either contained in an abelian group or a free semigroup.
Suppose that the range of αs is hereditary in A for all s ∈ P. Then rad(A ×α P) is
generated by monomials of the form a(1− ps)⊗ es, where a ∈ A and ps = αs(1).

Proof. It is clear that αs(A) ⊆ psAps for each s ∈ P. For the reverse inclusion
observe that for 0 6 a ∈ psAps we have 0 6 a = psaps 6 ‖a‖ps ∈ αs(A). Since
αs(A) is hereditary, a ∈ αs(A). We may now apply Theorem 2.11 because we
have αs(A) = psAps.

EXAMPLE 2.17. Let A be a simple unital C∗-algebra that contains an isom-
etry s. Define a ∗-endomorphism α : A → A by α(a) = sas∗. We get an
action of Z+ on A by setting αn = αn. The range of αn is hereditary because
αn(A) = pnApn, where pn = αn(1) = sn(s∗)n. By Corollary 2.16 we conclude
that rad(A×α Z+) is generated by monomials of the form a(1− pn)⊗ en.

EXAMPLE 2.18 (Non-commuting non-unital shifts on the CAR algebra). Let
A =

⊗
n>1

M2 be the CAR algebra and

q1 =

[
1 0
0 0

]
, and q2 =

[
0 0
0 1

]
.

We define two non-unital shifts, α1 : A → A and α2 : A → A, on the elementary
tensors by

α1 : a1 ⊗ a2 ⊗ · · · 7→ q1 ⊗ a1 ⊗ a2 ⊗ · · · , and

α2 : a1 ⊗ a2 ⊗ · · · 7→ q2 ⊗ a1 ⊗ a2 ⊗ · · ·

which extend to ∗-endomorphisms on A. Let F+
2 be the free semigroup on the

generating set {1, 2}. To get an action α of F+
2 on A we set

αw = αi1 αi2 · · · αik ,

where w = i1i2 · · · ik ∈ F+
2 . The range of each αw is hereditary for each w ∈ F+

2
because αw(A) = pwApw, where

pw = αw(1) = qi1 ⊗ qi2 ⊗ · · · ⊗ qik ⊗ 1.

Thus by Corollary 2.16 we conclude that rad(A×α F+
2 ) is generated by monomi-

als of the form a(1− pw)⊗ ew.
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3. THE NON-UNITAL CASE

The main obstruction in obtaining a characterization of the radical in the
non-unital simple case is that without a unit it is not obvious that Js ∩ αs(A) =
{0} or even Js 6= A. Because of this, in this section, we must assume that
Js ∩ αs(A) = {0}, which in the abelian semigroup case is equivalent to Js 6= A.
Even with that assumption the proofs of Theorems 2.7 and 2.11 do not general-
ize. Theorem 2.7 used the fact that for each non-zero element a in a purely infinite
simple unital C∗-algebra A there exist b, c ∈ A such that bac = 1, and the charac-
terization of the multiplicative domain of the conditional expectation used in the
proof of Theorem 2.11 required that the map was unital. We will however be able
to obtain non-unital versions of Corollaries 2.12 and 2.16.

LEMMA 3.1. Let (A, α, P) be a C∗-dynamical system where P is contained in an
abelian group. Let s ∈ P. Then

(i) we have Js ⊆ Jst for all t ∈ P, and
(ii) if αs(A) ⊆ Js, then Js = A.

Proof. (i) Let a ∈ Js and t ∈ P. For all finite sums ∑
r∈P

ar ⊗ er ∈ A×α P,

a⊗ est

(
∑
r∈P

ar ⊗ er

)
= a⊗ es

(
∑
r∈P

αt(ar)⊗ etr

)
is quasi-nilpotent because a⊗es ∈ rad(A ×α P). Passing to limits we see that
(a⊗est)x is quasi-nilpotent for all x∈A×α P. It follows that a⊗est ∈ rad(A×α P)
and a ∈ Jst.

(ii) Suppose αs(A) ⊆ Js, let a ∈ A, and let ∑
t∈P

at ⊗ et ∈ A×α P be a finite

sum. From (i) and the fact that the radical ofA×α P is generated by its monomials
we have ∑

t∈P
αs(at)⊗ est ∈ rad(A×α P). It follows that

a⊗ es

(
∑
t∈P

at ⊗ et

)
= a⊗ ee

(
∑
t∈P

αs(at)⊗ est

)
is quasi-nilpotent. Passing to limits we see (a ⊗ es)x is quasi-nilpotent for all
x ∈ A×α P, whence a⊗ es ∈ rad(A×α P).

PROPOSITION 3.2. Let (A, α,Z+) be a C∗-dynamical system whereA is a simple
C∗-algebra and α is an action of either a semigroup contained in an abelian group or a free
semigroup on A by ∗-automorphisms. Then Js equals either A or {0} for each s ∈ P.

Proof. Because Js is anA–αs(A)-bimodule and αs(A) = A, Js is an ideal of
the simple C∗-algebra A. It follows that Js is either A or {0}.

COROLLARY 3.3. Let (A, α,Z+) be a C∗-dynamical system where A is a simple
C∗-algebra and α is an action of Z+ on A by ∗-automorphisms. Then rad(A×α P) is
either zero or the ideal generated by A⊗ e1.
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Proof. If a⊗ e0 ∈ rad(A×α P), then (a∗ ⊗ e0)(a⊗ e0) = a∗a⊗ e0 should be
quasi-nilpotent. We apply the C∗-identity to the spectral radius formula

lim
n→∞

‖(a∗a⊗ e0)
n‖1/n = lim

n→∞
‖(a∗a)n‖1/n = ‖a‖

to show that a must be zero and rad(A×α P) is contained in the ideal generated
by A⊗ e1.

Suppose that A×α P is not semi-simple. Then by the previous proposition
there is some n > 1 for which Jn = A. By Lemma 3.1(i) we haveA = Jn ⊆ Jn+k

for all k ∈ Z+. Observe that for all a ∈ A and finite sums
m
∑

k=0
ak ⊗ ek ∈ A×α P we

can write (
(a⊗ e1)

m

∑
k=0

ak ⊗ ek

)n
=

n(m+1)

∑
k=n

bk ⊗ ek ∈ rad(A×α P),

for some bk ∈ A. Passing to limits we see that ((a⊗ e1)x)n ∈ rad(A×α P) for all
x ∈ A×α P, therefore (a⊗ e1)x is quasi-nilpotent and a⊗ e1 ∈ rad(A×α P).

PROPOSITION 3.4. Let (A, α, P) be a C∗-dynamical system where A is a simple
C∗-algebra and P is either a semigroup contained in an abelian group or a free semigroup.
Suppose that for each s ∈ P there exists 0 < bs ∈ αs(A) such that αs(A) = bsAbs. If

(i) P is abelian and Js 6= A, or
(ii) P is free and Js ∩ αs(A) = {0},

then
Js = {a ∈ A : aαs(A) = {0}} = {a ∈ A : abs = 0}.

Proof. The equality

{a ∈ A : abs = 0} = {a ∈ A : aαs(A) = {0}}

is easy and the containment

Js ⊇ {a ∈ A : aαs(A) = {0}}

is clear because an argument similar to the one in the proof of Lemma 2.6 shows
that aαs(A) = {0} implies (a ⊗ es)x = 0 for all x ∈ A ×α P. For the reverse
inclusion suppose that Js ∩ αs(A) = {0}, which by Lemma 3.1 is equivalent to
Js 6= A in the abelian semigroup case. The bimodule property of Js guarantees
0 6 bsa∗abs ∈ Js ∩ αs(A) = {0} for all a ∈ Js. It follows that abs = 0 for all
a ∈ Js.

COROLLARY 3.5. Let (A, α, P) be a C∗-dynamical system where A is a simple
separable C∗-algebra and P is either a semigroup contained in an abelian group or a free
semigroup. Suppose that for each s ∈ P the range of αs is hereditary in A. If

(i) P is abelian and Js 6= A, or
(ii) P is free and Js ∩ αs(A) = {0},
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then
Js = {a ∈ A : aαs(A) = {0}} = {a ∈ A : abs = 0},

where 0 < bs ∈ αs(A) is an element that satisfies αs(A) = bsAbs.

Proof. Recall that ifB is a separable hereditary C∗-subalgebra of a C∗-algebra
A, then there exists 0 6 b ∈ B such that B is the closure of bAb ([7], Theo-
rem 3.2.5). Therefore there exists 0 < bs ∈ αs(A) such that αs(A) is the closure of
bsAbs and we can apply the previous proposition.

EXAMPLE 3.6 (The unilateral shift and the compacts). Let K be the compact
operators on `2(Z+) = span{ξi : i > 0}, let S ∈ B(`2(Z+)) be the unilateral shift,
and let Sn = Sn. Since K is an ideal of B(`2(Z+)), we can define an action of Z+

on K by setting αn(K) = SnKS∗n for all K ∈ K. Corollary 3.5 applies because the
range αn(K) = SnS∗nKSnS∗n of each αn is hereditary. To compute the radical we
need only demonstrate Jn 6= K for each n ∈ Z+.

We claim that S∗nPn 6∈ Jn, where Pn is the orthogonal projection onto Cξn.
To see this first note that for all k > 1

α(k−1)n(S
∗
nPn)αkn(S∗nPn) = S(k−1)n(S

∗
nPn)S∗(k−1)n · Skn(S∗nPn)S∗kn

= α(k−1)n(S
∗
nPn)S∗n

and then estimate

lim
k→∞
‖S∗nPnαn(S∗nPn) · · · α(k−1)n(S

∗
nPn)‖1/k = lim

k→∞
‖S∗nPnS∗(k−1)n‖

1/k

> lim
k→∞
‖S∗nPnS∗(k−1)nξkn‖1/k = 1,

which by Lemma 2.4 tells us that S∗nPn 6∈ Jn. We conclude by Corollary 3.5 that
Jn = {K ∈ K : Kαn(K) = {0}}. Exploiting the fact that K ⊆ B(`2(Z+)) is an
ideal, we can write Jn = K(I − SnS∗n), where I ∈ B(`2(Z+)) is the identity. It
follows that rad(A×α P) is generated by monomials of the form K(I− SnS∗n)⊗ en,
which mirrors the characterization of the radical in Corollary 2.16.
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