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ABSTRACT. An algebraic isopair is a commuting pair of pure isometries that
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isopair with finite bimultiplicity is introduced as an s-tuple α = (α1, . . . , αs) of
natural numbers. A pure algebraic isopair of finite bimultiplicity with rank α,
acting on a Hilbert space, is nearly max{α1, . . . , αs}-cyclic and there is a finite
codimensional invariant subspace such that the restriction to that subspace is
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1. INTRODUCTION

Given a polynomial p ∈ C[z, w] (or in C[z]) let Z(p) denote its zero set.
We say p is square free if q2 does not divide p for every non-constant polynomial
q(z, w) ∈ C[z, w]. We say q ∈ C[z, w] is the square free version of p if q is the
polynomial with smallest degree such that q divides p and Z(p) = Z(q). The
square free version is unique up to multiplication by a nonzero constant.

Let D, T and E denote the open unit disk, the boundary of the unit disk
and complement of the closed unit disk in C, respectively. In [2] the notion of an
inner toral polynomial is introduced. (See also [5], [6], [9], [11].) A polynomial
q ∈ C[z, w] is inner toral if

Z(q) ⊂ D2 ∪T2 ∪E2.

In other words, if (z, w)∈Z(q) then either |z|, |w|<1 or |z|=1= |w| or |z|, |w|>1.
A distinguished variety in C2 is the zero set of an inner toral polynomial.

Let V be an isometry defined on a Hilbert space H. By the Wold decom-
position, there exist two reducing subspaces for V, say K and L, such that H =
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K ⊕ L and S = V|K is a shift operator and U = V|L is a unitary operator. We
say V is pure, if there is no unitary part. An isometry V is pure if and only if
∞⋂

j=1
V j(H) = {0}. A subspace W of H is called a wandering subspace for V if

Vn(W) ⊥ Vm(W) for n 6= m and H =
∞⊕

n=0
Vn(W). If V is a pure isometry and

W = H 	V(H) = ker(V∗), then ker(V∗) is a wandering subspace for V. More-
over, if V is a pure isometry then V ∼= Mz on the Hilbert–Hardy space H2

W of
W-valued functions for a Hilbert space W with dimension dim(ker(V∗)). The
multiplicity of a pure isometry V is defined as mult(V) = dim(ker(V∗)).

A pure isopair is a pair of commuting pure isometries. A pure isopair V =
(S, T) is a pure algebraic isopair if there is a nonzero polynomial q ∈ C[z, w] such
that q(S, T) = 0 and is also referred to as pure q-isopair. The study of pure alge-
braic isopairs was initiated in [2] and also discussed in [10]. Among the many
results in [2] it is shown (see Theorem 1.20) if V = (S, T) is a pure algebraic
isopair, then there is a square free inner toral polynomial p such that p(S, T) = 0
that is minimal in the sense if q(S, T) = 0, then p divides q. We call this polyno-
mial p the minimal polynomial of V. The minimal polynomial of V is unique up
to multiplication by a nonzero constant. Moreover, in [2] the notion of a nearly
cyclic pure isopair is introduced. Here we fix a square free inner toral polynomial
p and consider nearly multi-cyclic pure isopairs with the minimal polynomial p.

An isopair V = (S, T) acting on a Hilbert space H is called at most nearly
k-cyclic if there exist distinct f1, . . . , fk ∈ H such that the closure of

(1.1)
{ k

∑
j=1

qj(S, T) f j : qj ∈ C[z, w] for j = 1, 2, . . . , k
}

is of finite codimension in H. It is called at least nearly k-cyclic if the closure of

{ l

∑
j=1

qj(S, T) f j : qj ∈ C[z, w] for j = 1, 2, . . . , l
}

is not of finite codimension in H for any l < k and for any set of f1, . . . , fl ∈ H.
We say V = (S, T) is nearly k-cyclic if it is both at most nearly k-cyclic and at least
nearly k-cyclic. Moreover, V = (S, T) is called k-cyclic if it is nearly k-cyclic and
the span given in (1.1) is dense in H.

Given a pair of isometries V = (S, T), define the bimultiplicity of V by

bimult(V) = (mult(S), mult(T)).

It is a well known fact that we can view pure isopairs as pairs of multiplica-
tion operators. In particular, if V = (S, T) is a pure p-isopair of finite multiplic-
ity (M, N), then there exists an M × M matrix-valued rational inner function Φ

with its poles in E, such that V is unitarily equivalent to (Mz, MΦ) on H2
CM and
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p(Mz, MΦ) = 0 (see [2]). Moreover

(1.2) p(λ, Φ(λ)) = 0 for λ ∈ D.

DEFINITION 1.1. We say a point (λ, µ) ∈ C2 is a regular point for p if (λ, µ) ∈
Z(p) , but

∇p(λ, µ) =
(∂p

∂z
,

∂p
∂w

)
|(λ,µ) 6= 0.

Let p be a square free inner toral polynomial. Write p = p1 p2 · · · ps as
a product of (distinct) irreducible factors. Then each pj is inner toral. In other
words, each Z(pj) is a distinguished variety. The zero set of p is the union of the
zero sets of pj. Let

V(pj) = Z(pj) ∩D2, V(p) = Z(p) ∩D2 =
s⋃

j=1

V(pj).

Let N denote the nonnegative integers and N+ denote the positive integers.

PROPOSITION 1.2. Let V = (S, T) be a pure p-isopair of finite bimultiplicity with
minimal polynomial p and suppose p = p1 p2 · · · ps, a product of distinct irreducible
factors. For each j and (λ, µ) ∈ V(pj) that is a regular point for p, the dimension of the
intersection of ker(S− λ)∗ and ker(T − µ)∗ is a nonzero constant.

DEFINITION 1.3. Let V = (S, T) be a pure p-isopair of finite bimultiplicity
with minimal polynomial p and suppose p = p1 p2 · · · ps, a product of distinct
irreducible factors. The rank of V is a s-tuple, α = (α1, . . . , αs) ∈ Ns

+, denoted by
rank(V), where

αj = dim(ker(S− λ)∗ ∩ ker(T − µ)∗),

and (λ, µ) ∈ V(pj) and a regular point for p.

THEOREM 1.4. Suppose V = (S, T) is a pure p-isopair of finite bimultiplicity
with minimal polynomial p and write p = p1 p2 · · · ps as a product of distinct irre-
ducible factors. If V has rank (α1, α2, . . . , αs), then V is nearly max{α1, . . . , αs}-cyclic.

REMARK 1.5. Compare Theorem 1.4 with the results in [2].

We prove Theorem 1.4 in section 5. An important ingredient in the proof
of Theorem 1.4 is a representation for a pure p-isopair as a pair of multiplica-
tion operators on a reproducing kernel Hilbert space over V(p) in the case p is
irreducible. Representations of this type already appear in the literature, (Theo-
rem D.14 of [7] for instance). Here we provide additional information. See Theo-
rems 4.1 and 4.9.

REMARK 1.6. The concept of nearly multi-cyclic isopairs was introduced in
[2]. A discussion on multicyclicity of a bundle shift given in terms of its multiplic-
ities can be found in [1]. In [13], the article presents a way to realize a Riemann
surface with a distinguished variety.



510 UDENI D. WIJESOORIYA

2. PRELIMINARIES

PROPOSITION 2.1. Suppose p, q ∈ C[z, w].
(i) Z(p) ∩ Z(q) is a finite set if and only if p and q are relatively prime.

(ii) If p and q are relatively prime, then the ideal I⊂C[z, w] generated by p and q has
finite codimension in C[z, w]; i.e. there is a finite dimensional subspaceR of C[z, w] such
that for each ψ∈C[z, w] there exist polynomials s, t∈C[z, w] and r∈R such that

ψ = sp + tq + r.

Proof. Bezout’s theorem says that if two algebraic curves, say described by
p = 0 and q = 0, do not have any common factors, then they have only finitely
many points in common. In particular if p and q do not have any common factors,
then Z(p) and Z(q) have only finitely many points in common. In particular, for
the ideal I generated by p and q, the affine variety V(I) = Z(p) ∩ Z(q) is finite.
The Finiteness theorem of [7], page 13, says that if V(I) is finite then the quotient
ring C[z, w]/I has a finite dimension. Hence the ideal I has finite codimension in
C[z, w].

For p ∈ C[z, w] and λ ∈ D, let pλ(w) = p(λ, w).

LEMMA 2.2. Suppose p is square free and inner toral and write p = p1 p2 · · · ps
as a product of irreducible factors. Let q be a nonzero polynomial.

(i) If q vanishes on a countably infinite subset of V(pj), then pj divides q.
(ii) If q vanishes on a cofinite subset of V(p), then p divides q.

(iii) If Z(q) ∩ Z(p) ∩D2 is finite, then q and p are relatively prime.
(iv) The polynomial ∂p

∂w has only finitely many zeros in V(p).

(v) If q ∂p
∂w is zero on a cofinite subset of V(p), then p divides q.

(vi) If Λ is the set of all λ∈D for which pλ(w) has distinct zeros, then Λ⊂D is cofinite.

Proof. The proof of item (i) follows from Proposition 2.1 item (i) and by the
fact that pj is irreducible. By item (i), each pj divides q. Since the pj’s are distinct,
their product divides q, proving item (ii). If q and p have a common factor, then
because p is inner toral, Z(q) and Z(p) have infinitely many common points in
D2, proving (iii).

Let q = ∂p
∂w and suppose q has infinitely many zeros in V(p). In this case

there is a j such that q has infinitely many zeros in V(pj). Hence by (i), q vanishes

on V(pj). Therefore, either
∂pj
∂w has infinitely many zeros in V(pj) or there is an

` such that p` has infinitely many zeros in V(pj) and thus, by part (i), pj divides
∂pj
∂w or pj divides p`, a contradiction. Item (v) follows from item (ii). To prove

item (vi), if Λ is not cofinite, then ∂p
∂w has infinitely many zeros in Z(p). Since p is

inner toral, ∂p
∂w has infinitely many zeros in V(p), a contradiction to item (iv) and

hence Λ is cofinite.
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PROPOSITION 2.3. Suppose p ∈ C[z, w] is a square free polynomial and write
p = p1 p2 · · · ps as a product of irreducible factors pj ∈ C[z, w]. If q ∈ C[z, w] and
Z(p) ⊆ Z(q), then there exist γ = (γ1, . . . , γs) ∈ Ns

+ and an r ∈ C[z, w] such that pj
and r are relatively prime and

q = pγ1
1 pγ2

2 · · · pγs
s r.

The proof is an application of Bezout’s theorem.

REMARK 2.4. If p and q are inner toral polynomials, then we may replace
the condition Z(p) ⊆ Z(q) with V(p) ⊆ Z(q).

3. RESULTS FOR GENERAL p

In this section p = p1 p2 · · · ps is a general square free inner toral polyno-
mial with (distinct) irreducible factors pj. Let (nj, mj) be the bidegree of pj(z, w).

In [2] it is proven that any nearly cyclic pure p-isopair is unitarily equivalent
to a cyclic pure p-isopair restricted to a finite codimensional invariant subspace
(see Proposition 3.6 in [2]). Next proposition is a more generalized version of this
result.

PROPOSITION 3.1. Suppose V = (S, T) is a pure p-isopair of finite bimultiplicity
(M, N) acting on the Hilbert space K. If H is a finite codimension V-invariant subspace
of K and W is the restriction of V to H, then there exists a finite codimension subspace L
of H such that V is unitarily equivalent to the restriction of W to L.

REMARK 3.2. In case the codimension of H is one, the codimension of L (in
H) can be chosen as N − 1 (or as M − 1). In general, the proof yields a relation
between the codimensions of H in K and L in H (or in K).

COROLLARY 3.3. Suppose V = (S, T) is a pure p-isopair of finite bimultiplicity
(M, N) acting on the Hilbert space K. If there exists a finite codimension V-invariant
subspace H of K such that the restriction of V to H is β-cyclic, then there exists a β-cyclic
pure isopair W acting on a Hilbert space L and on a finite codimension W-invariant
subspace F of L such that W|F is unitarily equivalent to V.

Proof of Proposition 3.1. Following the argument in Proposition 3.6 of [2], let
F = K	 H and write, with respect to the decomposition K = H ⊕ F,

(3.1) V = (S, T) =
(

W = (S, T)|H (X, Y)
0 (A, B)

)
.

In particular A (and likewise B) is a contraction on a finite dimensional Hilbert
space. Because V is pure and A is a contraction, A has spectrum in the open disc
D. Choose a (finite) Blaschke u such that u(A) = 0. Note that u(S) is an isometry
on K and moreover the codimension of the range of u(S) (equal to the dimension
of the kernel of u(S)∗) in K is (at most) dM, where d is the degree (number of
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zeros) of u. Further, since

u(S) =
(

u(S|H) X′

0 u(A) = 0

)
,

the range L = u(S)K of u(S) is a subspace of H of finite codimension. Since
u(S)V = Wu(S) it follows that L is invariant for W and V is unitarily equivalent
to W restricted to L.

To prove the remark, note that if A is a scalar (equivalently H has codimen-
sion one in K), then u can be chosen to be a single Blaschke factor. In which case
the codimension of L is N in K and hence N− 1 in H. In general, if d is the degree
of the Blaschke u, then the codimension of L in K is dN. By reversing the roles of
S and T one can replace N with M, the multiplicity of the shift T.

PROPOSITION 3.4. Let (Mz, MΦ) be a pure isopair of finite bimultiplicity (M, N)
with minimal polynomial p, where Φ(z) is an M × M matrix-valued rational inner
function. There exists an α = (α1, . . . , αs) ∈ Ns

+ such that:
(i) for λ ∈ D, the characteristic polynomial fλ(w) of Φ(λ) satisfies

(3.2) fλ(w) = det(w−Φ(λ)) = c(λ)pα1
1,λ(w) · · · pαs

s,λ(w),

for a constant (in w) c(λ);
(ii) for each λ such that pλ has m distinct zeros, Φ(λ) is diagonalizable and similar to

s⊕
j=1

⊕
µj∈Z(pj,λ)

µj Iαj ;

(iii) if (λ, µ) ∈ Z(pj) and ∂p
∂w |(λ,µ) 6= 0, then

dim ker(Φ(λ)− µ) = αj.

Proof. First note that, by equation (1.2), for all λ ∈ D

(3.3) pλ(Φ(λ)) = p(λ, Φ(λ)) = 0.

In particular, the spectrum, σ(Φ(λ)), is a subset of Z(pλ).
Note that det(wIm−Φ(z)) is a rational function whose denominator d(z) (a

polynomial in z alone) does not vanish in D. Let q(z, w) = d(z)det(wIm −Φ(z)),
the numerator of det(wIm −Φ(z)). For fixed z ∈ D, let

qz(w) = d(z)det(wIm −Φ(z)) =
M

∑
j=0

qj(z)wj.

By Cayley–Hamilton theorem, qz(Φ(z)) =
M
∑

j=0
qj(z)Φ(z)j = 0 and therefore

q(z, Φ(z)) = 0 for all z ∈ D. Now for γ ∈ CM and λ ∈ D,

q(Mz, MΦ(z))∗γsλ = q(λ, Φ(λ))γsλ = 0.
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Therefore, q(Mz, MΦ) = 0. Since p is the minimal polynomial for (Mz, MΦ), V(p)
is a subset of Z(q). Hence there exist an α = (α1, . . . , αs) ∈ Ns

+ and a polynomial
r such that pj does not divide r for each j and

(3.4) d(z)det(w−Φ(z)) = q(z, w) = pα1
1 (z, w) · · · pαs

s (z, w) r(z, w).

For (λ, µ) ∈ D× D, µ is in the spectrum of Φ(λ) if and only if q(λ, µ) = 0. In
particular, q(z, w) is a polynomial whose zero set in D×C is the set {(z, w) : z ∈
D, w ∈ σ(Φ(z))} ⊆ V(p). Observe Z(r) ∩ [D× C] ⊆ Z(q) ∩ [D× C] ⊆ V(p).
On the other hand, r can have only finitely many zeros in V(p) as otherwise r
has infinitely many zeros on some V(pj) and, by Lemma 2.2 item (i) pj divides r.
Hence r(z, w) has only finitely many zeros in H = D×C. We conclude there are
only finitely many z ∈ D such that rz(w) = r(z, w) has a zero and consequently
r depends on z only so that r(z, w) = r(z). Thus, for λ ∈ D, the characteristic
polynomial fλ(w) of Φ(λ) satisfies

(3.5) fλ(w) = det(w−Φ(λ)) = c(λ)pα1
1,λ(w) · · · pαs

s,λ(w),

for a constant (in w) c(λ).

Let Λ be the set of all λ ∈ D for which pλ has
s
∑

j=1
mj distinct zeros. By

Lemma 2.2 item (vi), Λ ⊆ D is cofinite. For λ ∈ Λ, the polynomial pλ has distinct
zeros and by (3.3), pλ(Φ(λ)) = 0. Hence, Φ(λ) is diagonalizable and, for given
µj ∈ Z(pj,λ), the dimension of the eigenspace of Φ(λ) at µj is αj. Thus Φ(λ) is
similar to

s⊕
j=1

⊕
µj∈Z(pj,λ)

µj Iαj .

Let (λ, µ) ∈ Z(pj) be such that ∂p
∂w |(λ,µ) 6= 0. The minimal polynomial for

Φ(λ) has a zero of multiplicity 1 at µ, since it divides pλ. Hence Φ(λ) is similar
to µIαj ⊕ J where the spectrum of J does not contain µ. Therefore, the kernel of
Φ(λ)− µ has dimension αj.

PROPOSITION 3.5. Let V = (S, T) be a pure p-isopair of finite bimultiplicity
and suppose p = p1 p2 · · · ps a product of distinct irreducible factors. For each j and
(λ, µ) ∈ V(pj) such that ∂p

∂w |(λ,µ) 6= 0, the dimension of the intersection of ker(S− λ)∗

and ker(T − µ)∗ is a nonzero constant.

Proof. By the standard model theory for pure isopairs with finite bimulti-
plicity, there exists an M×M matrix-valued rational inner function Φ such that
V = (S, T) is unitarily equivalent to (Mz, MΦ) on H2

CM and p(Mz, MΦ) = 0. Let
(λ, µ) ∈ V(pj) be a regular point for p. Observe that for any γ ∈ ker(Φ(λ)− µ)∗,
both (S− λ)∗sλγ = 0 and (T − µ)∗sλγ = 0. Hence sλγ ∈ ker(S− λ)∗ ∩ ker(T −
µ)∗. Now suppose f ∈ ker(S− λ)∗ ∩ ker(T − µ)∗. Since (S− λ)∗ f = 0, there is
a vector γ ∈ CN such that f = sλγ. Thus, 0 = (T − µ)∗sλγ = sλ(Φ(λ)∗ − µ∗)γ.
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Hence
sλ ker(Φ(λ)− µ)∗ = ker(S− λ)∗ ∩ ker(T − µ)∗.

Since dim ker(Φ(λ)− µ)∗ = dim ker(Φ(λ)− µ), we have

(3.6) dim[ker(S− λ)∗ ∩ ker(T − µ)∗] = dim ker(Φ(λ)− µ),

and hence by Proposition 3.4 item (iii), dim[ker(S− λ)∗ ∩ ker(T − µ)∗] = αj.

COROLLARY 3.6. Let V = (S, T) be a pure p-isopair of finite bimultiplicity
and suppose p = p1 p2 · · · ps a product of distinct irreducible factors. For each j and
(λ, µ) ∈ V(pj) such that ∂p

∂z |(λ,µ) 6= 0, dimension of the intersection of ker(S − λ)∗

and ker(T − µ)∗ is a nonzero constant.

The proof is immediate from the symmetry of S and T and Proposition 3.5.

Proof of Proposition 1.2. Let (λ, µ) ∈ V(pj). If ∂p
∂w |(λ,µ) 6= 0, then by Proposi-

tion 3.5, there exists a non zero constant αj ∈ N+ such that

dim(ker(S− λ)∗ ∩ ker(T − µ)∗) = αj.

If ∂p
∂z |(λ,µ) 6= 0, then by Corollary 3.6, there exists a non zero constant β j ∈ N+

such that
dim(ker(S− λ)∗ ∩ ker(T − µ)∗) = β j.

Note that, since p is square free, so is pj and hence there are infinitely many points

in V(pj) such that both partial derivatives ∂p
∂z |(z0,w0)

and ∂p
∂w |(z0,w0)

do not vanish.

If (λ, µ) is a regular point for p such that ∂p
∂z |(λ,µ) 6= 0 and ∂p

∂w |(λ,µ) 6= 0, then
αj = β j. Therefore, if (λ, µ) ∈ V(pj) is a regular point for p, then the dimension
of the intersection of ker(S− λ)∗ and ker(T − µ)∗ is a nonzero constant.

COROLLARY 3.7. If (S, T) is a pure p-isopair of finite bimultiplicity (M, N) with
rank α = (α1, . . . , αs) ∈ Ns

+, then

(3.7) M =
s

∑
j=1

mjαj and N =
s

∑
j=1

njαj.

Proof. First, view (S, T) as (Mz, MΦ) where Φ(z) is an M×M matrix-valued
rational inner function. By Proposition 3.4 item (i), for λ ∈ D,

det(w−Φ(λ)) = c(λ)pα1
1,λ(w) · · · pαs

s,λ(w)

for a constant (in w) c(λ). Comparing the degree in w on the left and the right,
for all but finitely many λ, we have

M =
s

∑
j=1

αjmj.

To see the relation on N, view p as p(w, z) a polynomial of bidegree (m, n).
Note that each factor pj = pj(w, z) has bidegree (mj, nj). Moreover p(T, S) = 0
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and (T, S) has bimultiplicity (N, M). Model (T, S) as (Mw, MΨ(w)), where Ψ(w)
is an N×N matrix valued ration inner function. By Proposition 3.4, item (i), there
exists (β1, β2, . . . , βs) ∈ Ns

+ such that for µ ∈ D,

(3.8) det(z−Ψ(µ)) = c′(µ)pβ1
1,µ(z) · · · p

βs
s,µ(z)

for a constant (in z) c′(µ). By Proposition 3.4 item (iii), for (µ, λ) ∈ Z(pj) that is a
regular point for p,

dim ker(Ψ(µ)− λ) = β j.

Now by equation (3.6),

dim[ker(S− λ)∗ ∩ ker(T − µ)∗] = β j.

Since (S, T) has rank α, we get β j = αj for j = 1, . . . , s and by comparing the
degree in z on the left and the right of (3.8), for all but finitely many µ, we have

N =
s

∑
j=1

αjnj.

PROPOSITION 3.8. If V = (S, T) is a finite bimultiplicity k-cyclic pure p-isopair
acting on the Hilbert space K, then for each (λ, µ) ∈ V(p),

dim(ker(S− λ)∗ ∩ ker(T − µ)∗) 6 k.

In particular, if p is the minimal polynomial for V and if V has rank α, then k >
max{α1, . . . , αs}.

Proof. Let { f1, . . . , fk} be a cyclic set for (S, T). For any q(z, w) ∈ C[z, w],
f ∈ ker(S− λ)∗ ∩ ker(T − µ)∗ and 1 6 j 6 k,

〈q(S, T) f j, f 〉 = 〈 f j, q(S, T)∗ f 〉 = 〈 f j, q(λ, µ)∗ f 〉 = q(λ, µ)〈 f j, f 〉.

If dim(ker(S − λ)∗ ∩ ker(T − µ)∗) > k, then there exists a non zero vector f ∈
ker(S − λ)∗ ∩ ker(T − µ)∗ perpendicular to f j for all j. Thus 〈q(S, T) f j, f 〉 = 0

for all j and for any q, and hence 〈g, f 〉 = 0 for any g ∈
{ k

∑
j=1

qj(S, T) f j : qj ∈

C[z, w]
}

, a contradiction. Therefore, dim(ker(S − λ)∗ ∩ ker(T − µ)∗) 6 k. The
last statement of the proposition follows from the definition of the rank.

PROPOSITION 3.9. Suppose V = (S, T) is a finite bimultiplicity pure p-isopair
with minimal polynomial p and with rank α = (α1, . . . , αs) ∈ Ns

+ acting on a Hilbert
space K. If H is a finite codimension V-invariant subspace of K, then W = V|H has rank
α too.

Proof. Write W = V|H = (S0, T0). Let F = K	 H. Thus F has finite dimen-
sion and K = H ⊕ F. With respect to this decomposition, write

S∗ =
(

S∗0 0
X∗ A∗

)
, T∗ =

(
T∗0 0
Y∗ B∗

)
.
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Observe that σ(A)× σ(B) is a finite set since A and B act on a finite dimensional
space. Fix 1 6 j 6 s. Let Γ be the set of all (λ, µ) ∈ V(pj) such that the di-
mension of ker(S− λ)∗ ∩ ker(T − µ)∗ is αj and (λ, µ) /∈ σ(A)× σ(B). Hence by
Proposition 1.2, Γ contains the cofinite set of all regular points. Since also the set
σ(A)× σ(B) is finite, Γ is a cofinite subset of V(pj). Fix (λ, µ) ∈ Γ and let

L = ker(S− λ)∗ ∩ ker(T − µ)∗ and L0 = ker(S0 − λ)∗ ∩ ker(T0 − µ)∗.

Let P ⊆ H be the projection of L onto H. Given f ∈ L, write f = f1 ⊕ f2, where
f1 ∈ H and f2 ∈ F. Since f ∈ L, the kernel of (S0 − λ)∗ contains f1. Likewise
the kernel of (T0 − λ)∗ contains f1. Therefore, P ⊆ L0. If dim(L0) < αj, then,
since dim(L) = αj, there exists a non zero vector of the form 0 ⊕ v in L and
hence ker(A− λ)∗ ∩ ker(B− µ)∗ is non-empty. But, ker(A− λ)∗ ∩ ker(B− µ)∗ is
empty by the choice of (λ, µ). Thus dim(L0) = αj for almost all (λ, µ) in V(pj).
Therefore W also has rank α.

COROLLARY 3.10. Suppose V = (S, T) is a finite bimultiplicity pure p-isopair
with minimal polynomial p and with rank α = (α1, . . . , αs) ∈ Ns

+ acting on a Hilbert
space K. If H is a finite codimension V-invariant subspace of K, then W = V|H is at
least β = max{α1, . . . , αs}-cyclic. Hence V is at least nearly β-cyclic.

Proof. By Proposition 3.9, W has rank α. By Proposition 3.8, W is at least β-
cyclic. Thus, each restriction of V to a finite codimension invariant subspace is at
least β-cyclic and hence V is at least nearly β-cyclic.

4. THE CASE p IS IRREDUCIBLE

In this section p is an irreducible square free inner toral polynomial of bide-
gree (n, m).

A rank α-admissible kernel K over V(p) consists of an α×mα matrix polyno-
mial Q and an α× nα matrix polynomial P such that

Q(z, w)Q(ζ, η)∗

1− zζ∗
= K((z, w), (ζ, η)) =

P(z, w)P(ζ, η)∗

1− wη∗
, (z, w), (ζ, η) ∈ V(p)

where Q and P have full rank α at some point in V(p). In particular, at some
point x ∈ V(p) the matrix K(x, x) has full rank α [8]. An α × α matrix-valued
kernel on a set Ω has full rank at x ∈ Ω, if K(x, x) has full rank α. We refer to
(K, P, Q) as an α-admissible triple.

Let H2(K) denote the Hilbert space associated to the rank α admissible
kernel K. For a point y ∈ V(p), denote by Ky the α × α matrix function on
V(p) defined by Ky(x) = K(x, y). Elements of H2(K) are Cα vector-valued
functions on V(p) and the linear span of {Kyγ : y ∈ V(p), γ ∈ Cα} is dense
in H2(K). Note that the operators X and Y determined densely on H2(K) by
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XK(λ,µ)γ = λ∗K(λ,µ)γ and YK(λ,µ)γ = µ∗K(λ,µ)γ are contractions. By Theo-
rem 4.1 item (i) below, X∗ is a bounded operator on H2(K). Further for f ∈
H2(K), 〈X∗ f ,Kλ,µγ〉 = λ〈 f (λ, µ), γ〉. Hence X∗ is the operator of multiplication
by z on H2(K). Likewise, Y∗ is a bounded operator on H2(K) and it is the multi-
plication by w on H2(K).

THEOREM 4.1. If K is a rank α-admissible kernel over V(p), then
(i) X is bounded on the linear span of {Kyγ : y ∈ V(p), γ ∈ Cα};

(ii) for each 1 6 j 6 mα and each positive integer n, the vector znQej (Qej is the j-th
column of Q) lies in H2(K);

(iii) the span of {sλQ(λ, µ)∗γ : (λ, µ) ∈ V(p), γ ∈ Cα} is dense in H2
Cmα ;

(iv) the set B={znQej : n∈N, 16 j6mα} is an orthonormal basis for H2(K); and
(v) the operators S and T densely defined on B by S f = z f and T f = w f extend to

a pair of pure isometries on H2(K).
Proof. For a finite set of points (λ1, µ1), . . . , (λn, µn)∈V(p), and γ1, . . . , γn∈

Cα, observe that〈
(I−X∗X)

n

∑
j=1
K(λj ,µj)

γj,
n

∑
k=1
K(λk ,µk)

γk

〉
=

n

∑
j,k=1
〈(1− λkλj)K(λj ,µj)

(λk, µk)γj, γk〉

=
n

∑
j,k=1
〈Q(λk, µk)Q∗(λj, µj)γj, γk〉

=
〈 n

∑
j=1

Q∗(λj, µj)γj,
n

∑
k=1

Q∗(λk, µk)γk

〉
>0.

Therefore, X is bounded on the linear span of {Kyγ : y ∈ V(p), γ ∈ Cα}.
To prove item (ii), note that by Theorem 4.15 of [12], if f is a Cα valued

function defined on V(p) and if K((z, w), (ζ, η)) − f (z, w) f (ζ, η)∗ is a (positive
semidefinite) kernel function then f ∈ H2(K). Since

K((z, w), (ζ, η))− (zζ∗)nQ(z, w)Q∗(ζ, η)

=
n−1

∑
j=1

(zζ∗)jQ(z, w)Q∗(ζ, η) + (zζ∗)n+1K((z, w), (ζ, η))

is positive semidefinite, it follows that znQej ∈ H2(K).
By a result in Lemma 4.1 of [8], there exists a cofinite subset Λ ⊂ D such that

for each λ ∈ Λ there exist distinct points µ1, . . . , µm ∈ D such that (λ, µj) ∈ V(p)
and the mα×mα matrix,

R(λ) :=
(
Q(λ, µ1)

∗ · · · Q(λ, µm)∗
)

has full rank. Define a map U from H2(K) to H2
Cmα by

UK(λ,µ)(z, w)γ = sλ(z)Q(λ, µ)∗γ.
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Observe that for (λ1, µ1), (λ2, µ2) ∈ D2 and γ, δ ∈ Cα,

〈UK(λ1,µ1)
(z, w)γ, UK(λ2,µ2)

(z, w)δ〉 = 〈sλ1(z)Q(λ2, µ2)Q∗(λ1, µ1)γ, sλ2(z)δ〉
= δ∗Q(λ2, µ2)Q∗(λ1, µ1)γ〈sλ1(z), sλ2(z)〉

=
δ∗Q(λ2, µ2)Q∗(λ1, µ1)γ

1− λ1λ2

= δ∗K((λ2, µ2), (λ1, µ1))γ

= 〈K(λ1,µ1)
(z, w)γ,K(λ2,µ2)

(z, w)δ〉.

Therefore, U is an isometry and hence a unitary onto its range. Given λ ∈ D, the
span of

{UK(λ,µj)
γ : µj ∈ Z(pλ), γ ∈ Cα}

is equal to sλ times the span of

{Q(λ, µj)
∗ek : 1 6 j 6 m, 1 6 k 6 α} ⊆ Cmα.

If λ ∈ Λ, then R(λ) has full rank. Thus for such λ, the span of {Q(λ, µ)∗γ :
µ such that (λ, µ) ∈ Γ, γ ∈ Cα} is all of Cmα. Since Λ ⊆ D is cofinite, {sλCmα :
λ ∈ Λ} is dense in H2

Cmα . Since,

{sλCmα : λ ∈ Λ} ⊆ span{sλQ(λ, µ)∗γ : (λ, µ) ∈ V(p), γ ∈ Cα},
the span of {sλQ(λ, µ)∗γ : (λ, µ) ∈ V(p), γ ∈ Cα} is also dense in H2

Cmα , proving
item (iii). Moreover, it proves that U is onto and hence unitary.

Let qk denote the k-th column of Q. Thus qk = Qek. Note that, for any a ∈ N
and 1 6 j 6 mα,

〈U∗zaej(ζ, η), ek〉 = 〈U∗zaej,K(ζ,η)ek〉 = 〈zaej, UK(ζ,η)ek〉

=
mα

∑
i=1
〈zaej, (sζ q∗i (ζ, η)ek)ei〉 = 〈qj(ζ, η)ζa, ek〉 = 〈(zaqj)(ζ, η), ek〉

and hence it follows that U∗zaej = zaqj and Uzaqj = zaej. In particular, {zaqj :
a ∈ N, 1 6 j 6 mα} is an orthonormal basis for H2(K) completing the proof of
item (iv).

To prove item (v), observe that MzU = US on B and then extending to
H2(K), it is true on H2(K) too. It is now evident that S is a pure isometry of mul-
tiplicity mα with wandering subspace {Qγ : γ ∈ Cmα} (the span of the columns
of Q). Likewise for T by symmetry.

PROPOSITION 4.2 ([3]). Suppose Φ is an M × M matrix-valued rational inner
function and the pair (Mz, MΦ) of multiplication operators on H2

CM . If the rank of the
projection I − MΦ M∗Φ is N, then there exists a unitary matrix U of size (M + N) ×
(M + N),

U =
M N(
A B
C D

)
M
N

,
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such that
Φ(z) = A + zB(I − zD)−1C.

PROPOSITION 4.3. If V = (S, T) is a finite bimultiplicity (M, N) pure p-isopair
of rank α, modeled as (Mz, MΦ) on H2

CM , where Φ is an M×M matrix-valued rational
inner function, then M = mα and

(i) there exists an α × mα matrix polynomial Q such that Q(z, w) has full rank at
almost all points of V(p);

(ii) for (z, w) ∈ V(p)
Q(z, w)(Φ(z)− w) = 0;

(iii) there exists an α × nα matrix polynomial P such that P(z, w) has full rank at
almost all points of V(p) and an α-admissible kernel K such that

Q(z, w)Q(ζ, η)∗

1− zζ∗
= K((z, w), (ζ, η)) =

P(z, w)P(ζ, η)∗

1− wη∗
on V(p)×V(p).

REMARK 4.4. The triple (K, P, Q) in Proposition 4.3 is a rank α-admissible
triple.

Proof. Applying Corollary 3.7 to irreducible p gives M = mα. Let Λ denote
the set of λ ∈ D such that pλ has m distinct zeros. By Lemma 2.2 item (vi) Λ is
cofinite. Let

Γ = {(λ, µ) : λ ∈ Λ, µ ∈ Z(pλ)}.
By Proposition 3.4 item (ii), for each (λ, µ) ∈ Γ, the matrix Φ(λ) is diagonalizable
and Φ(λ)− µ has an α dimensional kernel. Now fix (λ0, µ0) ∈ Γ. Hence there
exist unitary matrices Π and Π∗ such that

Π∗(Φ(λ0)− µ0)Π =

(
0α 0
0 A

)
,

where A is (m− 1)α× (m− 1)α and invertible. Let

Σ(z, w) = Π∗(Φ(z)− w)Π.

For (λ, µ) ∈ Γ, the matrix Σ(z, w) has an α dimensional kernel. Write,

Σ(z, w) =

(
E(z)− w G(z)

H(z) L(z)− w

)
,

where E is α× α and L is of size (m− 1)α× (m− 1)α. By construction L(z)− w
is invertible at (λ0, µ0) and the other entries are 0 there. In particular, L(λ)− µ is
invertible for almost all points (λ, µ) ∈ V(p). Moreover, if L(z)− w is invertible,
then

Σ(z, w) =

(
I G(z)
0 L(z)− w

)(
Ψ(z, w) 0

0 I

)(
I 0

(L(z)− w)−1H(z) I

)
,

where
Ψ(z, w) = E(z)− w− G(z)(L(z)− w)−1H(z).
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Thus, on the cofinite subset of V(p) where L(λ)− µ is invertible and Σ(λ, µ) has
an α dimensional kernel, Ψ(λ, µ) = 0 and moreover,(

Iα −G(λ)(L(λ)− µ)−1)Π∗(Φ(λ)− µ) = 0.

Let
Q(z, w) =

(
Iα −G(z)(L(z)− w)−1)Π∗.

It follows that
Q(z, w)(Φ(z)− w) = 0

for almost all points in V(p). After multiplying Q by an appropriate scalar poly-
nomial we obtain an α× mα matrix polynomial Q(z, w) that has full rank at al-
most all points of V(p) and satisfies

Q(z, w)(Φ(z)− w) = 0

for all (z, w) ∈ V(p).
Since T has multiplicity N, the operator MΦ also has multiplicity N and

hence the projection I −MΦ M∗Φ has rank N. By Theorem 4.2, there exists a uni-
tary matrix U of size (M + N)× (M + N),

U =
M N(
A B
C D

)
M
N

,

such that
Φ(z) = A + zB(I − zD)−1C.

Define P by P(z, w) = Q(z, w)B(I − zD)−1 and verify, for (z, w) ∈ V(p),(
Q zP

) (A B
C D

)
=
(
wQ P

)
on V(p).

It follows that, for (ζ, η) ∈ V(p),

Q(z, w)Q(ζ, η)∗ + zζ∗P(z, w)P(ζ, η)∗ = wη∗Q(z, w)Q(ζ, η)∗ + P(z, w)P(ζ, η)∗.

Rearranging gives

Q(z, w)Q(ζ, η)∗

1− zζ∗
= K((z, w), (ζ, η)) =

P(z, w)P(ζ, η)∗

1− wη∗
on V(p)×V(p).

Finally, if (ζ, η) ∈ V(p) is such that Q(ζ, η) has full rank α, then P(ζ, η)P(ζ, η)∗

also has full rank α. Therefore, P(ζ, η) also has full rank α and hence K is a rank
α-admissible kernel.

THEOREM 4.5. If V = (S, T) is a finite bimultiplicity (M, N) pure p-isopair with
rank α, then there exists a rank α-admissible triple (K, P, Q) such that V is unitarily
equivalent to the operators of multiplication by z and w on H2(K).
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Proof. Note that (S, T) is unitarily equivalent to (Mz, MΦ) on H2
CM , where

Φ is an M × M matrix-valued rational inner function. By Proposition 4.3, there
exists a rank α-admissible triple (K, P, Q) such that

(4.1) Q(z, w)(Φ(z)− w) = 0

for all (z, w) ∈ V(p). Define

U : H2
CM → H2(K)

on the span of

B = {sζ Q∗(ζ, η)γ : (ζ, η) ∈ V(p), γ ∈ Cα} ⊆ H2
CM

by
Usζ(z)Q∗(ζ, η)γ = K(ζ,η)(z, w)γ.

For (ζ, η) ∈ V(p) and γj ∈ Cα for 1 6 j 6 2,

〈Usζ1(z)Q
∗(ζ1, η1)γ1, Usζ2(z)Q

∗(ζ2, η2)γ2〉
= 〈K(ζ1,η1)

(z, w)γ1,K(ζ2,η2)
(z, w)γ2〉

= 〈K(ζ1,η1)
(ζ2, η2)γ1, γ2〉

= 〈sζ1(ζ2)Q(ζ2, η2)Q∗(ζ1, η1)γ1, γ2〉
= 〈sζ1(z)Q

∗(ζ1, η1)γ1, sζ2(z)Q
∗(ζ2, η2)γ2〉.

Hence U is an isometry. By Theorem 4.1 item (iii) the span of B is dense in H2
CM .

Moreover, the range of U is dense in H2(K). Thus, U is a unitary. Rewrite (4.1) as

(4.2) w∗Q∗(z, w) = Φ∗(z)Q∗(z, w).

Let M̃z and M̃w be the operators of multipliction by z and w on H2(K),
respectively. For (ζ, η) ∈ V(p) and γ ∈ Cα, using (4.2), observe that

M̃∗wU(sζ(z)Q∗(ζ, η)γ) = M̃∗w(K(ζ,η)(z, w)γ) = ηK(ζ,η)(z, w)γ

= ηU(sζ Q∗(ζ, η)γ) = U(sζ(z)ηQ∗(ζ, η)γ)

= U(sζ(z)Φ(ζ)∗Q∗(ζ, η)γ) = UM∗Φ(sζ(z)Q∗(ζ, η)γ).

Similarly,
M̃∗z U(sζ(z)Q∗(ζ, η)γ) = UM∗z (sζ(z)Q∗(ζ, η)γ).

Therefore, UM∗z = M̃∗z U and UM∗Φ = M̃∗wU on the span of B, and hence on H2
CM .

Thus our original (S, T) is unitarily equivalent to (M̃w, M̃w) on H2(K).

DEFINITION 4.6. If B is a subspace of vector space X , then the codimension
of B in X is the dimension of the quotient space X/B.

LEMMA 4.7. Suppose X is a vector space (over C) and Q and B are subspaces of
X . If Q ⊂ B and Q has finite codimension in X , then Q has finite codimension in B.
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LEMMA 4.8. Suppose K is a Hilbert space and Q ⊂ B ⊂ K are linear subspaces
(thus not necessarily closed) and letQ denote the closure ofQ. IfQ has finite codimension
in B and if B is dense in K, then there exists a finite dimensional subspace D of K such
that K = Q⊕D.

THEOREM 4.9. If K is a rank α admissible kernel function defined on V(p) and
S = Mz, T = Mw are the operators of multiplication by z and w, respectively on H2(K),
then the pair (S, T) is nearly α-cyclic.

Proof. Since K is a rank α admissible kernel, there exist matrix polynomials
Q and P of size α×mα and α× nα respectively, such that

K((z, w), (ζ, η)) =
Q(z, w)Q∗(ζ, η)

1− zζ
=

P(z, w)P∗(ζ, η)

1− wη
, (z, w), (ζ, η) ∈ V(p)

and Q and P have full rank α at some point in V(p). Fix (ζ, η) ∈ V(p) so that
Q(ζ, η) has full rank α. By the definition ofK and Lemma 3.3 of [8],K((z, w), (ζ, η))
has full rank α at almost all points in V(p). Let

Q0 = Q0(z, w) = Q(z, w)Q∗(ζ, η).

Then Q0ej = (1 − Sζ)K(ζ,η)ej. By Theorem 4.1 item (ii), Q0ej, the j-th column
of Q0, is also in H2(K). Letting q̃ = q̃(z, w) to be the determinant of Q0, since
K((z, w), (ζ, η)) has full rank α at almost all points in V(p), q̃ is nonzero except
for finitely many points in V(p). Thus, p and q̃ have only finitely many common
zeros in V(p). By Lemma 2.2 item (iii), p and q are relatively prime. Let I be
the ideal generated by p and q̃. By Proposition 2.1 item (ii), C[z, w]/I is finite
dimensional. Observe that

q̃j = q̃ej = Q0Adj(Q0)ej =
α

∑
k=1

bkjQ0ek ∈ H2(K),

where bkj is the (k, j)-entry of Adj(Q0). If~r is an α × 1 matrix polynomial with
entries rj, then

(4.3) ~rq̃ =
α

∑
j=1

rj Adj(Q0)Q0ej ∈ H2(K).

Since C[z, w]/I is finite dimensional, there is a finite dimensional subspace S ⊆
C[z, w] such that

{rq̃ + sp + t : r, s ∈ C[z, w], t ∈ S } = C[z, w].

Therefore{
~rq̃ +~sp +~t :~r,~s are vector polynomials ,~t ∈

α⊕
1

S
}
=

α⊕
1

C[z, w],

and hence the span Q of {r1q̃1, . . . , rα q̃α : r1, . . . , rα ∈ C[z, w]} is of finite codi-

mension in
α⊕
1
C[z, w].
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Let B =
∨{znQej : n ∈ N, 1 6 j 6 mα} ⊆

∞⊕
1
C[z, w]. By equation (4.3)

Q ⊂ B. By Lemma 4.7, Q has finite codimension in
α⊕
1
C[z, w]. Moreover, B

is dense in H2(K) by Theorem 4.1 item (iv). Hence by Lemma 4.8, the closure
of Q in H2(K) has finite codimension in H2(K). Equivalently, the closure of{ α

∑
j=1

rj(S, T)q̃j : rj ∈ C[z, w]
}

is of finite codimension in H2(K). Thus (S, T) is

α-cyclic on Q and hence at most nearly α-cyclic in H2(K).
Moreover, by Corollary 3.10, (S, T) has rank at most α. For (ζ, η) ∈ V(p)

and for γ ∈ Cα, note that

K(ζ,η)γ ∈ ker(Mz − ζ)∗ ∩ ker(Mw − η)∗.

Hence, if (ζ, η) ∈ V(p) is such that K(ζ,η) has full rank α, then ker(Mz − ζ)∗ ∩
ker(Mw − η)∗ has dimension at least α. Therefore, (S, T) has rank at least α. Thus
(S, T) has rank α. By Corollary 3.10, (S, T) is at least nearly α-cyclic and hence
(S, T) is nearly α-cyclic on H2(K).

PROPOSITION 4.10. If V = (S, T) is a finite bimultiplicity pure p-isopair of rank
α acting on the Hilbert space K, then there exists a finite codimension V invariant sub-
space H of K such that the restriction of V to H is α-cyclic.

For the proof combine Theorems 4.5 and 4.9.

5. DECOMPOSITION OF FINITE RANK ISOPAIRS

PROPOSITION 5.1. Suppose p1, p2 ∈ C[z, w] are relatively prime square free in-
ner toral polynomials, but not necessarily irreducible. If Vj = (Sj, Tj) are β j-cyclic
pj-pure isopairs, then V = V1⊕V2 is a p1 p2-isopair and is at most nearly max{β1, β2}-
cyclic.

Proof. Clearly,

p1 p2(V) = (p1(V1)⊕ p1(V2))(p2(V1)⊕ p2(V2)) = (0⊕ p1(V2))(p2(V1)⊕ 0) = 0.

Let I be the ideal generated by p1 and p2. By Proposition 2.1 item (ii), I has
finite codimension in C[z, w]. Hence there exists a finite dimension subspace R
of C[z, w] such that, for each ψ ∈ C[z, w], there exist s1, s2 ∈ C[z, w] and r ∈ R
such that

ψ = s1 p1 + s2 p2 + r.
Let K denote the Hilbert space that V acts upon. Let β = max{β1, β2} and sup-
pose without loss of generality β1 = β2 = β. For j = 1, 2, choose cyclic sets
Γj = {γj,1, . . . , γj,β} for Vj. (In the case where β1 < β2 we can set Γ1 to be
{γ1,1, . . . , γ1,β1 , 0, 0, . . . , 0}, so that this new Γ1 has β = β2 vectors.) Let K0 =
{ψ1(V1)γ1,k ⊕ ψ2(V2)γ2,k : 1 6 k 6 β, ψj ∈ C[z, w]}. By the hypothesis, K0 is
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dense in K. For given polynomials ψ1, ψ2 ∈ C[z, w], there exist s1, s2 ∈ C[z, w]
and r ∈ R such that

ψ1 − ψ2 = −s1 p1 + s2 p2 + r.

Rearranging gives,
ψ1 + s1 p1 = ψ2 + s2 p2 + r.

Let ϕ = ψ1 + s1 p1. It follows that

ϕ = ψ2 + s2 p2 + r.

Consequently,

ϕ(V)[γ1,k ⊕ γ2,k]= ϕ(V1)γ1,k ⊕ ϕ(V2)γ2,k =ψ1(V1)γ1,k ⊕ (ψ2(V2)γ2,k + r(V2)γ2,k).

Let H0 denote the span of {ϕ(V)[γ1,k ⊕ γ2,k] : 1 6 k 6 β, ψ ∈ C[z, w]} and H be
the closure of H0. Let L denote the span of {0⊕ r(V2)γ2,k : 1 6 k 6 β, r ∈ R}.
Note that L is finite dimensional sinceR is and hence L is closed. Moreover,

K0 = H0 + L.

Hence H0 has finite codimension in K0. By Lemma 4.8, H has finite codimension
in K. Evidently H is V invariant and the restriction of V to H is at most β-cyclic.
Therefore, V is at most nearly β-cyclic.

PROPOSITION 5.2. If Vj = (Sj, Tj) are finite bimultiplicity pure pj-isopairs with
rank αj acting on Hilbert spaces Kj, where pj are irreducible and relatively prime inner

toral polynomials for 1 6 j 6 s, then
s⊕

j=1
Vj is nearly max{α1, α2, . . . , αs}-cyclic on

s⊕
j=1

Kj.

Proof. First suppose s = 2. By Proposition 4.10, each Vj is αj-cyclic on some
finite codimensional invariant subspace Hj of Kj. By Proposition 5.1, V1|H1 ⊕
V2|H2 is at most nearly max{α1, α2}-cyclic on H1 ⊕ H2. Since each Hj has finite
codimension in Kj, it follows that V = V1 ⊕ V2 is at most nearly max{α1, α2}-
cyclic on K1 ⊕ K2. On the other hand, V has rank (α1, α2) and hence, by Corol-
lary 3.10, is at least max{α1, α2}-cyclic. Thus V is nearly max{α1, α2}-cyclic.

Arguing by induction, suppose the result is true for 0 6 j − 1 < s. Thus
V′ = V1⊕ · · ·⊕Vj−1 is nearly β = max{α1, α2, . . . , αj−1}-cyclic on K′ = K1⊕K2⊕
· · · ⊕ Kj−1. Hence there exists a finite codimensional invariant subspace H′ of K′

such that the restriction of V′ to H′ is β-cyclic. Since Vj is a finite bimultiplicity
pj isopair with rank αj, by Proposition 4.10, there exists a finite codimensional
invariant subspace Hj of Kj such that Vj|Hj is αj-cyclic. Note that p1 · · · pj−1 and
pj are relatively prime. Applying Proposition 5.1 to V′|H′ and Vj|Hj , it follows
that V′|H′ ⊕ Vj|Hj is at most nearly γ = max{β, αj}-cyclic on H′ ⊕ Hj. Since H′

and Hj have finite codimension in K′ and Kj respectively, W = V1 ⊕V2 ⊕ · · · ⊕Vj
is at most nearly γ-cyclic on K1 ⊕ K2 ⊕ · · · ⊕ Kj. On the other hand, W has rank
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(α1, . . . , αj) and is therefore at least nearly γ-cyclic by Corollary 3.10. Thus W is
nearly γ = max{α1, . . . , αj}-cyclic.

Proof of Theorem 1.4. By Theorem 2.1 of [2], there exist a finite codimension
subspace H of K that is invariant for V and pure pj-isopairs Vj such that

W = V|H = V1 ⊕V2 ⊕ · · · ⊕Vs.

By Proposition 3.9, W has rank α. Hence Vj has rank αj. By Proposition 5.2, there
is a finite codimension invariant subspace L of H such that the restriction of W to
L is β = max{α1, α2, . . . , αs}-cyclic. Thus L is a finite codimensional subspace of
K such that V|L is β-cyclic. Hence V is at most nearly β-cyclic. By Corollary 3.10,
V is at least nearly β-cyclic. Therefore, V is nearly max{α1, α2, . . . , αs} cyclic.

COROLLARY 5.3. Suppose V = (S, T) is a pure p-isopair of finite bimultiplicity
with minimal polynomial p and write p = p1 p2 · · · ps as a product of distinct irre-
ducible factors. If V has rank α and β = max{α1, . . . , αs}, then

(i) there exists a finite codimension invariant subspace H for V such that the restric-
tion of V to H is β-cyclic;

(ii) V is not k-cyclic for any k < β; and
(iii) there exists a β-cyclic pure p-isopair V′ and an invariant subspace K for V′ such

that V is the restriction of V′ to K.

Proof. Proofs of items (i) and (ii) follow from Theorem 1.4 and the definition
of nearly k-cyclic isopairs. The proof of item (iii) is an application of item (i) and
Corollary 3.3.

5.1. EXAMPLE. In this section we discuss an example of pure p-isopairs of finite
rank to illustrate the connection of the rank of a pure p-isopair to nearly cyclicity
and to the representation as direct sums.

Consider the irreducible, square free inner toral polynomial, p = z3 − w2.
The distinguished variety, V , defines by p is called Neil parabola [8]. The triple
(K1, Q1, P1) given by

Q1(z, w) =
(
1 w

)
, P1(z, w) =

(
1 z z2)

and the corresponding kernel function

1 + wη

1− zζ
= K1((z, w), (ζ, η)) =

1 + zζ + z2ζ
2

1− wη
,

is a 1-admissible triple. Likewise for the choice of

Q2(z, w) =
(
z w

)
, P2(z, w) =

(
w z z2)

and the corresponding kernel function

zζ + wη

1− zζ
= K2((z, w), (ζ, η)) =

wη + zζ + z2ζ
2

1− wη
,
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the triple (K2, Q2, P2) is also a 1-admissible triple. For j = 1, 2, let Vj be the pair
(Mz, Mw) defined on H2(Kj). Now each Vj is a pure p-isopair or rank 1 and each
Vj is nearly 1-cyclic.

Let Q = Q1 ⊕ Q2, P = P1 ⊕ P2 and K = K1 ⊕K2. Observe that the triple
(K, Q, P) is a 2-admissible triple and V = (Mz, Mw) defined on H2(K) is a pure
p-isopair and nearly 2-cyclic. In fact V is a pure p-isopair of rank 2 that can be
written as a direct sum of two pure p-isopairs, V1 and V2.

However this is not true in general. In other words, there exist pure p-
isopairs of finite rank (say α ∈ N), that cannot be expressed as a direct sum of α
number of pure p-isopairs. For instance, let

H′ = { f ∈ H2(K) : 〈 f , (1 − z)>〉 = 0}

and V′ = V|H′ . Observe that H′ is a finite codimensional subspace of H2(K)
and H′ is invariant under V. By the stability of the rank V′ has rank 2 and hence
nearly 2-cyclic.

Moreover, the collection of vectors of the form:(
1/
√

2
z/
√

2

)
,
(

zn

0

)
n>1

,
(

wzn

0

)
n>0

,
(

0
zn

)
n>2

,
(

0
wzn

)
n>0

,

forms an orthonormal basis for H′. Hence the reproducing kernel , K̃, for H′ has
the form

K̃((z, w), (ζ, η)) =


1
2
+

zζ + wη

1− zζ

ζ

2
z
2

zζ
(1

2
+

zζ + wη

1− zζ

)
 .

Since K̃((z, w), (0, 0)) is not diagonalizable, K̃ is not diagonalizable. Consequently,
H′ and V′ are not direct sums. In otherwords, V′ is a pure p-isopair of rank 2 that
cannot be expressed as a direct sum of two other pure p-isopairs.
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