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ABSTRACT. An algebraic isopair is a commuting pair of pure isometries that
is annihilated by a polynomial. The notion of the rank of a pure algebraic
isopair with finite bimultiplicity is introduced as an s-tuple « = (a1, ..., &s) of
natural numbers. A pure algebraic isopair of finite bimultiplicity with rank «,
acting on a Hilbert space, is nearly max{ay, ..., as }-cyclic and there is a finite
codimensional invariant subspace such that the restriction to that subspace is
max{ay, ..., as }-cyclic.
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1. INTRODUCTION

Given a polynomial p € C[z,w| (or in C[z]) let Z(p) denote its zero set.
We say p is square free if > does not divide p for every non-constant polynomial
q(z,w) € Clz,w]. We say q € C[z,w] is the square free version of p if q is the
polynomial with smallest degree such that g divides p and Z(p) = Z(g). The
square free version is unique up to multiplication by a nonzero constant.

Let D, T and E denote the open unit disk, the boundary of the unit disk
and complement of the closed unit disk in C, respectively. In [2] the notion of an
inner toral polynomial is introduced. (See also [5], [6], [9], [11].) A polynomial
g € Clz, w] is inner toral if

Z(q) c D*UT?UE2

In other words, if (z, w) € Z(g) then either |z|, |w| <1 or |z| =1=|w| or |z|, |w| > 1.
A distinguished variety in C? is the zero set of an inner toral polynomial.

Let V be an isometry defined on a Hilbert space H. By the Wold decom-
position, there exist two reducing subspaces for V, say K and L, such that H =
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K@ Land S = Vg is a shift operator and U = V| is a unitary operator. We
say V is pure, if there is no unitary part. An isometry V is pure if and only if

ﬂ Vi(H) = {0}. A subspace W of H is called a wandering subspace for V if
j=1

Vr(W) L V"(W) forn # mand H = @ V"(W). If V is a pure isometry and

W = Ho V(H) = ker(V*), then ker(V*) 1s a wandering subspace for V. More-
over, if V is a pure isometry then V = M. on the Hilbert-Hardy space H3,, of
Wh-valued functions for a Hilbert space W with dimension dim (ker(V*)). The
multiplicity of a pure isometry V is defined as mult(V) = dim(ker(V*)).

A pure isopair is a pair of commuting pure isometries. A pure isopair V =
(S, T) is a pure algebraic isopair if there is a nonzero polynomial g € C|z, w] such
that (S, T) = 0 and is also referred to as pure g-isopair. The study of pure alge-
braic isopairs was initiated in [2] and also discussed in [10]. Among the many
results in [2] it is shown (see Theorem 1.20) if V = (S, T) is a pure algebraic
isopair, then there is a square free inner toral polynomial p such that p(S,T) =0
that is minimal in the sense if (S, T) = 0, then p divides q. We call this polyno-
mial p the minimal polynomial of V. The minimal polynomial of V is unique up
to multiplication by a nonzero constant. Moreover, in [2] the notion of a nearly
cyclic pure isopair is introduced. Here we fix a square free inner toral polynomial
p and consider nearly multi-cyclic pure isopairs with the minimal polynomial p.

An isopair V = (S, T) acting on a Hilbert space H is called at most nearly
k-cyclic if there exist distinct fi, ..., fy € H such that the closure of

(1.1) {Zq] (S, T)f;:q; € Clz,w] forj =1,2,. k}

is of finite codimension in H. It is called at least nearly k-cyclic if the closure of

{Zq]ST fitq; € Clz,w]forj=1,2,.. l}

is not of finite codimension in H for any I < k and for any set of fi,..., f; € H.
We say V = (S, T) is nearly k-cyclic if it is both at most nearly k-cyclic and at least
nearly k-cyclic. Moreover, V = (S, T) is called k-cyclic if it is nearly k-cyclic and
the span given in (L.I) is dense in H.

Given a pair of isometries V = (S, T), define the bimultiplicity of V by

bimult(V) = (mult(S), mult(T)).

It is a well known fact that we can view pure isopairs as pairs of multiplica-
tion operators. In particular, if V = (S, T) is a pure p-isopair of finite multiplic-
ity (M, N), then there exists an M x M matrix-valued rational inner function ¢
with its poles in E, such that V is unitarily equivalent to (M., M) on H(zC v and
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p(M;, M) = 0 (see [2]). Moreover
(1.2) p(A,®(A)) =0 forAeD.

DEFINITION 1.1. We say a point (A, u) € C?is a regular point for p if (A, u) €

Z(p) ,but
Vo) = (2,2, £0.
’ 9z ow) ')

Let p be a square free inner toral polynomial. Write p = p1p2 --- ps as
a product of (distinct) irreducible factors. Then each p; is inner toral. In other
words, each Z(p;) is a distinguished variety. The zero set of p is the union of the
zero sets of p;. Let

V(pj) = Z(p;) ND*, V(p) = Z(p) ND* = U%p]

Let N denote the nonnegative integers and N denote the positive integers.

PROPOSITION 1.2. Let V = (S, T) be a pure p-isopair of finite bimultiplicity with
minimal polynomial p and suppose p = p1 p2 - - - ps, a product of distinct irreducible
factors. For each j and (A, i) € U(p;) that is a regular point for p, the dimension of the
intersection of ker(S — A)* and ker(T — p)* is a nonzero constant.

DEFINITION 1.3. Let V = (S, T) be a pure p-isopair of finite bimultiplicity
with minimal polynomial p and suppose p = p1 p2 - - - ps, a product of distinct
irreducible factors. The rank of V is a s-tuple, & = (a1, ...,as) € N°, denoted by
rank(V'), where

aj = dim(ker(S — A)* Nker(T — p)*),
and (A, 1) € U(p;) and a regular point for p.

THEOREM 1.4. Suppose V. = (S, T) is a pure p-isopair of finite bimultiplicity
with minimal polynomial p and write p = py pa - - - ps as a product of distinct irre-
ducible factors. If V has rank (a1, az, ..., as), then V is nearly max{ay, . .., as }-cyclic.

REMARK 1.5. Compare Theorem [I.4with the results in [2].

We prove Theorem [1.4]in section [f} An important ingredient in the proof
of Theorem [1.4]is a representation for a pure p-isopair as a pair of multiplica-
tion operators on a reproducing kernel Hilbert space over U(p) in the case p is
irreducible. Representations of this type already appear in the literature, (Theo-
rem D.14 of [7] for instance). Here we provide additional information. See Theo-

rems 4. 1land 4.9

REMARK 1.6. The concept of nearly multi-cyclic isopairs was introduced in
[2]. A discussion on multicyclicity of a bundle shift given in terms of its multiplic-
ities can be found in [1]]. In [13], the article presents a way to realize a Riemann
surface with a distinguished variety.
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2. PRELIMINARIES

PROPOSITION 2.1. Suppose p,q € Clz, w].
(i) Z(p) N Z(q) is a finite set if and only if p and q are relatively prime.
(ii) If p and q are relatively prime, then the ideal I C C[z, w| generated by p and q has
finite codimension in C|z, w); i.e. there is a finite dimensional subspace R of C|z, w] such
that for each € C[z, w] there exist polynomials s, t € C|z, w] and r € R such that

Yp=sp+tq+r.

Proof. Bezout’s theorem says that if two algebraic curves, say described by
p = 0and q = 0, do not have any common factors, then they have only finitely
many points in common. In particular if p and g do not have any common factors,
then Z(p) and Z(g) have only finitely many points in common. In particular, for
the ideal I generated by p and g, the affine variety V(I) = Z(p) N Z(q) is finite.
The Finiteness theorem of [7], page 13, says that if V(I) is finite then the quotient
ring C|[z, w]/I has a finite dimension. Hence the ideal I has finite codimension in
Clz,w]. n

For p € Clz,w] and A € D, let p)(w) = p(A, w).

LEMMA 2.2. Suppose p is square free and inner toral and write p = p1 p2 -+ - ps
as a product of irreducible factors. Let q be a nonzero polynomial.
(i) If q vanishes on a countably infinite subset of V(p;), then p; divides q.

(i) If q vanishes on a cofinite subset of U(p), then p divides q.

(i) If Z(q) N Z(p) N'D? is finite, then q and p are relatively prime.

(iv) The polynomial % has only finitely many zeros in U (p).

W) If q% is zero on a cofinite subset of V(p), then p divides q.

(vi) If Ais the set of all A€D for which p, (w) has distinct zeros, then ACD is cofinite.

Proof. The proof of item (i) follows from Proposition [2.1]item (i) and by the
fact that p; is irreducible. By item (i), each p; divides 4. Since the p;’s are distinct,
their product divides g, proving item (ii). If g and p have a common factor, then
because p is inner toral, Z(q) and Z(p) have infinitely many common points in
D?, proving (iii).

Let g = gTZ and suppose ¢ has infinitely many zeros in U(p). In this case
there is a j such that g has infinitely many zeros in (p;). Hence by (i), g vanishes

on U(p;). Therefore, either % has infinitely many zeros in U(p;) or there is an
¢ such that p, has infinitely many zeros in U(p;) and thus, by part (i), p; divides

WPJ or p; divides py, a contradiction. Item (v) follows from item (ii). To prove

item (vi), if A is not cofinite, then g—f] has infinitely many zeros in Z(p). Since p is

inner toral, 3—5 has infinitely many zeros in U(p), a contradiction to item (iv) and
hence A is cofinite. 1



ALGEBRAIC PAIRS OF PURE COMMUTING ISOMETRIES WITH FINITE MULTIPLICITY 511

PROPOSITION 2.3. Suppose p € Clz,w] is a square free polynomial and write
p = p1p2 - ps as a product of irreducible factors p; € Clz,w]. If q € C[z,w] and
Z(p) € Z(q), then there exist v = (71,...,7s) € N} and anr € C[z, w] such that p;
and r are relatively prime and

g=pi'py - pr.
The proof is an application of Bezout’s theorem.

REMARK 2.4. If p and g are inner toral polynomials, then we may replace
the condition Z(p) C Z(q) with U(p) C Z(g).

3. RESULTS FOR GENERAL p

In this section p = p1 p2 - - - ps is a general square free inner toral polyno-
mial with (distinct) irreducible factors p;. Let (1, m;) be the bidegree of p;(z, w).

In [2] it is proven that any nearly cyclic pure p-isopair is unitarily equivalent
to a cyclic pure p-isopair restricted to a finite codimensional invariant subspace
(see Proposition 3.6 in [2]). Next proposition is a more generalized version of this
result.

PROPOSITION 3.1. Suppose V = (S, T) is a pure p-isopair of finite bimultiplicity
(M, N) acting on the Hilbert space K. If H is a finite codimension V-invariant subspace
of Kand W is the restriction of V to H, then there exists a finite codimension subspace L
of H such that V is unitarily equivalent to the restriction of W to L.

REMARK 3.2. In case the codimension of H is one, the codimension of L (in
H) can be chosen as N — 1 (or as M — 1). In general, the proof yields a relation
between the codimensions of H in K and L in H (or in K).

COROLLARY 3.3. Suppose V.= (S, T) is a pure p-isopair of finite bimultiplicity
(M, N) acting on the Hilbert space K. If there exists a finite codimension V-invariant
subspace H of K such that the restriction of V to H is B-cyclic, then there exists a B-cyclic
pure isopair W acting on a Hilbert space L and on a finite codimension W-invariant
subspace F of L such that W | is unitarily equivalent to V.

Proof of Proposition Following the argument in Proposition 3.6 of [2], let
F = K © H and write, with respect to the decomposition K = H ® F,

(3.1) V=(5T) = (W - ({?' D)lu gg) .

In particular A (and likewise B) is a contraction on a finite dimensional Hilbert
space. Because V is pure and A is a contraction, A has spectrum in the open disc
D. Choose a (finite) Blaschke u such that u(A) = 0. Note that #(S) is an isometry
on K and moreover the codimension of the range of #(S) (equal to the dimension
of the kernel of u(S)*) in K is (at most) dM, where d is the degree (number of
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zeros) of u. Further, since

)= ("5 ua) =)

the range L = u(S)K of u(S) is a subspace of H of finite codimension. Since
u(S)V = Wu(S) it follows that L is invariant for W and V is unitarily equivalent
to W restricted to L.

To prove the remark, note that if A is a scalar (equivalently H has codimen-
sion one in K), then u can be chosen to be a single Blaschke factor. In which case
the codimension of L is N in K and hence N — 1 in H. In general, if 4 is the degree
of the Blaschke u, then the codimension of L in K is dN. By reversing the roles of
S and T one can replace N with M, the multiplicity of the shift T. 1

PROPOSITION 3.4. Let (M, M) be a pure isopair of finite bimultiplicity (M, N)
with minimal polynomial p, where ®(z) is an M x M matrix-valued rational inner
function. There exists an & = (ay, ..., as) € N such that:

(i) for A € D, the characteristic polynomial f)(w) of P(A) satisfies

(32 Fr(w) = det(w — ®(A)) = c(M)py)y (w) - - pgy (w),

for a constant (in w) c(A);
(ii) for each A such that p, has m distinct zeros, @ (A) is diagonalizable and similar to

S
b D wly
J=1ueZ(pjn)
(iii) if (A, u) € Z(p;) and g—fj|(,\,ﬂ) # 0, then
dimker(®(A) — p) = a;.
Proof. First note that, by equation (I.2), forall A € D
(33) pA(@(A)) = p(A,&(A)) = 0.

In particular, the spectrum, o(®(A)), is a subset of Z(p, ).

Note that det(wl,, — ®(z)) is a rational function whose denominator d(z) (a
polynomial in z alone) does not vanish in D. Let q(z, w) = d(z) det(wl, — ®(z)),
the numerator of det(wl,, — ®(z)). For fixed z € D, let

M .
g4z(w) = d(z) det(wl,, — @(z)) = ) _ gi(z)w.
=0
M ,
By Cayley-Hamilton theorem, q.(®(z)) = ¥ g;(z)®(z)) = 0 and therefore
=0

q(z,®(z)) = 0forall z € D. Now fory € CMand A € D,
q(Mz, Mo(2)) 152 = g(A, P(A)) s = 0.
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Therefore, (Mz, Mg) = 0. Since p is the minimal polynomial for (M, Mg), U(p)
is a subset of Z(q). Hence there existan &« = (a1,...,as) € N% and a polynomial
r such that p; does not divide r for each j and

(34) d(z) det(w — ®(z)) = q(z,w) = pi(zw) - p(z,w) r(z, w).

For (A, u) € D x D, u is in the spectrum of ®(A) if and only if (A, u) = 0. In
particular, g(z, w) is a polynomial whose zero set in D x C is the set {(z,w) : z €
D, w € o(P(z))} C V(p). Observe Z(r)N[D x C] C Z(g)N[D x C] C V(p).
On the other hand, r can have only finitely many zeros in U(p) as otherwise r
has infinitely many zeros on some U(p;) and, by Lernrna item (i) p; divides r.
Hence r(z, w) has only finitely many zeros in H = I x C. We conclude there are
only finitely many z € D such that r,(w) = r(z, w) has a zero and consequently
r depends on z only so that 7(z,w) = r(z). Thus, for A € D, the characteristic
polynomial f) (w) of ®(A) satisfies
(3.5) fr(w) = det(w — (1)) = c(A)pih (w) - pgy (w),
for a constant (in w) c¢(A).
S
Let A be the set of all A € D for which p, has ) m; distinct zeros. By
j=1

Lemma[2.2]item (vi), A C D is cofinite. For A € A, the polynomial p, has distinct
zeros and by (3.3), pA(®(A)) = 0. Hence, ®(A) is diagonalizable and, for given
#j € Z(pjx), the dimension of the eigenspace of ®(A) at y; is a;. Thus ®(A) is
similar to

S
e D Hila-

=1 pi€Z(pja)

Let (A, ) € Z(p;) be such that 3—5|( au) 7 0. The minimal polynomial for
®(A) has a zero of multiplicity 1 at p, since it divides p). Hence ®(\) is similar
to july; ® | where the spectrum of | does not contain y. Therefore, the kernel of
@(A) — p has dimension aj. 1§

PROPOSITION 3.5. Let V. = (S, T) be a pure p-isopair of finite bimultiplicity
and suppose p = p1 p2 - - - ps a product of distinct irreducible factors. For each j and

(A, 1) € B(p;) such that % (Au) 7 0, the dimension of the intersection of ker(S — A)*
and ker(T — p)* is a nonzero constant.

Proof. By the standard model theory for pure isopairs with finite bimulti-
plicity, there exists an M x M matrix-valued rational inner function @ such that
V = (S, T) is unitarily equivalent to (M, Mg ) on HéM and p(Mz, Mg) = 0. Let
(A, 1) € B(p;) be aregular point for p. Observe that for any y € ker(®(A) —p)*,
both (S —A)*syy =0and (T — u)*s,y = 0. Hence sy € ker(S — A)* Nker(T —
1)*. Now suppose f € ker(S —A)* Nker(T — u)*. Since (S —A)*f = 0, there is
a vector v € CN such that f = s37. Thus, 0 = (T — u)*spyy = sy (@(A)* — p*)y.
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Hence
syker(P(A) —u)* =ker(S—A)" Nker(T —pu)*.
Since dimker(®(A) — u)* = dimker(®(A) — p), we have
(3.6) dim[ker(S — A)* Nker(T — u)*] = dimker(P(A) — p),
and hence by Propositionitem (iii), dim[ker(S — A)* Nker(T — p)*] = aj. &

COROLLARY 3.6. Let V. = (S,T) be a pure p-isopair of finite bimultiplicity
and suppose p = p1 p2 - - - ps a product of distinct irreducible factors. For each j and
(A, u) € B(p;) such that ?Tg(/\,y) # 0, dimension of the intersection of ker(S — A)*
and ker(T — p)* is a nonzero constant.

The proof is immediate from the symmetry of S and T and Proposition 3.5

Proof of Proposition[1.2] Let (A, u) € B(p;). If S—Z () 7 0, then by Proposi-
tion there exists a non zero constant o € N7 such that

dim(ker(S — A)* Nker(T — u)*) = a;.

If 3—’;|( Au) 7 0, then by Corollary there exists a non zero constant g; € N*
such that

dim(ker(S — A)* Nker(T — u)*) = B;.
Note that, since p is square free, so is p; and hence there are infinitely many points

in U(p;) such that both partial derivatives %—’Z’ l( and g—f} l( do not vanish.

20,100) 20,o)
If (A, u) is a regular point for p such that g—’;|()\/y) # 0 and 3—5“2\#) # 0, then
aj = Bj. Therefore, if (A, u) € V(p;) is a regular point for p, then the dimension
of the intersection of ker(S — A)* and ker(T — p)* is a nonzero constant.

COROLLARY 3.7. If (S, T) is a pure p-isopair of finite bimultiplicity (M, N) with
rank o = (ay,...,as) € N, then

S S
(3.7) M=) mja; and N=1) nja;.
=1 j=1
Proof. First, view (S, T) as (Mz, Mg ) where @(z) isan M x M matrix-valued
rational inner function. By Proposition[3.4]item (i), for A € D,
det(w — (1)) = c(A)pi)y (w) - - pgy (w)

for a constant (in w) c(A). Comparing the degree in w on the left and the right,
for all but finitely many A, we have

5
M = Z Dé]m]
j=1

To see the relation on N, view p as p(w, z) a polynomial of bidegree (m, n).
Note that each factor p; = p;(w,z) has bidegree (m;,n;). Moreover p(T,S) = 0
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and (T, S) has bimultiplicity (N, M). Model (T, S) as (Mw, My, ), where ¥ (w)
isan N x N matrix valued ration inner function. By Propositionﬁ item (i), there
exists (B1, B2, ..., Bs) € N7 such that for u € D,

(3.8) det(z — ¥ (n)) = ¢ (Wi, (2) -+~ pli(2)

for a constant (in z) ¢/ (). By Propositionitem (iii), for (u, A) € Z(p;) thatis a
regular point for p,

dimker(¥(u) — A) = B;.
Now by equation (3.6),

dim[ker(S — A)* Nker(T — u)*] = B;.

Since (S, T) has rank a, we get ; = a; for j = 1,...,s and by comparing the
degree in z on the left and the right of (3.8), for all but finitely many y, we have

s
N = 210(]11] |
]:

PROPOSITION 3.8. If V = (S, T) is a finite bimultiplicity k-cyclic pure p-isopair

acting on the Hilbert space K, then for each (A, i) € U(p),
dim(ker(S — A)* Nker(T — u)*) < k.

In particular, if p is the minimal polynomial for V and if V has rank «, then k >
max{ay,..., &}

Proof. Let {fi,..., fx} be a cyclic set for (S, T). For any q(z,w) € Clz,w],
feker(S—A)"Nker(T—pu)*and 1< j <k,

@S, T)fj, f) = {f;:a(S, T f) = (fia(Aw)" f) = a(A, w)(f, -

If dim(ker(S — A)* Nker(T — pu)*) > k, then there exists a non zero vector f €
ker(S — A)* Nker(T — p)* perpendicular to f; for all j. Thus (q(S,T)f;, f) = 0

k
for all j and for any g, and hence (g, f) = 0 for any g € { '21 q;(S,T)f; : q; €
j=

Clz, w] }, a contradiction. Therefore, dim(ker(S —A)* Nker(T — u)*) < k. The
last statement of the proposition follows from the definition of the rank. &

PROPOSITION 3.9. Suppose V. = (S, T) is a finite bimultiplicity pure p-isopair
with minimal polynomial p and with rank &« = (ay,...,as) € N acting on a Hilbert
space K. If H is a finite codimension V-invariant subspace of K, then W = V| has rank
« too.

Proof. Write W = V| = (So, Tp). Let F = K& H. Thus F has finite dimen-
sion and K = H @ F. With respect to this decomposition, write

. (S5 0 . (T; 0
() e 2)
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Observe that (A) x o(B) is a finite set since A and B act on a finite dimensional
space. Fix 1 < j < s. Let I be the set of all (A, u) € U(p;) such that the di-
mension of ker(S — A)* Nker(T — pu)* is aj and (A, u) & 0(A) x ¢(B). Hence by
Proposition[I.2] I' contains the cofinite set of all regular points. Since also the set
o(A) x o(B) is finite, I' is a cofinite subset of U(p;). Fix (A, ) € I' and let

L=%ker(S—A)"Nker(T—u)* and Ly=ker(Sp—A)" Nker(Ty—pu)*.

Let P C H be the projection of L onto H. Given f € L, write f = f1 @ f,, where
fi € Hand f; € F. Since f € L, the kernel of (Sy — A)* contains f;. Likewise
the kernel of (Tp — A)* contains f;. Therefore, P C Lo. If dim(Lo) < w;, then,
since dim(L) = w;, there exists a non zero vector of the form 0@ v in L and
hence ker(A — A)* Nker(B — p)* is non-empty. But, ker(A — A)* Nker(B — u)* is
empty by the choice of (A, ). Thus dim(Lg) = «; for almost all (A, 1) in U(p;).
Therefore W also has rank a. 1

COROLLARY 3.10. Suppose V. = (S, T) is a finite bimultiplicity pure p-isopair
with minimal polynomial p and with rank « = (ay,...,as) € N°_ acting on a Hilbert
space K. If H is a finite codimension V-invariant subspace of K, then W = V| is at
least B = max{ay, ..., as}-cyclic. Hence V is at least nearly B-cyclic.

Proof. By Proposition 3.9 W has rank «. By Proposition[3.8, W is at least -
cyclic. Thus, each restriction of V to a finite codimension invariant subspace is at
least B-cyclic and hence V is at least nearly S-cyclic. 1

4. THE CASE p IS IRREDUCIBLE

In this section p is an irreducible square free inner toral polynomial of bide-
gree (n,m).

A rank a-admissible kernel IC over U(p) consists of an « x ma matrix polyno-
mial Q and an & X na matrix polynomial P such that

LIV _ (), @) = DEDEED, a0, (@) € w(p)
where Q and P have full rank « at some point in U(p). In particular, at some
point x € U(p) the matrix K(x, x) has full rank « [8]. An a x a matrix-valued
kernel on a set O has full rank at x € Q, if K(x,x) has full rank a. We refer to
(K, P, Q) as an a-admissible triple.

Let H2(K) denote the Hilbert space associated to the rank a admissible
kernel K. For a point y € U(p), denote by K, the a x a matrix function on
U(p) defined by Ky(x) = K(x,y). Elements of H?(K) are C* vector-valued
functions on U(p) and the linear span of {Kyy : y € U(p), v € C*} is dense
in H?(K). Note that the operators X and Y determined densely on H?(K) by
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XKy = A Ky and YK\ 7y = p*K(a,)7 are contractions. By Theo-
rem 4.1] item (i) below, X* is a bounded operator on H?(K). Further for f €
H2(KC), (X*f, Kauy) = A(f(A, 1), 7). Hence X* is the operator of multiplication
by z on H?(K). Likewise, Y* is a bounded operator on H2(K) and it is the multi-
plication by w on H?(K).

THEOREM 4.1. If K is a rank a-admissible kernel over U (p), then
(i) X is bounded on the linear span of {ICyy : y € B(p), v € C*};

(ii) for each 1 < j < ma and each positive integer n, the vector z" Qe; (Qe; is the j-th
column of Q) lies in H(K);

(ili) the span of {s)Q(A, p)*y : (A, u) € V(p), v € C*} is dense in Hzyua;

(iv) the set B ={z"Qe; : n €N, 1< j<ma} is an orthonormal basis for H*(K); and

(v) the operators S and T densely defined on by Sf = zf and Tf = wf extend to
a pair of pure isometries on H2(K).

Proof. For a finite set of points (A, 1), ..., (An, pn) €B(p), and 71, ..., vn €
C*%, observe that

n

n J—
<(I_X*X)];K(Aj,yj)7]/}§1K(Ak,yk)7k> = 1 (= AADK gy A 1) 7o i)

1

(QAks 1) Q" (Aj i) Yjr Vi)

s

= T

—_

:

Therefore, X is bounded on the linear span of {Ky : y € U(p), v € C*}.

To prove item (ii), note that by Theorem 4.15 of [12], if f is a C* valued
function defined on U(p) and if K((z,w), ({,n)) — f(z,w)f(,n)* is a (positive
semidefinite) kernel function then f € H?(K). Since

’C((Z,ZU),(C,W))—(Z?)" (z,w)Q" (¢, 1)

2 20" )Q(z,w)Q" (L, 1) + (2" K ((z,w), (§, 1))

1=

Q" (Ajo 1) 7js Y Q° (Mo i) 5 ) >0
k=1

1

~.
Il

is positive semidefinite, it follows that 2" Qe; € H*(K).

By a result in Lemma 4.1 of [8]], there exists a cofinite subset A C D such that
for each A € A there exist distinct points p1, ..., um € D such that (A, ;) € B(p)
and the ma X ma matrix,

R(A) == (QA, m)* -+ QA um)*)
has full rank. Define a map U from HZ(IC) to H(Z:m by
UKy (z,w)y =50 (2)Q(A, p) ™y
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Observe that for (Aq, #1), (A2, pi2) € D? and v, 6 € C¥,
(UK (i) (2,0) 7, UK () (2,0)8) = (52, (2)Q(A2, 42) Q" (A1, 1) 7,50, (2)0)
= 8" Q(A2, m2) Q" (A1, m1) (s, (2),84,(2))
_ 0", ) Q" (M )y
1— A,
= 0"K((A2, p2), (A1, 1))y
= (Krm) @ 0)7, Kag ) (2, 0)9).

Therefore, U is an isometry and hence a unitary onto its range. Given A € D, the
span of

{UIC()L,W)’)/ Y € Z(p/\), NES (CIX}
is equal to s, times the span of
{Q()\,yj)*ek 1<j<m1<k<a} CC™

If A € A, then R(A) has full rank. Thus for such A, the span of {Q(A, u)*y :
usuch that (A, u) € I',y € C*} is all of C"™*. Since A C D is cofinite, {s,C™* :
A € A} is dense in HZ,,. Since,

{sAC™ : A € A} Cspan{syQ(A, )"y : (A, u) € B(p), v € C},

the span of {s)Q(A, u)*y : (A, 1) € V(p), v € C*} is also dense in H,,, proving
item (iii). Moreover, it proves that U is onto and hence unitary.

Let gi denote the k-th column of Q. Thus g5 = Qey. Note that, forany a € N
and 1 <j < ma,

<U*ZHE]'<€,1’]),€](> = <U*ZH€]‘, K(C/W)ek> = <Za€]', UIC@’W)EIJ
= ) (2", (sgai (Gome)en) = (a;(8,m)E" ex) = (")) (&), e)
i=1

and hence it follows that U*z%; = z%g; and Uz"q; = z";. In particular, {z°g; :
a € N, 1 < j < ma} is an orthonormal basis for H?(K) completing the proof of
item (iv).

To prove item (v), observe that MU = US on &% and then extending to
H?(K), it is true on H?(K) too. It is now evident that S is a pure isometry of mul-
tiplicity ma with wandering subspace {Q7 : v € C"*} (the span of the columns
of Q). Likewise for T by symmetry. 1

PROPOSITION 4.2 ([3]). Suppose @ is an M x M matrix-valued rational inner
function and the pair (M, M) of multiplication operators on H(sz. If the rank of the
projection I — MM is N, then there exists a unitary matrix U of size (M + N) x
(M+N),

M N

U= /(A B M,
C D/ N
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such that
®(z) = A+zB(I —zD)"!C.

PROPOSITION 4.3. If V = (S, T) is a finite bimultiplicity (M, N) pure p-isopair
of rank «, modeled as (M, M) on Hé v, Where @ is an M x M matrix-valued rational
inner function, then M = mu and

(i) there exists an a x ma matrix polynomial Q such that Q(z,w) has full rank at
almost all points of V(p);
(i) for (,) € V(p)
Q(z,w)(®(z) —w) =0;
(iii) there exists an « x na matrix polynomial P such that P(z,w) has full rank at
almost all points of V(p) and an a-admissible kernel K such that
0z w)QE, )" _ _ PE©)PE )’
1—Z€* —K((Z,W),(g,?])) - 1_w}7*

REMARK 4.4. The triple (K, P, Q) in Proposition [4.3]is a rank a-admissible

triple.

Proof. Applying Corollary 3.7)to irreducible p gives M = ma. Let A denote
the set of A € D such that p, has m distinct zeros. By Lemma [2.2]item (vi) A is
cofinite. Let

onB(p) x V(p).

r={(A\u):AeA peZipr)}
By Proposition[3.4]item (ii), for each (A, 1) € T, the matrix ®(A) is diagonalizable
and ®(A) — u has an a dimensional kernel. Now fix (Ag, o) € I'. Hence there
exist unitary matrices I1 and I1, such that

(0, 0
where A is (m — 1)a x (m — 1)« and invertible. Let
Y(z,w) = IL,(D(z) — w)II.
For (A, i) € I', the matrix X(z, w) has an « dimensional kernel. Write,
_ (E(z)—w  G(z)
Xz w) = ( H(z) L(z)—w)’

where E is « X a and L is of size (m — 1)a x (m — 1)a. By construction L(z) — w
is invertible at (Ao, o) and the other entries are 0 there. In particular, L(A) — p is
invertible for almost all points (A, 1) € U(p). Moreover, if L(z) — w is invertible,
then

I(z,w) = (é L(f)(z_)w) (Y('Z@.'w) ?) ((L(z)—z{;)lH(z) ?>

where
¥ (z,w) = E(z) —w — G(2)(L(z) —w) 'H(2).
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Thus, on the cofinite subset of U(p) where L(A) — u is invertible and X(A, ) has
an « dimensional kernel, ¥ (A, u) = 0 and moreover,

(Ilo —GA)(L(A) = p) ") IL(@(A) — ) = 0.
Let
Q(z,w) = (I —G(z)(L(z) —w) 1) ..
It follows that
Qz,w)(@(z) —w) =0

for almost all points in U (p). After multiplying Q by an appropriate scalar poly-
nomial we obtain an & x ma matrix polynomial Q(z, w) that has full rank at al-
most all points of U(p) and satisfies

Qz,w)(®(z) —w) =0

for all (z,w) € U(p).

Since T has multiplicity N, the operator Mg also has multiplicity N and
hence the projection I — Mg My has rank N. By Theorem there exists a uni-
tary matrix U of size (M + N) x (M + N),

M N
U= /(A B M,
CcC D N

®(z) = A+zB(I —zD)"!C.
Define P by P(z,w) = Q(z,w)B(I — zD)~! and verify, for (z,w) € U(p),

such that

(Q zP) ( g>— wQ P) onY(p).

It follows that, for (Z,77) € V(p),
Qz,w)Q(G,m)" + 2" P(z,w)P(L, )" = wi*Q(z,w)Q(,7)" + P(z,w)P(L,7)"

Rearranging gives

Qz,©)Q(E1)* _ _ PEw)PE )’

T = Kl (G ) = =g on () < U(p).
Finally, if ({,17) € D(p) is such that Q(g, #) has full rank «, then P(Z,%)P(Z,1)*
also has full rank a. Therefore, P(Z, #) also has full rank « and hence K is a rank
a-admissible kernel. 1

THEOREM 4.5. IfV = (S, T) is a finite bimultiplicity (M, N) pure p-isopair with
rank «, then there exists a rank w-admissible triple (K, P, Q) such that V is unitarily
equivalent to the operators of multiplication by z and w on H*(K).



ALGEBRAIC PAIRS OF PURE COMMUTING ISOMETRIES WITH FINITE MULTIPLICITY 521

Proof. Note that (S, T) is unitarily equivalent to (M;, M) on Hé v, where
@ is an M x M matrix-valued rational inner function. By Proposition there
exists a rank a-admissible triple (IC, P, Q) such that

(4.1) Qz,w)(@(z) —w) =0
for all (z,w) € U(p). Define
U: Hzy — H*(K)
on the span of
B={s;Q"(¢,m)v: (&) € V(p), v € C*} C Hp
by
Usz(2)Q™ (G, 1)y = K gy (z,w)7.
For ({,n7) € ¥(p)and 7; € C* for 1 <j < 2,

(Usg, (2)Q™(C1,m1) 11, Usgy (2) Q" (G2, 112) 72)
= (Kigum) (2 @) 711, Kgy ) (2, 0)12)
= (K(zy,m) (G2, 12)71, 72)
= (s¢,(62)Q(C2,12) Q" (C1, 1) 11, 72)
= (s¢, (2)Q"(C1,m)71,5¢,(2)Q" (G2, 12) 72)-
Hence U is an isometry. By Theorem [4.1|item (iii) the span of B is dense in Hé M
Moreover, the range of U is dense in H=(K). Thus, U is a unitary. Rewrite (4.1) as
(4.2) w*Q*(z,w) = &*(2)Q*(z, w).

Let M, and M, be the operators of multipliction by z and w on H2(K),
respectively. For ({,17) € U(p) and v € C*, using ({@.2), observe that

MU (sg(2)Q (8, 1)) = My (Kg (2, w)7) = TK g (z,w)y
=7U(s;Q7 (G, m)y) = Ulsg (2 ) (&)
= U(s(2)2(0)"Q"(&,m)7) = UMy (s (2)Q" (L, 1) 7)-
Similarly,
MZU(sg(2)Q (&, )) = UM (s¢(2)Q7 (8, m)7).
Therefore, UM} = M;U and UMYy = MU on the span of B, and hence on H(%M
Thus our original (S, T) is unitarily equivalent to (Mg, My,) on H2(K).

DEFINITION 4.6. If B is a subspace of vector space &, then the codimension
of Bin & is the dimension of the quotient space X' /5.

LEMMA 4.7. Suppose X is a vector space (over C) and Q and B are subspaces of
X. If Q C Band Q has finite codimension in X, then Q has finite codimension in B.
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LEMMA 4.8. Suppose K is a Hilbert space and Q C B C K are linear subspaces
(thus not necessarily closed) and let Q denote the closure of Q. If Q has finite codimension
in B and if B is dense in K, then there exists a finite dimensional subspace D of K such
that K = Q& D.

THEOREM 4.9. If K is a rank « admissible kernel function defined on G (p) and
S = M., T = M,, are the operators of multiplication by z and w, respectively on H*(K),
then the pair (S, T') is nearly a-cyclic.

Proof. Since K is a rank « admissible kernel, there exist matrix polynomials
Q and P of size « x ma and a X n« respectively, such that

K((zw), @) = LD PEOPLLD) (. ), ¢, ) e 0(p)

1—2zC 1—wy
and Q and P have full rank « at some point in U(p). Fix (, 1) € V(p) so that
Q(C, 1) has full rank «. By the definition of K and Lemma 3.3 of [8]], K((z, w), (T, 77))
has full rank « at almost all points in U(p). Let

Qo = Qo(z,w) = Q(z,w)Q"({, 7).

Then Qqe; = (1 — SZ)IC(M)ej. By Theorem item (ii), Qoe;, the j-th column
of Q, is also in H?(K). Letting § = §(z,w) to be the determinant of Qy, since
K((z,w),(Z,n)) has full rank « at almost all points in U(p), 7 is nonzero except
for finitely many points in U(p). Thus, p and g have only finitely many common
zeros in U(p). By Lemma [2.2|item (iii), p and g are relatively prime. Let I be
the ideal generated by p and §. By Proposition [2.1| item (ii), C[z, w]/I is finite
dimensional. Observe that

q; = qe; = QoAdj(Qo)e; Z b Qoex € H*(K),

where by; is the (k, j)-entry of Adj(Qo). If 7 is an & x 1 matrix polynomial with
entries r;, then

(4.3) Z r; Adj(Qo)Qoej € H*(K).

Since C[z, w]/I is finite dlrnensmnal, there is a finite dimensional subspace .7 C
C[z, w] such that
{rg+sp+t:r,seClzw|t e} =Clz,wl.

Therefore
o o
{?Z]v+ Sp +t : 7,5 are vector polynomials , f € P 5’} =P Clz w),
1 1

and hence the span Q of {r1§1,...,7afa : 11,...,7« € Clz,w]} is of finite codi-

o
mension in @ Clz, w].
1
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o

Let B = v{Z”QE]' :n e N, 1<j<ma} C@Clz,w]. By equation (4.3)
1

o
Q C B. By Lemma @4.7, Q has finite codimension in @ C[z,w]. Moreover, B

1
is dense in HZ(IC) by Theorem item (iv). Hence by Lemma the closure
of Q in H?(K) has finite codimension in H?(K). Equivalently, the closure of

24
{ Y ri(S,T)g; : rj € C[z, w]} is of finite codimension in H?(K). Thus (S, T) is
=1

a-cyclic on @ and hence at most nearly a-cyclic in H?(K).
Moreover, by Corollary (S, T) has rank at most a. For (,17) € U(p)
and for ¢y € C%, note that

Kyv € ker(Mz — £)* Nker(Mqy —17)".

Hence, if ({,77) € U(p) is such that K ) has full rank a, then ker(M; — {)* N
ker(My, — 17)* has dimension at least . Therefore, (S, T) has rank at least a. Thus
(S, T) has rank a. By Corollary (S, T) is at least nearly a-cyclic and hence
(S, T) is nearly a-cyclic on H?(K). &

PROPOSITION 4.10. IfV = (S, T) is a finite bimultiplicity pure p-isopair of rank
« acting on the Hilbert space K, then there exists a finite codimension V invariant sub-
space H of K such that the restriction of V to H is a-cyclic.

For the proof combine Theorems 4.5 and

5. DECOMPOSITION OF FINITE RANK ISOPAIRS

PROPOSITION 5.1. Suppose p1, p2 € Clz, w] are relatively prime square free in-
ner toral polynomials, but not necessarily irreducible. If V; = (S;, T;) are Bj-cyclic
pj-pure isopairs, then V = V1 @ Vy is a py pa-isopair and is at most nearly max{p1, B2 }-
cyclic.

Proof. Clearly,

p1p2(V) = (p1(V1) © p1(V2)) (p2(V1) © p2(V2)) = (0@ p1(V2))(p2(V1) ©0) = 0.

Let I be the ideal generated by p; and py. By Proposition item (ii), I has
finite codimension in C[z, w|. Hence there exists a finite dimension subspace R
of C[z, w] such that, for each i € Cl[z, w], there exist 51,5, € Clz,w] and r € R
such that
P =581p1 +S2p2 + 1.

Let K denote the Hilbert space that V acts upon. Let p = max{p1, B2} and sup-
pose without loss of generality 1 = f2 = B. For j = 1,2, choose cyclic sets
I = {'y]-,l,...,'y]-,ﬁ} for V;. (In the case where f; < B, we can set I to be
{71,1,...,71/51,0, 0,...,0}, so that this new I7 has B = B, vectors.) Let Ky =
{llJl(Vl)’}/Lk EBle(Vz)’yz,k 1<k <B, 1P] € (C[z,w]} By the hypothesis, Kj is
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dense in K. For given polynomials ¢, 9, € C[z, w], there exist 51,5, € C[z, w]
and 7 € R such that
P — P = —S1p1 + S2p2 + 1.
Rearranging gives,
P1+581p1 = Yo +S2p2 + 1.
Let ¢ = 1 4 s1p;. It follows that

@ =1 +sapa+r.

Consequently,

V) [71k @124 =2 (V1) 716 © @(V2) Y2k =1 (V1) Y15 © (¥2(V2) 2k +7(V2)Y2k)-

Let Hy denote the span of {¢@(V)[y1x® y2x] : 1 <k < B, ¢ € C[z,w]} and H be
the closure of Hy. Let £ denote the span of {0 ®r(Va)yax : 1 <k < B,r € R}.
Note that L is finite dimensional since R is and hence L is closed. Moreover,

Ko =Hy+ L.

Hence Hyj has finite codimension in Ky. By Lemma H has finite codimension
in K. Evidently H is V invariant and the restriction of V to H is at most S-cyclic.
Therefore, V is at most nearly B-cyclic. 1§

PROPOSITION 5.2. If V; = (S;, T;) are finite bimultiplicity pure pj-isopairs with
rank a; acting on Hilbert spaces K;, where p; are irreducible and relatively prime inner

S
toral polynomials for 1 < j < s, then @ V; is nearly max{ay, ay, ..., as}-cyclic on

j=1

Proof. First suppose s = 2. By Proposition each Vj is aj-cyclic on some
finite codimensional invariant subspace H; of K;. By Proposition Vilm, @
Va|n, is at most nearly max{ay, a }-cyclic on Hy @ Ha. Since each H; has finite
codimension in Kj, it follows that V = Vi @ V; is at most nearly max{ay, az}-
cyclic on Ky & Kp. On the other hand, V has rank (a1,a;) and hence, by Corol-
lary[3.10} is at least max{ay, a }-cyclic. Thus V is nearly max{a;, a5 }-cyclic.

Arguing by induction, suppose the result is true for 0 < j —1 < s. Thus
VI=Vi@---@Vj_isnearly B = max{ay, ap, ..., &j_1}-cycliconK’ = K1 G Ky @
-+ @ K;_1. Hence there exists a finite codimensional invariant subspace H' of K’
such that the restriction of V' to H' is B-cyclic. Since V; is a finite bimultiplicity
p; isopair with rank «;, by Proposition there exists a finite codimensional
invariant subspace H; of K; such that Vj|y;, is aj-cyclic. Note that p; - - - pj_1 and
pj are relatively prime. Applying Proposition 5.1 to V'|ys and V| H;, it follows
that V'| i & V]'|H], is at most nearly v = max{p, a;}-cyclic on H' & H;. Since H'
and H; have finite codimension in K’ and K; respectively, W = Vi @V, ©--- @ V;
is at most nearly y-cyclic on K1 & Kz & - - - @ K;. On the other hand, W has rank
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(a1,...,&j) and is therefore at least nearly y-cyclic by Corollary Thus W is
nearly v = max{ay, ..., ;}-cyclic. 1

Proof of Theorem([1.4] By Theorem 2.1 of [2], there exist a finite codimension
subspace H of K that is invariant for V and pure pj-isopairs V; such that

W=Vg=ViaVho &V

By Proposition W has rank a. Hence V; has rank «;. By Proposition there
is a finite codimension invariant subspace L of H such that the restriction of W to
Lis B = max{aj, ay,...,as}-cyclic. Thus L is a finite codimensional subspace of
K such that V|, is B-cyclic. Hence V is at most nearly B-cyclic. By Corollary[3.10]
V is at least nearly B-cyclic. Therefore, V is nearly max{ay, ay, ..., a5} cyclic.

COROLLARY 5.3. Suppose V.= (S, T) is a pure p-isopair of finite bimultiplicity
with minimal polynomial p and write p = p1 pa2 - - ps as a product of distinct irre-
ducible factors. If V has rank « and p = max{ay, ..., as}, then

(i) there exists a finite codimension invariant subspace H for V such that the restric-
tion of V to H is B-cyclic;
(ii) V is not k-cyclic for any k < B; and
(iii) there exists a B-cyclic pure p-isopair V' and an invariant subspace K for V' such
that V is the restriction of V' to K.

Proof. Proofs of items (i) and (ii) follow from Theoremand the definition
of nearly k-cyclic isopairs. The proof of item (iii) is an application of item (i) and

Corollary 1

5.1. EXAMPLE. In this section we discuss an example of pure p-isopairs of finite
rank to illustrate the connection of the rank of a pure p-isopair to nearly cyclicity
and to the representation as direct sums.

Consider the irreducible, square free inner toral polynomial, p = z> — w?.
The distinguished variety, V, defines by p is called Neil parabola [8]. The triple

(K1,Q1, P1) given by
Qzw)=(1 w), P(zw)=(1 z 22

and the corresponding kernel function

_ = =2
T (e @) = PR
is a 1-admissible triple. Likewise for the choice of
Qzw) =(z w), P(zw)=(w z z?)
and the corresponding kernel function
2L + wy w20+ 220

1-2C = Ka((z,w), (g, m)) = ﬁ,
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the triple (K2, Q2, P») is also a 1-admissible triple. For j = 1,2, let V; be the pair
(Mz, My,) defined on HZ(ICj). Now each V; is a pure p-isopair or rank 1 and each
Vj is nearly 1-cyclic.

LetQ =Q1® Q2 P =P, ® P and K = K1 @ Ky. Observe that the triple
(K, Q, P) is a 2-admissible triple and V = (M, My,) defined on H?(K) is a pure
p-isopair and nearly 2-cyclic. In fact V is a pure p-isopair of rank 2 that can be
written as a direct sum of two pure p-isopairs, V; and V,.

However this is not true in general. In other words, there exist pure p-
isopairs of finite rank (say « € N), that cannot be expressed as a direct sum of «
number of pure p-isopairs. For instance, let

H' ={f e HK): (f,(1 —2)") =0}

and V' = V|p. Observe that H' is a finite codimensional subspace of H?(K)
and H’ is invariant under V. By the stability of the rank V' has rank 2 and hence
nearly 2-cyclic.

Moreover, the collection of vectors of the form:

) (3), (), (), ()
2/V2) N0 )" N0 ) 2 w2y

forms an orthonormal basis for H'. Hence the reproducing kernel , IE, for H' has
the form
1 zl+wy 4
. PR 2
Rz @m=|? 1 N Zeun
: 2rTF)

. S+

21—z

Since K((z, w), (0,0)) is not diagonalizable, K is not diagonalizable. Consequently,
H'’ and V' are not direct sums. In otherwords, V' is a pure p-isopair of rank 2 that
cannot be expressed as a direct sum of two other pure p-isopairs.

Acknowledgements. 1am very grateful to my adviser, Scott McCullough, for his valu-
able guidance and insights that greatly improved the content of this paper.
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