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ABSTRACT. We show that for two countable locally finite groups Γ and Λ,
the associated uniform Roe algebras C∗u(Γ) and C∗u(Λ) are ∗-isomorphic if and
only if their K0 groups are isomorphic as ordered abelian groups with units.
Along the way we obtain a rigidity result: two countable locally finite groups
are bijectively coarsely equivalent if and only if the associated uniform Roe
algebras are ∗-isomorphic. We also show that a (not necessarily countable)
discrete group Γ is locally finite if and only if the associated uniform Roe al-
gebra `∞(Γ)or Γ is locally finite-dimensional.

KEYWORDS: Uniform Roe algebras, classification of C∗-algebras, coarse geometry.

MSC (2010): 46L35.

1. INTRODUCTION

Given a countable discrete group Γ, one can always equip Γ with a proper
left-invariant metric d and such metric d is unique up to bijective coarse equiva-
lence (see Lemma 2.1 of [26]). In this way one obtains a canonical metric space
structure (Γ, d) on the group. To the metric space (Γ, d) one can associate a C∗-
algebra C∗u(Γ), called the uniform Roe algebra, which encodes many large-scale
properties of the group Γ. For instance, C∗u(Γ) is nuclear if and only if the metric
space (Γ, d) has Yu’s property A if and only if the group Γ is exact (see [12], [18]).
For amenability, it is shown in [21] that C∗u(Γ) is a properly infinite C∗-algebra if
and only if Γ is non-amenable (more characterizations of proper infiniteness of
uniform Roe algebras will be contained in [1]; see also Theorem 4.2 of [17]). An-
other result along the same line is the work of Kellerhals, Monod, and Rørdam
on supramenability in [13]. They showed that Γ is supramenable if and only if
C∗u(Γ) contains no properly infinite projection.

More recently, Scarparo proved in [22] that the group Γ is locally finite if
and only if the uniform Roe algebra C∗u(Γ) is a finite C∗-algebra. By definition,
a group is called locally finite if all of its finitely generated subgroups are finite.
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For a countable discrete group Γ, a result of Smith asserts that local finiteness
corresponds precisely to having asymptotic dimension zero (see Theorem 2 of
[24]). In this case, it follows from the work of Winter and Zacharias on nuclear di-
mension of C∗-algebras in [29] that its uniform Roe algebra C∗u(Γ) is locally finite-
dimensional (or local AF), in the sense that given any finite subset F of C∗u(Γ) there
is a finite-dimensional C∗-subalgebra of C∗u(Γ) which almost contains F . In view
of the classical Glimm–Elliott classification of UHF and (local) AF-algebra ([10],
[11]) using K-theory, one may ask whether K-theory carries useful information of
the C∗-algebra C∗u(Γ) when it is locally finite-dimensional. In this paper we ex-
plicitly compute the K-theory of uniform Roe algebras C∗u(Γ) of countable locally
finite groups, and show that in fact in this case K-theory is a complete invariant.
Moreover, the K-theory completely encodes geometric information of the under-
lying metric spaces. The following theorem is the main result of this paper.

THEOREM 1.1 (Theorem 4.10). Let Γ and Λ be countable locally finite groups
with proper left-invariant metrics dΓ and dΛ, respectively. Then the following are equiv-
alent:

(i) (Γ, dΓ) and (Λ, dΛ) are bijectively coarsely equivalent;
(ii) there is a ∗-isomorphism ϕ : C∗u(Γ)→ C∗u(Λ) such that ϕ(`∞(Γ)) = `∞(Λ);

(iii) C∗u(Γ) and C∗u(Λ) are ∗-isomorphic;
(iv) (K0(C∗u(Γ)), K0(C∗u(Γ))+, [1]0) ∼= (K0(C∗u(Λ)), K0(C∗u(Λ))+, [1]0);
(v) (K0(C∗u(Γ)), [1]0) ∼= (K0(C∗u(Λ)), [1]0).

It is already known that (i) and (ii) are equivalent for all countable discrete
groups (see Remark 4.11). Note that the implication (iii) ⇒ (i) reveals a rigidity
phenomenon. More precisely, given a countable locally finite group Γ and any
countable discrete group Λ, if we know C∗u(Γ) and C∗u(Λ) are ∗-isomorphic, then
Λ must be bijectively coarsely equivalent to Γ (in particular, Λ must be locally
finite). This type of rigidity result has been studied by Šparkula and Willett in
[25], where they showed, among other things, that the implication (iii)⇒ (i) holds
for the class of non-amenable exact countable groups (see Remark 4.12 for more
details). Theorem 1.1 provides the same kind of rigidity result for a small class of
amenable groups.

In addition to the study of K-theory, we are also interested in C∗-algebraic
characterizations of locally finite groups in terms of their uniform Roe algebras.
It is well-known that for a countable group Γ, the uniform Roe algebra C∗u(Γ)
is ∗-isomorphic to the reduced crossed product C∗-algebra `∞(Γ)or Γ, where Γ
acts on `∞(Γ) by right-translations (see e.g. Proposition 5.1.3 of [7]). Motivated
by the above-mentioned result of Winter–Zacharias, we provide the following
proposition.

PROPOSITION 1.2 (Proposition 5.2). Let Γ be a locally finite discrete (not neces-
sarily countable) group. Then the reduced crossed product `∞(Γ)or Γ is locally finite-
dimensional.
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Combining this proposition with the result of Scarparo on finiteness of uni-
form Roe algebras in [22], we obtain the following list of characterizations.

COROLLARY 1.3 (Corollary 5.4). Let Γ be a discrete group. Then the following
are equivalent:

(i) `∞(Γ)or Γ is locally finite-dimensional;
(ii) `∞(Γ)or Γ is quasidiagonal;

(iii) `∞(Γ)or Γ has stable rank one;
(iv) `∞(Γ)or Γ has cancellation;
(v) `∞(Γ)or Γ is stably finite;

(vi) `∞(Γ)or Γ is finite;
(vii) Γ is locally finite.

We should mention that the analogous result stated in Corollary 1.3 does
not hold for general metric spaces (see Remark 5.5).

Let us briefly describe how this piece is organized. In Section 2 we recall
some basic definitions and results from coarse geometry, and establish our nota-
tions. In particular, we discuss the notion of large-scale connected components,
which plays a crucial role in our study later on. In Section 3 we focus on the class
of locally finite countable groups and explore the connection between their large-
scale geometric properties and group-theoretic properties. In particular, the bi-
jective coarse equivalence class of a countable locally finite group Γ is completely
determined by the cardinality of Sylow subgroups of Γ. In Section 4 we compute
the K-theory of uniform Roe algebras built from countable locally finite groups
and prove our main theorem. This is done by making use of the inductive limit
decomposition of the uniform Roe algebra and a detailed study of the connecting
maps. The last section is devoted to various equivalent C∗-algebraic properties of
uniform Roe algebras of (not necessarily countable) locally finite discrete groups.

2. PRELIMINARIES

In this section we review some basic definitions and constructions from
coarse geometry and the associated C∗-algebras. Let (X, dX) and (Y, dY) be metric
spaces. A map f : X → Y is called bornologous (or uniformly expansive) if for every
R > 0 there exists S > 0 such that dX(x, x′) 6 R implies dY( f (x), f (x′)) 6 S.
Two maps f , f ′ : X → Y are said to be close if the function x 7→ dY( f (x), f ′(x))
is bounded on X. A bornologous map f : X → Y is called a coarse equivalence if
there exists a bornologous map g : Y → X such that f ◦ g is close to idY and g ◦ f
is close to idX .

DEFINITION 2.1. Let (X, dX) and (Y, dY) be metric spaces. We say a map
f : X → Y is a bijective coarse equivalence if f is both a coarse equivalence and a
bijection. In this case we say X and Y are bijectively coarsely equivalent.
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A metric space (X, d) is said to have bounded geometry if for every r > 0, the
function x 7→ |B(x, r)| is bounded on X, where B(x, r) = {x′ ∈ X : d(x, x′) 6
r} denotes the ball with center x and radius r. A metric space with bounded
geometry is necessarily discrete and countable.

DEFINITION 2.2. Let (X, d) be a metric space with bounded geometry. An
operator T in B(`2(X)) is said to have finite propagation if there exists R > 0 such
that 〈Tδx′ , δx〉 = 0 whenever d(x, x′) > R.

Let Cu[X] be the ∗-subalgebra of all operators in B(`2(X)) with finite prop-
agation. The norm completion of Cu[X] in B(`2(X)) is called the uniform Roe
algebra of (X, d), which is denoted C∗u(X).

Note that for a metric space (X, d), the uniform Roe algebra C∗u(X) contains
all compact operators on the Hilbert space `2(X). Moreover, it contains `∞(X) as
diagonal matrices. Therefore, C∗u(X) is non-simple and non-separable for every
infinite metric space X.

It is well-known that the uniform Roe algebra is invariant under bijective
coarse equivalence. We state the following proposition and give a proof mainly
for the reader’s convenience.

PROPOSITION 2.3 ([6], Proof of Theorem 4). Let (X, dX) and (Y, dY) be metric
spaces with bounded geometry. If X and Y are bijectively coarsely equivalent, then there
is a ∗-isomorphism ϕ : C∗u(X) → C∗u(Y) such that ϕ(`∞(X)) = `∞(Y). In particular,
C∗u(X) and C∗u(Y) are ∗-isomorphic.

Proof. Let f : X → Y be a bijective coarse equivalence. Then there is a
unitary u : `2(X)→ `2(Y) satisfying uδx = δ f (x) for all x ∈ X. Define

ϕ : B(`2(X))→ B(`2(Y)), ϕ(T) = uTu∗.

We show that ϕ maps C∗u(X) into C∗u(Y). First note that for all x1, x2 in X, we have

〈ϕ(T)δ f (x2)
, δ f (x1)

〉 = 〈uTu∗(δ f (x2)
), δ f (x1)

〉 = 〈Tδx2 , δx1〉.

Let T be an operator in B(`2(X)) of finite propagation, say 〈Tδx′ , δx〉 = 0 when-
ever d(x′, x) > R. Since f is bornologous, there exists S > 0 such that whenever
d(x1, x2) 6 R we have dY( f (x1), f (x2)) 6 S. Then it is clear from the above cal-
culation that ϕ(T) has finite propagation. Since ϕ is bounded, it actually maps
the entire C∗u(X) into C∗u(Y).

By the same reasoning the map ψ : T 7→ u∗Tu maps C∗u(Y) into C∗u(X). It is
clear ψ is the inverse of ϕ, and hence ϕ is an isomorphism. Moreover, it is readily
seen from the definition that ϕ maps `∞(X) onto `∞(Y).

Below we recall the notion of large-scale connectedness. This will become
important later as it allows us to decompose the uniform Roe algebra of locally
finite groups into an inductive limit, which in turn facilitates the computation of
the K-theory.
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DEFINITION 2.4. Let (X, d) be a metric space and R > 0. Two elements x
and y in X are called R-connected if there exists a finite sequence x0, x1, . . . , xn in
X such that x = x0, y = xn, and d(xi, xi+1) 6 R for all i = 0, 1, . . . , n− 1.

This is easily seen to be an equivalence relation on X, and the equivalence
classes are called the R-connected components of X. For convenience we also talk
about the 0-connected components of X, which are nothing but the points in X.
The next lemma says that a bijective coarse equivalence behaves well in terms of
large-scale connected components.

LEMMA 2.5. Let f : (X, dX)→ (Y, dY) be a bijective coarse equivalence between
metric spaces. Let R > 0 and X =

⊔
i∈IR

XR,i be the decomposition of X into R-connected

components. Then there exists S > 0 such that each f (XR,i) is contained in some S-
connected component of Y.

Moreover, each S-connected component YS,j of Y is a disjoint union
⊔

i∈IR,j

f (XR,i)

for some subset IR,j of IR.

Proof. The first statement follows from the definition and the fact that f is
bornologous. For the second statement, let y be a point in YS,j. Since f is surjec-
tive, there is an R-connected component XR,i of X such that f (XR,i) contains y.
By the first statement f (XR,i) is entirely contained in YS,j. Note that the union is
disjoint because f is injective.

In this paper we are mainly interested in spaces (in fact, groups) with zero
dimension in the coarse sense. The following definition is slightly non-standard,
but is readily seen to be equivalent to the usual one.

DEFINITION 2.6. Let (X, d) be a metric space. We say X has asymptotic di-
mension zero if for every R > 0, there is a uniform bound on the diameters of the
R-connected components of X.

Note that when (X, d) has bounded geometry, having asymptotic dimen-
sion zero is equivalent to having a uniform bound on the cardinalities of the R-
connected components of X.

3. LOCALLY FINITE GROUPS AND SUPERNATURAL NUMBERS

Starting this section we will mainly focus on locally finite groups. As we
will see, this is precisely the class of groups which have asymptotic dimension
zero.

DEFINITION 3.1. A group G is called locally finite if every finitely generated
subgroup of G is finite.
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The following (easy) characterization of local finiteness will become handy
later.

LEMMA 3.2. Let Γ be a countable group. Then Γ is locally finite if and only if
there exists an increasing sequence

{e} =: Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · · ⊆ Γ

of finite subgroups of Γ such that Γ =
∞⋃

n=0
Γn.

EXAMPLE 3.3. Here we list some examples of locally finite groups.
(i) Every finite group is clearly locally finite.

(ii) Every infinite direct sum of finite groups, such as
⊕
N
Z/2Z, is locally finite.

(iii) S∞, the direct limit of all finite permutation groups, is locally finite.
(iv) Q/Z is locally finite.

Recall that a metric d on a discrete group Γ is called proper if any closed
bounded subset of Γ is finite, and d is left-invariant if d(s, t) = d(gs, gt) for all
g, s, t in Γ. Every countable discrete group Γ can be equipped with a proper left-
invariant metric d in the following way: let

{e} =: F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Γ

be an increasing sequence of finite symmetric subsets of Γ such that Γ =
∞⋃

n=0
Fn

and FnFm ⊆ Fn+m for every n, m ∈ N. Define d : Γ× Γ → R by

d(g, h) := min{n ∈ N : g−1h ∈ Fn} (g, h ∈ Γ).

It is routine to check that d is a proper left-invariant metric on Γ.

PROPOSITION 3.4 ([26], Lemma 2.1). Let Γ be a countable discrete group with
proper left-invariant metrics d1 and d2. Then the identity map

id : (Γ, d1)→ (Γ, d2)

is a (bijective) coarse equivalence.
As a consequence, there is a unique proper left-invariant metric on Γ up to bijective

coarse equivalence.

Now let Γ be a countable locally finite group. By Lemma 3.2 there is an
increasing sequence of finite subgroups

{e} =: Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · · ⊆ Γ

such that Γ =
∞⋃

n=0
Γn. As we saw in the previous paragraph, this sequence gives

rise to a proper left-invariant metric d on Γ. In this case we have a very simple
description of the n-connected components.
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LEMMA 3.5. Let (Γ, {Γn}∞
n=0, d) be as above. Then the n-connected components

(n = 0, 1, 2, . . .) are exactly the left cosets of Γn.

Proof. Observe that d(g, h) 6 n if and only if g and h are in the same left
coset of Γn. The result then follows.

With this observation it is clear that countable locally finite groups have
asymptotic dimension zero. In fact the converse is also true, as shown in the
following theorem of Smith.

THEOREM 3.6 ([24], Theorem 2). Let Γ be a countable group with any proper
left-invariant metric d. Then the following are equivalent:

(i) Γ is locally finite;
(ii) (Γ, d) has asymptotic dimension zero.

Our next goal is to undertand a result of I.V. Protasov (see Theorem 3.10).
Roughly speaking, the result says that the bijective coarse equivalence class of
a countable locally finite group Γ is determined by the cardinality of the Sylow
subgroups of Γ. This result was originally stated in terms of what is called “ball’s
structure”. The aim here is to rephrase it in our language, and for the reader’s
convenience we also give a short proof of the theorem.

Let Γ be a countable locally finite group. Let {p1, p2, . . .} be the set of all
prime numbers listed in increasing order. For each j ∈ N define

nj := sup{m ∈ N : pm
j divides |F| for some finite subgroup F of Γ}.

Then the sequence {nj}∞
j=1 is the so-called supernatural number, which we denote

by s(Γ). We usually think of a supernatural number {nj}∞
j=1 as a formal product

pn1
1 pn2

2 · · · . Therefore for each prime number pj in the list, we say pm
j divides

s(Γ) = {nj}∞
j=1 if m 6 nj. Two supernatural numbers are equal if they are equal

as sequences.

EXAMPLE 3.7. We give some examples of locally finite groups with their
supernatural numbers.

(i) For any prime number p, we have s
(⊕
N
Z/pZ

)
= p∞.

(ii) Since the cardinality of the permutation group Sn of n elements is equal to
n!, we see that s(S∞) = 2∞3∞5∞ · · · .

(iii) Given any prime number p and natural number k, the subgroup of Q/Z
generated by 1/pk is isomorphic to Z/pkZ. Therefore we have s(Q/Z) =
2∞3∞5∞ · · · .

PROPOSITION 3.8. Let Γ and Λ be two countable locally finite groups equipped
with proper left-invariant metrics dΓ and dΛ, respectively. Suppose there is a bijective
coarse equivalence f : Γ → Λ. Then for every finite subgroup F of Γ there is a finite
subgroup E of Λ such that |F| divides |E|.
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Proof. We may assume that the metric dΓ comes from an increasing sequence

{Γn}∞
n=0 of finite subgroups such that

∞⋃
n=0

Γn = Γ, and similarly dΛ comes from

an increasing sequence {Λn}∞
n=0 of finite subgroups such that

∞⋃
n=0

Λn = Λ. Given

a finite subgroup F of Γ, there is some n ∈ N such that F is contained in Γn. Re-
call that the n-connected components of Γ are exactly the left cosets of Γn. By
Lemma 2.5, f (Γn) is contained in an m-connected component of Λ for some m,
which is a left coset of Λm. Moreover this left coset of Λm is a disjoint union of the
images of some left cosets of Γn. Therefore |Γn| (and hence |F|) divides |Λm|.

COROLLARY 3.9. Let Γ and Λ be two countable locally finite groups equipped
with proper left-invariant metrics dΓ and dΛ, respectively. If (Γ, dΓ) and (Λ, dΛ) are
bijectively coarsely equivalent, then s(Γ) = s(Λ).

We have seen that the supernatural number of a countable locally finite
group is an invariant under bijective coarse equivalence. The next theorem as-
serts that it is actually a complete invariant. For those who are familiar with the
theory of UHF algebras, this result strongly resembles Glimm’s classification the-
orem of UHF algebras.

THEOREM 3.10 ([19], Theorem 5 or [5], Theorem 5.7). Let Γ and Λ be two
countable locally finite groups with proper left-invariant metrics dΓ and dΛ, respectively.
Then the following are equivalent:

(i) (Γ, dΓ) and (Λ, dΛ) are bijectively coarsely equivalent;
(ii) Γ and Λ have the same supernatural number, i.e., s(Γ) = s(Λ).

In particular, there are uncountably many bijective coarse equivalence classes of
countable locally finite groups.

Proof. It remains to prove that (ii) implies (i). As before we may assume that
the metric dΓ comes from an increasing sequence

{eΓ} = Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · · ⊆ Γ

of subgroups of Γ and similarly dΛ comes from

{eΛ} = Λ0 ⊆ Λ1 ⊆ Λ2 ⊆ · · · ⊆ Λ.

For convenience we may also assume without losing generality that
(a) |Γk| divides |Λk| and |Λk| divides |Γk+1| for all k ∈ N, and
(b) |Γk| 6= |Λk| and |Λk| 6= |Γk+1| for all k ∈ N.

We will construct, inductively, maps ϕk : Γk → Λk and ψk : Λk → Γk+1 for
k = 0, 1, 2, . . . such that

(1) ϕk ≡ ϕk+1 on Γk for each k = 0, 1, 2, . . .;
(2) ψk ≡ ψk+1 on Λk for each k = 0, 1, 2, . . .;
(3) ψk ◦ ϕk(x) = x for all k ∈ N and all x ∈ Γk;
(4) ϕk+1 ◦ ψk(y) = y for all k ∈ N and all y ∈ Λk;
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(5) given any ` 6 k and x1, x2 in Γk such that x1 and x2 belong to the same left
coset of Γ̀ in Γk, the images ϕk(x1) and ϕk(x2) belong to the same left coset of Λ`

in Λk;
(6) given any ` 6 k and y1, y2 in Λk such that y1 and y2 belong to the same left

coset of Λ` in Λk, the images ψk(y1) and ψk(y2) belong to the same left coset of
Γ̀ +1 in Γk+1.

Once these maps are constructed, we define

ϕ : Γ → Λ, ϕ(x) := ϕk(x) (x ∈ Γk)

and similarly

ψ : Λ→ Γ, ψ(y) := ψk(y) (y ∈ Λk).

By (1) and (2) these two maps are well-defined. The map ϕ is bijective because
of (3) and (4) (and ψ is precisely the inverse of ϕ), and from (5) and (6) one easily
checks that ϕ is a coarse equivalence.

It remains to construct the maps {ϕk}∞
k=0 and {ψk}∞

k=0. Define ϕ0 : Γ0 → Λ0
by ϕ0(eΓ) = eΛ and ψ0 : Λ0 → Γ1 by ψ0(eΛ) = eΓ. Now suppose we have
constructed the maps ϕ0, ϕ1, . . . , ϕk−1 and ψ0, ψ1, . . . , ψk−1. We need to define
ϕk and ψk. Since |Λk−1| divides |Γk|, we have |Γk| = m|Λk−1| for some m ∈
N. Choose m distinct left cosets of Λk−1 in Λk, say s0Λk−1, s1Λk−1, . . . , sm−1Λk−1
(s0, s1, . . . , sm−1 ∈ Λk), with one of them being the subgroup Λk−1 itself. Then
there exists a map

ϕk : Γk → Λk

such that
(•) ϕk agrees with ϕk−1 on Γk−1, and

(•) ϕk maps Γk bijectively onto the union
m−1⊔
j=0

sjΛk−1 in the way that condi-

tion (5) holds (this is possible because of the divisibility assumption among the
subgroups Γ̀ and Λ`).

This completes the construction of ϕk. Now ψk is defined in a completely
analogous way.

REMARK 3.11. In contrast to Theorem 3.10, Banakh and Zarichnyi showed
in Corollary 8 of [2] that all countably infinite locally finite groups are coarsely
equivalent.

4. THE K-THEORY AND CLASSIFICATION

In this section we prove our main theorem (Theorem 1.1). We begin by
computing the K0-group of an infinite product of matrix algebras. This result is
well-known to experts, and a proof is included only for the reader’s convenience.
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PROPOSITION 4.1. Suppose {si}∞
i=1 is a bounded sequence of positive integers.

Let A =
∞
∏
i=1

Msi (C). Then

(K0(A), K0(A)+, [1A]0) ∼= (`∞(N,Z), `∞(N,Z)+, {si}∞
i=1),

where `∞(N,Z)+ is the set of all positive sequences in `∞(N,Z).

Proof. For any matrix algebra Mn(C) we write Tr for the non-normalized
trace on Mn(C). Let Pn(A) be the set of projections in Mn(A) and write P∞(A) =

∞⋃
n=1

Pn(A). Consider the map

P∞(A)→ ZN, p 7→ {Tr(pi)}∞
i=1,

where p = (p1, p2, . . .) is a projection in Mn(A) ∼=
∞
∏
i=1

Mnsi (C). This induces a

well-defined group homomorphism

Tr∗ : K0(A)→ ZN

which satisfies the formula

Tr∗([p]0) = {Tr(pi)}∞
i=1.

Since the sequence {si}∞
i=1 is bounded, the image of Tr∗ is contained in the sub-

group `∞(N,Z) of ZN. We would like to show that Tr∗ is an isomorphism onto
`∞(N,Z).

First of all, if Tr∗([p]0 − [q]0) = 0 for some projections p, q in Mn(A), then
Tr(pi) = Tr(qi) for all i = 1, 2, . . .. Therefore pi is Murray–von Neumann equiva-
lent to qi in Mnsi (C) for each i = 1, 2, . . .. It follows that p and q are Murray–von
Neumann equivalent in Mn(A) and hence Tr∗ is injective.

As for surjectivity, it suffices to show that the image of Tr∗ contains the pos-
itive cone `∞(N,Z)+. Suppose we are given a sequence {ri}∞

i=1 in `∞(N,Z)+
which is bounded by N ∈ N. Let p = {pi} be a projection in MN(A) such that
each pi has rank ri. Then clearly we have Tr∗([p]0) = {ri}∞

i=1. Hence Tr∗ is sur-
jective.

Note that the previous paragraph also shows that Tr∗ maps the positive
cone K0(A)+ onto `∞(N,Z)+. Finally it is clear from the definition that Tr∗ maps
the class [1A]0 to the sequence {si}∞

i=1.

Let us return briefly to general metric spaces. For the following discus-
sion we assume the metric space (X, d) has bounded geometry and asymptotic
dimension zero. For each R > 0 let X =

⊔
i∈IR

XR,i be the decomposition of X

into R-connected components. Suppose 0 < R < R′. Since each R′-connected
component is a disjoint union of R-connected components, there is a canonical
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embedding
ϕR,R′ : ∏

i∈IR

B(`2(XR,i))→ ∏
i∈IR′

B(`2(XR′ ,i)).

as block-diagonal matrices. Moreover, since X has asymptotic dimension zero,
for each R > 0 there is a natural inclusion

µR : ∏
i∈IR

B(`2(XR,i))→ C∗u(X)

(again as block-diagonal matrices) such that the following diagram

∏
i∈IR

B(`2(XR,i)) ∏
i∈IR′

B(`2(XR′ ,i))

C∗u(X)

ϕR,R′

µR′µR

commutes for all R′ > R.
Recall that we also talk about the 0-connected components, i.e., the points

of X. The corresponding algebra is then ∏
i∈I0

B(`2(X0,i)) ∼= ∏
x∈X

C. There are also

natural embeddings of ∏
x∈X

C into ∏
i∈IR

B(`2(XR,i)) and C∗u(X) as before.

PROPOSITION 4.2. Let (X, d) be a metric space with bounded geometry. If (X, d)
has asymptotic dimension zero, then

C∗u(X) ∼= lim−→
(

∏
i∈In

B(`2(Xn,i)), ϕn

)
(n = 0, 1, 2, . . .),

where ϕn := ϕn,n+1.

Proof. It suffices to check that the union
∞⋃

n=0
µn

(
∏

i∈In

B(`2(Xn,i))
)

contains

all operators in C∗u(X) of finite propagation. Suppose T is an operator on `2(X)
which has finite propagation. Then by definition there exists S > 0 such that
〈Tδy, δx〉 = 0 whenever d(x, y) > S. This implies that T belongs to (the image of)
∏

i∈In

B(`2(Xn,i)) for any positive integer n larger than S.

In order to write down the connecting maps more concretely, we will show
that every metric space with asymptotic dimension zero is bijectively coarsely
equivalent to a subspace of Z>0, which we equip with the standard metric (see
Proposition 4.4). Since Z>0 has a natural order, this allows us to express the con-
necting maps in very simple terms (see Proposition 4.5).

LEMMA 4.3. Let (X, d) be a metric space with bounded geometry which has as-
ymptotic dimension zero. Fix x0 in X and write Xn for the n-connected component of X
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which contains x0. Then for every n ∈ Z>0, there exists a (finite) subset Yn of Z>0 and a
bijection fn : Xn → Yn such that fn(x0) = 0 and fn maps any k-connected component
of Xn onto a k-connected component of Yn (here k 6 n).

Moreover, given a bijection fn : Xn → Yn as above, one can always choose Yn+1
and fn+1 : Xn+1 → Yn+1 in a way that fn+1 ≡ fn on Xn and Yn is an n-connected
component of Yn+1.

Proof. We prove the lemma by induction on n. For n = 0, define Y0 := {0}
and let f0 be the only possible map. Now assume the statement is true for n =

0, 1, 2, . . . , m− 1. Let Xm =
N⊔

i=0
Xm−1,i be the decomposition of Xm into (m− 1)-

connected components of Xm (these are also (m− 1)-connected components of X)
Note that since X has asymptotic dimension zero, Xm is finite and hence admits
a finite decomposition. For each i = 0, 1, . . . , N choose an element zi in Xm−1,i.
Without losing generality we may assume that Xm−1,1 = Xm−1 and z1 = x0. By
the induction hypothesis we can find a subset Ym−1,1 of Z>0 and a bijection g1 :
Xm−1,1 → Ym−1,1 such that g1(z1) = 0 and g1 maps any k-connected component
of Xm−1,1 onto a k-connected component of Ym−1,1 (here k 6 m− 1).

Let y1 := max{p ∈ Z>0 : p ∈ Ym−1,1}. In other words, let y1 be the
“right-most” point in Ym−1,1. Using the induction hypothesis again, we find a
subset Ym−1,2 of Z>0 \ {0, 1, . . . , y1 + m− 1} and a bijection g2 : Xm−1,2 → Ym−1,2
such that g2(z2) = y1 + m and g2 satisfies the condition of mapping smaller
connected components to connected components. Let y2 := max{p ∈ Z>0 :
p ∈ Ym−1,2} and proceed to define Ym−1,3, . . . , Ym−1,N and g3, . . . , gN in the same

way. Now take Ym :=
N⋃

i=1
Ym,i and define fm : Xm → Ym by pasting the maps

g1, g2, . . . , gN . It remains to observe that Ym is m-connected by construction.
The second statement follows from the construction.

PROPOSITION 4.4. Let (X, d) be a metric space with bounded geometry which has
asymptotic dimension zero. Then X is bijectively coarsely equivalent to a subset of Z>0
with respect to the standard metric.

Proof. Fix x0 in X. For each n ∈ Z>0 write Xn for the n-connected compo-
nent of X which contains x0. Then we have an increasing sequence

{x0} = X0 ⊆ X1 ⊆ · · · ⊆ X

such that X =
∞⋃

n=0
Xn. Using the previous lemma one inductively constructs a

sequence {Yn} of subsets of Z>0 and a sequence of bijections { fn : Xn → Yn}
such that

(i) fn+1 ≡ fn on Xn,
(ii) Yn is an n-connected component of Yn+1, and
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(iii) fn maps any k-connected component of Xn onto a k-connected component
of Yn (k 6 n).

Define

Y :=
∞⋃

n=0
Yn and f : X → Y, f (x) := fn(x) (x ∈ Xn).

By condition (i) the map f is well-defined. Since each fn is a bijection, so is f . It
is easy to check, using condition (iii) and the fact that X (and Y) have asymptotic
dimension zero, that f is a coarse equivalence.

PROPOSITION 4.5. Let Γ be a countable locally finite group and consider the triple
(Γ, {Γn}∞

n=0, d) be as in Lemma 3.5. For each n = 0, 1, 2, . . ., define kn = |Γn| and
rn = kn+1/kn. Then

C∗u(Γ) ∼= lim−→
( ∞

∏
i=1

Mkn(C), ϕn

)
,

where

ϕn(T1, T2, . . .) = (diag(T1, . . . , Trn), diag(Trn+1, . . . , T2rn), . . .).

Proof. We saw in Theorem 3.6 that locally finite groups have asymptotic di-
mension zero. Now the result follows from Proposition 4.4 and Proposition 4.2.

From Proposition 4.5 and Proposition 4.1 we see that the ordered K0-group
of C∗u(Γ) is a (sequential) inductive limit of `∞(N,Z). It is not hard to see that
each connecting map ϕn (n = 0, 1, 2, . . .) induces the following map at the level of
K0-groups:

αn : `∞(N,Z)→ `∞(N,Z),
αn((m1, m2, . . .)) = (m1 + · · ·+ mrn , mrn+1 + · · ·+ m2rn , . . .).

Since (`∞(N,Z), `∞(N,Z)+) is an ordered abelian group, we have by continuity
of the K0 functor

(K0(C∗u(Γ)), K0(C∗u(Γ))+) ∼= lim−→(`∞(N,Z), `∞(N,Z)+, αn).

To describe the inductive limit more explicitly, define

H(n)
Γ :=

{
(m1, m2, . . .) ∈ `∞(N,Z) :

(j+1)kn

∑
i=jkn+1

mi = 0 for all j = 0, 1, 2, . . .
}

and HΓ :=
∞⋃

n=0
H(n)

Γ (note that {H(n)
Γ }∞

n=0 is an increasing sequence of subgroups

of `∞(N,Z) since kn divides kn+1).

PROPOSITION 4.6. Let αn and HΓ be as above. Then

lim−→(`∞(N,Z), `∞(N,Z)+, αn) ∼= (`∞(N,Z)/HΓ, `∞(N,Z)+/HΓ),
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where `∞(N,Z)+/HΓ is the collection of all elements in `∞(N,Z)/HΓ which can be
represented by positive sequences.

Proof. First let us recall the standard construction of the inductive limit of
ordered abelian groups. Given an inductive system {Gn, G+

n , αn}∞
n=0 of ordered

abelian groups, let νk : Gk →
∞
∏

n=0
Gn be the map

νn(g) = (0, 0, . . . , 0, g, αk(g), αk+1 ◦ αk(g), . . .),

where g is in the k-th position. Define

βk := π ◦ νk : Gk →
∞

∏
n=0

Gn/
∞⊕

n=0
Gn,

where π is the quotient map. Then {βk(Gk)}k is an increasing sequence of sub-

groups of
∞
∏

n=0
Gn/

∞⊕
n=0

Gn, and the unions

G :=
∞⋃

k=0

βk(Gk), G+ :=
∞⋃

k=0

βk(G+
k ).

form the inductive limit. Observe that when each αn is surjective and αn(G+
n ) =

G+
n+1 (as in our case), we have

β0(G0) = β1(G1) = · · · , β0(G+
0 ) = β1(G+

1 ) = · · · .

Therefore the inductive limit (G, G+) is isomorphic to the ordered abelian group
(Gk/ ker(βk), G+

k / ker(βk)) for any k.
Apply the discussion above to our case and choose k = 0. It remains to

show that ker(β0) is equal to HΓ. This is a straighforward computation (though
probably a little confusing in the first glance, as we are dealing with sequences of
sequences). Let

m = (m1, m2, m3, . . .)
be an element in `∞(N,Z). Then

β0(m) =
[
(m1, m2, . . .),

( k1

∑
i=1

mi,
2k1

∑
i=k1+1

mi, . . .
)

,
( k2

∑
i=1

mi,
2k2

∑
i=k2+1

mi, . . .
)

, . . .
]
,

where the square bracket denotes the equivalence class in
∞
∏

n=0
`∞(N,Z)/

∞⊕
n=0

`∞(N,Z).

Now β0(m) vanishes if and only if there exists some n ∈ N such that( kn

∑
i=1

mi,
2kn

∑
i=kn+1

mi, . . .
)
= (0, 0, . . .)

in `∞(N,Z). From this description it is readily seen that ker(β0) is equal to HΓ.

Now we can explicitly write down the ordered K0-group of C∗u(Γ) for any
countable locally finite group Γ.
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THEOREM 4.7. Let Γ be a countable locally finite group, and let {e} =: Γ0 ⊆
Γ1 ⊆ · · · ⊆ Γ be an increasing sequence of finite subgroups such that Γ =

∞⋃
n=0

Γn.

Define kn := |Γn|,

H(n)
Γ :=

{
(m1, m2, . . .) ∈ `∞(N,Z) :

(j+1)kn

∑
i=jkn+1

mi = 0 for all j = 0, 1, 2, . . .
}

, and

HΓ :=
∞⋃

n=0
H(n)

Γ .

Then

(K0(C∗u(Γ)), K0(C∗u(Γ))+, [1]0) ∼= (`∞(N,Z)/HΓ, `∞(N,Z)+/HΓ, [1]),

where 1 is the constant sequence with value 1.

Proof. We only need to keep track of the order unit [1]0. The K0-class of the

unit of
∞
∏
i=1
C in `∞(N,Z) =: G0 is given by the constant sequence 1. Now the

result follows, since the structure map G0 → G0/HΓ for the inductive limit is
nothing but the quotient map.

EXAMPLE 4.8. We consider the case when Γ =
⊕
N
Z/2Z. We can take the

squence of finite subgroups {Γn} to be Γn =
n⊕

i=1
Z/2Z. Then kn = |Γn| = 2n and

rn = kn+1/kn = 2 for n = 0, 1, 2, . . .. Then according to the Proposition 4.5,

C∗u
(⊕
N
Z/2Z

)
∼= lim−→

( ∞

∏
i=1

M2n(C), ϕn

)
,

where

ϕn(T1, T2, T3, T4, . . .) =
((

T1 0
0 T2

)
,
(

T3 0
0 T4

)
, . . .

)
.

Moreover, by Theorem 4.7 we have

H(1)
Γ = {(m1, m2, . . .) ∈ `∞(N,Z) : m1 + m2 = m3 + m4 = · · · = 0},

H(2)
Γ = {(m1, m2, . . .) ∈ `∞(N,Z) : m1 + m2 + m3 + m4 = · · · = 0},

and so on. In partiuclar, in the quotient group `∞(N,Z)/HΓ the constant se-
quence 1 can also be represented by the sequence (2, 0, 2, 0, 2, 0, 2, 0, . . .) or the
sequence (4, 0, 0, 0, 4, 0, 0, 0, . . .).

COROLLARY 4.9. Let Γ and Λ be two countable locally finite groups. Then Γ and
Λ are coarsely equivalent if and only if K0(C∗u(Γ)) ∼= K0(C∗u(Λ)).

Proof. If Γ and Λ are coarsely equivalent, then by Corollary 3.6 of [23] C∗u(Γ)
and C∗u(Λ) are Morita equivalent (see also Theorem 4 of [6]). In particular, they
have isomorphic K0 groups.
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Conversely, if Γ and Λ are not coarsely equivalent, then by Remark 3.11
it must be the case that one is finite and the other is infinite. Let us assume
that Λ is finite. Then we have K0(C∗u(Γ)) ∼= `∞(N,Z)/HΓ by Theorem 4.7 and
K0(C∗u(Λ)) ∼= Z. It is not hard to see that these two groups are not isomorphic.
For instance, one can show that `∞(N,Z)/HΓ is not singly generated.

Finally, we are ready to give a proof of our main theorem, which provides
the first classification result for a class of non-separable unital C∗-algebras.

THEOREM 4.10 (Theorem 1.1). Let Γ and Λ be countable locally finite groups
with proper left-invariant metrics dΓ and dΛ, respectively. Then the following are equiv-
alent:

(i) (Γ, dΓ) and (Λ, dΛ) are bijectively coarsely equivalent;
(ii) there is a ∗-isomorphism ϕ : C∗u(Γ)→ C∗u(Λ) such that ϕ(`∞(Γ)) = `∞(Λ);

(iii) C∗u(Γ) and C∗u(Λ) are ∗-isomorphic;
(iv) (K0(C∗u(Γ)), K0(C∗u(Γ))+, [1]0) ∼= (K0(C∗u(Λ)), K0(C∗u(Λ))+, [1]0);
(v) (K0(C∗u(Γ)), [1]0) ∼= (K0(C∗u(Λ)), [1]0).

Proof. (i)⇒ (ii) See Proposition 2.3.
(ii)⇒ (iii)⇒ (iv)⇒ (v) Obvious.
(v)⇒ (i) To shorten the notations we write A := C∗u(Γ) and B := C∗u(Λ). Let

ϕ : (K0(A), [1A]0)→ (K0(B), [1B]0)

be an isomorphism.
Assume for the contrary that (Γ, dΓ) and (Λ, dΛ) are not bijectively coarsely

equivalent. Then by Theorem 3.10 the associated supernatural numbers s(Γ) and
s(Λ) are not equal. Without losing generality we may assume there exist a prime
number p and a positive integer r such that pr divides s(Γ) but not s(Λ). Let
{Γn}∞

n=0 and {Λn}∞
n=0 be increasing sequences of finite subgroups of Γ and Λ,

respectively, such that Γ =
∞⋃

n=0
Γn and Λ =

∞⋃
n=0

Λn. Define kn := |Γn|, H(n)
Γ ,

and HΓ in the same way as before. Similarly, we have k′n := |Λn|, H(n)
Λ , and HΛ

coming from the group Λ.
Since pr divides s(Γ), there exists an element [q]0 in K0(A) such that

pr([q]0) = [1A]0.

Indeed, if pr divides s(Γ) then by definition pr divides |Γn| (= kn) for some n (in

the usual sense). Now one can take q to be any projection in
∞
∏
i=1

Mkn(C) which

has pointwise rank kn/pr.
Applying the isomorphism ϕ, we obtain an element [q′]0 := ϕ([q]0) in K0(B)

such that pr([q′]0) = [1B]0. Write

[q′]0 = [(m1, m2, . . .)] ∈ `∞(N,Z)/HΛ.
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Then the equality pr([q′]0) = [1B]0 implies that

(prm1 − 1, prm2 − 1, . . .) ∈ H(n)
Λ

for some positive integer n. By the definition of H(n)
Λ , we have (among other

things)
pr(m1 + m2 + · · ·+ mk′n)− k′n = 0,

which is impossible because pr does not divide k′n (otherwise pr would divide
s(Λ)). This completes the proof.

REMARK 4.11. It is shown in Corollary 2.21 of [15] that two countable dis-
crete groups are bijectively coarsely equivalent if and only if their canonical ac-
tions on Stone–Čech compactifications are continuously orbit equivalent. Since
the proof of Proposition 4.13 in [20] goes through without any change for étale
Hausdorff locally compact topologically principal σ-compact groupoids, it fol-
lows from Theorem 1.2 of [14] that (i) and (ii) are equivalent for all countable
discrete groups.

REMARK 4.12. We would like to thank Rufus Willett for letting us know the
following fact, which can be deduced from (the proof) of Theorem 1.1 in [28]: if
X and Y are uniformly discrete, bounded geometry non-amenable metric spaces,
then any coarse equivalence between X and Y is close to a bijective coarse equiv-
alence. Using this result, one deduces from the main theorem of [25] that (iii)⇒
(i) holds for the class of non-amenable exact countable groups (cf. Corollary 6.2
of [25]). Our main theorem provides a small class of amenable groups for which
(iii)⇒ (i) holds.

REMARK 4.13. It is known from Corollary 8 of [2] that all countably infi-
nite locally finite groups are coarsely equivalent. Thus, there are many coarsely
equivalent locally finite groups with non-isomorphic uniform Roe algebras. For

instance, C∗u
(⊕
N
Z2

)
� C∗u

(⊕
N
Z3

)
(see Theorem 3.10). In fact, two countable di-

rect sums of finite prime cyclic groups are bijectively coarsely equivalent if and
only if they are isomorphic as groups (see Corollary 5.6 of [5]). We refer the reader
to Section 6 of [16] for relevant discussions.

REMARK 4.14. It is shown by Rufus Willett and the first named author
in Corollary 1.7 of [17] that K0(C∗u(Γ)) = 0 for every non-amenable countable
group Γ with asymptotic dimension one. Hence, we cannot expect Theorem 4.10
to hold for general countable groups with asymptotic dimension one. For in-
stance, let us consider the free group Fn on n generators and the wreath prod-
uct group Z2 o Fn, which is also finitely generated. Since they are non-amenable
countable groups with asymptotic dimension one, their uniform Roe algebras
have trivial K0 groups. However, they are not coarsely equivalent (or equiva-
lently, they are not quasi-isometric) as being finitely presented is invariant under
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quasi-isometries ([9], Proposition V.4) and Z2 o Fn is not finitely presented (see
Theorem 1 of [3]).

QUESTION 4.15. Does Theorem 4.10 hold for all bounded geometry metric
spaces with asymptotic dimension zero?

It follows from Section 11 of [2] that Theorem 4.10 holds for all bounded
geometry isometrically homogeneous metric spaces with asymptotic dimension
zero. Recall that a metric space X is called isometrically homogeneous if for any two
points x, y ∈ X there is a bijective isometry f : X → X such that f (x) = y.

As a side note, it follows from Corollary 6.4 of [5] and Proposition 4.4 that
there are uncountably many coarsely inequivalent asymptotically 0-dimensional
bounded geometry subspaces of Z>0. On the other hand, there are only two
coarsely equivalent classes of countable locally finite groups (cf. Remark 3.11).

5. STRUCTURE OF UNIFORM ROE ALGEBRAS OF LOCALLY FINITE GROUPS

In this section, we show that the reduced crossed product `∞(Γ)or Γ is lo-
cally finite-dimensional for any (not necessarily countable) locally finite discrete
group Γ. Note that the countable case follows from Theorem 8.5 of [29], since a
countable group is locally finite if and only if it has asymptotic dimension zero
(see Theorem 3.6).

DEFINITION 5.1. A C∗-algebra A is called locally finite-dimensional (or local
AF) if for every a1, . . . , an ∈ A and ε > 0, there exist a finite-dimensional C∗-
subalgebra B of A and elements b1, . . . , bn ∈ B such that ‖ai − bi‖ < ε for i =
1, . . . , n.

PROPOSITION 5.2. Let Γ be a locally finite discrete group. Then the reduced
crossed product C∗-algebra `∞(Γ) or Γ is locally finite-dimensional, where Γ acts on
`∞(Γ) by the left-translation.

Proof. Note that `∞(Γ)or Γ is the inductive limit of `∞(Γ)or Γi, where each
Γi is a finitely generated subgroup of Γ. Since Γ is locally finite, it suffices to
show that `∞(Γ)or Λ is a (not necessarily sequential) inductive limit of finite-
dimensional C∗-algebras for each finite subgroup Λ of Γ.

Toward this end, let Λ be any finite subgroup of Γ and Γ =
⊔

s∈J
Λs be the

partition of Γ into right cosets of Λ in Γ. We may identify `∞(Γ) with ∏
s∈J

`∞(Λs)

as Λ-C∗-algebras via the product of the restriction maps. In the following, we
show that ∏

s∈J
`∞(Λs) is an inductive limit of finite-dimensional Λ-C∗-algebras.

Now the proof is essentially an equivariant version of the argument used in
Lemma 8.4 of [29]. Let FP(J) be the directed set of all finite partitions of J ordered
by refinement. More precisely, we write P 6 Q if and only if Q refines P (i.e.,
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every element ofQ is a subset of some element of P). For each P in FP(J), define

AP :=
{

( fs)s∈J ∈ ∏
s∈J

`∞(Λs) fs(gs) = ft(gt) for all g ∈ Λ whenever s, t
belong to the same member of P

}
.

In other words, AP consists of sequences that are “constant” on each member
of the partition P . Since P is a finite partition, each AP is a finite-dimensional
subalgebra. Moreover, ifQ is a finite partition of J which refines P , then AQ con-
tains AP . Finally, given any element f in ∏

s∈J
`∞(Λs), one can always find a finite

partition P of J so that AP almost contains f . We conclude that ∏
s∈J

`∞(Λs) =

lim
P∈FP(J)

AP (as Λ-C∗-algebras), where the connecting maps are nothing but inclu-

sions.
Since all connecting maps are injective (or we can use the fact that Λ is fi-

nite), we conclude that `∞(Γ)or Λ = lim
P∈FP(J)

AP or Λ (see e.g. Lemma 2.5 of [8]).

As each AP or Λ is a finite-dimensional C∗-algebra for everyP ∈ FP(J), the proof
is complete.

REMARK 5.3. By an almost identical proof, we see that `∞(X)or Γ is locally
finite-dimensional if Γ is a locally finite discrete group acting on a set X. The only
difference is to consider the partition of X =

⊔
x∈J

(Λ · x) into its Λ-orbits instead of

right Λ-cosets, where Λ is any finite subgroup of Γ.

As an easy consequence, we give a summary of equivalent C∗-properties of
uniform Roe algebras coming from locally finite groups (we refer the reader to
[4] for the relevant concepts involved in the next theorem).

COROLLARY 5.4. Let Γ be a discrete group. Then the following are equivalent:
(i) `∞(Γ)or Γ is locally finite-dimensional;

(ii) `∞(Γ)or Γ is quasidiagonal;
(iii) `∞(Γ)or Γ has stable rank one;
(iv) `∞(Γ)or Γ has cancellation;
(v) `∞(Γ)or Γ is stably finite;

(iv) `∞(Γ)or Γ is finite;
(vii) Γ is locally finite.

Proof. (i)⇒ (ii) Since finite-dimenional C∗-algebras are quasidiagonal, this
follows from the local characterization of quasidiagonality (cf. Lemma 7.1.3 of [7])
and an application of Arveson’s extension theorem (see, for example, the proof
of Proposition 7.1.9 of [7]).

(ii)⇒ (v) See e.g. Proposition V.4.2.6 of [4].
(i) ⇒ (iii) It follows from the fact that every finite-dimensional C∗-algebra

has stable rank one.
(iii)⇒ (iv) See e.g. Proposition V.3.1.24 of [4].
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(iv) ⇒ (v) For every n ∈ N, Proposition V. 2.4.14 of [4] implies that every
isometry in Mn(`∞(Γ)or Γ) is unitary. Hence, `∞(Γ)or Γ is stably finite.

(v)⇒ (vi) It is clear from the definitions.
(vi)⇒ (vii) It follows from Proposition 2.5 of [22].
(vii)⇒ (i) This is Proposition 5.2.

REMARK 5.5. Let (X, d) be a metric space with bounded geometry. Wei
showed in [27] that quasidiagonality, stable finiteness and finiteness of C∗u(X) are
all equivalent to X being a “box space” provided that X is infinite. In particular,
X can have arbitrarily large asymptotic dimension. On the other hand, Rufus
Willett and the first named author showed in [17] that the conditions

(i) C∗u(X) is AF,
(ii) C∗u(X) is locally finite-dimensional,

(iii) C∗u(X) has stable rank one, and
(iv) C∗u(X) has cancellation

are all equivalent to X having asymptotic dimension zero.
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