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ABSTRACT. For a C0(X)-algebra A, we study C(K)-algebras B that we regard
as compactifications of A, generalising the notion of (the algebra of continuous
functions on) a compactification of a completely regular space. We show that
A admits a Stone–Čech-type compactification Aβ, a C(βX)-algebra with the
property that every bounded continuous section of the C∗-bundle associated
with A has a unique extension to a continuous section of the bundle associated
with Aβ. Moreover, Aβ satisfies a maximality property amongst compactifi-
cations of A (with respect to appropriately chosen morphisms) analogous to
that of βX. We investigate the structure of the space of points of βX for which
the fibre algebras of Aβ are non-zero, and partially characterise those C0(X)-
algebras A for which this space is precisely βX.
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INTRODUCTION

Bundles, or (semi-)continuous fields arise as a natural way to study the
structure of non-simple C∗-algebras. Indeed, the Gelfand–Naimark representa-
tion of a commutative C∗-algebra may be viewed in this way, and thus suggests
the approach of representing a general (i.e. non-commutative) C∗-algebra as the
algebra of continuous sections of a bundle of C∗-algebras, over a suitably con-
structed base space. To this end, Kasparov [22] introduced the notion of a C0(X)-
algebra, which represents a C∗-algebra A as the section algebra of a bundle over
a locally compact Hausdorff space X. This generalised earlier work of Fell [18],
Dixmier and Douady [16], Dauns and Hofmann [14], Lee [30], and others. Work-
ing in the framework of C0(X)-algebras, it is often possible to adapt and gener-
alise the techniques and results from the commutative setting to study more gen-
eral C∗-algebras. Recently C0(X)-algebras have proved to be extremely useful in
advancing the study of the structure and classification of non-simple C∗-algebras,
for example in [8], [9], [11], [12], [13] and [23].
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Typically when working with bundles arising from non-unital C∗-algebras,
the natural choice of base space X is non-compact and the original algebra is
identified with the algebra of continuous sections of the bundle that vanish at
infinity over X. Recent results of Archbold and Somerset [5], [7] motivate the
study of the larger algebra of all bounded continuous sections of the bundle, with
a view to understanding the structure of multiplier and corona algebras of non-
simple C∗-algebras. Indeed, examples of this algebra have also arisen in the study
of extensions [36], [37] and tensor products [39]. The corresponding object in the
commutative case, namely the algebra Cb(X), is often studied by embedding X
in a larger, compact space.

A compactification of a space X is a compact Hausdorff space K together
with a homeomorphic embedding of X as a dense subspace of K. If X is in ad-
dition locally compact, then Gelfand duality gives an equivalent formulation of
this notion in the language of commutative C∗-algebras: a compactification of
X is equivalent to a unitisation of the C∗-algebra C0(X). Of particular interest
are the minimal (one-point) and maximal (Stone–Čech) compactifications of X,
corresponding to the minimal unitisation and the multiplier algebra of C0(X)
respectively. Our goal here is to study compactifications in the framework of C∗-
bundles. More precisely, given a bundle over a non-compact space X, when and
how can it be extended to a bundle over a compactification of X (leaving the fibres
over points of X unchanged)? A similar question for locally trivial bundles with
finite-dimensional fibres (i.e. those arising from homogeneous C∗-algebras) was
studied by Phillips in [35]. Here we consider this problem in the more general
setting of bundles arising from C0(X)-algebras.

Of particular interest is the question of whether or not such a bundle over
X extends to a bundle over its Stone–Čech compactification βX in such a way
that the natural C∗-bundle analogue of the Stone–Čech extension property holds:
every bounded continuous section over X has a unique extension to a continu-
ous section over βX. One motivation for studying this question is the desire to
obtain a more detailed decomposition of the C∗-algebra of bounded continuous
sections of our original bundle, in line with the classical identification of Cb(X)
with C(βX).

For a locally compact Hausdorff space X, a C0(X)-algebra is a C∗-algebra
A which carries the structure of a non-degenerate Banach C0(X)-module. The
maximal ideals of C0(X) give rise to quotient C∗-algebras {Ax : x ∈ X} of A,
which we regard as the fibres of a bundle of C∗-algebras over X. Each a ∈ A then
gives rise to a cross-section X → ä Ax, x 7→ a(x), and there is a natural topology
on ä Ax such that A is isomorphic to the C∗-algebra of all continuous sections
of this bundle that vanish at infinity on X. The norm functions x 7→ ‖a(x)‖ (a ∈
A) are in general only upper-semicontinuous on X; when they are in addition
continuous for all a ∈ A we speak of a continuous C0(X)-algebra. Continuous
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C0(X)-algebras are equivalent to the continuous fields of C∗-algebras studied by
Fell [18], Dixmier and Douady [16], and many others.

When A is a C0(X)-algebra with all fibres nonzero, we define a compactifica-
tion of A to be a C(K)-algebra B where K is a compactification of X in the usual
sense, B contains A as an essential ideal, and the fibre algebras Bx of B are nat-
urally isomorphic to those of A over points of X. This is equivalent to requiring
that the C∗-bundle over K defined by B, when restricted to the dense subspace X,
coincides with the bundle over X defined by A.

In seeking compactifications of a C0(X)-algebra A, it would seem natural
at first to take B = M(A) (the multiplier algebra of A) and K = βX. While
M(A) is indeed a C(βX)-algebra, it often fails to be a compactification of A, since
the fibre algebras M(A)x can be much larger than those of A. For example, this
occurs whenever the Ax are non-unital, since quotients of M(A) are necessarily
unital. We remark that it was shown by Archbold and Somerset that the identity
M(A)x = M(Ax) can also fail in general [6], and that when A is a continuous
C0(X)-algebra it is often the case that M(A) fails to be continuous [4].

We study the C∗-algebra Aβ of bounded continuous sections associated with
a C0(X)-algebra A, which, in general, lies between A and its multiplier algebra
M(A). In Section 3 we show that for any compactification K of X, Aβ carries the
structure of a C(K)-algebra and moreover defines a compactification of A (Theo-
rem 3.4). We show in the same theorem that if A is a continuous C0(X)-algebra
and K = βX, then Aβ is a continuous C(βX)-algebra. Moreover, Corollary 6.5
shows that βX is essentially the unique compactification of X with this property.
In general, the operation of constructing Aβ from A is functorial with respect to
the natural morphisms between C0(X)-algebras A and C0(Y)-algebras B (Corol-
lary 4.6), and is a closure operation (Corollary 6.6). These properties generalise
the Stone extension of a continuous map X → Y to a continuous map βX → βY,
and the fact that β(βX) = βX respectively.

In the special case of a trivial C0(X)-algebra A = C0(X, B) for some C∗-
algebra B, we have Aβ = Cb(X, B) (Corollary 4.7). In particular this shows that if
A = C0(X) then Aβ = Cb(X). More generally, we show that the C(βX)-algebra
Aβ, has the property that every bounded continuous section on X of the bundle
defined by A extends uniquely to a continuous section on βX of Aβ (Theorem 4.2).
This shows that the bundle arising from the C(βX)-algebra Aβ has an extension
property analogous to that of the classical Stone–Čech compactification.

The corona algebra of a C0(X)-algebra is well-known to exhibit interesting
and pathological behaviour [5], [7], [25]. With this in mind, we investigate the
nature of the fibres of the C(βX)-algebra Aβ at points of the “corona” set βX\X,
and in particular, the question of whether or not these fibres are all non-zero C∗-
algebras. We show in Theorem 5.5 that Aβ has no zero-algebra fibres whenever
A belongs to a large class of C0(X)-algebras, including all σ-unital, continuous
C0(X)-algebras. Interestingly, Example 5.10 shows that this can fail when A is not
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continuous. Nonetheless, we show in Theorem 5.9 that the set of nonzero fibres
of Aβ in βX\X is at least dense in βX\X for all σ-unital A. The existence of zero-
algebra fibres of Aβ is closely related to the existence of so-called remote points
of Stone–Čech remainders, a topic of significant interest in the field of general
topology since the work of Fine and Gilmann in [19].

It is well-known that βX is maximal amongst compactifications of X: given
any compactification K of X, there is a unital, injective ∗-homomorphism C(K)→
C(βX) (commuting with the restriction homomorphisms f 7→ f |X). We show that
the compactification Aβ of the C0(X)-algebra A has an analogous maximality and
uniqueness property (Theorems 6.1 and 6.4).

The structure of the paper is as follows: in Section 1 we introduce the basic
definitions and properties of C0(X)-algebras and illustrate how a C0(X)-algebra
A defines a C∗-bundle over X. Since a general C0(X)-algebra A may have some
fibres equal to the zero C∗-algebra, it is often necessary to restrict our attention to
the subspace XA corresponding to the nonzero fibres. Often, X may be essentially
replaced with XA as a base space, though, in general, care is needed since XA
may fail to be locally compact (it is always completely regular and so we may
safely speak of βXA). The notion of a morphism between a C0(X)-algebra A
and a C0(Y)-algebra B is made clear in Section 3, where we introduce precise
definition of a compactification of a C0(X)-algebra A (allowing for XA ( X) and
its equivalent formulation in the language of C∗-bundles.

The main results concerning the Stone–Čech compactification of a C0(X)-
algebra appear in Sections 3 and 4. In order to account for the possibility of
having some fibre algebras equal to zero, the statements of these results are first
presented in the framework of more general compactifications K of the space XA,
before restricting to the case K = βX. Section 5 concerns the study of the fibre
algebras of Aβ of points of the “corona” sets K\XA. Finally, the maximality and
uniqueness results appear in Section 6.

1. PRELIMINARIES ON C0(X)-ALGEBRAS

DEFINITION 1.1. Let X be a locally compact Hausdorff space. A C0(X)-
algebra is a C∗-algebra A together with a ∗-homomorphism µA : C0(X)→ ZM(A)
with the property that µA(C0(X))A = A.

When the space X is compact, the non-degeneracy condition µA(C0(X))A =
A above is equivalent to the ∗-homomorphism µA being unital. In this case we
will say that (A, X, µA) is a C(X)-algebra.

It follows from the Dauns–Hofmann theorem [14] that there is a ∗-isomor-
phism θA : Cb(Prim(A))→ ZM(A) with the property that

(1.1) θA( f )a + P = f (P)(a + P), for a ∈ A, f ∈ Cb(Prim(A)), P ∈ Prim(A).
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This gives an equivalent formulation of Definition 1.1: a C0(X)-algebra is a C∗-
algebra A together with a continuous map φA : Prim(A)→ X. The maps µA and
φA are related via µA( f ) = θA( f ◦ φA) for all f ∈ C0(X) ([40], Proposition C.5).
We call φA the base map and µA the structure map.

For clarity we will denote any C0(X)-algebra A by the triple (A, X, µA). For
x ∈ X we define the ideal Jx via

(1.2) Jx = µA({ f ∈ C0(X) : f (x) = 0})A =
⋂
{P ∈ Prim(A) : φA(P) = x},

see Section 2 of [34] for example.
We do not require that the base map φA : Prim(A) → X be surjective, or

even that φA(Prim(A)) be dense in X. It is shown in Corollary 1.3 of [4] that φA
has dense range if and only if the structure map µA is injective.

If x ∈ X\Im(φA), then we may still define the ideal Jx of A via Jx = µA({ f ∈
C0(X) : f (x) = 0})A; it is shown in Section 1 of [4] that Jx = A for all such x.
This is consistent with our second definition of Jx in (1.2), when we regard the
intersection of the empty set {P ∈ Prim(A) : φA(P) = x} of ideals of A as A
itself.

DEFINITION 1.2. Let (A, X, µA) be a C0(X)-algebra. Define the subset XA
of X to be

XA = Im(φA) = {x ∈ X : Jx 6= A}.
For each x ∈ X let Ax = A/Jx be the quotient C∗-algebra, and for a ∈ A

let a(x) = a + Jx ∈ Ax be the image of a under the quotient ∗-homomorphism.
Then the following properties of (A, X, µA) are well-known, see Proposition C.10
of [40] or [34] for example:

(i) ‖a‖ = sup
x∈X
‖a(x)‖ for all a ∈ A;

(ii) for all a ∈ A, f ∈ C0(X) and x ∈ X we have

(µA( f )a)(x) = f (x)a(x);

(iii) the function x 7→ ‖a(x)‖ is upper-semicontinuous and vanishes at infinity
on X.

As a consequence, we may regard A as a C∗-algebra of cross-sections X →
ä

x∈X
Ax, identifying a ∈ A with x 7→ a(x). Note that under this identification,

property (ii) shows that the ∗-homomorphism µA : C0(X) → ZM(A) is given
by pointwise multiplication of sections by functions in C0(X). Note that for x ∈
X\XA, the fibre algebras Ax are zero, and we have

(1.3) XA = {x ∈ X : Ax 6= 0}.

In fact, there is a unique topology on ä
x∈X

Ax which defines an upper-semi-

continuous C∗-bundle in such a way that A is canonically isomorphic to the C∗-
algebra of all continuous cross-sections of this bundle that vanish at infinity on
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X ([40], Theorem C.26). While we will not explicitly define the C∗-bundle topol-
ogy on ä

x∈X
Ax, it will be useful to identify those cross-sections X → ä

x∈
Ax that

are continuous with respect to this topology. Definition 1.3 of a continuous cross-
section X → ä

x∈X
Ax is easily seen to be equivalent to the one used in Theo-

rem C.25 of [40] and Definition 5.1 of [2], and generalises the definitions used
by Fell [18] and Dixmier ([15], Chapter 10) in the context of continuous fields.

DEFINITION 1.3. Let (A, X, µA) be a C0(X)-algebra and let Y ⊆ X. We say
that a cross-section b : Y → ä

x∈Y
Ax is continuous (with respect to (A, X, µA)) if for

all x ∈ Y and ε > 0 there is a neighbourhood U of x in Y and an element a ∈ A
such that

‖b(y)− a(y)‖ < ε for all y ∈ U.

Further, we define Γ((A, X, µA)) to be the collection of all sections b : XA →
ä

x∈XA

Ax that are continuous with respect to (A, X, µA). Then Γ((A, X, µA)) is a

∗-algebra with respect to pointwise operations. The ∗-subalgebra Γb((A, X, µA))
(respectively Γ0((A, X, µA))) consisting of those continuous sections b for which
the norm-function x 7→ ‖b(x)‖ is bounded (respectively vanishes at infinity on
XA), equipped with the supremum norm is a C∗-algebra.

When there is no ambiguity regarding the C0(X)-algebra structure on a
given C∗-algebra A, we shall write Γ(A), Γb(A) and Γ0(A) respectively to denote
the section algebras of Definition 1.3.

PROPOSITION 1.4. Let (A, X, µA) be a C0(X)-algebra.
(i) For any b ∈ Γ(A), the function x 7→ ‖b(x)‖ is upper-semicontinuous on XA.

(ii) Let b : X → ä
x∈X

Ax be a cross-section with the property that x 7→ ‖b(x)‖

vanishes at infinity on XA. Then b is continuous on X if and only if b is continuous on
XA (with respect to (A, X, µA)).

(iii) The section algebra Γ0(A) is an essential ideal of Γb(A).
(iv) If XA is compact then the section algebras Γ(A), Γb(A) and Γ0(A) coincide.

Proof. (i) Let α > 0 and let x ∈ XA be such that ‖b(x)‖ < α. We will show
that there is an open neighbourhood V of x in XA such that ‖b(y)‖ < α for all
y ∈ V.

With ε = (1/2)(α − ‖b(x)‖), continuity of b ensures that there is an open
neighbourhood U1 of x in XA and an element a ∈ A such that

‖a(y)− b(y)‖ < ε for all y ∈ U1.

Since a ∈ A, the function y 7→ ‖a(y)‖ is upper-semicontinuous on X, and so the
set U2 defined by

U2 := {y ∈ XA : ‖a(y)‖ < α− ε}
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is open in XA, and this set contains x since

‖a(x)‖ 6 ‖a(x)− b(x)‖+ ‖b(x)‖ < ε + ‖b(x)‖ = α− ε.

Hence the set V := U1 ∩U2 is an open neighbourhood of x in XA with

‖b(y)‖ 6 ‖b(y)− a(y)‖+ ‖a(y)‖ < ε + (α− ε) = α

for all y ∈ V.
(ii) Let b be continuous on XA and let x ∈ X and ε > 0. If x ∈ XA, then

since b is continuous on XA, there is an open neighbourhood U of x in X and an
element a ∈ A with the property that

‖a(y)− b(y)‖ < ε for all y ∈ U ∩ XA.

If y ∈ U\XA then Ay = {0} and hence a(y) = b(y) = 0. It follows that ‖a(y)−
b(y)‖ = 0 for y ∈ U\XA, and so ‖a(y)− b(y)‖ < ε for all y ∈ U.

Now assume that x ∈ X\XA. Since Ax = {0}, we have ‖b(x)‖ = 0, and as
y 7→ ‖b(y)‖ vanishes at infinity on XA, the set {y ∈ XA : ‖b(y)‖ > ε} is compact
and hence closed as a subset of X. Thus if we take the element 0 of A and the
open subset U := {y ∈ X : ‖b(y)‖ < ε} of X, we have

‖0(y)− b(y)‖ = ‖b(y)‖ < ε

for all y ∈ U.
Hence if b is continuous on XA, it is continuous on X, and the converse is

trivial.
(iii) Let a ∈ Γ0(A), b a nonzero element of Γb(A) and α > 0. Then since

ba ∈ Γ(A), the norm function x 7→ ‖(ba)(x)‖ is upper-semicontinuous on XA by
part (i), and so the set

{x ∈ XA : ‖(ba)(x)‖ > α}
is closed in XA. For all x ∈ XA, we have

‖(ba)(x)‖ 6 ‖b(x)‖ · ‖a(x)‖ 6 ‖b‖ · ‖a(x)‖,
and so if ‖(ba)(x)‖ > α then ‖a(x)‖ > α/‖b‖. Since a ∈ Γ0(A), the set {x ∈ XA :
‖a(x)‖ > α/‖b‖} is compact, and by the above argument, contains the closed
subset {x ∈ XA : ‖(ba)(x)‖ > α}. Hence the latter is also compact, which shows
that ba ∈ Γ0(A).

Since both Γ0(A) and Γb(A) are equipped with the supremum norm, an
element a ∈ Γ0(A) is zero if and only if a(x) = 0 for all x ∈ XA. Moreover,
for any x ∈ XA there is a ∈ Γ0(A) with a(x) 6= 0. Hence if b ∈ Γb(A) with
ba = ab = 0 for all a ∈ Γ0(A), then it must be the case that b(x) = 0 for all
x ∈ XA, which implies that b = 0. Thus Γ0(A) is an essential ideal of Γb(A).

(iv) If b ∈ Γ(A) then x 7→ ‖b(x)‖ is upper-semicontinuous on XA by part
(i). Since an upper-semicontinuous function on a compact space is bounded
above ([21], Theorem 1), it follows that the norm function of b is bounded, i.e.,
that b ∈ Γb(A). Moreover, given any ε > 0, upper-semicontinuity of x 7→ ‖b(x)‖
ensures that the set {x ∈ XA : ‖b(x)‖ > ε} is closed, hence compact. Thus we
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have Γ(A) ⊆ Γb(A) and Γ(A) ⊆ Γ0(A), and since the reverse inclusions are
evident, all three section algebras must coincide.

REMARK 1.5. Usually when considering a C0(X)-algebra (A, X, µA) as an
algebra of cross-sections, elements of Γ0(A) are regarded as continuous cross-
sections X → ä

x∈X
Ax (rather than being defined on XA as in Definition 1.3). By

Proposition 1.4(ii), the definition of Γ0(A) is independent of whether we take X
or XA to be the domain of the cross-sections under consideration.

In particular, this shows that the definition of Γ0(A) made in Definition 1.3
is equivalent to the one used in Appendix C of [40].

The definition of Γb(A), however, does depend on whether sections are de-
fined on X or on XA (see Example 1.10). Hence using XA rather than X allows us
flexibility in changing the ambient space of XA without affecting Γb(A).

The following theorem recalls some known results about Γ0(A).

THEOREM 1.6. Let (A, X, µA) be a C0(X)-algebra. Then the section algebra
Γ0(A) has the following properties:

(i) the natural action of functions in C0(X) on sections in Γ0(A) by pointwise mul-
tiplication, equips Γ0(A) with the structure of a C0(X)-algebra, with fibres given by
Γ0(A)x ∼= Ax ([40], Proposition C.23);

(ii) identifying each a ∈ A with the cross section x 7→ a(x) defines a C0(X)-linear
∗-isomorphism A→ Γ0(A) ([34], [40], Theorem C.26);

(iii) let B be a C∗-subalgebra of Γ0(A) such that
(a) for all f ∈ C0(X) and b ∈ B the section f · b, where ( f · b)(x) = f (x)b(x)

for all x ∈ X, belongs to B, and
(b) for each x ∈ X and c ∈ Ax there is some b ∈ B with b(x) = c,

then B = Γ0(A) ([40], Proposition C.24).

Let (A, X, µA) be a C0(X)-algebra with base map φA : Prim(A) → X, and
let Y be any locally compact Hausdorff space containing (a homeomorphic image
of) XA. Then we may regard φA as a map from Prim(A) to Y. Hence A defines a
C0(Y)-algebra with this base map.

Since XA is a subspace of the locally compact Hausdorff space X, XA is
completely regular, and so it admits a homeomorphic embedding into its Stone–
Čech compactification βXA. Thus the above remarks apply with Y = βXA. It
shall be convenient to fix some notation to describe this process.

DEFINITION 1.7. Let (A, X, µA) be a C0(X)-algebra and let Y be a locally
compact Hausdorff space containing a homeomorphic image of XA. The C0(Y)-
algebra constructed by regarding φA as a map Prim(A)→ Y shall be denoted by
(A, Y, µY

A). In the particular case where Y = βXA, we shall set

(A, βXA, νA) := (A, βXA, µ
βXA
A ).
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Note that for x ∈ XA, the ideals Jx of (1.2) are independent of the ambient
space containing XA. In particular, for each a ∈ A the cross-section a : XA →

ä
x∈XA

Ax, x 7→ a(x) is unchanged by the process of varying the base space. This

shows that the definitions of Γ0(A) and Γb(A) are unambiguous, in that they are
also independent of the choice of ambient space containing XA.

When XA is locally compact, we may take the base space Y of Definition 1.7
to be XA. Hence (A, XA, µ

XA
A ) is a C0(XA)-algebra, with (nonzero) fibres Ax for

all x ∈ XA. Note that in this case XA is open in βXA, and so C0(XA) is the ideal
{ f ∈ C(βXA) : f |βXA\XA

≡ 0}. It follows that µ
XA
A = νA|C0(XA)

.

DEFINITION 1.8. A C0(X)-algebra (A, X, µA) is said to be continuous if the
functions x 7→ ‖a(x)‖ are continuous on X for all a ∈ A.

REMARK 1.9. If (A, X, µA) is a continuous C0(X)-algebra and b ∈ Γ(A),
the norm function x 7→ ‖b(x)‖ is continuous on XA. The proof of this fact is
almost identical to the proof of Proposition 1.4(i) (or can alternatively be deduced
from Theorem C.27 of [40] and Proposition 1.4(ii)).

By Lee’s theorem ([30], Theorem 5), (A, X, µA) is a continuous C0(X)-algebra
if and only if the base map φA is an open map. In this case the local compactness
of Prim(A) ([15], Corollary 3.3.8) passes to XA. It is evident that (A, X, µA) is
a continuous C0(X)-algebra if and only if (A, XA, µ

XA
A ) is a continuous C0(XA)-

algebra.
Since we wish to identify A with both Γ0((A, XA, µ

XA
A )) and Γ0((A, X, µA)),

it is natural to ask that Γb((A, XA, µ
XA
A )) and Γb((A, X, µA)) be isomorphic also.

The following example shows how this could fail if we were to allow elements of
Γb((A, X, µA)) to have domain X rather than XA.

EXAMPLE 1.10. Let A=C0((0, 1)), X=[0, 1] and µA : C([0, 1])→M(C0(0, 1))
be given by pointwise multiplication, so that (A, X, µA) is a C([0, 1])-algebra.
Then XA = (0, 1) and the fibres of (A, X, µA) are given by At = C for t ∈ XA
and A0 = A1 = {0}.

Suppose that b : X → ä
t∈X

At is continuous with respect to (A, X, µA). Then

since A0 = A1 = {0}, b necessarily satisfies b(0) = b(1) = 0. By continuity, it
follows that for any ε > 0 and t ∈ [0, 1] there is a ∈ A and δ > 0 with

‖b(s)− a(s)‖ < ε for all s ∈ (t− δ, t + δ).

Hence b is continuous and vanishes at infinity on (0, 1), and so in fact Γb(A) ∼=
C0(0, 1).

On the other hand, if we replace X with XA, we see that Γb(A) consists of
cross-sections c : (0, 1) → ä

t∈(0,1)
At. It is easily seen that in this case Γb(A) is

naturally isomorphic to Cb((0, 1)).
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We now describe how a C0(X)-algebra (A, X, µA) gives rise to a C(βX)-
algebra (M(A), βX, µM(A)).

PROPOSITION 1.11 ([4], Proposition 1.2). Let (A, X, µA) be a C0(X)-algebra.
Then the structure map µA extends to a unital ∗-homomorphism µM(A) : C(βX) →
ZM(A), hence (M(A), βX, µM(A)) is a C(βX)-algebra.

REMARK 1.12. When X is compact, note that µM(A) = µA. In particular this
applies to the C(βXA)-algebra (A, βXA, νA) of Definition 1.7.

It shall be convenient to fix some notation associated with (A, X, µA) and
(M(A), βX, µM(A)).

(•) By analogy with the ideals Jx of A defined in (1.2), we define for y ∈ βX
the ideals Hy of M(A) via

(1.4) Hy = µM(A)({ f ∈ C(βX : f (y) = 0})M(A).

(•) For x∈XA, let πx : A→Ax be the quotient ∗-homomorphism. Then πx ex-
tends to a strictly continuous ∗-homomorphism π̃x : M(A)→M(Ax) defined by

(1.5) (π̃x(b))πx(a) = πx(ba) and πx(a)(π̃x(b)) = πx(ab)

for all a ∈ A and b ∈ M(A) [10].

Archbold and Somerset have studied the structure of the C(βX)-algebra
(M(A), βX, µM(A)) extensively [4], [5], [6], [7]. In particular, two important
pathologies in the behaviour of (M(A), βX, µM(A)) should be observed:

(i) It always holds that ker(π̃x) ⊇ Hx, but equality does not hold in gen-
eral [6].

(ii) If (A, X, µA) is a continuous C0(X)-algebra, it does not necessarily follow
that (M(A), βX, µM(A)) is a continuous C(βX)-algebra. In Theorem 3.8 of [4] was
obtained a complete characterisation of those C0(X)-algebras (A, X, µA), (with A
σ-unital) for which (M(A), βX, µM(A)) is continuous.

LEMMA 1.13. Let (A, X, µA) be a C0(X)-algebra, let x ∈ X and m ∈ M(A) be
such that π̃x(m) = 0. Then m ∈ Hx if and only if ‖π̃y(m)‖ → 0 as y→ x.

Proof. By Lemma 1.5(ii) of [4], we have

‖m + Hx‖ = inf
W

sup
y∈W
‖π̃y(m)‖,

as W ranges over all open neighbourhoods of x in X, from which the result fol-
lows.

Note that the fibres M(A)y of the C(βX)-algebra (M(A), βX, µM(A)) are the
quotient C∗-algebras M(A)/Hy. Hence for m ∈ M(A) and y ∈ Y, m(y) denotes
m + Hy (not π̃y(m) defined above).
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EXAMPLE 1.14. Let N̂ = N ∪ {∞} be the one-point compactification of N,
and let A = C(N̂, c0) ∼= C0(N̂× N) be the trivial continuous C(N̂)-algebra with
fibre c0. Then Prim(A) is canonically isomorphic to N̂ × N, and the base map
φA : Prim(A) → N̂ is the projection onto the first coordinate. Since M(c0) =

`∞ = C(βN), it follows from Corollary 3.4 of [1] that M(A) = C(N̂, `∞
β ), where

`∞
β denotes `∞ with the strict topology induced by regarding `∞ as the multiplier

algebra of c0.
The algebra M(A), together with the structure map µM(A) = µA, defines a

C(N̂)-algebra. By Corollary 3.9 of [4], (M(A), N̂, µM(A)) fails to be a continuous
C(N̂)-algebra.

For each n ∈ N̂, let πn : A → An ∼= c0 be the quotient map, and π̃n :
M(A)→ M(An) ∼= `∞ its strictly continuous extension to M(A). By Theorem 4.9
of [5], we have

M(A)n := M(A)/Hn = M(An) ∼= `∞ for all n ∈ N,

while H∞ ( ker(π̃∞) so that M(A)∞ 6= `∞. Moreover, by the same reference,
there are uncountably many distinct norm-closed ideals J of M(A) satisfying
H∞ ( J ( ker(π̃∞). Note that by Lemma 1.13 we have

ker(π̃∞) = {b ∈ C(N̂, `∞
β ) : b(∞) = 0},

while

H∞ = {b ∈ C(N̂, `∞
β ) : ‖b(n)‖ → 0 as n→ ∞}.

2. MORPHISMS AND COMPACTIFICATIONS OF C0(X)-ALGEBRAS

For a locally compact Hausdorff space X and a pair of C0(X)-algebras
(A, X, µA) and (B, X, µB), the natural notion of a morphism between (A, X, µA)
and (B, X, µB) is a C0(X)-linear ∗-homomorphism. It is well-known that a C0(X)-
linear ∗-homomorphism A → B induces ∗-homomorphisms Ax → Bx of the
corresponding fibre algebras. In this section we describe how this notion can
be extended to morphisms from a C0(X)-algebra (A, X, µA) to a C0(Y)-algebra
(B, Y, µB), and we clarify what it means for such a morphism to be injective.

We introduce the notion of a compactification of a C0(X)-algebra (A, X, µA),
generalising the classical definition for locally compact Hausdorff spaces. Intu-
itively, we define a compactification of a C0(X)-algebra as a C(K)-algebra
(B, K, µB), where K is a compactification of XA, such that A is isomorphic to the
ideal of continuous sections of B that vanish at infinity on XA. At the level of
C∗-bundles, this is equivalent to (B, K, µB) defining a bundle over K whose re-
striction to XA coincides with that defined by (A, X, µA).

The following definition is due to Kwasniewski [26].
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DEFINITION 2.1. Let (A, X, µA) be a C0(X)-algebra and (B, Y, µB) a C0(Y)-
algebra. By a morphism (A, X, µA)→ (B, Y, µB) we mean a pair (Ψ, ψ) where

(i) Ψ : A→ B and ψ : C0(X)→ C0(Y) are ∗-homomorphisms, and
(ii) for all f ∈ C0(X) and a ∈ A we have

Ψ(µA( f )a) = µB(ψ( f ))Ψ(a).

REMARK 2.2. Note that in the case that Y = X and ψ = IdC0(X), a ∗-
homomorphism Ψ : A → B gives rise to a morphism (Ψ, ψ) : (A, X, µA) →
(B, Y, µB) if and only if Ψ is C0(X)-linear.

Let (Ψ, ψ) : (A, X, µA) → (B, Y, µB) be a morphism. Note that dual to the
∗-homomorphism ψ there is an open subset Uψ of Y and a continuous, proper
map ψ∗ : Uψ → X, such that ψ is given by the formula

(2.1) ψ( f )(y) =

{
f (ψ∗(y)) if y ∈ Uψ,
0 if y 6∈ Uψ.

It is shown in Proposition 3.5 of [26] that the pair (Ψ, ψ) induces ∗-homomor-
phisms Ψy : Aψ∗(y) → By (for y ∈ Uψ) of the fibre algebras, so that Ψ : A → B
satisfies

(2.2) Ψ(a)(y) =

{
Ψy(a(ψ∗(y))) if y ∈ Uψ,
0 if y 6∈ Uψ.

Identifying A with Γ0(A) and B with Γ0(B), Ψ may be regarded as a ∗-
homomorphism Γ0(A) → Γ0(B), and is completely determined by the formula
(2.2) for all y in the subspace YB = {y ∈ Y : By 6= {0}} of Y (defined analogously
to XA of (1.3)) and a ∈ A ([26], Propositions 3.2 and 3.5).

Note that in general, neither of the relations Uψ ⊆ YB nor YB ⊆ Uψ hold.
Indeed, let (B, Y, µB) be any C0(Y)-algebra with YB ( Y and consider the identity
morphism (IdB, IdC0(Y)). Then Uψ = Y, which is not contained in YB. An example
where YB is not contained in Uψ is given in Remark 2.7.

REMARK 2.3. Let ψ : C0(X)→ C0(Y) be a ∗-homomorphism with the prop-
erty that the corresponding dual map ψ∗ has domain Y. The ψ extends to a ∗-
homomorphism ψb : Cb(X) → Cb(Y) defined via ψb( f )(y) = f (ψ∗(y)) for all
f ∈ Cb(X) and y ∈ Y.

Analogously, let (Ψ, ψ) : (A, X, µA) → (B, Y, µB) be a morphism with the
property that the domain Uψ of ψ∗ contains YB. Then Ψ extends to a morphism
Ψb : Γb(A)→ Γb(B) via

(Ψb(c))(y) = Ψy(c(ψ∗(y)))

for all c ∈ Γb(A) and y ∈ YB. Indeed, it is clear that Ψb(c) is a cross section
YB → ä

y∈YB

By since c(x) ∈ Ax for all x ∈ XA. To see that Ψb(c) is continuous, let
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y0 ∈ YB and ε > 0. Then there is a ∈ A and a neighbourhood U of ψ∗(y0) in XA
with

‖a(x)− c(x)‖ < ε

for all x ∈ U, and hence

‖Ψ(a)(y)−Ψb(c)(y)‖=‖Ψy[a(ψ∗(y))− c(ψ∗(y))]‖ 6 ‖a(ψ∗(y))− c(ψ∗(y))‖ < ε

for all y in the open neighbourhood (ψ∗)−1(U) ∩ YB of y0. Since Ψ(a) ∈ B, it
follows that Ψb(c) is indeed continuous.

DEFINITION 2.4. A morphism (Ψ, ψ) : (A, X, µA)→ (B, Y, µB) is called
(i) injective if the ∗-homomorphisms Ψ and {Ψy : y ∈ YB ∩Uψ} are all injective;

(ii) an isomorphism if it is invertible, i.e. there exists a morphism (Φ, φ) : (B,Y, µB)
→ (A, X, µA) such that Φ = Ψ−1 and

µA((φ ◦ ψ)( f )) = µA( f ) and µB((ψ ◦ φ)(g)) = µB(g)

for all f ∈ C0(X) and g ∈ C0(Y).

The motivation for this definition of an injective morphism is as follows:
consider A ∼= Γ0(A) and B ∼= Γ0(B) as algebras of cross-sections in the usual
way. Let (Ψ, ψ) : (A, X, µA) → (B, Y, µB) be an injective morphism, and identify
A ⊆ B and Aψ(y) ⊆ By as C∗-subalgebras for all y ∈ Uψ ∩ YB. Then each a ∈ A
may be naturally regarded as a cross-section a : YB → ä

y∈YB

By such that a(y) ∈

Aψ(y) ⊆ By for all y ∈ Uψ ∩ YB and a(y) = 0 otherwise. In particular, we may
identify Γ0(A) canonically with a C∗-subalgebra of Γ0(B).

REMARK 2.5. While it is not immediately obvious from the definition, it is
true that an isomorphism (Ψ, ψ) : (A, X, µA)→ (B, Y, µB) (with inverse (Φ, φ)) is
necessarily injective. To see this, we first note that for g ∈ C0(Y), the requirement
that µB([ψ ◦ φ](g)) = µB(g) implies that for all b ∈ B and y ∈ YB we have

g(y) · b(y) = [(ψ ◦ φ)(g)](y) · b(y),

and since for all such y there is b ∈ B with b(y) 6= 0 we see that

[(ψ ◦ φ)(g)](y) = g(y) for all y ∈ YB.

Now let a ∈ A and suppose that y ∈ YB with Ψ(a)(y) = 0. Then by the
Cohen factorisation theorem ([17], Theorem 16.1), there is some b ∈ B and g ∈
C0(Y) with g(y) = 0 such that Ψ(a) = µB(g) · b. Hence

a = (Φ ◦Ψ)(a) = Φ(µB(g)b) = µA(φ(g)) ·Φ(b),

and so

a(ψ∗(y)) = [φ(g)](ψ∗(y)) · [Φ(b)](ψ∗(y)) = [(ψ ◦ φ)(g)](y) · [Φ(b)](ψ∗(y))

= g(y) · [Φ(b)](ψ∗(y)) = 0.
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This shows that for y ∈ YB and a ∈ A, Ψ(a)(y) = 0 if and only if a(ψ∗(y)) = 0,
hence Ψy : Aψ∗(y) → By is injective.

For our purposes, injective morphisms and isomorphisms shall mostly arise
in the manner described in the following proposition.

PROPOSITION 2.6. Let (A, X, µA) and (B, X, µB) be C0(X)-algebras and ψ :
A→ B a C0(X)-linear ∗-homomorphism. Then the morphism (Ψ, IdC0(X)) : (A, X, µA)

→ (B, X, µB) is injective (respectively, an isomorphism) if and only if Ψ is injective (re-
spectively, a ∗-isomorphism).

Proof. Clearly a necessary condition for (Ψ, IdC0(X)) to be injective (respec-
tively, an isomorphism) is that Ψ be injective (respectively, an isomorphism).

Assume that Ψ is injective and x ∈ X and let Ix ⊆ A and Jx ⊆ B denote the
kernels of the evaluation maps A→ Ax and B→ Bx respectively, that is to say,

Ix =µA({ f ∈ C0(X) : f (x)=0}) · A and Jx =µB({ f ∈ C0(X) : f (x)=0}) · B
(see Section 1). Then by Lemma 2.11(ii) of [33] we have

Ψ(Ix) = Jx ∩Ψ(A).

Hence for a ∈ A and x ∈ XB, we have Ψ(a)(x) = 0 if and only if a(x) = 0, which
shows that each ∗-homomorphism Ψx : Ax → Bx is injective, and so (Ψ, IdC0(X))
is an injective morphism.

If Ψ is an isomorphism then Ψ−1 is also C0(X)-linear, since for f ∈ C0(X)
and b ∈ B we have

µB( f ) · b = µB( f ) ·Ψ(Ψ−1(b)) = Ψ(µA( f ) ·Ψ−1(b))

and hence
Ψ−1(µB( f ) · b) = µA( f ) ·Ψ−1(b).

This shows that (Ψ, IdC0(X)) is an isomorphism.

REMARK 2.7. Note that if (Ψ, ψ) : (A, X, µA) → (B, Y, µB) is a morphism
such that {Ψy : y ∈ Y} are all injective then it does not necessarily follow that
Ψ is injective. For example let X = [0, 1) ∪ (1, 2], Y = [0, 1), A = C0(X) and
B = C0(Y). Let Ψ = ψ : A → B be the restriction homomorphism, then clearly
(Ψ, ψ) is a morphism.

We have Uψ = [0, 1) and ψ∗ : [0, 1) → [0, 1) ∪ (1, 2] is the inclusion map.
Then for all y ∈ Uψ, Ψy : Ay → By is the identity mapping, hence is injective,
while clearly Ψ is not injective.

REMARK 2.8. Injectivity of Ψ and ψ does not imply injectivity of the Ψy. Let
C be a C∗-algebra, Y a compact Hausdorff space which contains more than one
point, B = C(Y, C) regarded as a C(Y) algebra in the usual way. If X = {x} is
a one-point space, equip A = C(Y, C) with the structure of a C(X)-algebra, and
consider the morphism (Ψ, ψ) : (A, X, µA) → (B, Y, µB) where Ψ is the identity
morphism and ψ is the embedding of C as the constant functions on Y. Then Ψ
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and ψ are injective. Moreover, ψ∗ maps every point of Y to x, and Ψy : A = B →
By is the evaluation map for each y, which is not injective.

DEFINITION 2.9. Let (A, X, µA) be a C0(X)-algebra. A compactification of A
is given by a C(K)-algebra (B, K, µB) together with an injective C(K)-linear ∗-
homomorphism Ψ : A→ B such that:

(i) K is a compactification of XA,
(ii) Ψ(A) is an essential ideal of B, and

(iii) the induced ∗-homomorphisms Ψx : Ax→Bx are isomorphisms for all x∈XA.

When the ∗-homomorphism Ψ is clear, we shall often say that (B, K, µB) is
a compactification of (A, X, µA) and consider A ⊆ B.

Note that if the C0(X)-algebra (A, X, µA) in Definition 2.9 is simply C0(X),
then C(K) is a compactification of C0(X) for any compactification K of X. More
generally, if A = C0(X, B), then for any such K, C(K, B) defines a compactification
of (A, X, µA), though in general there exist other compactifications in this case,
see Corollary 4.7.

Based upon these elementary examples, one might conjecture that condi-
tions (i) and (iii) of Definition 2.9 above imply condition (ii). However, the fol-
lowing example, from p. 684 of [24] shows that this is not the case.

EXAMPLE 2.10. Let C be a non-nuclear C∗-algebra. Then there is a C∗-
algebra D and a C∗-subalgebra D0 ⊆ D for which the canonical map C ⊗max
D0 → C ⊗max D is not injective. Fixing α ∈ [0, 1], let X = [0, 1]\{α} and let
(A, X, µA) be the trivial C0(X)-algebra C0(X, C⊗max D).

Let (Dα, [0, 1], µDα) be the continuous C([0, 1])-algebra

Dα = { f ∈ C([0, 1], D) : f (α) ∈ D0},

and let B = C ⊗max Dα. Then (B, [0, 1], 1C ⊗max µDα) is a C([0, 1])-algebra with
fibres Bt = C ⊗max D for t 6= α and Bα = C ⊗max D0 which is discontinuous at
α [24]. Moreover, it is easily seen that the natural embedding of (A, X, µA) into
(B, [0, 1], 1C ⊗max µDα) satisfies properties (i) and (iii) of Definition 2.9.

To see that A is not an essential ideal of B, let π : C ⊗max D0 → C ⊗max D
be the ∗-homomorphism given by the universal property of the maximal tensor
product. One can then construct an element b ∈ B for which b(x) = 0 for all
x ∈ X and ‖b(α)‖ = 1. It is clear then that ba and ab are zero for all a ∈ A.

REMARK 2.11. For a compactification (B, K, µB) of a C0(X)-algebra
(A, X, µA), we do not require that all of the fibre algebras By, where y ∈ K\XA, be
nonzero. Indeed, for a given C0(X)-algebra (A, X, µA), it is not clear whether or
not there exists any compactification (B, K, µB) of (A, X, µA) with this property.
We study this question in depth in Section 5.

We also remark that if (B, K, µB) is a compactification of (A, X, µA), it is
not true in general that there exists an injective morphism (or indeed any mor-
phism) (Ψ, ψ) : (A, X, µA) → (B, K, µB), unless K is also a compactification of X
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(e.g. when XA = X). Indeed, if XA ( X, then there is no obvious ∗-homomor-
phism ψ : C0(X)→ C(K).

The following proposition establishes a number of useful facts about com-
pactifications that shall be used in subsequent sections.

PROPOSITION 2.12. Let (B, K, µB) be a compactification of (A, X, µA) and Ψ :
A→ B the associated C(K)-linear ∗-homomorphism.

(i) For all b ∈ B we have

‖b‖ = sup{‖b(x)‖ : x ∈ XA}.

(ii) Identifying Ax with Bx for each x ∈ XA, the map sending b ∈ B to the cross-
section b|XA

: XA→ ä
x∈XA

Ax, x 7→b(x), defines an injective ∗-homomorphism B→Γb(A).

(iii) For all b ∈ B and y ∈ K\XA,

‖b(y)‖ = inf
W

sup
x∈W∩XA

‖b(x)‖,

where W ranges over all neighbourhoods of y in K.
(iv) Ψ(A) = {b ∈ B : b(y) = 0 for all y ∈ K\XA}.
(v) If in addition XA is locally compact, then we may identify C0(XA) with an ideal

of C(K). Under this identification, we have µB(C0(XA)) · B = Ψ(A).

Proof. (i) Since Ψ(A) is an essential ideal of B, there is an injective ∗-homo-
morphism B → M(Ψ(A)) which is the identity on Ψ(A) ([10], Proposition 3.7(i)
and (ii)). It then follows (using the construction of M(Ψ(A)) described in Sec-
tion 2 of [10]) that for all b ∈ B we have

‖b‖ = sup{‖b ·Ψ(a)‖ : a ∈ A, ‖a‖ 6 1}.
Suppose for a contradiction that there were some b ∈ B with ‖b‖ = 1 but

with sup{‖b(x)‖ : x ∈ XA} = α for some 0 6 α < 1. Then for all a ∈ A with
‖a‖ 6 1 and x ∈ XA we would have

‖(b ·Ψ(a))(x)‖ = ‖b(x) · (Ψ(a))(x)‖ 6 α · ‖Ψ(a)(x)‖ 6 α‖a‖ 6 α.

Since b ·Ψ(a) ∈ Ψ(A) for all a ∈ A, it would then follow that

‖b ·Ψ(a)‖ = sup
x∈XA

‖(b ·Ψ(a))(x)‖ 6 α

whenever ‖a‖ 6 1. In particular, this would imply that

‖b‖ = sup{‖b ·Ψ(a)‖ : a ∈ A, ‖a‖ 6 1} 6 α < 1,

which is a contradiction.
(ii) We first show that for each b ∈ B, the associated cross-section is contin-

uous on XA with respect to (A, X, µA). To this end, let x ∈ XA and ε > 0. Since
Ax = Bx, there is some a ∈ A with a(x) = b(x). In particular, ‖(a− b)(x)‖ = 0.

Now, since (B, K, µB) is a C(K)-algebra and Ψ(a) ∈ B, the norm function
y 7→ ‖(b − Ψ(a))(y)‖ is upper-semicontinuous on K by Proposition 1.4(i), and
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hence is upper-semicontinuous on XA. In particular, there is a neighbourhood U
of x in XA such that ‖(b−Ψ(a))(y)‖ < ε for all y ∈ U. Since Ψy is injective for all
y ∈ XA, it follows that, for all y ∈ U,

‖b(y)− a(y)‖Ay = ‖(b−Ψ(a))(y)‖By < ε.

This shows that b|XA
is continuous on XA with respect to (A, X, µA), and

hence defines an element of Γb(A). Moreover, it is clear from the definition of
x 7→ b(x) that the map sending b to b|XA

is a ∗-homomorphism. Since Γb(A) is
equipped with the supremum norm, part (i) shows that this map is injective.

(iii) Let y ∈ K\XA and ε > 0. Since x 7→ ‖b(x)‖ is upper-semicontinuous on
K, there is an open neighbourhood U of y such that

sup
x∈U
‖b(x)‖ 6 ‖b(y)‖+ ε.

It follows that
inf
W

sup
x∈W∩XA

6 ‖b(y)‖,

as W ranges over all neighbourhoods of y in K.
Suppose that there were some open neighbourhood U of y in K such that

sup
x∈U∩XA

‖b(x)‖ < ‖b(y)‖.

Let f ∈ C(K), 0 6 f 6 1 with f (y) = 1 and f |K\U ≡ 0, and let x ∈ XA. If x 6∈ U,
then f (x) = 0 and hence ‖(µB( f )b)(x)‖ = 0. If x ∈ U, then

‖(µB( f )b)(x)‖ 6 sup
x∈U∩XA

‖b(x)‖ < ‖b(y)‖.

Together with part (i), this shows that

‖µB( f )b‖ = sup
x∈XA

‖(µB( f )b)(x)‖ < ‖b(y)‖ = ‖(µB( f )b)(y)‖,

which is a contradiction.
(iv) Note that for y ∈ K\XA, the fibre algebra Ay is zero, and so (2.2) ensures

that we have Ψ(a)(y) = 0 for all a ∈ A.
Now let b ∈ B be such that b(y) = 0 for all y in K\XA. Note that b|XA

belongs to Γb(A) by part (ii); we shall show that b|XA
∈ Γ0(A).

Since y 7→ ‖b(y)‖ is upper-semicontinuous on K, for each α > 0 the set

{y ∈ K : ‖b(y)‖ < α}

is open, and contains K\XA by assumption. Hence

{y ∈ K : ‖b(y)‖ > α}

is a closed and hence compact subset of K, and moreover, is contained in XA. It
follows that (x 7→ b(x)) defines an element of Γ0(A), which by Theorem 1.6(i),
can only be the case if b ∈ Ψ(A).
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(v) Since XA is locally compact and K is a compactification of XA, XA is also
an open subset of K ([20], 3.15(d)). Then we may identify C0(XA) with the ideal
of C(K) consisting of those f ∈ C(K) vanishing on K\XA. In particular,

Ψ(µK
A( f )a) = µB( f )Ψ(a)

for all f ∈ C0(XA) and a ∈ A.
Since XA is locally compact, we may regard A as a C0(XA) algebra with the

same base map as (A, X, µA) (restricting the range to XA) as in Definition 1.7. The
corresponding structure map is then µ

XA
A = µK

A

∣∣
C0(XA)

, so that µK
A(C0(XA)) · A =

A. Hence
Ψ(A) = µB(C0(XA)) ·Ψ(A) ⊆ µB(C0(XA)) · B,

so it remains to show the reverse inclusion.
Letting B0 = µB(C0(XA)) · B, we see that (B0, XA, µB|C0(XA)

) is a C0(XA)-
algebra. Moreover, if b ∈ B and x ∈ XA, choosing f ∈ C0(XA) with f (x) = 1
we have µB( f )b ∈ B0 and (µB( f )b)(x) = b(x) . Hence for all x ∈ XA the fibre
algebras B0

x are equal to Bx, which are in turn isomorphic to Ax (since (B, K, µB)
is a compactification of (A, X, µA)).

In particular, for every x ∈ XA and c ∈ B0
x there is a ∈ A with a(x) = c.

Hence by Theorem 1.6(iii), Ψ(A) = B0, which completes the proof.

REMARK 2.13. Proposition 2.12(ii) in some sense characterises compactifica-
tions of a C0(X)-algebra (A, X, µA) completely. Indeed, suppose that K is a com-
pactification of XA and that (B, K, µB) is a C(K)-algebra with the property that
the map sending b ∈ B to the cross section b|XA

is an injective ∗-homomorphism
of B onto a subalgebra of Γb(A) containing Γ0(A). Then (B, K, µB) gives rise to a
compactification of (A, X, µA) in a natural way.

Indeed, identifying A with Γ0(A) and B with a subalgebra of Γb(A) con-
taining Γ0(A) defines an injective ∗-homomorphism from A to B, which is C(K)-
linear since

(µK
A( f )a)(x) = f (x)a(x) = (µB( f )a)(x)

for all f ∈ C(K), a ∈ A and x ∈ XA. Moreover, since the homomorphism
B → Γb(A) is injective, ‖b‖ = sup

x∈XA

‖b(x)‖, and so b = 0 if and only if b(x) = 0

for all x ∈ XA, which occurs if and only if ba = ab = 0 for all a ∈ A. Property (iii)
of Definition 2.9 is immediate from the fact that b(x) ∈ Ax for all a ∈ A.

3. THE STONE–ČECH COMPACTIFICATION OF A C0(X)-ALGEBRA

In this section we show that any C0(X)-algebra (A, X, µA) gives rise to a C∗-
algebra Aβ, with A ⊆ Aβ ⊆ M(A), such that (Aβ, βXA, µAβ) is a C(βXA)-algebra,
and defines a compactification of (A, X, µA) in a natural way.
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DEFINITION 3.1. Let (A, X, µA) be a C0(X)-algebra, and define the closed
ideal Aβ of M(A) via

(3.1) Aβ =
⋂
{A + Hx : x ∈ XA},

where Hx, for x ∈ XA, are the ideals in M(A) given by (1.4).

Note that Aβ is an essential ideal of M(A) since it contains A. We shall
show that Aβ gives rise naturally to a compactification of (A, X, µA), which has
many properties analogous to those of the Stone–Čech compactification of a lo-
cally compact Hausdorff space.

It is important to note that the definition of Aβ is independent of the base
space X containing XA. More precisely, replacing (A, X, µA) with the C0(Y)-
algebra (A, Y, µY

A) of Definition 1.7, the ideals Hx for x ∈ XA are unchanged ([5],
Lemma 2.4), hence the same is true for Aβ.

Part (ii) of Proposition 3.2 was established in Theorem 3.3 of [7].

PROPOSITION 3.2. For C0(X)-algebra (A, X, µA) we have
(i) Aβ = M(A) if and only if µA(C0(X)) ∩ A 6⊆ Jx for any x ∈ XA;

(ii) if XA is compact, then Aβ = A; if A is σ-unital, then Aβ = A if and only if XA
is compact.

Proof. To see (i), suppose first that Aβ = M(A), so that in particular, A +
Hx = M(A) for all x ∈ XA. If there were some x ∈ XA with µA(C0(X))∩ A ⊆ Jx,
then by Lemma 2.1 (i)⇒ (iii) of [4], there would be some R ∈ Prim(M(A)) with
R ⊇ A and φM(A)(R) = x. Hence (using (1.4)) R ⊇ Hx, so that R ⊇ A + Hx. This
would imply that A + Hx ( M(A), which is a contradiction.

Conversely, suppose that µA(C0(X)) ∩ A 6⊆ Jx for any x ∈ XA. Then we
have that the canonical embedding of Ax into M(A)x is surjective for every x ∈
XA by Proposition 2.2(iii) of [4]. But then for any m ∈ M(A), there is a ∈ A with
m(x) = a(x), and hence m− a ∈ Hx. It follows that m ∈ A + Hx, so A + Hx =
M(A). Since this is true for all x ∈ XA, Aβ = M(A).

(ii) is shown in Theorem 3.3 of [7] (note that the proof of (ii) ⇒ (i) therein
does not require A to be σ-unital).

EXAMPLE 3.3. Let B be a C∗-algebra and let (A, X, µA) be the trivial C0(X)-
algebra A = C0(X, B). Then by Corollary 3.4 of [1], M(A) = Cb(X, M(B)β),
where M(B)β denotes M(B) equipped with the strict topology.

For each x ∈ X, the ∗-homomorphism π̃x : M(A)→ M(B) of (1.5) coincides
with the evaluation map at x. Then by Lemma 1.13, Hx is the ideal

{c ∈ M(A) : ‖π̃y(c)‖ → 0 as y→ x}

of M(A). Hence for m ∈ M(A), m belongs to A + Hx if and only if there is some
a ∈ A such that m− a ∈ Hx, i.e., if and only if there is some b ∈ B such that

‖m(y)− b‖ → 0 as y→ x.
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It follows that Aβ consists of the subalgebra Cb(X, B) of M(A).
Note that in this example, we have XA = X, and hence the results of Propo-

sition 3.2 are easily observed. Indeed, it is clear that A = Aβ if and only if
C0(X, B) = Cb(X, B), which occurs if and only if X is compact.

Moreover, the structure map µA : C0(X) → ZM(A) in this case is given by
pointwise multiplication by elements of C0(X). Hence if B is unital,

µA(C0(X)) ∩ A = { f · 1B : f ∈ C0(X)} 6⊆ Jx

for any x ∈ X, while if B is non-unital, µA(C0(X)) ∩ A = ∅.
It is clear the Aβ = M(A) if and only if Aβ is unital, which occurs if and

only if B is, hence if and only if µA(C0(X)) ∩ A 6⊆ Jx for any x ∈ XA = X.

Let (A, X, µA) be a C0(X)-algebra and K a compactification of XA. Then
for any f ∈ C(K), f |XA

belongs to Cb(XA). It follows that f |XA
extends to a

continuous function f |XA
∈ C(βXA). In particular, we get a unital, injective ∗-

homomorphism C(K) → C(βXA), and so we may identify C(K) with a unital
C∗-subalgebra of C(βXA).

In the following theorem we shall make use of the C(βXA)-algebra
(A, βXA, νA) of Definition 1.7.

THEOREM 3.4. Let (A, X, µA) be a C0(X)-algebra and (A, βXA, νA) be the
C(βXA)-algebra canonically defined by (A, X, µA). Then

(i) There is an injective ∗-homomorphism π : ZM(A) → ZM(Aβ), and hence
letting µAβ : C(βXA) → ZM(Aβ) be the composition µAβ = π ◦ νA, the triple
(Aβ, βXA, µAβ) is a C(βXA)-algebra. Moreover, if K is any compactification of XA,
then letting µK

Aβ = µAβ

∣∣
C(K), (Aβ, K, µK

Aβ) is a C(K)-algebra.

(ii) For any compactification K of XA, (Aβ, K, µK
Aβ) is a compactification of (A,X, µA).

(iii) If (A, X, µA) is a continuous C0(X)-algebra, then (Aβ, βXA, µAβ) is a continu-
ous C(βXA)-algebra.

Proof. (i) Since Aβ is an essential ideal of M(A), there is an injective ∗-
homomorphism ι : M(A) → M(Aβ) which is the identity on Aβ. Setting π =
ι|ZM(A), then since A is essential in Aβ, π maps ZM(A) into ZM(Aβ). It follows
that there is a unital ∗-homomorphism µAβ := π ◦ νA : C(βXA) → ZM(Aβ), so
that (Aβ, βXA, µAβ) is a C(βXA)-algebra.

If K is a compactification of XA, then since C(K) is a unital C∗-subalgebra of
C(βXA), the ∗-homomorphism µK

Aβ : C(K) → ZM(Aβ) is unital, and in particu-
lar, non-degenerate.

(ii) It is clear from the definition of µK
Aβ that we have µK

Aβ( f )a = µK
A( f )a for

all f ∈ C(K) and a ∈ A, hence A → Aβ is C(K)-linear and we have a morphism
(A, K, µK

A) → (Aβ, K, µK
Aβ). It is an injective morphism (i.e. the maps Ax → Aβ

x
are injective) by Proposition 2.6. Hence conditions (i) and (ii) of Definition 2.9 are
satisfied.
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To see condition (iii) of Definition 2.9, we first claim that the fibre algebras
Aβ

x of (Aβ, K, µK
Aβ), where x ∈ XA, do not depend on our choice of compactifica-

tion K of XA. For clarity, let us denote by ψK : C(K)→ C(βXA) the usual injective
∗-homomorphism, and by ψ∗K : βXA → K the dual continuous surjection. Then
ψ∗K|XA

is the identity map, and moreover, ψ∗K(βXA\XA) = K\XA by Theorem 6.12
of [20].

Denote by φK
Aβ : Prim(Aβ) → K the base map of the C(K)-algebra

(Aβ, K, µK
Aβ). Then it is clear from the definition of µK

Aβ : C(K)→ ZM(Aβ) above
that

φK
Aβ = ψ∗K ◦ φ

βXA
Aβ .

In particular, this implies that for P ∈ Prim(Aβ) and x ∈ XA

φK
Aβ(P) = x if and only if φ

βX
Aβ (P) = x.

Hence for all such x, we have

µK
Aβ(C0(K\{x})) · Aβ = µ

βX
Aβ (C0(βX\{x})) · Aβ.

Since the fibres corresponding to points of XA of (Aβ, K, µK
Aβ) and (Aβ, βXA, µAβ)

are quotients of Aβ by these ideals, it follows that Aβ
x does not depend on the

choice of compactification K of XA.
Now let x ∈ XA and note that for c ∈ Aβ, c(x) = 0 (as a section of

(Aβ, K, µK
Aβ)) whenever c ∈ Hx by the definition of µK

Aβ . Now if b ∈ Aβ, write
b = a+ c for some a ∈ A and c ∈ Hx, then it is clear that a(x) = (a+ c)(x) = b(x).
In particular, the canonical map Ax → Aβ

x is surjective for all x ∈ XA.
(iii) We first show that norm functions of elements of Aβ are continuous on

XA. Note that XA is locally compact since (A, X, µA) is continuous.
Take b ∈ Aβ and let fb : XA → R be the function fb(x) = ‖b(x)‖. For

x0 ∈ X let Kx0 be a compact neighbourhood of x0 in XA and g ∈ C0(XA) with
g|Kx0

≡ 1. Then by Proposition 2.12(v), µAβ(g)b ∈ A, and x 7→ ‖(µAβ(g)b)(x)‖
is continuous on XA. Since x 7→ ‖(µAβ(g)b)(x)‖ agrees with fb on Kx0 , it follows
that fb is continuous at x0 for any x0, and so fb is continuous on XA.

Denote by f b the unique extension of fb to a continuous function on βXA,
and by gb the function gb(y) = ‖b(y)‖ on βXA. Following the proof of Proposi-
tion 2.8 of [4], we will show that f b = gb.

Let y ∈ βXA and let (xα) be a net in XA converging to y. Note that for each
α the function b 7→ ‖b(xα)‖, where b ∈ Aβ, is a C∗-seminorm on Aβ. It follows
that b 7→ f b(y) = lim

α
fb(xα) is a C∗-seminorm on Aβ. Since the C∗-norm on Aβ

y is

unique, it suffices to prove that f b(y) = 0 if and only if b(y) = 0.
Suppose first that b(y) = 0 and ε > 0. Then since x 7→ ‖b(x)‖ is upper-

semicontinuous on βXA, there is an open neighbourhood U of y in βXA such that



484 DAVID MCCONNELL

‖b(x)‖ < ε for all x ∈ U. It follows that there is α0 with fb(xα) = ‖b(xα)‖ < ε

whenever α > α0. Since f b is continuous and xα → y, this implies that f b(y) = 0.
Now suppose that f b(y) = 0, and let ε > 0. Let U = {x ∈ βXA : f b(x) < ε}

and take g ∈ C(βXA) with 0 6 g 6 1, g(y) = 1 and g|βXA\U ≡ 0. Then

‖b− µAβ(1− g) · b‖ = ‖µAβ(g) · b‖ = sup
x∈βXA

‖(µAβ(g) · b)(x)‖

= sup
x∈XA

‖(µAβ(g) · b)(x)‖ = sup
x∈U∩XA

|g(x)|‖b(x)‖ 6 ε.

Since ε was arbitrary, it follows that b ∈ Hy. Hence b(y) = 0 by the definition

of Aβ
y .

EXAMPLE 3.5. If (A, X, µA) is as in Example 3.3 and K is a compactification
of X then (Aβ, K, µK

Aβ) is a compactification of (A, X, µA). Here µK
Aβ : C(K) →

ZM(Aβ) is given by pointwise multiplication.
It is easy to see that (Aβ, K, µK

Aβ) need not be a continuous C(K)-algebra in
general. Indeed, consider X = N, A = c0 (= C0(N,C)) and K the one-point com-
pactification of N. Then Aβ = `∞ and for b ∈ Aβ, the norm function y 7→ ‖b(y)‖
is continuous on K if and only if the sequence (|b(n)|)n∈N converges. Hence
(Aβ, K, µK

Aβ) is not a continuous C(K)-algebra.

4. THE ALGEBRA OF BOUNDED CONTINUOUS SECTIONS

In this section, we examine the structure of the algebra of continuous sec-
tions of (Aβ, K, µK

Aβ), and in particular, of (Aβ, βXA, µAβ). We show that Aβ has
the following Stone–Čech-type property: every continuous bounded section in
Γb(A) has a unique extension to a continuous section in Γ(Aβ) (irrespective of
our choice of compactification K of XA over which Aβ defines a C(K)-algebra).
As a consequence, we show that every trivial C∗-bundle over a locally compact
Hausdorff space X extends uniquely to a continuous C∗-bundle over βX (though
this extension may fail to be trivial) with the Stone–Čech extension property
above.

Let (A, X, µA) be a C0(X)-algebra and (Aβ, K, µK
Aβ) the compactification of

(A, X, µA) obtained from Theorem 3.4. In order to clarify the compactification K
of XA under consideration, we shall return to the full notation of Definition 1.3,
and denote the associated section algebras by Γ0((Aβ, K, µK

Aβ)), Γb((Aβ, K, µK
Aβ))

and Γ((Aβ, K, µK
Aβ)). We make the following observations about (Aβ, K, µK

Aβ):

(i) Associated with (Aβ, K, µK
Aβ) there is the subspace KAβ := {y ∈ K : Aβ

y 6=
{0}} of K defined analogously to XA of (1.3). Condition (iii) of Definition 2.9
ensures that XA ⊆ KAβ , but we do not necessarily have KAβ = K (see Section 5).
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(ii) There is a natural isomorphism Aβ ∼= Γ0(((Aβ, K, µK
Aβ))) given by Theo-

rem 1.6. We do not yet know whether or not KAβ is compact, and hence whether
or not Γ0((Aβ, K, µK

Aβ)) = Γb((Aβ, K, µK
Aβ)) = Γ((Aβ, K, µK

Aβ)); the latter shall be
shown in Theorem 4.2.

We shall continue to use the notation Γb(A) for the algebra of bounded cross
sections XA → ä

x∈XA

Ax that are continuous with respect to (A, X, µA), since this

is unambiguous (i.e. independent of the space containing XA).

LEMMA 4.1. Let (A, X, µA) be a C0(X)-algebra, K a compactification of XA, and
consider the compactification (Aβ, K, µK

Aβ) of (A, X, µA). Then for any c ∈
Γb((Aβ, K, µK

Aβ)),
(i) the restriction c|XA

of c to XA belongs to Γb(A), and
(ii) the norm of c is given by ‖c‖ = sup

x∈XA

‖c(x)‖.

Proof. (i) Let x ∈ XA and ε > 0. Then since c is continuous with respect to
(Aβ, K, µK

Aβ), there is an element b ∈ Aβ and an open neighbourhood U1 of x in
KAβ such that

‖c(y)− b(y)‖ < ε

2
for all y ∈ U1.

By Proposition 2.12(ii), b|XA
is continuous with respect to (A, X, µA), and so there

is a ∈ A and an open neighbourhood U2 of x in XA with

‖b(y)− a(y)‖ < ε

2
for all y ∈ U2.

Hence for all y in the open neighbourhood U := (U1 ∩ XA) ∩U2 of x in XA we
have

‖c(y)− a(y)‖ 6 ‖c(y)− b(y)‖+ ‖b(y)− a(y)‖ < ε.

This shows that the section c|XA
is continuous on XA with respect to (A, X, µA),

i.e., c|XA
∈ Γb(A).

(ii) Identify Aβ with Γ0((Aβ, K, µK
Aβ)) and note that by Proposition 1.4(iii),

Γ0((Aβ, K, µK
Aβ)) is an essential ideal of Γb((Aβ, K, µK

Aβ)). Hence c = 0 if and only
if bc = cb = 0 for all b ∈ Γ0((Aβ, K, µK

Aβ)). Since (Aβ, K, µK
Aβ) is a compactification

of A, we have ‖b‖ = sup
x∈XA

‖b(x)‖ for any b ∈ Aβ by Proposition 2.12(i). Thus

if c(x) = 0 for all x ∈ XA, it follows that (bc)(x) = (bc)(x) = 0 for all b ∈
Γ0((Aβ, K, µK

Aβ)) and x ∈ XA, and so bc = cb = 0 for all such b.
This shows that c = 0 if and only if c(x) = 0 for all x ∈ XA, which is

equivalent to the claim that ‖c‖ = sup
x∈XA

‖c(x)‖ by 1.9.12(c) of [15].

THEOREM 4.2. Let (A, X, µA) be a C0(X)-algebra, K a compactification of XA
and let (Aβ, K, µK

Aβ) be the compactification of (A, X, µA) obtained from Theorem 3.4.
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(i) The map sending b ∈ Aβ to the cross-section XA → ä
x∈XA

Ax, x 7→ b(x), is a

∗-isomorphism of Aβ onto Γb(A).
(ii) The section algebras Γ0((Aβ, K, µK

Aβ)), Γb((Aβ, K, µK
Aβ)) and Γ((Aβ, K, µK

Aβ))
all agree.

(iii) Every bounded continuous section a ∈ Γb(A) has a unique extension to a contin-
uous section a ∈ Γ((Aβ, K, µK

Aβ)).

Proof. (i) By Proposition 2.12(ii), this map is an injective ∗-homomorphism
of Aβ into Γb(A), thus it remains to prove that it is surjective.

Suppose that m ∈ Γb(A) and x ∈ XA, then there is some a ∈ A with a(x) =
m(x). Then since a − m ∈ Γb(A) it follows that y 7→ ‖(a − m)(y)‖ is upper-
semicontinuous on XA by Proposition 1.4(i). As (a − m)(x) = 0, there is some
open neighbourhood U of x in XA with ‖(a−m)(y)‖ < ε for all y ∈ U.

Denote by π̃y : M(A)→ M(Ax) the ∗-homomorphism extending πy : A→
Ay of equation (1.5) for each y ∈ XA. Then since ‖π̃y(b)‖ 6 ‖b(y)‖ for all y ∈ XA
and b ∈ M(A), we have

‖π̃y(a−m)‖ 6 ‖(a−m)(y)‖ < ε

for all y ∈ U. Hence ‖π̃y(a − m)‖ → 0 as y → x, so that a − m ∈ Hx by
Lemma 1.13.

This ensures that for any m ∈ Γb(A) and x ∈ XA, m ∈ A + Hx, so that
Γb(A) ⊆ Aβ.

(ii) It is clear from the definitions of these section algebras that the inclusions

Γ0((Aβ, K, µK
Aβ)) ⊆ Γb((Aβ, K, µK

Aβ)) ⊆ Γ((Aβ, K, µK
Aβ))

hold, we shall show the reverse inclusions. Let c ∈ Γb((Aβ, K, µK
Aβ)), then by

Lemma 4.1(i), c|XA
defines an element of Γb(A). By part (i), it follows that there

is some b ∈ Aβ (or equivalently, b ∈ Γ0((Aβ, K, µK
Aβ))) with b(x) = c(x) for all

x ∈ XA. Hence (b − c)(x) = 0 on XA, and so by Lemma 4.1(ii), b = c when
both are regarded as elements of Γb((Aβ, K, µK

Aβ)). Since Aβ is isomorphic to
Γ0((Aβ, K, µK

Aβ)), this shows that c ∈ Γ0((Aβ, K, µK
Aβ)) and hence

Γ0((Aβ, K, µK
Aβ)) = Γb((Aβ, K, µK

Aβ)).

To see that Γ((Aβ, K, µK
Aβ)) ⊆ Γb((Aβ, K, µK

Aβ)), assume for a contradiction
that there is some c ∈ Γ((Aβ, K, µK

Aβ)) with y 7→ ‖c(y)‖ unbounded on KAβ . Then
since y 7→ ‖c(y)‖ is upper semicontinuous on KAβ (Proposition 1.4(i)), KAβ is not
countably compact ([21], Theorem 1), and so KAβ contains a countably infinite
discrete subset Y := {yn : n ∈ N} (i.e. without limit points in KAβ ). Let {Un : n ∈
N} be a collection of pairwise disjoint open sets with yn ∈ Un for each n, and let
bn ∈ Aβ with ‖bn‖ = ‖bn(yn)‖ = 1. Since KAβ is completely regular, there exist
functions fn ∈ Cb(KAβ) with 0 < fn 6 1, fn(yn) = 1 and fn|K

Aβ\Un
≡ 0.
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Define a cross section b : KAβ → ä
y∈K

Aβ

Aβ
y via

b(y) =
∞

∑
n=1

fn(y) · bn(y),

which is well defined since each y ∈ KAβ belongs to the support of at most one of
the functions fn. Moreover, since fn · bn is continuous with respect to (Aβ, K, µK

Aβ)

for each n, it follows that b is continuous and hence b ∈ Γb((Aβ, K, µK
Aβ)). How-

ever, the set
{y ∈ KAβ : ‖b(y)‖ > 1}

contains the countably infinite discrete set Y, and thus cannot be compact, so that
y 7→ ‖b(y)‖ does not vanish at infinity on KAβ . This contradicts the fact that
Γ0((Aβ, K, µK

Aβ)) = Γb((Aβ, K, µK
Aβ)).

(iii) By part (i), there is an element a ∈ Aβ with a(x) = a(x) for all x ∈ XA,
and by part (ii), Aβ is canonically isomorphic to Γ((Aβ, K, µK

Aβ)).

The conclusion of Theorem 4.2 might appear counter-intuitive at first, in
that the extension property of (Aβ, K, µK

Aβ) is true for any compactification K of
XA. Indeed, for a commutative C∗-algebra C0(X), we know that βX is the unique
compactification of X having the property that every f ∈ Cb(X) extends to a
continuous function f ∈ C(βX). Nonetheless, given any compactification K of
X, C(βX) may be equipped with the structure of a C(K)-algebra. The unique
extension f ∈ C(βX) of f ∈ Cb(X) above then defines a continuous section K →
ä

y∈K
C(βX)y, as the following example describes.

EXAMPLE 4.3. Let (A, X, µA) be the C0(X)-algebra defined by C0(X). Now,
Aβ ∼= Cb(X) ∼= C(βX), and by Theorem 3.4(i), the C(K)-algebra (Aβ, K, µK

Aβ)

gives rise to a compactification of (A, X, µA) for any compactification K of X.
Note that µK

Aβ : C(K) → ZM(Aβ) is given by the natural (unital) embedding
of C(K) into C(βX) in each case. Hence the corresponding base map φK

Aβ :
Prim(Aβ) ∼= βX → K is the Stone–Čech extension to βX of the homeomorphic
embedding of X into K.

Since (Aβ, βX, µAβ) is a compactification of (A, X, µA), the fibre algebras
are given by Aβ

x = Ax = C for all x ∈ X. For y ∈ K\X we have Prim(Aβ
y ) ∼=

(φK
Aβ)
−1(y), so that

Aβ
y = C((φK

Aβ)
−1(y))

for all such y.
Note that in the particular case where K = X̂ := X ∪ {∞} (the one-point

compactification of X), we have

Aβ
∞ = C(βX\X).
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REMARK 4.4. The fact that the fibre algebras of (Aβ, K, µK
Aβ) at points of x

are given by C may be deduced from the fact that φK
Aβ : βX → K maps βX\X to

K\X ([20], Theorem 6.12). Indeed, it then follows that (φK
Aβ)
−1({x}) = {x} for

any x ∈ X, and so Prim(Aβ
x) = {x} consists of a single point for all such x.

REMARK 4.5. The fact that βX is the unique compactification of X with the
property that any f ∈ Cb(X) extends to f ∈ C(βX) can still be recovered in the
language of C0(X)-algebra compactifications. Indeed, let the continuous C0(X)-
algebra (A, X, µA) be given by A = C0(X) in the usual way. Then since Aβ =
Cb(X), every positive function g ∈ Cb(X)+ occurs as the norm-function x 7→
‖g(x)‖.

Suppose that K is a compactification of X such that (Aβ, K, µK
Aβ) is a contin-

uous C(K)-algebra, every such g extends uniquely to a continuous function g ∈
C(K), namely, the norm function of the continuous section g ∈ Γ((Aβ, K, µK

Aβ))

of Theorem 4.2. Since this is true for all g ∈ Cb(X)+, it follows that K = βX.
In summary, (Aβ, βX, µAβ) is unique in the following sense: let A = C0(X)

and (A, X, µA) the corresponding continuous C0(X)-algebra. Let (B, K, µB) be a
compactification of (A, X, µA) such that:

(i) (B, K, µB) is a continuous C(K)-algebra, and
(ii) every b ∈ Γb((A, X, µA)) extends to b ∈ Γ((B, K, µB)).

Then there is an isomorphism (B, K, µB) ∼= (Aβ, βX, µAβ). We shall extend
this to more general continuous C0(X)-algebras in Section 6.

The Stone–Čech compactification of a completely regular space Y is func-
torial in the sense that if X is another completely regular space and φ : Y → X
a continuous map, φ has a unique extension to φβ : βY → βX. If in addition
X and Y are locally compact and φ is a proper map, this is equivalent to the
property that the dual ∗-homomorphism C0(X) → C0(Y) extends uniquely to a
∗-homomorphism C(βX)→ C(βY).

As a consequence of Theorem 4.2, we can now show that (Aβ, βXA, µAβ)
has the corresponding property with respect to morphisms of C0(X)-algebras.

COROLLARY 4.6. Let (A, X, µA) be a C0(X)-algebra, (B, Y, µB) a C0(Y)-algebra
and (Ψ, ψ) : (A, X, µA)→ (B, Y, µB) a morphism satisfying the following nondegener-
acy condition:

(4.1) the domain of the dual map ψ∗ of ψ : C0(X)→ C0(Y) contains YB.

Then there is a morphism

(Ψβ, ψβ) : (Aβ, βXA, µAβ)→ (Bβ, βYB, µBβ)

where Ψβ extends Ψ and ψβ( f )
∣∣
YB

= ψ( f )|YB
for all f ∈ C0(X).

Hence the assignment of (Aβ, βXA, µAβ) to (A, X, µA) and (Ψβ, ψβ) to (Ψ, ψ)
gives rise to a covariant functor from the category of C∗-bundles over locally compact
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spaces, together with morphisms satisfying (4.1), to the category of C∗-bundles over com-
pact spaces with the same morphisms.

Proof. As discussed in Remark 2.3, we have a ∗-homomorphism Ψb : Γb(A)
→ Γb(B) defined via

Ψb(c)(y) = Ψy(c(ψ∗(y)))

for all c ∈ Γb(A) and y ∈ YB. Taking the composition with the isomorphisms
Aβ ∼= Γb(A) and Bβ ∼= Γb(B) of Theorem 4.2 gives a ∗-homomorphism Ψβ :
Aβ → Bβ extending Ψ.

To construct ψβ we first define a ∗-homomorphism ψb : Cb(XA) → Cb(YB)
via the composition

ψb( f )(y) = f (ψ∗(y)),

where f ∈ Cb(XA) and y ∈ YB (note that the domain of ψ∗ contains YB). Then
ψb induces a ∗-homomorphism ψβ : C(βXA) → C(βYB), which has the property
that ψβ( f )

∣∣
YB

= ψ( f )|YB
for all f ∈ C0(X) by construction.

To see that (Ψβ, ψβ) is indeed a morphism, first note that for any c ∈ Aβ, f ∈
C(βXA) and y ∈ YB, the definitions of Ψβ and ψβ ensure that

[Ψβ(µAβ(g)c)](y) = Ψy[g(ψ∗(y))c(ψ∗(y))] = (ψβ(g)(y))(Ψβ(c)(y))

= [µBβ(ψβ(g))Ψβ(c)](y).

In other words,

[Ψβ(µAβ(g)c)− µBβ(ψβ(g))Ψβ(c)](y) = 0

for y∈YB. Since (Bβ, βY, µBβ) is a compactification of (B, Y, µB), Proposition 2.12(ii)
shows that any d ∈ (B, K, µB)

β has ‖d‖ = sup
y∈YB

‖d(y)‖, so we must have

Ψβ(µAβ(g)c) = µBβ(ψβ(g))Ψβ(c),

which shows that (Ψβ, ψβ) is indeed a morphism.
For the final assertion, we note first that the identity morphism (IdA, IdC0(X))

satisfies
(IdAβ , Idβ

C0(X)
) = (IdAβ , IdC(βXA)

),

which is the identity morphism on (Aβ, βXA, µAβ). Moreover, given morphisms
(Ψ, ψ) : (A, X, µA) → (B, Y, µB) and (Φ, φ) : (B, Y, µB) → (C, Z, µC) satisfy-
ing (4.1), it is clear that the composition (Φ, φ) ◦ (Ψ, ψ) = (Φ ◦Ψ, φ ◦ψ) also satis-
fies (4.1), and that (φ ◦ψ)∗ = ψ∗ ◦φ∗. This implies that (φ ◦ψ)β( f ) = (φβ ◦ψβ)( f )
for all f ∈ C(βXA).

For z ∈ ZC, letting y = φ∗(z) and x = ψ∗(φ∗(z)), a straightforward but
tedious calculation shows that the ∗-homomorphisms Ψy : Ax → By, Φz : By →
Cz and (Φ ◦Ψ)z : Ax → Cz satisfy

(Φ ◦Ψ)z = Φz ◦Ψy,
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so that for all a ∈ Aβ,

[(Φ ◦Ψ)β(a)](z) = (Φz ◦Ψy)(a(x)) = Φz([Ψ
β(a)](y)) = [(Φβ ◦Ψβ)(a)](z).

Hence the morphisms ((Φ ◦Ψ)β, (φ ◦ ψ)β) and (Φβ ◦Ψβ, φβ ◦ ψβ) agree.

Note that the commutative C∗-algebra A = C0(X) is a trivial C0(X)-algebra
with fibre C, and that Aβ = Cb(X) is a trivial C(βX)-algebra with fibre C. It is
natural to ask whether or not the same is true for a trivial C0(X)-algebra A of the
form A = C0(X, B) for some C∗-algebra B. It was shown in [39] that it is not true
in general that every f ∈ Cb(X, B) extends to a continuous function f : βX →
B. In particular, we cannot expect Cb(X, B) and C(βX, B) to be isomorphic in
general.

Consider now the usual identification of f ∈ Cb(X, B) with the correspond-
ing cross section X → ä

x∈X
B of the trivial bundle over X with fibre B. Corol-

lary 4.7 below shows that Theorems 3.4 and 4.2 give rise to an extension f : βX →
ä

y∈βX
Aβ

y of f to a continuous section of the C(βX)-algebra (Aβ, βX, µAβ).

Recall that a locally compact Hausdorff space X is said to be pseudocompact
if every continuous function f : X → C is necessarily bounded.

COROLLARY 4.7. Let B be a C∗-algebra and let (A, X, µA) be the trivial C0(X)-
algebra defined by A = C0(X, B). Then

(i) Γb(A) = Cb(X, B), hence
(ii) every a ∈ Cb(X, B) (regarded as a cross-section of the trivial bundle over X with

fibre B) extends uniquely to a continuous cross-section a : βX → ä
y∈βX

Aβ
y of the bundle

associated with the continuous C(βX)-algebra (Aβ, βX, µAβ).
Moreover, the following are equivalent:

(iii) Aβ is canonically isomorphic to C(βX, B),
(iv) either B is finite dimensional or X is pseudocompact.

Proof. (i) Let a ∈ Cb(X, B) and x ∈ X. If U is a neighbourhood of x in X
with compact closure then there is f ∈ C0(X) with f |U ≡ 1, so that f · a ∈ A.
Moreover, for all y ∈ U we have ‖( f · a− a)(y)‖ = 0, hence a ∈ Γb(A).

Conversely, let c ∈ Γb(A), x ∈ X and ε > 0. Then there is some a ∈ A and a
neighbourhood U of x such that ‖c(y)− a(y)‖ < ε/2 for all y ∈ U. Hence

‖c(y)− c(x)‖ 6 ‖c(y)− a(y)‖+ ‖a(x)− c(x)‖ < ε

2
+

ε

2
= ε,

so that y 7→ c(y) is continuous at x.
(ii) By Theorem 3.4(iii), (Aβ, βX, µAβ) is a continuous C(βX)-algebra. The

fact that every a∈Cb(X, B) admits a continuous extension to a∈Γb((Aβ, βX, µAβ))
follows from Theorem 4.2.
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The equivalence of (iii) and (iv) follows from Corollary 2 of [39], which
shows that the natural embedding C(βX, B) ↪→ Cb(X, B) is surjective if and only
if either B is finite dimensional or X is pseudocompact.

EXAMPLE 4.8. Let (A, X, µA) be the C0(N)-algebra C0(N, B) = c0(B). Then
Aβ = Cb(N, B) = `∞(B), which defines a C(βX)-algebra with respect to the nat-
ural multiplication of sequences by functions in C(βX). For y ∈ βX\X, the fibre
algebras Aβ

y are given by ultrapowers of B.

REMARK 4.9. Let A = C0(X, B) be a trivial C0(X)-algebra. Then Corol-
lary 4.7 shows that Aβ = Cb(X, B) defines a trivial C(βX)-algebra if and only if
either B is finite dimensional or X is pseudocompact. However, for general B, it
is clear that A admits a trivial compactification over βX, namely C(βX, B).

Consider the case of a locally trivial C0(X)-algebra (A, X, µA) with constant
fibre C. If C = Mn for some n, then A is an n-homogeneous C∗-algebra and
Prim(A) is homeomorphic to X. Moreover, in this case we have Aβ = M(A), and
the following are shown to be equivalent in Proposition 2.9 of [35]:

(i) A is of finite type, i.e., there exists a finite open cover {Ui : 1 6 i 6 m} of
X such that µA(C0(Ui)) · A ∼= C0(Ui, C) for all i;

(ii) (Aβ, βX, µAβ) is a locally trivial C(βX)-algebra;
(iii) there exists a locally trivial compactification (B, K, µB) of (A, X, µA) over

some compactification K of X.
It would be interesting to know whether or not the equivalence of (i) and

(iii) still holds in the case of a locally trivial C0(X)-algebra (A, X, µA) with infinite
dimensional fibre C. By considering the trivial case, Corollary 4.7 shows that we
cannot expect property (ii) to be equivalent to (i) and (iii) in general.

5. THE FIBRE ALGEBRAS OF (Aβ, βXA, µAβ )

In this section, we consider the question of characterising, for a compactifi-
cation (Aβ, K, µK

Aβ) of a C0(X)-algebra (A, X, µA), the set of points of K for which

the fibre algebras Aβ
y of (Aβ, K, µK

Aβ) are nonzero. By analogy with the subset XA
of X defined in (1.3), we denote this space by KAβ . In other words, we consider
the question of whether or not KAβ is a compactification of XA, and in particular,
whether or not (βXA)Aβ is the Stone–Čech compactification of XA.

We show in Theorem 5.5 that this is the case for a large class of C0(X)-
algebras (A, X, µA) (including all σ-unital continuous C0(X)-algebras). More-
over, we show in Theorem 5.9 that for all σ-unital C0(X)-algebras, the set KAβ\XA
is at least dense in K\XA.

In Example 5.10 however, we exhibit a separable C0(X)-algebra (A, X, µA)

and a point y ∈ βXA\XA for which Aβ
y = {0}. The key observation here is the

fact that there exist remote points in the Stone–Čech remainder of XA.
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A key technique in establishing the above uses a deep technical result of
Archbold and Somerset ([5], Theorem 2.5), applied in a similar manner to The-
orem 3.3 of [7]. We shall not need the full strength of this result here. Proposi-
tion 5.1 below establishes a significant consequence needed for our purposes.

PROPOSITION 5.1. Let (A, X, µA) be a σ-unital C0(X)-algebra and u a strictly
positive element of A with ‖u‖ = 1. If f ∈ Cb(XA) with 0 < f (x) 6 1 for all x ∈ XA,
then there is an element b ∈ Aβ with ‖b(x)‖ > 1 whenever f (x) 6 ‖u(x)‖.

Proof. Let b ∈ M(A) be the element constructed from u and f in Theo-
rem 2.5 of [5]. Then since f is everywhere nonzero in XA, we have b ∈ A + Hx
for all x ∈ XA by Theorem 2.5(ii) of [5], i.e., b ∈ Aβ.

For each x ∈ XA, let g f (x) : [0, 1] → [0, 1] be the piecewise linear function
with g f (x)(t) = 0 for 0 6 t 6 (1/2) f (x), g f (x)(t) = 1 for f (x) 6 t 6 1, and g f (x)
linear on the interval [(1/2) f (x), f (x)]. Then it is shown in Theorem 2.5(i) of [5]
that

π̃x(b) = g f (x)(π̃x(u))

for all x ∈ XA, where π̃x : M(A)→ M(Ax) is the strictly continuous extension of
the quotient homomorphism πx : A → Ax to M(A) of (1.5). Since u is positive,
the norm of π̃x(u) is equal to its spectral radius. Hence if f (x) 6 ‖u(x)‖ (=
‖π̃x(u)‖), then g f (x)(‖π̃x(u)‖) = 1, and so the norm of the restriction of g f (x) to
the spectrum of π̃x(u) is equal to 1. In particular, ‖π̃x(b)‖ = 1.

Finally, using the fact that ker(π̃x) ⊆ Hx for all x ∈ XA, we see that

‖b(x)‖ > ‖π̃x(b)‖ = 1

whenever f (x) 6 ‖u(x)‖.

Let (A, X, µA) be a σ-unital C0(X)-algebra and fix a strictly positive element
u ∈ A with ‖u‖ = 1. Since norm functions x 7→ ‖a(x)‖ vanish at infinity on X for
all a ∈ A, for each real number α with 0 < α 6 1 the set

(5.1) K(α) := {x ∈ X : ‖u(x)‖ > α}

is compact (note that K(α) ⊆ XA). Let {cn} be a decreasing sequence, with 0 <
cn 6 1 for all n and cn converging to 0 as n→ ∞. Then since u is strictly positive,
u(x) 6= 0 for all x ∈ XA and so

∞⋃
n=1

K(cn) = XA.

For convenience we fix some notation for the remainder of this section;

(5.2) Kn = K
( 1

n

)
=
{

x ∈ X : ‖u(x)‖ > 1
n

}
,

so that
∞⋃

n=1
Kn = XA as before.
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The following proposition is essentially an extension of the method of The-
orem 3.3 in [7].

PROPOSITION 5.2. Let (A, X, µA) be a σ-unital C0(X)-algebra and u a strictly
positive element of A with ‖u‖ = 1. Let K be a compactification of XA, (Aβ, K, µK

Aβ) the
compactification of (A, X, µA) defined in Theorem 3.4(ii), and y ∈ K\XA.

Suppose that there is a (relatively) closed subset F ⊆ XA and a strictly decreasing
sequence {cn} with 0 < cn 6 1 and cn → 0, such that:

(i) y ∈ clK(F) and
(ii) for all n ∈ N, F ∩ K(cn) ⊆ IntF(F ∩ K(cn+1)).

Then there is b ∈ Aβ such that the section b : K → ä
y∈K

Aβ
y satisfies

(a) ‖b(x)‖ = 1 for all x ∈ F, and hence
(b) ‖b(y)‖ = 1.

In particular, Aβ
y 6= {0}.

Proof. For each n ∈ N let Fn = F ∩ K(cn) (so that F =
∞⋃

n=1
Fn) and let fn :

F → [0, 1] be a continuous function with fn|Fn
≡ 1 and fn|F\IntF(Fn+1)

≡ 0 (note
that the assumption of (b) implies that the sets Fn and F\Int(Fn+1) are disjoint

and closed. Let f =
∞
∑

n=1
2−n(cn fn), so that f is continuous on F, 0 6 f 6 1 and

f (x) > 0 for all x ∈ F.
We claim that f (x) 6 ‖u(x)‖ for all x ∈ F. Indeed, any x ∈ F belongs to

Fk+1\Fk for some k, and hence fn(x) = 0 for 1 6 n 6 k− 1. It follows that

f (x) =
∞

∑
n=k

2−n(cn) fn(x) 6 ck

∞

∑
n=k

2−n fn(x) 6 ck2−k+1 6 ck < ‖u(x)‖,

the final inequality holding since x 6∈ K(ck) by assumption.
Now, since XA is normal and F is closed, f has a continuous extension to

f : XA → [0, 1]. Suppose that Z( f ) is non-empty, then since Z( f ) and F are
disjoint closed subsets of XA, there is a continuous function k : XA → [0, 1] such
that k|Z( f ) ≡ 1 and k|F ≡ 0. If Z( f ) = ∅, then set k = 0.

Finally, let g = min( f + k, 1), so that g : XA → [0, 1], g is continuous,
g(x) > 0 for all x ∈ XA and g|F = f .

Using Proposition 5.1 applied to g, we get b ∈ Aβ with ‖b(x)‖ = 1 for all
x ∈ F. Since y ∈ clK(F), this implies that for all neighbourhoods W of y in K there
is x ∈W ∩ XA with ‖b(x)‖ = 1. Moreover, as

‖b(y)‖ = inf
W

sup
x∈W∩XA

‖b(x)‖,

(where W ranges over all neighbourhoods of y in K) by Proposition 2.12(iii), it
follows that ‖b(y)‖ = 1. In particular, Aβ

y 6= {0}.
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Proposition 5.2 will be our main technique for constructing points y ∈ K\XA

for which Aβ
y is nonzero. In Theorem 5.5 we shall show that in certain cases (such

as that of continuous C0(X)-algebras), we may take F = XA, so that Aβ
y 6= {0} for

all such y. One of these cases arises when the base space X is the so-called Glimm
space of A, a particular space constructed from Prim(A).

For a C∗-algebra A, define an equivalence relation≈ on Prim(A) as follows:
for P, Q ∈ Prim(A), P ≈ Q if and only if f (P) = f (Q) for all f ∈ Cb(Prim(A)).
As a set, we define Glimm(A) as the quotient space Prim(A)/ ≈, and we denote
by ρA : Prim(A) → Glimm(A) the quotient map. For f ∈ Cb(Prim(A)), define
f ρ on Glimm(A) via f ρ([P]) = f (p), where [P] is the ≈ equivalence class of P in
Prim(A) (note that f ρ is well-defined by construction). We then equip Glimm(A)
with the topology τcr induced by the functions { f ρ : f ∈ Cb(Prim(A))}. With this
topology, Glimm(A) is a completely regular (Hausdorff) space (the complete reg-
ularisation of Prim(A)). For more details of this construction, we refer the reader
to [3], Chapter 3 of [20], [31] and Chapter 2 of [32].

It is clear that if Glimm(A) is locally compact, the continuous map ρA :
Prim(A)→Glimm(A) gives rise to a C0(Glimm(A))-algebra (A, Glimm(A), µA).
In general however, Glimm(A) may fail to be locally compact, e.g. [14]. Nonethe-
less, if ρA is regarded as a map Glimm(A)→βGlimm(A), we get a C(βGlimm(A))-
algebra (A, βGlimm(A), µA).

The space Glimm(A) is in some ways more tractable as a base space over
which to represent a given C∗-algebra A as a C0(X)-algebra. Not every com-
pletely regular space Y arises as Glimm(A) for some C∗-algebra A, indeed, Lazar
and Somerset have recently given a complete characterisation (for separable A)
of those spaces Y that do [29]. By contrast, every completely regular σ-compact
space Y arises as XA for some C0(X)-algebra (A, X, µA) ([5], Section 2).

LEMMA 5.3. Let A be a σ-unital C∗-algebra such that Glimm(A) is locally com-
pact. Let u ∈ A be a strictly positive element of norm 1. Then there is an increasing
sequence {nj} such that:

(i)
∞⋃

j=1
Knj = Glimm(A), and

(iii) for each j we have
Knj ⊂ IntKnj+1 .

Proof. Note that since u is strictly positive it is evident that
∞⋃

n=1
Kn =Glimm(A).

Moreover, since Glimm(A) is locally compact, each x ∈ Glimm(A) has an open
neighbourhood Ux in Glimm(A) such that Ux is compact.

By Theorem 2.1 of [28], for each compact K ⊆ Glimm(A) there is some α > 0
such that

K ⊆ {y ∈ Glimm(A) : ‖u(y)‖ > α}.
In particular, for each x ∈ Glimm(A) there is mx ∈ N such that Ux ⊆ Kmx .
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We define the sequence {nj} inductively. Let n1 = 1. For j > 1, note that the
collection {Ux : x ∈ Knj+1} is an open cover of Knj+1, so by compactness there
are x1, x2, . . . , xr ∈ Knj+1 such that

Knj+1 ⊆
r⋃

i=1

Uxi .

By the previous paragraph, there are mxi ∈ N with Uxi ⊆ Kmxi
for 1 6 i 6 r. Set

nj+1 = max{nxi : 1 6 i 6 r}. Then we have the following and properties (i) and
(ii) are then immediate:

Knj+1 ⊆
r⋃

i=1

Uxi ⊆
r⋃

i=1

Uxi ⊆ Knj+1 .

When XA is not Glimm(A), the conclusion of Lemma 5.3 can fail, even
when XA is compact and A commutative, as Example 5.4 shows. The reason
that this situation does not arise in the case where XA = Glimm(A) is the result
of Lazar [27], which shows that the usual topology on Glimm(A) is precisely the
quotient topology induced by the canonical surjection Prim(A) → Glimm(A)
when A is σ-unital.

EXAMPLE 5.4. Let A = c0 = C0(N), X = {0} ∪ {1/n :∈ N} with the sub-
space topology from R. Let φA : N → X the continuous surjection defined by
φ(1) = 0 and φ(n) = 1/(n− 1) for n > 2. Then we get a C(X)-algebra (A, X, µA)
with base map φA such that XA = X. To avoid ambiguity we will write elements
a ∈ A as sequences {an}.

Let u ∈ A be the strictly positive element un = 1/n. Then u(1/n) = un+1 =
1/(n + 1) for n ∈ N, and u(0) = u1 = 1. It follows that K1 = {0} and

Kn = {0} ∪
{ 1

m
: 1 6 m 6 n− 1

}
for n > 2. Note that the point 0 is not an interior point of any set Kn.

THEOREM 5.5. Let (A, X, µA) be a C0(X)-algebra, and suppose that one of the
following conditions hold:

(i) there is a strictly positive element u ∈ A with x 7→ ‖u(x)‖ continuous on XA
(e.g. if (A, X, µA) is a σ-unital, continuous C0(X)-algebra);

(ii) for all x ∈ XA we have

µA(C0(X)) ∩ A 6⊆ Jx;

(iii) (A, X, µA) = (A, Glimm(A), µA), where Glimm(A) is locally compact and A
σ-unital.

Then there is b ∈ Aβ with ‖b(x)‖ = 1 for all x ∈ XA. Hence if K is any
compactification of XA, the fibre algebras Aβ

y of the compactification (Aβ, K, µK
Aβ) of

(A, X, µA) are nonzero for all y ∈ K.
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Proof. Suppose that A satisfies (i), then we may assume with no loss of gen-
erality that ‖u‖ = 1. For each n ∈ N, let Kn be the subset of XA defined by the
norm function of u as in (5.2). Since x 7→ ‖u(x)‖ is continuous on X, for all n ∈ N
the set

On+1 :=
{

x ∈ XA : ‖u(x)‖ > 1
n + 1

}
is open, and by definition we have Kn ⊆ On+1 ⊆ Kn+1. Moreover, since u is

strictly positive, XA =
∞⋃

n=1
Kn. Hence we may apply Proposition 5.2 with F = XA

and cn = 1/n for all n.
If (ii) holds, then by Proposition 3.2(i), we have Aβ = M(A). In particular,

this implies that Prim(Aβ) is compact, and hence its continuous image KAβ is
again compact. Since XA is dense in K, it follows that KAβ = K, i.e. Aβ

y 6= {0} for
all y ∈ K, the conclusion follows. Note that we may take b = 1M(A) ∈ Aβ in this
case.

In case (iii), again let u be a strictly positive element of A with ‖u‖ = 1.
Let {nj}j>1 be the sequence constructed in Lemma 5.3, so that again, Knj ⊆

IntXA(Knj+1) for all j > 1 and XA =
∞⋃

j=1
Knj . Deleting repetitions where neces-

sary, we get a strictly decreasing sequence cn, 0 < cn 6 1, converging to 0 such

that K(cn) ⊆ IntK(cn+1) for all n and XA =
∞⋃

n=1
K(cn). Applying Proposition 5.2

with F = XA yields the required result.

REMARK 5.6. Conditions (i), (ii) and (iii) of Theorem 5.5 are closely related,
though no two of them are equivalent in general.

Indeed, for σ-unital A, (ii) implies (i). To see this, we first observe that if
(A, X, µA) satisfies (ii), then Aβ = M(A) (Proposition 3.2(i)), each Ax is unital
and µA( f )(x) = f (x) · 1Ax for all f ∈ C0(X) and x ∈ XA ([4], Proposition 2.2(ii)).
Identifying A with Γ0(A) and Aβ with Γb(A), we see that µA( f ) ∈ A if and only
if x 7→ ‖µA( f )(x)‖ = | f (x)| vanishes at infinity on XA, which occurs if and only
if f ∈ C0(XA). Since (ii) holds, this shows that for any x ∈ XA we may choose
f ∈ C0(XA) with f (x) 6= 0, hence XA is locally compact.

If A is moreover σ-unital, then XA is σ-compact ([5], Section 2), and so there
is a countable increasing approximate identity { fn} in C0(XA). Then {µA( fn)} is
a countable approximate identity for A, and so

u :=
∞

∑
n=1

2−nµA( fn) = µA

( ∞

∑
n=1

2−n fn

)
is a strictly positive element of A with x 7→ ‖u(x)‖ continuous on XA (being the
image under µA of an element of C0(XA)). This shows that (ii) implies (i) when
A is σ-unital.
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In the special case that XA = Glimm(A), (i) implies (iii), since if u is strictly
positive with x 7→ ‖u(x)‖ continuous on Glimm(A), then for each x ∈ Glimm(A)
the set {y ∈ Glimm(A) : ‖u(y)‖ > ‖u(x)‖/2} is a compact neighbourhood of x
in Glimm(A).

Clearly neither (i) nor (iii) imply (ii); for example, the C0((0, 1))-algebra
C0((0, 1), K(H)) (where H is a separable infinite dimensional Hilbert space) sat-
isfies (i) and (iii) but not (ii).

Example 5.7 gives a C(X)-algebra (A, X, µA) (with X compact and XA dense
in X) which fails to satisfy any of the conditions (i), (ii) or (iii) of Theorem 5.5, yet
for which Aβ

y 6= {0} for all y ∈ X\XA.
We remark also that Example 5.8 (which is a small modification of Exam-

ple 5.7), shows that condition (i) of Theorem 5.5 is strictly weaker than continuity.

EXAMPLE 5.7. Let A = C0(N, K(H)) and identify Prim(A) with N in the
usual way. Let X = [0, 1] and let φA : N → Q ∩ (0, 1) be a bijection. Then
(A, X, µA) defines a C(X)-algebra with base map φA. We shall show that the fibre
algebras Aβ

y of the compactification (Aβ, X, µX
Aβ) of (A, X, µA) are nonzero for all

y ∈ X.
In this case, Glimm(A) = Prim(A) and so XA = Q ∩ (0, 1) is not homeo-

morphic to Glimm(A), so that condition (iii) of Theorem 5.5 does not apply. Since
Z(A) = {0}, we have

µA(C0(X)) ∩ A ⊆ ZM(A) ∩ A = Z(A) = {0} ⊆ Jx

for all x ∈ XA, so that (ii) does not apply either.
If a ∈ A is any nonzero element, then x 7→ ‖a(x)‖ is discontinuous on XA.

Indeed, suppose that ‖a(y)‖ 6= 0 for some y ∈ XA and that x 7→ ‖a(x)‖ were
continuous at y. Then the set {x ∈ XA : ‖a(x)‖ > (1/2)‖a(y)‖} would be open
in XA and contained in the compact subset {x ∈ XA : ‖a(x)‖ > (1/2)‖a(y)‖}.
The latter would then be a compact subset of Q with non-empty interior, which
is a contradiction. In particular, condition (i) cannot apply.

Nonetheless, let y ∈ X\XA, and let qn be a sequence of distinct rationals in
(0, 1) converging to y. Then F := {qn : n ∈ N} is (relatively) closed and discrete
in XA. Since Kn is compact for each n, each Kn ∩ F is finite, and so we may apply
Proposition 5.2 to F to conclude that Aβ

y 6= {0}.

EXAMPLE 5.8. Let (A, X, µA) be as in Example 5.7 and let B be the C∗-
subalgebra A+µA(C0(0, 1)) of M(A). Note that M(B)=M(A) and that (B, X, µB)
is a C(X)-algebra with µB = µA. Let { fn} ∈ C0((0, 1)) be an increasing approx-
imate identity for C0(0, 1) with ‖ fn‖ = 1 for all n. Then µA( fn) is an approxi-
mate identity for B and so f := 2−n fn is a strictly positive element of B. Clearly
y 7→ ‖ f (y)‖ is continuous on X = XB, while as in Example 5.7, no element a of
the subalgebra A of B has y 7→ ‖a(y)‖ continuous on X.
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In fact, the techniques used in Example 5.7 may be used to obtain a much
stronger result, as Theorem 5.9 shows.

THEOREM 5.9. Let (A, X, µA) be a σ-unital C0(X)-algebra, K a compactification
of XA and (Aβ, K, µK

Aβ) the compactification of (A, X, µA) given in Theorem 3.4(ii).

Denoting by {Aβ
y : y ∈ K} the fibres of (Aβ, K, µK

Aβ), then the follwing set is dense in
K\XA:

{y ∈ K\XA : Aβ
y 6= {0}}.

Proof. Let w ∈ K\XA and let W be a compact neighbourhood of w in K.
We shall show that there is a point y ∈ W ∩ (K\XA) such that Aβ

y 6= 0. As
w ∈ clK(XA), W ∩ XA 6= ∅ and has the following properties:

(i) W ∩ XA is closed, and hence σ-compact;
(ii) since w ∈ IntK(W) ∩ clK(XA), it follows that w ∈ clK(W ∩ XA); hence

W ∩ XA is not closed in K and in particular, is non-compact;
(iii) since a σ-compact, completely regular space is pseudocompact if and only

if it is compact ([20], 8.2 and 8A), we conclude from (i) and (ii) that W ∩ XA is not
pseudocompact.

By Corollary 1.21 of [20], W ∩XA contains a countably infinite, discrete sub-
set F = {xn : n > 1} which is C-embedded in W ∩ XA. Suppose x ∈ W ∩ XA lies
in the closure of F in W ∩ XA, and let f : F → R be given by f (xn) = n. Since F is
C-embedded in W ∩ XA, f has a continuous extension to f ∈ C(W ∩ XA). Thus if
x were not in F, every neighbourhood of x in W ∩ XA would contain a subset on
which f were unbounded, contradicting the fact that f is continuous, real-valued
and extends f . Hence x ∈ F and so F is closed in W ∩ XA, and moreover, closed
in XA.

Since F ⊆W ∩ XA and F is non-compact, we have

clK(F) = clW(F) ) F,

and hence clW(F)\F is nonempty and contained in W\XA. Let y ∈ clW(F)\F.
Note that for each n ∈ N, F∩Kn must be finite (since F is closed and discrete

and Kn is compact). In particular, for all n we have F ∩ Kn ⊆ IntF(F ∩ Kn+1). By
Proposition 5.2, Aβ

y 6= {0}.

The proof of Theorem 5.9 shows that Aβ
y 6= {0} whenever y ∈ K\XA lies in

the closure in K of a relatively closed, discrete subset of XA (countability is in fact
ensured by σ-compactness of XA). In general, however, there do exist points of
K\XA that do not lie in the closure of any subset of this form. In the context of
Stone–Čech remainders such points are called far points, and are a particular case
of remote points.

There exist remote points of βR and βQ [38]. In the case of βR, this was orig-
inally shown (assuming the continuum hypothesis) by Fine and Gillman in [19],
and later (without this assumption) by van Douwen [38].
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Example 5.10 exhibits a C0(X)-algebra (A, X, µA) with Aβ
y = {0} for every

remote point y ∈ βXA\XA.

EXAMPLE 5.10. Let A = C0(N, K(H)) and identify Prim(A) with N in the
usual way. Let X = βQ and let φA : N → Q be a bijection. Then (A, X, µA)
defines a C(X)-algebra with base map φA and XA = Q.

We claim that for any b ∈ Aβ and ε > 0, the set

{q ∈ Q : ‖b(x)‖ > ε}
is discrete. Writing a = (an) for an element of A (i.e. a sequence of elements of
K(H)), the set

{n ∈ N : ‖an‖ > ε}
is finite, and hence its image

K(a, ε) := {q ∈ Q : ‖a(q)‖ > ε} ⊂ Q
is again finite.

Now, if b ∈ Γb(A) and q ∈ Q, there is a ∈ A and a neighbourhood U of q in
Q such that ‖b(x)− a(x)‖ < (1/2)ε for all x ∈ U. Moreover, since K(a, ε) is finite,
there is a neighbourhood V ⊆ U of q with ‖a(x)‖ < (1/2)ε for all x ∈ V\{q}.

In particular, for all x ∈ V\{q}, we have

‖b(x)‖ = ‖b(x)− a(x) + a(x)‖ 6 ‖b(x)− a(x)‖+ ‖a(x)‖ < ε

2
+

ε

2
= ε.

Since by Theorem 4.2, Aβ is isomorphic to Γb(A), it follows that the follow-
ing set is discrete for all ε > 0:

{q ∈ Q : ‖b(q)‖ > ε}.
Now suppose that y ∈ βQ\Q is a remote point, and b ∈ Aβ. By Proposi-

tion 2.12(iii), we have
‖b(y)‖ = inf

W
sup

x∈W∩Q
‖b(x)‖,

as W ranges over all neighbourhoods of y in βQ. Since y is remote, for all ε >
0 there is a neighbourhood W of y such that W is disjoint from the countable,
discrete set {q ∈ Q : ‖b(x)‖ > ε}. Hence sup

x∈W∩Q
‖b(x)‖ < ε, and so ‖b(y)‖ = 0

for all b ∈ Aβ.
Note that any set closed subset F ⊆ XA satisfying the hypothesis of Propo-

sition 5.2 (for any choice of decreasing sequence {cn}) must be discrete (F is nec-
essarily countable since XA is).

Indeed, for any such F we have Fn := F∩K(cn) finite. Since Fn ⊆ IntF(Fn+1),
it is clear that each element of Fn has a neighbourhood disjoint from F\Fn+1.

Moreover, if x ∈ Fn\Fn−1, then since
n⋃

m=1
Fm is finite, x has a neighbourhood

disjoint from
( n⋃

m=1
Fm

)
\{x} also.



500 DAVID MCCONNELL

REMARK 5.11. If A and φA are as in Example 5.10, then regarding φA as a
map into R, (A,R, µA) is a C0(R)-algebra, and βR is a compactification of XA.
For each b ∈ Aβ and ε > 0, we have

{x ∈ R : ‖b(x)‖ > ε} = {q ∈ Q : ‖b(q)‖ > ε}

and hence this set is discrete. Since there exist remote points of βR, the C(βR)-
algebra (Aβ, βR, µAβ) has fibres Aβ

y = {0} at these points.

6. MAXIMALITY AND UNIQUENESS OF (Aβ, βXA, µAβ )

For a completely regular space X, βX may be described as the unique com-
pactification of X satisfying the following maximality condition: given any com-
pactification K of X, the inclusion ι : X → K has a unique extension to a contin-
uous surjection ι : βX → K ([20], Theorem 6.12). Equivalently, given any such
K, there is a unital, injective ∗-homomorphism C(K) → C(βX). In this section
we study the problem of generalising the latter property to the C(βXA)-algebra
(Aβ, βXA, µAβ) associated with a C0(X)-algebra (A, X, µA).

Indeed, suppose that (Ψ, ψ) : (A, X, µA) → (B, K, µB) is a compactification
of the C0(X)-algebra (A, X, µA). Theorem 6.1 below shows that the C(K)-algebra
(Aβ, K, µK

Aβ) satisfies a similar maximality condition, namely, that there is an in-
jective morphism (B, K, µB)→ (Aβ, K, µK

Aβ) which is the identity on (A, X, µA).
If in addition (B, K, µB) is a continuous C(K)-algebra (note that a necessary

condition for this to occur is that (A, X, µA) be a continuous C0(X)-algebra), then
we get an injective morphism (B, K, µB) → (Aβ, βXA, µAβ). This can fail without
continuity of (B, K, µB), as we shall see in Example 6.2.

THEOREM 6.1. Let (B, K, µB) be a compactification of (A, X, µA).
(i) There is an injective ∗-homomorphism B→ Aβ extending the identity on A.

(ii) Let (Aβ,K, µK
Aβ) denote the compactification of (A,X, µA) given in Theorem 3.4(ii).

Then B→ Aβ is C(K)-linear and hence gives rise to an injective morphism (B, K, µB)→
(Aβ, K, µK

Aβ).
(iii) The pair of ∗-homomorphisms (B → Aβ, C(K) → C(βXA)) define a morphism

(B, K, µB) → (Aβ, βXA, µAβ). If in addition (B, K, µB) is a continuous C(K)-algebra,
then (B→ Aβ, C(K)→ C(βXA)) is an injective morphism.

Proof. (i) Since A is an essential ideal of B we may regard B as a C∗-subalge-
bra of M(A) containing A. Hence it suffices to prove that B ⊆ Aβ. But then
since (B, K, µB) is a compactification of (A, X, µA), we may identify B with a C∗-
subalgebra of cross-sections in Γb(A) by Proposition 2.12(ii). But then Aβ is iso-
morphic to Γb(A) under the same map by Theorem 4.2(i), so that B ⊆ Aβ as
required.
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(ii) Since (Aβ, K, µK
Aβ) and (B, K, µB) are both compactifications of (A, X, µA),

the embeddings A → Aβ and A → B are both C(K)-linear, i.e. for all f ∈ C(K)
and a ∈ A we have µK

A( f )a = µK
Aβ( f )a and µK

A( f )a = µB( f )a, hence µB( f )a =

µK
Aβ( f )a. As A is an essential ideal of B, it follows that µB( f )b = µK

Aβ( f )b for all
f ∈ C(K) and b ∈ B, so that the embedding of B into Aβ is also C(K)-linear.

Finally,
(B ↪→ Aβ, idC(K)) : (B, K, µB)→ (Aβ, K, µK

Aβ)

is injective by Proposition 2.6.
(iii) Since by part (ii), (B → Aβ, idC(K)) is a morphism it is clear that (B →

Aβ, C(K)→ C(βXA)) is again a morphism.
Suppose now that (B, K, µB) is a continuous C(K)-algebra. For clarity, we

shall denote the given ∗-homomorphisms by Ψ : B → Aβ and ψ : C(K) →
C(βXA). Then the dual of ψ is ψ∗ : βXA → K, the canonical continuous map
extending the identity on XA.

Since (Aβ, βXA, µAβ) and (B, K, µB) are both compactifications of A, the
induced ∗-homomorphisms Ψx : Bx → Aβ

x are in fact ∗-isomorphisms for all
x ∈ XA. Thus it remains to show that the ∗-homomorphisms Ψy : Bψ∗(y) → Aβ

y
are injective for all y ∈ βXA\X.

Indeed, given such an y, let (xα) be a net in XA converging to y in βXA,
so that, regarding XA as a subspace of K, the same net (xα) converges to ψ∗(y).
Suppose for a contradiction that Ψy were not injective. Then there would be some
b ∈ B with ‖b(ψ∗(y))‖ = 1 for which Ψy(b(ψ∗(y))) = (Ψ(b))(y) = 0. Since
(B, K, µB) is a continuous C(K)-algebra, t 7→ ‖b(t)‖ is lower-semicontinuous on
K, so that for any ε > 0 there is an index α0 with ‖b(xα)‖ > 1 − ε whenever
α > α0.

On the other hand, since y 7→ ‖Ψ(b)(y)‖ is upper-semicontinuous on βXA,
there is some index α1 with ‖Ψ(b)(xα)‖ < ε for all α > α1. But then ‖b(x)‖ =
‖Ψ(b)(x)‖ for all x ∈ XA. Choosing α > max{α0, α1} yields a contradiction.

The assumption in Theorem 6.1(ii) that (B, K, µB) is a continuous C(K)-
algebra cannot be dropped in general, as is easily seen from the commutative
case.

EXAMPLE 6.2. Let (A, X, µA) be the C0(N)-algebra defined by C0(N), and
let N̂ = N ∪ {∞} be the one point compactification of N. Let B = Cb(N), and
equip B with the structure of a C(N̂)-algebra with respect to the obvious action of
C(N̂) on Cb(N) by multiplication (equivalently, define the base map Prim(Cb(N))
∼= βN → N̂ to be the canonical surjection). Then (B, N̂, µB) is a discontinuous
C(N̂)-algebra, and is clearly a compactification of (A, X, µA).

In this case (Aβ, βX, µAβ) is canonically isomorphic to C(βN). The fibre
algebras of B are Bn ∼= C for n ∈ N and B∞ ∼= (`∞/c0), while the fibre algebras of
(Aβ, βX, µAβ) are isomorphic to C for all y ∈ βN. Hence B∞ does not embed into
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Aβ
y for any y ∈ βN\N. In this case the homomorphisms Ψy : B∞ → Aβ

y , y ∈ βN\N,
coincide with the point-evaluations.

If C = C(N̂) is regarded as a bundle compactification of (A, X, µA), then
C is a continuous C(N̂)-algebra and is identified with the subalgebra of C(βN)
consisting of those functions that are constant on βN\N. In this case the fibre
maps send C∞ ∼= C→ Aβ

y ∼= C canonically for y ∈ βN\N.

LEMMA 6.3. Let (A, X, µA) be a σ-unital, continuous C0(X)-algebra and let f ∈
Cb(XA) be real-valued and non-negative. Then there is some c ∈ Aβ with ‖c(x)‖ =
f (x) for all x ∈ XA.

Proof. Let b be the element of Aβ with ‖b(x)‖ = 1 for all x ∈ XA obtained
from Theorem 5.9. Then f extends to f ∈ C(βXA). Setting c = µAβ( f )b, we have
c ∈ Aβ and ‖c(x)‖ = ‖ f (x)b(x)‖ = | f (x)|‖b(x)‖ = f (x), for all x ∈ XA.

Theorem 6.4 considers the question of whether (Aβ, βXA, µAβ) is unique
amongst compactifications (B, K, µB) of A having the property that Γ(B) ∼= Γb(A).
Note that by Theorem 4.2, we cannot expect this in general (as XA often admits
more than one compactification).

If in addition (A, X, µA) is continuous, then it turns out that (Aβ, βXA, µAβ)
is the unique continuous compactification of (A, X, µA) with the required exten-
sion property.

THEOREM 6.4. Let (A, X, µA) be a C0(X)-algebra and (B, K, µB) a compactifica-
tion of (A, X, µA). Suppose that (B, K, µB) has the property that for every a ∈ Γb(A)
there is b ∈ Γ(B) such that b|XA

= a. Then
(i) the injective morphism (B, K, µB) → (Aβ, K, µK

Aβ) of Theorem 6.1 is an isomor-
phism.
If in addition, (A, X, µA) is continuous and σ-unital, then

(ii) (B, K, µB) is continuous if and only if K is canonically homeomorphic to βXA.
Moreover, when this occurs, the injective morphism (B, K, µB)→ (Aβ, βXA, µAβ) is an
isomorphism.

Proof. (i) By Proposition 2.6, it suffices to show that the injective ∗-homomor-
phism B→ Aβ is surjective. If any a ∈ Γb(A) extends to b ∈ Γ(B), it then follows
that the injective ∗-homomorphism B → Γb(A) sending b 7→ b|XA

of Proposi-
tion 2.12(ii) is a ∗-isomorphism. In the commutative diagram

B //

��

Aβ

��
Γ(B)

b 7→b|XA

// Γb(A),
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the vertical arrows are isomorphisms by Theorems 1.6 and 4.2. Since b 7→ b|X is
a ∗-isomorphism, it must be the case that B→ Aβ is also an isomorphism.

(ii) Suppose first that (B, K, µB) is continuous.
If f ∈ Cb(XA)+ then by Lemma 6.3, there is c ∈ Γb(A) with f (x) = ‖c(x)‖

on XA. By assumption, the extension property of (B, K, µB) would then imply
that there is an element b ∈ B with b(x) = c(x) for all x ∈ XA. Then since
(B, K, µB) is a continuous C(K)-algebra, y 7→ ‖b(y)‖ is a continuous function on K
extending f . Setting f (y) = ‖b(y)‖ for y ∈ K, it follows that every f ∈ Cb(XA)+
has an extension to a continuous function f in C(K).

For a general real-valued function g ∈ Cb(XA), write g = g+ − g− where
g+ and g− are the positive and negative parts of g respectively. Then g = g+ −
g− gives the required extension. Thus XA is C∗-embedded in K and hence K is
canonically homeomorphic to βXA.

Conversely, suppose that K is canonically homeomorphic to βXA. By Theo-
rem 3.4(iii), (B, K, µB) is continuous.

The final assertion then follows from Proposition 2.6.

Note that one choice of compactification of XA is given by taking K =
clβX(XA).

COROLLARY 6.5. Let (A, X, µA) be a σ-unital, continuous C0(X)-algebra. If
K = clβX(XA) then (Aβ, K, µK

Aβ) is a continuous C(K)-algebra if and only if XA is
C∗-embedded in X.

Proof. If XA is C∗-embedded in X then K is canonically homeomorphic to
βXA. It then follows that (Aβ, K, µK

Aβ) is canonically isomorphic to (Aβ, βXA, µAβ)

and hence is continuous by Theorem 3.4(iii). Conversely, suppose that (Aβ,K, µK
Aβ)

is a continuous C(K)-algebra. Then by Theorem 6.4(ii), K is canonically homeo-
morphic to βXA, and so XA is C∗-embedded in βX and moreover, C∗-embedded
in X.

Since for any compact space K it is clear that βK = K, the operation of con-
structing βX from X is a “closure” operation in the sense that β(βX) = βX. It is
natural to ask whether or not constructing (Aβ, K, µK

Aβ) from (A, X, µA) also has
this property. Indeed, applying Theorem 3.4 to (Aβ, K, µK

Aβ) gives rise to a com-
pactification (Aββ, K, µK

Aββ) of (Aβ, K, µK
Aβ), where A is C(K)-linearly embedded

into Aββ as an essential ideal, hence (Aββ, K, µK
Aββ) is also a compactification of

(A, X, µA).
Certainly we have Aβ = A whenever XA is compact by Proposition 3.2.

However, this alone is not sufficient to show that Aββ = Aβ, since as we have
seen in Section 5, the set of nonzero fibres of (Aβ, K, µK

Aβ) need not be compact.
Nonetheless, the maximality of (Aβ, K, µK

Aβ) obtained in Theorem 6.4 ensures that



504 DAVID MCCONNELL

we do indeed have Aββ = Aβ, without any additional assumptions on (A, X, µA),
as Corollary 6.6 shows.

COROLLARY 6.6. Let (A, X, µA) be a C0(X)-algebra and consider the compacti-
fication (Aβ, K, µK

Aβ) of (A, X, µA), where K is any compactification of XA. Then there
is a natural isomorphism (Aββ, K, µK

Aββ)→ (Aβ, K, µK
Aβ).

Proof. Since Aβ is a compactification of A and Aββ is a compactification of
Aβ, the natural embedding of A into Aββ is C(K)-linear, A is an essential ideal
in Aββ, and for x ∈ XA the fibre algebras satisfy Aββ

x = Aβ
x = Ax. Hence the

C(K)-linear embedding of A into Aββ is a compactification of (A,X, µA), and so
by Theorem 6.1(ii) there is an injective morphism (Aββ, K, µK

Aββ) → (Aβ, K, µK
Aβ)

which extends the identity on (A, K, µK
A).

Applying Theorem 4.2(iii) twice, we see that every a ∈ Γb(A) has a unique
extension to b ∈ Γ(Aβ) which in turn extends uniquely to c ∈ Γ(Aββ). Hence
by Theorem 6.4(i), the injective morphism (Aββ, K, µK

Aββ) → (Aβ, K, µK
Aβ) is an

isomorphism.

REMARK 6.7. Note that Proposition 3.2 can not be used here to conclude
that (βXA)Aβ is a compactification of XA, since Aβ will not in general be σ-
unital. Indeed, let (A, X, µA) be the C(X)-algebra of Example 5.10. Then since
XA ⊆ XAβ ( X and XA is dense in X, it follows that XAβ cannot be compact.
Nonetheless, Corollary 6.6 shows that Aββ = Aβ. In particular, the equivalence
of Theorem 3.3 of [7] may fail when the C0(X)-algebra under consideration is not
σ-unital.
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