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ABSTRACT. The paper gives a class of permutations such that a semicircular
matrix is free independent, or asymptotically free independent from the semi-
circular matrix obtained by permuting its entries. In particular, it is shown
that semicircular matrices are asymptotically free from their transposes, a re-
sult similar to the case of Gaussian random matrices. There is also an analysis
of asymptotic second order relations between semicircular matrices and their
transposes, with results not very similar to the commutative (i.e. Gaussian
random matrices) framework. The paper also presents an application of the
main results to the study of Gaussian random matrices and furthermore it is
shown that the same condition as in the case of semicircular matrices gives
Boolean independence, or asymptotic Boolean independence when applied to
Bernoulli matrices.
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1. INTRODUCTION

A recurrent theme in the study of non-commutative probability is describ-
ing analogous results to the classic (commutative) framework (see, for example,
[5], [14], or [2], [4]). One of the basic results in this topic is that semicircular,
respectively Bernoulli distributed elements are the analogue (in the central limit
theorem sense) of the Gaussian random variables in the framework of free (see
[14], [22]), respectively Boolean independence (see [3], [20]). The connection be-
tween Gaussian and semicircular distributed variables is even stronger, since
Gaussian random matrices with independent entries are asymptotically free and
semicircular distributed. As detailed below, this paper addresses mainly results
concerning asymptotics of matrices with entries in a non-commutative algebra,
topic that was investigated since the 1990’s (see, for example [16], [17]).
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A particular case of the results presented in [10] is that a Gaussian random
matrix is asymptotically free from its transpose. The present work is describing
some generalizations of this result in the framework of non-commutative proba-
bility relations. More precisely, it describes a class of permutations of the entries
of a square matrix (the matrix transpose or the partial transpose from [1], [11]
are just particular cases) with the following property: a semicircular, respectively
Bernoulli matrix is (asymptotically) free, respectively (asymptotically) Boolean
independent from the matrix obtained by permuting its entries. There is also a
brief application of the results to the study of Gaussian random matrices and a
detailed investigation of the second order relations between a semicircular ma-
trix and its transpose, in the spirit of [7], [9] and [10], although the results are
significantly different (see the more detailed description below). The methods
employed are mostly combinatorial, heavily relying on the properties of permu-
tations and non-crossing partitions.

Besides the Introduction, the paper is organized in five sections as follows.
Section 2 presents some needed definitions and preliminary results in com-

binatorics of free and Boolean independence.
Section 3 is devoted to the main results, namely Theorem 3.2. More pre-

cisely, if σ is a permutation on the set {(i, j) : 1 6 i, j 6 N} and A is an N × N
matrix with entries in some algebraA, we denote by Aσ the matrix with the (i, j)-
entry equal to the σ(i, j) entry of A. If SN is an N × N semicircular matrix and σ,
as above, commutes with the transpose and satisfies

{(i, j, k) ∈ [N]3 : σ(i, j) = (i, k)} = ∅,

then S and Sσ are free, while if

lim
N→∞

]{(i, j, k) ∈ [N]3 : σN(i, j) = (i, k)}
N2 = 0,

then S and Sσ are asymptotically (as N → ∞) free.
Section 4 applies the main theorem to obtain some asymptotic freeness re-

sults concerning Gaussian random matrices, in particular showing that a Gauss-
ian random matrix is asymptotically free from its left-partial transpose (see also
[11] for more results on partial transpose and asymptotic freenes).

Section 5 presents a Boolean independence version of the main theorem.
The last part of the paper, Section 6, describes the second order indepen-

dence relations between a semicircular matrix and its transpose, in the spirit of
[7], [9] and [10]. We mention that the main results of this last section (see Theo-
rem 6.7) are still different in nature from both the formulas in the commutative
framework (see [10]) and the case of ensembles free semicircular random matrices
(see [7]).
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2. PRELIMINARIES

2.1. NONCROSSING AND INTERVAL PARTITIONS. For n a positive integer, we will
denote by [n] the ordered set {1, 2, . . . , n}. By a partition on [n] we will understand
a collection π = {V1, V2, . . . , Vr(π)} of mutually disjoint subsets of [n], called
blocks of π, such that V1 ∪V2 ∪ · · · ∪Vr(π) = [n]. If V is a block of π, the notation
V = (v1, v2, . . . , vr) will mean that the set V had the elements v1 < v2 < · · · < vn.

We will use the notations P(n), respectively P2(n) for the set of all parti-
tions, respectively pair-partitions, i.e. partitions such that each of their blocks has
exactly 2 elements, on [n]. The set P(n) is a lattice with respect to the refinement
order (i.e. σ is less that η if each block of σ is included in some block of η).

A partition π on [n] is said to be non-crossing if whenever 1 6 a < b < c <
d 6 n are such that a, c, respectively b, d are in the same block of π, then a, b, c, d
are all in the same block of π. The sets of all non-crossing partitions, respec-
tively non-crossing pair-partitions of [n] will be denoted by NC(n), respectively
NC2(n). If n is odd, then, by convention, NC2(n) = ∅.

The terminology corresponds to the fact that a non-crossing partition ad-
mits a planar representation (linear and circular), i.e., in which the arcs or chords
intersect only at elements of [n]. We can put the points 1, . . . , n on the line (or
circle), and connects each point with the next member of its part by a fold line
(or an internal path). Then, the partition is non-crossing if this can be achieved
without fold line (or arcs) crossing each other. See the Figure 1 below.

Figure 1. Non-crossing (left, (1, 4), (2, 3), (5, 6)) and crossing (right, (1, 5), (2, 3),
(4, 6)) partitions on the set [6].

In the next sections, we will use the following two results concerning non-
crossing partitions (see [8], respectively [14], Lecture 22).

LEMMA 2.1. Let n be an even positive integer, γ be the permutation on [n] with
single cycle (1, 2, . . . , n), and σ ∈ P2(n). We will identify σ with a permutation by
letting σ(k) = l whenever (k, l) ∈ σ. Then there exist a positive integer g(σ) such that

](γσ) =
n
2
+ 1− 2g(σ),
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Moreover, g(σ) = 0 if and only if σ is non-crossing. (By ]π we understand the number
of cycles of the permutation π.)

LEMMA 2.2. If n is a positive integer and π ∈ NC(n), then there exists at least
a block of π whose elements are consecutive numbers. In particular, if n even and π an
element of NC2(n), there exists some k ∈ [n− 1] such that (k, k + 1) ∈ π.

A non-crossing partition of [n] is called interval partition if each of its blocks
contains only consecutive elements from [n]. The set of all interval partitions
on [n] will be denoted by I(n). The subset of I(n) consisting only of pairing
partitions will be denoted by I2(n). If n is odd, then I2(n)=∅; if n is even then
I2(n) has only one element, namely the partition of blocks {(2k−1, 2k) : 16k6 n

2 }.

2.2. NON-COMMUTATIVE PROBABILITY SPACES AND INDEPENDENCE RELATIONS.
Throughout the paper, by a non-commutative probability space we will mean a
pair (A, ϕ), where A is a complex, unital ∗-algebra and ϕ : A → C is a unital,
linear, positive map.

For r a positive integer we define the r-th free cumulant, respectively the
r-th boolean cumulant associated to ϕ as the multilinear complex maps from Ar

given by the recurrences:

ϕ(a1a2 · · · an) = ∑
π∈NC(n)

∏
V∈π, V=(v1,v2,...,vr)

κr(av1 , av2 , . . . , avr )(2.1)

= ∑
π∈I(n)

∏
V∈π, V=(v1,v2,...,vs)

bs(av1 , av2 , . . . , avs).(2.2)

For π ∈ NC(n), we will also use the shorthand notations

κπ [a1, a2, . . . , an] = ∏
V∈π, V={v1,v2,...,vr}

κr(av1 , av2 , . . . , avr )

and bπ [a1, a2, . . . , an] defined analogously.
A collection of unital ∗-algebras {Aj}16j6n of A is said to be free if

ϕ(a1a2 · · · am) = 0

whenever aj ∈ Ai(j) with i(j) ∈ [n] such that i(j) 6= i(j + 1) and ϕ(aj) = 0.
A collection of ∗-subalgebras {Aj}16j6n of A are Boolean independent if

ϕ(a1a2 · · · am) = ϕ(a1)ϕ(a2) · · · ϕ(am)

whenever aj satisfy aj ∈ Ai(j) with i(j) ∈ [n], i(j) 6= i(j + 1). An equivalent
condition (see [18], [20]) for free, respectively Boolean independence is

κm(a1, a2, . . . , am) = 0 (respectively bm(a1a2 · · · am) = 0)

whenever aj ∈ Aε(j) such that not all ε(j) are equal.
The central limit distributions (see [19], also [3] for a more general setting)

corresponding to free, respectively Boolean independence are the semicircular,
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respectively Bernoulli distributions. A selfadjoint element X ∈ A is said to be
semicircular of mean 0 and variance γ > 0 with respect to ϕ if

ϕ(Xn) =

{
0 if n = odd,

1
m+1 (

2m
m )γ2 = ]NC(2m) · γ2m if n = 2m, even.

X is said to be Bernoulli distributed mean 0 and variance γ > 0 if

ϕ(Xn) =

{
0 if n = odd,
γ2m if n = 2m, even.

The following result (see [5], [7]) is a non-commutative version of the Wick for-
mula (see [6]) and will be utilized in the next sections.

THEOREM 2.3 (The free/Boolean Wick formula). (i) If {si}16i6m is a family
of free semicircular non-commutative random variables of mean zero, and xj is a complex
linear combination of si for each j = 1, . . . , n, then

ϕ(x1x2 · · · xn) = ∑
π∈NC2(n)

∏
(i,j)∈π

ϕ(xixj).

(i) If {bi}16i6m is a family of Boolean independent Bernoulli distributed non-com-
mutative random variables, and xj is a complex linear combination of bi for each j =
1, . . . , n, then

ϕ(x1x2 · · · xn) =

{
0 if n is odd,
ϕ(x1x2)ϕ(x2x3) · · · ϕ(xn−1xn) if n is even.

We will use the notation MN(A) for the the algebra of N× N matrices with
entries fromA, i.e. MN(A) = MN(C)⊗A. The elements of MN(A) will be called
random matrices with entries in A. If A ∈ MN(A), we will denote the (i, j) entry
of A by [A]i,j.

The algebra MN(A) has a non-commutative probability space structure in-
duced by (A, ϕ). More precisely, the ∗-operation given by [A∗]i,i = ([A]i,j)

∗ and
the unital positive map is given by ϕ ◦ tr, where tr, respectively Tr denote the
normalized, respectively non-normalized matrice traces.

Two sequences (AN)N∈N and (BN)N∈N such that AN , BN ∈ MN(A) for each
N are said to be asymptotically free, respectively Boolean, independent if there
exist a ∗-probability space (D, Φ) and two free, respectively Boolean independent
non-commutative random variables a, b ∈ D such that for any polynomial with
complex coefficients p(x1, x2, x3, x4) in the non-commuting variables x1, x2, x3, x4
we have that

lim
N→∞

ϕ ◦ tr(p(AN , A∗N , BN , B∗N)) = Φ(a, a∗, b, b∗).
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3. ASYMPTOTIC FREE INDEPENDENCE FOR SEMICIRCULAR MATRICES

DEFINITION 3.1. A matrix S ∈ MN(A) is said to be semicircular if S =
[cij]

N
i,j=1 such that
(i) cij = c∗ji for all i, j ∈ [N];

(ii) {cii : i ∈ [N]}∪ {<ci,j,=ci,j : 1 6 i < j 6 N} is a family of free independent
semicircular elements of mean 0 and variance 1√

2N
if i 6= j, respectively 1√

N
if

i = j.
In particular ϕ(cij · clk) =

1
N δ(i,j),(k,l) for any i, j, k, l ∈ [N].

We will generalize the notion of matrix transpose as follows. Let S([N]2)
be the set of permutations of [N] × [N]. If A is a matrix from MN(A) and σ ∈
S([N]2), we will denote by Aσ the matrix from MN(A) such that [Aσ]i,j = [A]σ(i,j)
(that is, the i, j-th entry of Aσ is the σ(i, j)-th entry of A). In particular, the map t
given by t(i, j) = (j, i) is in S([N]2) and At is the matrix transpose of A.

With the notations from above we shall prove the following theorem.

THEOREM 3.2. (i) If S is a semicircular matrix from MN(A) and σ ∈ S([N]2) is
such that t ◦ σ = σ ◦ t and that

(3.1) {(i, j, k) ∈ [N]3 : σ(i, j) = (i, k)} = ∅

then S and Sσ are free with respect to ϕ ◦ tr.
(ii) If (SN)N∈N is a sequence of semicircular matrices such that SN ∈ MN(A) and

(σ(N))N∈N is a sequence of permutations such that, for each N, σ(N) is an element of
S([N]2) that satisfies σ(N) ◦ t = t ◦ σ(N) and

(3.2) lim
N→∞

]{(i, j, k) ∈ [N]3 : σ(N)(i, j) = (i, k)}
N2 = 0

then SN and SN
σ(N) are asymptotically free.

Proof. To simplify the notations we will omit the index N when dealing with
the sequences (SN)N and (σ(N))N with the convention that only matrices of the
same size are multiplied.

Since t ◦ σ = σ ◦ t, all Sσ are semicircularly distributed of mean 0 and vari-
ance 1. Hence it suffices to show that mixed free cumulants in S and Sσ vanish,
respectively vanish asymptotically (as N → ∞), if σ satisfies property (3.1), re-
spectively property (3.2).

Let M be a positive integer and −→σ = (σ1, . . . , σM) with σk ∈ {1, σ} for
1 6 k 6 M. Denote

NC2(M,−→σ ) = {π ∈ NC2(M) : σi = σj for all (i, j) ∈ π}.

Free cumulants of order not 2 in S or in Sσ are equal to 0 (since S and Sσ are
semicircular). Henceforth the moment-free cumulant expansion (2.1) gives that
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the vanishing of mixed free cumulants in S and Sσ is equivalent to the equality

∑
π∈NC(M)

∏
V∈π, V=(v1,v2,...,vr)

κr(Sσv1 , . . . , Sσvr ) = ∑
π∈NC2(M,−→σ )

∏
(i,j)∈π

κ2(Sσi , Sσj).

Since κ2(S, S) = κ2(Sσ, Sσ) = 1, we have that

∑
π∈NC2(M,−→σ )

∏
(i,j)∈π

κ2(Sσi , Sσj) = ]NC2(M,−→σ ).

Therefore it suffices to show that, for any −→σ ,

(3.3) φ(Sσ1 Sσ2 · · · SσM )− ]NC2(M,−→σ ) =

{
0 if π satisfies property (3.1),
o(1) if π satisfies property (3.2).

Denote
−→
i = (i1, i2, . . . , iM) ∈ [N]M. Then

φ(Sσ1 Sσ2 · · · SσM ) = tr ◦ ϕ(Sσ1 Sσ2 · · · SσM )

=
1
N

ϕ
(

∑
−→
i ∈[N]M

[Sσ1 ]i1i2 [S
σ2 ]i2i3 · · · [S

σM ]iM i1

)
.

Applying Theorem 2.3(i), we obtain that φ(Sσ1 Sσ2 · · · SσM ) can be expressed as

∑
π∈NC2(M)

1
N ∑
−→
i ∈[N]M

∏
(l,k)∈π, iM+1=i1

ϕ([Sσl ]il il+1
[Sσk ]ik ik+1

) = ∑
π∈NC2(M)

v(π,−→σ ),

where we denote v(π,−→σ ) = 1
N ∑
−→
i ∈[N]M

w(π,−→σ ,
−→
i ) for

w(π,−→σ ,
−→
i ) = ∏

(l,k)∈π, iM+1=i1

ϕ([Sσl ]il il+1
[Sσk ]ik ik+1

).

We will organize the rest of proof in several steps as follows.
First, we shall show that

(3.4) v(π,−→σ ) =


1 if π ∈ NC2(M,−→σ ),
0 if π /∈ NC2(M,−→σ ) and σ satisfies property (3.1),
o(1) if π /∈ NC2(M,−→σ ) and σ satisfies property (3.2).

For M = 2, we have that φ(S2) = φ((Sσ)2) = 1, while

φ(S · Sσ) =
1
N

N

∑
i,j=1

ϕ([S]i,j[Sσ]j,i) =
1

N2

N

∑
i,j=1

δ(i,j),σ(i,j)

so (3.4) is trivial.
For M > 2, we will use an inductive argument. For a given π ∈ NC2(M),

according to Lemma 2.2, there is some k such that (k, k + 1) is a block of π. Let
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π(k) ∈ NC2(M− 2) be the partition obtained by eliminating the block (k, k + 1)
from π and let −→σ (k) = (σ1, . . . , σk−1, σk+2, . . . , σM). Then:

v(π,−→σ )=
1
N ∑
−→
i

∏
(q,j)∈π

ϕ([Sσq ]iqiq+1 [S
σj ]ijij+1)

=
1
N ∑
−→
i \ik+1

[
∏

(q,j)∈π(k)

ϕ([Sσq ]iqiq+1 [S
σj ]ijij+1) ·∑

ik+1

ϕ([Sσk ]ik ik+1
[Sσk+1 ]ik+1ik+2

)
]
.(3.5)

If σk = σk+1, then

ϕ([Sσk ]ik ik+1
[Sσk+1 ]ik+1ik+2

) =
1
N

δσk(ik+1,ik),σk+1(ik+1,ik+2)
=

1
N

δik ,ik+2
,

so, with the notation
−→
i (k) = (i1, . . . , ik−1, ik+2, . . . , iM), the equation (3.5) be-

comes

v(π,−→σ ) =
1
N ∑
−→
i \ik+1

[
∏

(q,j)∈π(k)

ϕ([Sσq ]iqiq+1 [S
σj ]ijij+1) · ∑

ik+1

1
N

δik ,ik+2

]
=

1
N ∑
−→
i (k)

∏
(q,j)∈π(k)

ϕ([Sσq ]iqiq+1 [S
σj ]ijij+1) = v(π(k),

−→σ (k))

and property (3.4) follows.
If σk 6= σk+1, then π /∈ NC2(M,−→σ ). Suppose first that σ satisfies property

(i). Then, for any values of ik, ik+1, ik+2, according to equation (3.1), we have that
σk(ik+1, ik) 6= σk+1(ik+1, ik+2), hence

ϕ([Sσk ]ik ik+1
[Sσk+1 ]ik+1ik+2

=
1
N

δσk(ik+1,ik),σk+1(ik+1,ik+2)
= 0

so equation (3.5) gives v(π,−→σ ) = 0, and property (3.4) follows.
Next, we shall show the following auxiliary property (see also Figure 2 be-

low): If π ∈ NC2(M) with (1, M) ∈ π and if the triple (i1, i2, iM) is given, then

(3.6) ]{(i3, i4, . . . , iM−1) : w(π,
−→
i ) 6= 0} 6 N(M−2)/2.

Figure 2.

We shall prove (3.6) by induction. If M = 2, the property is trivial. For
the induction step, suppose that π \ (1, M) has exactly r exterior blocks denoted
(q(l) + 1, q(l + 1)) with 1 6 l 6 r and q(1) = 1, q(r + 1) = M− 1 (see Figure 3.
below).
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Figure 3.

Note that it suffices to show that

(3.7) ]{(iq(1)+1, iq(1)+2, iq(2), . . . , iq(r)+1, iq(r)+2, iq(r+1)) : w(π,−→σ ,
−→
i ) 6= 0} 6 Nr,

and (3.6) will follow applying the induction hypothesis to the restrictions of π to
each of the ordered sets {q(l) + 2, q(l) + 3, . . . , q(l + 1)− 1} (i.e. on the elements
“under” each of the exterior blocks of π \ (1, M)).

To prove (3.7), remark that w(π,−→σ ) 6= 0 implies that, for each l

ϕ([Sσq(l)+1 ]iq(l)+1iq(l)+2
[Sσq(l+1) ]iq(l+1)iq(l+1)+1

) 6= 0,

that is, σq(l)+1(iq(l)+1, iq(l)+2) = σq(l+1)(iq(l+1), iq(1+1)+1), which is equivalent to

(3.8) (iq(l+1), iq(l+1)+1) = σ−1
q(l) ◦ σq(l+1)(iq(l)+1, iq(l)+2),

that is each couple (iq(l+1), iq(l+1)+1) is uniquely determined by the values of the
couple (iq(l)+1, iq(l)+2). So given the r+ 1-tuple (iq(1)+1, iq(1)+2, iq(2)+2, . . . , iq(r)+2),
there exists at most one 3r-tuple (iq(1)+1, iq(1)+2, iq(2), . . . , iq(r)+1, iq(r)+2, iq(r+1))

such that w(π,−→σ ,
−→
i ) 6= 0. On the other hand, i2 = iq(1)+1 is fixed. So the

right hand side of equation (3.7) equals

]{(iq(1)+2, iq(2)+2, . . . , iq(r)+2) : w(π,−→σ ,
−→
i ) 6= 0} 6 Nr

that is (3.7). Hence (3.6) is also proven.
Remark that (3.6) is equivalent to the following property:
Suppose π ∈ NC2(M) and k ∈ [M] is such that (k, k + 1) ∈ π and that the triple

(ik, ik+1, ik+2) is given. Then:

(3.9) ]{(i1, . . . ik−1, ik+3, . . . , iM) : w(π,
−→
i ) 6= 0} 6 N(M−2)/2.

To see the equivalence between (3.6) and (3.9), let η be the circular per-
mutation of [M] given by η(p) = p − k(mod M) with the convention η(k) =
M. Define η(π) the pair-partition of [M] given by (i, j) ∈ η(π) if and only if
(η−1(i), η−1(j)) ∈ π and

−→
j = (j1, j2, . . . , jM) given by jp = iη−1(p).

Since η is a circular permutation of the ordered set [M] and the partition π
is non-crossing, it follows that η(π) is also non-crossing (π and η(π) have the
same circle diagram, see Figure 4 below, with the elements from the codomain of
η represented by 1, . . . , M).
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Figure 4.
For each (k1, k4) and (k2, k3) belong to π ∈ NC2(M), (M− k + k1, M− k + k4)

and (M− k + k2, M− k + k3) are non-crossing.

Take −→ω = (ω1, . . . , ωM) such that ωk = ση−1(k). Then the definitions of
−→
j and −→ω give that w(π,

−→
i ,−→σ ) = w(η(π),

−→
j ,−→ω ). Moreover, (j1, j2, jM) =

(ik, ik+1, ik+2) (which is fixed) and (k, k + 1) ∈ π is equivalent to (1, M) ∈ η(π),
so property (3.9) for π is equivalent to property (3.6) for η(π).

Suppose now that there exists a block (k, k + 1) of π such that σk 6= σk+1 and
that σ satisfies property (3.2).

To simplify the writing, for each triple (ik, ik+1, ik+2) ∈ [N]3, let

I(ik, ik+1, ik+2) = {
−→
i (k) : w(π,−→σ ,

−→
i ) 6= 0}.

Since (k, k+ 1) ∈ π, we have that ϕ([Sσk ]ik ik+1
[Sσ(k+1) ]ik+1ik+2

) is a factor in the

product w(π,−→σ ,
−→
i ) and, from Definition 3.1, its value is either 0 or 1

N , therefore

v(π,−→σ ) =
1
N ∑
−→
i

w(π,−→σ ,
−→
i )

= ∑
−→
i

[ϕ([Sσk ]ik ik+1
[Sσ(k+1) ]ik+1ik+2

) · w(π,−→σ ,
−→
i )]

=
N

∑
ik ,ik+1,ik+2=1

[
ϕ([Sσk ]ik ik+1

[Sσ(k+1) ]ik+1ik+2
) · ∑
−→
i (k)∈I(ik ,ik+1,ik+2)

w(π,−→σ ,
−→
i )
]
.

Each w(π,−→σ ,
−→
i ) is product of M

2 factors of the form ϕ([Sσt ]itit+1 [S
σ(s) ]isis+1), each

of which equals either 1
N or 0. So the equation above becomes

v(π,−→σ ) =
N

∑
ik ,ik+1,ik+2=1

[ϕ([Sσk ]ik ik+1
[Sσ(k+1) ]ik+1ik+2

) · N−M/2 · ]I(ik, ik+1, ik+2)].
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Property (3.9) gives that ]I(ik, ik+1, ik+2) 6 N(M−2)/2 for each (ik, ik+1, ik+2), thus

v(π,−→σ ) 6
N

∑
ik ,ik+1,ik+2=1

1
N

ϕ([Sσk ]ik ik+1
[Sσ(k+1) ]ik+1ik+2

)

6
1

N2 ]{(i, j, k) ∈ [N]3 : σ(i, j) = (i, k)} = o(1).

and the proof of (3.4) is complete.
Remark that

φ(Sσ1 · · · SσM )= ∑
π∈NC2(M)

v(π,−→σ )= ∑
π∈NC2(M,−→σ )

v(π,−→σ ) + ∑
π/∈NC2(M,−→σ )

v(π,−→σ )

and (3.4) gives

φ(Sσ1 · · · SσM ) =

{
]NC2(M,−→σ ) if π satisfies property (i),
]NC2(M,−→σ ) + o(1) if π satisfies property (ii),

that is (3.3).

An immediate consequence of the result above is the following corallary.

COROLLARY 3.3. Let SN = [cij]16i,j6N ∈ MN(A) be a semicircular matrix.
Then {SN} and {St

N} are asymptotically free with respect to φ := tr ◦ ϕ.

Proof. We have that St
N is given by the permutation t(i, j) = (j, i). Since

]{(i, j, k) : t(i, j) = (i, k)}
N2 =

1
N

we get that t satisfies property (3.2), hence the conclusion.

4. AN APPLICATION TO GAUSSIAN RANDOM MATRICES

Let (Ω, P) be a (classical) probability space. We denote by E the expectation
E(·) =

∫
Ω

·dP and L−∞(Ω, P)
⋂

16p<∞
Lp(Ω, P). Remark that (L−∞(Ω, P), E) is a

non-commutative probability space in the sense of Section 2.2.

DEFINITION 4.1. By an N × N Gaussian random matrix we will mean a self-
adjoint element G = [gi,j]

N
i,j=1 of MN×N(L−∞(Ω, P)) such that {gi,i : 1 6 i 6

N} ∪ {<gi,j,=gi,j : 1 6 i < j 6 N} form an independent family of normally dis-
tributed random variables of mean 0 and variance 1√

N
if i = j, respectively 1√

2N
if i 6= j .

The next result is a refinement of Proposition 22.22 and Exercise 22.25
from [14].
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LEMMA 4.2. Suppose that (A, ϕ) is a non-commutative probability space, m is
a fixed positive integer, and that S = [cij]

m
i,j=1 is a m × m semicircular matrix from

Mm(A).
Let G = [gij]

mN
ij=1 be a mN ×mN Gaussian random matrix and, for k, l ∈ [m], let

Gkl be the N × N random matrix given by

[Gk,l ]i,j = gkm+i,lm+j

i.e. G equals the block-matrix [Gk,l ]
m
k,l=1.

Then, for any
−→
j =(j1, j−1, . . . , jn, j−n)∈ [m]2n, with the notation from Lemma 2.1,

we have that

E ◦ tr(Gj1,j−1 Gj2 j−2 · · ·Gjn j−n)−ϕ(cj1,j−1 cj2 j−2 · · · cjn j−n)

= m−n/2 ∑
π∈P2(n)\NC2(n)

(
N−2g(π) ∏

k∈[n]
δjk j−π(k)

)
,

where we identify π∈NC2(n) to a permutation on [n] via π(k)= l whenever (k, l)∈π.

Proof. Let
−→
i = (i1, i2, . . . , in) ∈ [N]n and denote by g(jk j−k)

itis
the (itis)-entry

of Gjk j−k . With this notation, Wick’s formula gives that

E ◦ tr(Gj1,j−1 Gj2 j−2 · · ·Gjn j−n) = ∑
−→
i ∈[N]n

1
N

E(g(j1 j−1)
i1i2

g(j2 j−2)
i2i3

· · · g(jn j−n)
ini1

)

=
1
N ∑

π∈P2(n)
∑

−→
i ∈[N]n

∏
(k,l)∈π

E(g(jk j−k)
ik ik+1

g(jl jl+1)
il il+1

)

=
1
N ∑

π∈P2(n)
∑

−→
i ∈[N]n

∏
(k,l)∈π

1
mN

δ(jk ,j−k),(j−l ,jl)δik ,il+1
δil ,ik+1

= m−n/2N−(n/2+1) ∑
π∈P2(n)

[(
∏

k∈[n]
δ(jk ,j−k),(j−π(k),jπ(k))

)
·
(

∑
−→
i ∈[N]n

∏
k∈[n]

δik ,iπγ(k)

)]
.

The product ∏
k∈[n]

δik ,iπγ(k)
is nonzero if and only if ik = il whenever k, l are in the

same cycle of πγ. Hence Lemma 2.1 gives that

∑
−→
i ∈[N]n

∏
k∈[n]

δik ,iπγ(k)
= N](πγ) = N1+n/2−2g(π),

therefore

E ◦ tr(Gj1,j−1 · · ·Gjn j−n) = m−n/2 ∑
π∈P2(n)

(
N−2g(π) ∏

k∈[N]

δ(jk ,j−k),(jπ(k),j−π(k))

)
.
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On the other hand, ϕ(cjk j−k cjl j−l ) =
1
m δ(jk ,j−k),(j−π(k),jπ(k))

. So Theorem 2.3 gives

ϕ(cj1,j−1 cj2 j−2 · · · cjn j−n) = ∑
π∈NC2(n)

∏
(k,l)∈π

ϕ(cjk j−k cjl j−l )

= m−n/2 ∑
π∈NC2(n)

(
∏

k∈[N]

δ(jk ,j−k),(j−σ(k),jσ(k))

)
.

But δ(jk ,j−k),(j−π(k),jπ(k))
= δjk ,j−π(k)

δjπ(k) j−π(π(k))
, and, from Lemma 2.1, g(π) = 0 for

π ∈ NC2(n), hence the conclusion.

For σ a permutation in S([m]2) and G a mN × mN Gaussian random ma-
trices seen as a m × m block matrix G = [Gi,j]

m
i,j=1, we will denote by Gdσe the

random matrix with block entries [Gdσe]i,j = Gσ(i,j). For σ = t, the matrix Gdσe is
the left-partial transpose of G (see [11]).

The following result is an immediate corollary of Lemma 4.2 and Theo-
rem 3.2.

THEOREM 4.3. Let G be a mN × mN Gaussian random matrix. With the nota-
tions above, we have that:

(i) If m is fixed, σ ∈ S([m]2) is such that t ◦ σ = σ ◦ t and

{(i, j, k) ∈ [m]3 : σ(i, j) = (i, k)} = ∅,

then G and Gdσe are asymptotically free as N → ∞.
(ii) The random matrices G and Gdte are asymptotically free as both m → ∞ and

N → ∞.

Proof. Consider a positive integer n and a mapping ε : [n] → {(1), (−1)}.
To simplify the writing, we denote by G(1) = G and G(−1) = Gdσe.

Let S = [cij]
m
i,j=1 be a m × m semicircular matrix and denote S(1) = S, re-

spectively S(−1) = S[σ].
Then [Gdσe]i,j = [G]σ(i,j) and [S[σ]]i,j = [S]σ(i,j), so, for j−k = jk+1 if k ∈ [n]

(we identify, as before, n + 1 to 1), Lemma 4.2 gives that

E ◦ tr([Gε(1)]j1 j2 [G
ε(2)]j2 j3 · · · [G

ε(n)]jn j1)− ϕ([Sε(1)]j1 j2 · · · [S
ε(n)]jn j1)

= m−n/2 ∑
π∈P2(n)\NC2(n)

(
N−2g(π) · ∏

(k,l)∈π

δσk(jk ,jk+1),σl(jl+1,jl)

)
,(4.1)

where σk(i, j) = (i, j) if ε(k) = (1) and σk(i, j) = σ(i, j) if ε(k) = (−1).
Suppose first that m is fixed and σ satisfies the properties from (i). From

Theorem 3.2, S and S[σ] are then free with respect to ϕ ◦ tr. Hence it suffices to
show that for any n and any mapping ε as above,

(4.2) lim
N→∞

E ◦ tr(Gε(1)Gε(2) · · ·Gε(n))− ϕ ◦ tr(Sε(1) · · · Sε(n)) = 0.



60 ZHIWEI HAO AND MIHAI POPA

But, since m is fixed and g(π) > 1 if π ∈ P2(n) \ NC2(n), equation (4.1)
gives that

E ◦ tr(Gε(1)Gε(2) · · ·Gε(n))− ϕ ◦ tr(Sε(1) · · · Sε(n)) = O(N−2).

Thus (4.2) holds true.
Suppose now that σ = t. From Corollary 3.3, we get that S and S[σ] are

asymptotically free as m→ ∞. So it suffices to show that

(4.3) lim
N→∞

E ◦ tr(Gε(1)Gε(2) · · ·Gε(n))− ϕ ◦ tr(Sε(1) · · · Sε(n)) = 0.

For
−→
j = (j1, j2, . . . , jn), equation (4.1) gives

E ◦ tr(Gε(1)Gε(2) · · ·Gε(n))− ϕ ◦ tr(Sε(1) · · · Sε(n))

= ∑
π∈P2(n)\NC2(n)

[
N−2g(π) ·

(
m−(n/2+1) ∑

−→
j ∈[m]n

∏
(k,l)∈π

δσk(jk ,jk+1),σl(jl+1,jl)

)]
6 N−2 · 1

m ∑
π∈P2(n)

[
∑

−→
j ∈[m]n

∏
(k,l)∈π

1
m

δσk(jk ,jk+1), σl(jl+1,jl)

]
.(4.4)

Now let X = X(1) be an m×m Gaussian random matrix. Denote by X(−1)

the transpose of X and let x(1)i,j , respectively x(−1)
i,j be the (i, j)-entry of X(1), re-

spectively of X(−1). Then, with ε(k) and σk as defined above, we have that

1
m

δσk(jk ,jk+1),σl(jl+1,jl) = E(xε(k)
jk ,jk+1

xε(l)
jl ,j−l

).

Thus

E◦tr(Gε(1)Gε(2) · · ·Gε(n))− ϕ ◦ tr(Sε(1) · · · Sε(n))

6 N−2 1
m ∑
−→
j ∈[m]n

[
∑

π∈P2(n)
∏

(k,l)∈π

E(xε(k)
jk ,jk+1

xε(l)
jl ,j−l

)
]
= N−2 · E ◦ tr(Xε(1) · · ·Xε(n)).

But, as shown in [10], the random matrices X and Xt are asymptotically (as
m→ ∞) free and semicircular distributed. Hence E ◦ tr(Xε(1) · · ·Xε(n)) converges
as m→ ∞, and therefore is bounded over m. It follows that

lim
N→∞

N−2E ◦ tr(Xε(1) · · ·Xε(n)) = 0.

Remark that the right-hand side of the equality in equation (4.4) is positive, there-
fore the proof of (4.3) is complete.

5. ASYMPTOTIC BOOLEAN INDEPENDENCE AND BERNOULLI MATRICES

DEFINITION 5.1. Let (A, ϕ) be a non-commutative probability space and N
be a positive integer. An N×N Bernoulli matrix (overA) is a matrix B = [bij]

N
i,j=1

such that
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(i) bij = b∗ji for all i, j ∈ [N];
(ii) {bii : i ∈ [N]} ∪ {<bij,=bij : 1 6 i < j 6 N} is a family of Boolean

independent Bernoulli-distributed elements of mean 0 and variance 1√
2N

if i 6= j,

respectively 1√
N

if i = j.

In particular ϕ(bij · blk) =
1
N δ(i,j),(l,k) for all i, j, k, l ∈ [N].

An immediate consequence of Theorem 2.3(ii) is that Bernoulli matrices are
Bernoulli-distributed with respect to φ = ϕ ◦ tr. More precisely

φ(Bm) =

{
0 if m is odd,
1 if m is even.

Indeed, if m is odd, we have that

φ(Bm) =
1
N ∑
−→
i ∈[N]m

ϕ(bi1,i2 bi2,i3 · · · bim ,i1)

and Theorem 2.3(ii) give the conclusion since all the terms from the right-hand
side of the equation above cancel.

If m = 2p is even, then applying again Theorem 3.2(ii) we get that

φ(B2p) = ∑
−→
i ∈[N]2p

1
N ∏

k∈[p]
ϕ(bi2k−1,i2k bi2k i2k+1

)

= ∑
−→
i ∈[N]2p

N−(p+1) ∏
k∈[p]

δ(i2k−1,i2k),(i2k i2k+1)
= ∑
−→
i ∈[N]2p

N−(p+1) ∏
k∈[p]

δi2k−1,i2k+1

= N−(p+1) · ]{−→i ∈ [N]2p : i1 = i3 = · · · = i2p−1} = 1.

We shall show that the following analogue of Theorem 3.2 holds true for
Bernoulli matrices.

THEOREM 5.2. (i) If B is a Bernoulli matrix from MN(A) and σ ∈ S([N]2)
satisfies equation (3.1) and t ◦ σ = σ ◦ t, then B and Bσ are Boolean independent with
respect to ϕ ◦ tr.

(ii) If (BN)N∈N is a sequence of Bernoulli matrices such that BN ∈ MN(A) and
(σ(N))N∈N is a sequence of permutations such that, for each N, σ(N) is an element of
S([N]2) that satisfies equation (3.2) and σ(N) ◦ t = t ◦ σ(N) then BN and BN

σ(N) are
asymptotically Boolean independent.

Proof. We need to show, for any ωk ∈ {1, σ} such that ωk 6= ωk+1 and any
positive integers p1, . . . , pm, that

φ((Bω1)p1 · (Bω2)p2 · · · (Bωm)pm) =
m

∏
k=1

φ((Bωk )pk ) =

{
1 if all pk are even,
0 otherwise.
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Let M = p1 + p2 + · · ·+ pm and −→σ = (σ1, . . . , σM) such that σj = ωk when-
ever p1 + · · ·+ pk−1 < j 6 p1 + · · ·+ pk. Then

φ((Bω1)p1 · (Bω2)p2 · · · (Bωm)pm) = φ(Bσ1 Bσ2 · · · BσM )

= ∑
−→
i ∈[N]M

1
N

ϕ([Bσ1 ]i1i2 [B
σ
2 ]i2i3 · · · [B

σM ]iM i1).

If M is odd, then Theorem 2.3(ii) gives that each term of the summation
above equals zero. Hence the conclusion.

If M is even, Theorem 2.3(ii) gives that

ϕ(Bσ1 · · · BσM ) =
1
N ∑
−→
i ∈[N]M

[
∏

16k6M/2
ϕ([Bσ2k−1 ]i2k−1i2k [B

σ2k ]i2k i2k+1
)
]
.

If all pk are even, then σ2k−1 = σ2k for all k = 1, 2, . . . , M
2 . Thus

φ((Bω1)p1 · · · (Bωm)pm) =
1
N ∑
−→
i ∈[N]M

[
∏

16k6M/2

1
N

δσ2k−1(i2k−1,i2k),σ2k(i2k+1,i2k)

]
= N−(M/2+1) ∑

−→
i ∈[N]M

[
∏

16k6M/2
δi2k−1,i2k+1

]
= N−(M/2+1) · ]{−→i ∈ [N]M : i1 = i3 = · · · = iM−1} = 1.

For the last part of the proof we will use an auxiliary result. Let R be an odd
positive integer, −→σ = (σ1, . . . , σR) with σk ∈ {1, σ}, and

−→
i = (i1, . . . , iR) ∈ [N]R.

For α, β ∈ [N], define c−→σ (α, β) = ∑
−→
i ∈[N]R

c−→σ (α, β,
−→
i ), where each c−→σ (α, β,

−→
i )

equals

ϕ([Bσ1 ]α,i1 [B
σ2 ]i1,i2) · ϕ([B

σ3 ]i2,i3 [B
σ4 ]i3,i4) · · · ϕ([B

σR−1 ]iR−1,iR [B
σR ]iR ,β).

We shall show by induction on R that c−→σ (α, β) 6 1 for all α, β, and −→σ as
above. For R = 1, we get

c−→σ (α, β) = ∑
j∈[N]

ϕ([Bσ1 ]α,j[Bσ2 ]j,β) =
1
N ∑

j∈[N]

δσ1(j,α),σ2(j,β)

=
1
N
]{j ∈ [N] : σ−1

2 ◦ σ1(j, α) = (j, β)} 6 1.

If R > 3, let −→σ (1) = (σ3, σ4, . . . , σR) and
−→
i (1) = (i3, i4, . . . , iR). Then

c−→σ (α, β,
−→
i ) = ϕ([Bσ1 ]α,i1 [B

σ2 ]i1,i2) · c−→σ (i2, β,
−→
i (1)).
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Therefore

c−→σ (α, β) = ∑
−→
i ∈[N]R

ϕ([Bσ1 ]α,i1 [B
σ2 ]i1,i2) · c−→σ (i2, β,

−→
i (1))

= ∑
−→
i (1)∈[N]R−1

[
c−→σ (1)

(i2, β,
−→
i (1)) · ∑

i1∈[N]

ϕ([Bσ1 ]α,i1 [B
σ2 ]i1,i2)

]
= ∑
−→
i (1)∈[N]R−1

[c−→σ (1)
(i2, β,

−→
i (1)) · c(σ1,σ2)

(α, i2)] 6 c−→σ (1)
(i2, β).

Finally, suppose that M is even but at least one pk is odd. Through a circular
permutation of (commutative) factors of the form ϕ([Bσ2k−1 ]i2k−1i2k [B

σ2k ]i2k i2k+1
) we

can suppose, without losing generality, that p1 = 1, that is σ1 6= σ2. With the
notations from above we have that

ϕ(Bσ1 · · · BσM )= ∑
i1,i2,i2∈[N]

1
N

ϕ([Bσ1 ]i1,i2 [B
σ2 ]i2,i3) · c−→σ (1)

(i3, i1)

6
1

N2 ∑
i1,i2,i2∈[N]

δσ1(i1,i2),σ2(i3,i2)=
1

N2 ]{(i1, i2, i3) : σ(i1, i2) = (i3, i2)}

hence the conclusion.

6. SECOND ORDER FLUCTUATIONS FOR SEMICIRCULAR MATRICES
AND THEIR TRANSPOSES

6.1. FREE CUMULANTS OF ORDER HIGHER THAN 3. In this section, we always
suppose SN = [cij]16i,j6N ∈ MN(A) is a semicircular matrix, as defined in Sec-

tion 3. As before, we denote S(1)
N = SN and S(−1)

N = St
N , the matrix transpose of

SN . To simplify the notation, we will again omit the index N with the convention
that we multiply only matrices of the same size.

Let l1, l2 . . . , lr be positive integers and M = l1 + · · ·+ lr. Let M0 = 0 and,
inductively, Ms+1 = Ms + ls. Suppose ε is a mapping from [M] to {(1), (−1)}.
For each j = 1, 2, . . . , r let

Wj = S
ε(M(j−1+1))
N S

ε(Mj−1+2)
N · · · Sε(Mj)

N ,

and denote E = Tr(W1) · Tr(W2) · · ·Tr(Wr).
For l1, l2, . . . , lr as above, let γ be the interval partition on [M] with blocks

B1, B2, . . . , Br of lengths respectively l1, . . . , lr (i.e. Bk = [Mk] \ [Mk−1]). We will
identify a partition on [M] with a permutation of [M] by identifying each block
with elements p1 < p2 < · · · < pq with a cycle (p1, p2, . . . , pq). Furthermore, for
σ a permutation on [M], we define σ̃ to be the permutation on [±M] given by
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σ̃(l) = −σ(l) and σ̃(−l) = σ(l) for each l ∈ [M]. For example, if γ is as defined
above, then

γ̃ = (−1, 2), (−2, 3), . . . , (−M1, 1), (−M1 − 1, M1 + 2), . . . , (M, Mr−1 + 1).

For
−→
i = (i1, i−1, . . . , iM, i−M) a 2M-tuple with components from [N] and σ

a permutation on the set [±M] = {1,−1, . . . , M,−M}, note
−→
i =

−→
i ◦ σ if is = ir

whenever r and s are in the same cycle of σ.
Finally, denote cε(j)

k,l the (k, l)-entry of Sε(j)
N , i.e. it equals ckl if ε(j) = (1),

respectively clk if ε(j) = (−1).
With these notations, we have that

ϕ ◦ tr(E) = ϕ ◦ tr(Sε(1) · · · Sε(M)) =
N

∑
i1,i2,...,im=1

ϕ(cε(1)
i1i2

cε(2)
i2i3
· · · cε(M)

iM i1
)

= ∑
−→
i ∈[N]2M ,

−→
i =
−→
i ◦γ̃

ϕ(cε(1)
i1i−1
· · · cε(M)

iM i−M
).

Further, Theorem 2.3(i) gives that

ϕ(E) = ∑
π∈NC2(M)

v(E, π) = ∑
π∈NC2(M)

∑
−→
i ∈[N]2M ,

−→
i =
−→
i ◦γ̃

w(E, π,
−→
i )

for v(E, π) = ∑
−→
i ∈[N]2M ,

−→
i =
−→
i ◦γ̃

w(E, π,
−→
i ) and w(E, π,

−→
i ) = ∏

(k,l)∈π

ϕ(cε(k)
ik i−k

cε(l)
il i−l

).

In particular, with the notations from Section 2.2,

w(E, π,
−→
i ) = κπ [ci1,i−1 , ci2,i−2 , . . . , ciM ,i−M ].

We will identify π ∈ NC2(M) to a permutation π̃ on [±M] via π̃(k) = −l if
(k, l) is a block of π.

LEMMA 6.1. Let ε be the permutation on [±M] induced by the mapping ε via

ε(k) =

{
k if ε(|k|) = (1),
−k if ε(|k|) = (−1).

Then, with the notations above,

w(E, π,
−→
i ) = N−M/2δ−→

i ,
−→
i ◦επ̃ε

and

v(E, π) = ∑
−→
i ∈[N]2M

N−M/2δ−→
i ,
−→
i ◦(γ̃∨επ̃ε)

= N](γ̃∨επ̃)−M/2.
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Proof. The definition of the mapping ε gives that cε(k)
ik i−k

= ciε(k),iε(−k)
. Hence

w(E, π,
−→
i ) = ∏

(k,l)∈π

ϕ(ciε(k)iε(−k)
ciε(l)iε(−l)

) = ∏
(k,l)∈π

1
N

δiε(k),iε(−l)
δiε(−k),iε(l)

= N−M/2 ∏
k∈[±M]

δiε(k),iεπ(k)
= N−M/2δ−→

i ,
−→
i ◦επ̃ε

.

Hence, the equation v(E, π) = ∑
−→
i ∈[N]2M ,

−→
i =
−→
i ◦γ̃

w(E, π,
−→
i ) gives

v(E, π) = ∑
−→
i ∈[N]2M ,

−→
i =
−→
i ◦γ̃

N−M/2δ−→
i ,
−→
i ◦επ̃ε

= ∑
−→
i ∈[N]2M

N−M/2δ−→
i ,
−→
i ◦γ̃ · δ−→i ,

−→
i ◦επ̃ε

.

But
−→
i is constant on both the cycles of γ̃ and of επ̃ε if and only if it is constant

on the blocks of γ̃ ∨ επ̃ε. So

v(E, π) = N−M/2 · ]{−→i ∈ [N]2M :
−→
i =

−→
i ◦ (γ̃ ∨ επ̃ε)}.

Hence the conclusion.

LEMMA 6.2. With the notations above, suppose that π ∈ NC2(M) contains the
block (k, k + 1) such that k and k + 1 are in the same block of γ (i.e. Sε(k)

N and Sε(k+1)
N

are factors in the same Wj). Let π(k) be the noncrossing partition on the ordered set
{1, 2, . . . , k− 1, k + 2, . . . , M} obtained by deleting block (k, k + 1) from π and let E(k)

be the product obtained by deleting the factors Sε(k)
N and Sε(k+1)

N from the development of
E. Then:

v(E, π) =

{
v(E(k)π(k)) if ε(k) = ε(k + 1),
1
N v(E(k)π(k)) if ε(k) 6= ε(k + 1).

Proof. Since (k, k + 1) ∈ π, we have that w(E, π,
−→
i ) = 0 unless

(6.1) ϕ(cε(k)
ik i−k

cε(k+1)
ik+1i−(k+1)

) 6= 0.

If ε(k) = ε(k + 1), the equation (6.1) implies that ik = i−(k+1) and that i−k =

ik+1. Furthermore, since k and k + 1 are in the same block of γ, we get that γ(k) =
k + 1. Hence

−→
i =

−→
i ◦ γ̃ gives that iγ̃−1(k) = ik = i−(k+1) = iγ̃(−(k+1)). Therefore,

for
−→
i (k) = (i1, i−1, . . . , ik−1, i−(k−1), ik+2, i−(k+2), . . . , i−M) and for γ(k) obtained

from γ by deleting the elements k, k+ 1 we get that w(E, π,
−→
i ) = 0 unless

−→
i (k) =−→

i (k) ◦ γ̃(k). Hence

v(E, π)= ∑
−→
i =
−→
i ◦γ̃

w(E, π,
−→
i )= ∑

−→
i (k)=

−→
i (k)◦γ̃(k)

∑
ik=i−(k+1), ik=i−(k+1)=iγ̃(−k−1)

w(E, π,
−→
i ).
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But w(E, π,
−→
i ) = w(E(k), π(k),

−→
i (k)) · ϕ(c

ε(k)
ik i−k

cε(k+1)
ik+1i−(k+1)

) and the last factor equals
1
N δik i−(k+1)

δi−k ik+1
. Also, iγ̃(−k−1) is a component in

−→
i (k), therefore

v(E, π) = ∑
−→
i (k)=

−→
i (k)◦γ̃(k))

∑
ik=i−(k+1)

1
N

w(E(k), π(k),
−→
i (k))

= ∑
−→
i (k)=

−→
i (k)◦γ(k)

w(E(k), π(k),
−→
i (k)) = v(E(k)π(k)).

If ε(k) 6= ε(k + 1), then equation (6.1) implies that ik = ik+1 and i−k =

i−(k+1). Then γ(k) = k + 1 and
−→
i =

−→
i ◦ γ̃ give that iγ̃−1(k), ik, i−k, ik+1 , i−(k+1),

iγ̃(−k−1) are all equal. Hence the condition
−→
i (k) =

−→
i (k) ◦ γ̃(k) is equivalent to

equation (6.1) and
−→
i =

−→
i ◦ γ̃, so

v(E, π) = ∑
−→
i (k)=

−→
i (k)◦γ̃(k)

1
N

w(E(k), π(k),
−→
i (k)).

Hence the conclusion.

COROLLARY 6.3. Suppose that ε(v + 1) = ε(v + 2) = · · · = ε(v + p) for some
v and p such that Mj−1 6 v < Mj − p. Let D(v, p) be the set of all π ∈ NC2(M) such
that the set {v + 1, v + 2, . . . , v + p} is a union of blocks of π (in particular, p must be
even). Then

∑
π∈D(v,p)

v(E, π) = ∑
σ∈NC2(M−p)

v(E(v,p), σ) · φ((S ε(v+1)
N )p).

Proof. Note that each π ∈ D(v, p) is uniquely determined by its restriction
to {v + 1, . . . , v + p} (which is an element of NC2(p)) and by its restriction to
[M] \ {v + 1, . . . , v + p} (which is an element of NC2(M− p)). Moreover, given
σ1 ∈ NC2(p) and σ2 ∈ NC2(M− p), there is a unique π ∈ D(v, p) such that its
restrictions to {v + 1, . . . , v + p}, respectively [M] \ {v + 1, . . . , v + p} equal σ1,
respectively σ2.

Thus, applying Lemma 6.2, we obtain

∑
π∈D(v,p)

v(E, π) = ∑
σ1∈NC2(M−p)

∑
σ2∈NC2(p)

v(E(v,p), σ1).

But SN and St
N are both semicircular matrices, so φ((S ε(v+1)

N )p) = ]NC2(p),
hence the conclusion.

Let β, respectively π be an interval partition, respectively non-crossing pair
partition of [M]. Two blocks B1 and B2 of β are said to be connected by π if there
exist some i ∈ B1 and j ∈ B2 such that (i, j) ∈ π. A block of β is said to be left
invariant by π if it is not connected by π to any other block of β. We will denote
by NC2(M, β, s) the set of all elements of NC2(M) that leave invariant all blocks
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of β. Also, we will denote by NC2(M, β, c) the set of all elements π of NC2(M)
such that for any two blocks B1, B2 of β there exist a sequence D1, D2, . . . , Dp of
blocks of β such that D1 = B1, that Dp = B2 and that π connects Di and Di+1 for
each i.

LEMMA 6.4. With lj, Mj, M as above (1 6 j 6 r), let c1, . . . , cM be elements ofA
such that {<ci,=ci : 1 6 i 6 M} is spanned by a family of free, centered, semicircular
variables. Take Cj = cMj−1+1cMj−1+2 · · · cMj and let β be the interval partition of [M]

with blocks of lengths l1, l2, . . . , lr in this order. With the notations above, we have that

κr(C1, C2, . . . , Cr) = ∑
π∈NC2(M,β,c)

∏
(i,j)∈π

φ(cicj).

Proof. For r = 1, the relation is a particular case of Theorem 2.3(i) (i.e. the
free Wick formula). Suppose now that the result holds true for r < R. Then
Theorem 2.3(i) gives that

ϕ(C1 · · ·Cr) = ϕ(c1c2 · · · cM)

= ∑
π∈NC2(M,β,c)

∏
(i,j)∈π

φ(cicj) + ∑
π∈NC2(M), π/∈NC2(M,β,c)

∏
(i,j)∈π

φ(cicj),

while the moment-free cumulant recurrence (2.1) gives that

ϕ(C1 · · ·Cp) = κp(C1, . . . , Cp) + ∑
π∈NC(p), π 6=1p

κπ [C1, . . . , Cp]

and the induction hypothesis gives that the last terms from the right-hand sides
of the two equations above are equal, hence the conclusion.

THEOREM 6.5. With the notations above, if r > 3, then

lim
N→∞

κr(Tr(W1), Tr(W2), . . . , Tr(Wr)) = 0.

Proof. As before, let β be the interval partition on [M] with blocks denoted
B1, B2, . . . , Br where Bk = (Mk−1 + 1, Mk−1 + 2, . . . , Mk) for each k ∈ [r]. We
will denote by ±Bk the set {q ∈ ±[M] : |q| ∈ Bk}. Also, as before, let E =
Tr(W1) · Tr(W2) · · ·Tr(Wr) and let γ be the permutation on the set [±M] with
cycles {(−k, k + 1) : k 6= Mj, 1 6 j 6 r} ∪ {(−Mj, Mj−1 + 1) : 1 6 j 6 r}.

With this notation, Lemma 6.4 gives that

κr(Tr(W1), Tr(W2), . . . , Tr(Wr)) = ∑
π∈NC2(M,β,c)

v(E, π).

Hence it suffices to show that lim
N→∞

v(E, π) = 0 for each π ∈ NC2(M, β, c). Fur-

thermore, utilising Remark 6.2, it suffices to show the result for partitions π that
also have the property that do not pair consecutive elements from the same block
of β. Since π is non-crossing, the last property is equivalent to π not pairing
elements from the same block of β.
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Consider then π ∈ NC2(M) that connects all blocks of γ, but do not pair
elements from the same block of γ. Since, from Lemma 6.1

v(E, π) = N](γ∨επ̃ε)−M/2

it suffices to show that ](γ ∨ επ̃ε) < M
2 for all π as above.

For p ∈ [±M] and σ a partition of [±M], let us denote by p/σ the block of σ
that contains p.

Note that the relation
−→
i =

−→
i ◦γ gives that if Bk is a block of γ and |p| ∈ Bk,

then p/γ has at least two elements in ±Bk. Indeed, if p > 0, then γ(p) = −p− 1
if p 6= Mk−1 + 1, respectively γ(p) = −Mk if p = Mk−1 + 1 (see also Figure 5
below). The situation is similar for p < 0.

Figure 5.

If (v, u) ∈ π with v ∈ Bk and u ∈ Bl such that l 6= k, then
−→
i =

−→
i ◦ επ̃ε

gives that w(E, π,
−→
i ) 6= 0. Indeed

0 6= ϕ(cε(v)
ivi−v

cε(u)
iui−u

) =
1
N

δiε(k),iε(l)δiε(−k),iε(−l)
.

Hence iv = i−u if ε(u) 6= ε(v) or iv = iu if ε(u) = ε(v), that is v/επ has elements in
both±Bk and±Bl . Analogously, same is true for−v/επ (see also Figure 6 below).

Figure 6.

Since v/γ and v/επ̃ε are subsets of vγ∨επ̃ε, it follows that the each cycle of γ∨ επ̃ε

has at least 4 elements. Since the set [±M] has 2M elements, it suffices to show
that there exist a cycle with strictly more than 4 elements.

The permutation π connects all blocks of β, so at least one block is connected
to at least two other distinct ones. Since π is noncrossing and does not connect
elements from the same block, we can suppose that there exist some v ∈ Bk and
some t ∈ Bl and s ∈ Bp such that v + 1 is also an element of Bk and (v, t, (v + 1, s)
are blocks in π (see Figure 7 below).
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Figure 7.

As seen before, (v, t) ∈ π implies that v/επ̃ε and−v/επ̃ε have elements in both Bk

and Bl . Similarly, v + 1/επ̃ε has elements in both Bk and Bp. But
−→
i =

−→
i ◦ γ gives

that v + 1/γ = v/γ or v + 1/γ = −v/γ that is v + 1/γ∨επ̃ε has at least 6 elements,
(at least two in each ±Bk, ±Bl , and ±Bp). Hence the conclusion.

6.2. SECOND ORDER FREE CUMULANTS.

LEMMA 6.6. Let s, r be two positive integers and ω : [s + r]→ {(1), (−1)} be a
mapping such that is such that ω(p) 6= ω(p + 1) for p ∈ [s + r− 1] \ {s}.

For each 1 6 i 6 s + r, let Ti,N be a polynomial in Sωi
N with complex coefficients

and denote Wi,N = Ti,N − φ(Ti,N). Then

lim
N→∞

φ(W1,N · · ·Ws,N ·Ws+1,N · · ·Ws+r,N) = δs,r

s

∏
j=1

lim
N→∞

φ(Ws+1−j,N ·Ws+j,N).

Proof. As before, we will simplify the notations by omitting the index N,
From Corollary 3.3, Wi and Wi+1 are asymptotically (as N → ∞) free, unless
i = s.

If ωs 6= ωs+1, then the definition of free independence gives that the left-
hand side of the equation cancels, as well as the factor corresponding j = s in the
right-hand side.

If ωs = ωs+1, then

(6.2) lim
N→∞

φ(W1 · · ·Ws+r) = lim
N→∞

φ(Ws ·Ws+1) · φ(W1 · · ·Ws−1 ·Ws+1 · · ·Ws+r)

because, for β = WsWs+1 − φ(WsWs+1), we get that

φ(W1 · · ·Ws+r) = φ(Ws ·Ws+1) · φ(W1 · · ·Ws−1 ·Ws+1 · · ·Ws+r)

+ φ(W1 · · ·Ws−1 · β ·Ws+2 · · ·Ws+r)

and the second term of the right-hand side from above cancels asymptotically
from the definition of free independence and Corollary 3.3.

If s = r, the conclusion follows from (6.2) and an inductive argument.
If s = r + w with w > 0, then (6.2) gives

lim
N→∞

φ(W1 · · ·Ws+r) = lim
N→∞

φ(W1 · · ·Ww) ·
r

∏
j=1

φ(Ws+1−jWs+j)

and, applying again Corollary 3.3, the first factor of the right-hand side cancels
asymptotically. The case r > s is analogous.
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The main result of this section is the following theorem.

THEOREM 6.7. Let s, r be two positive integers and ω : [s + r] → {(−1), (1)}
be a mapping such that ω(p) 6= ω(p + 1) for p ∈ [s + r− 1] \ {s}.

For each k ∈ [s + r], suppose that Pk is a polynomial with complex coefficients and
denote α

(N)
k = Pk(S

ω(k)
N )− φ(Pk(S

ω(k)
N )).

(i) If ω(s) = ω(s + 1), then

lim
N→∞

κ2(Tr(α(N)
1 · · · α(N)

s ), Tr(α(N)
s+1 · · · α

(N)
s+r )) = δs,r

s

∏
j=1

lim
N→∞

φ(α
(N)
j α

(N)
s+r+1−j).

(ii) If ω(s) 6= ω(s + 1) and s 6= r or s, r > 3, then

lim
N→∞

κ2(Tr(α(N)
1 · · · α(N)

s ), Tr(α(N)
s+1 · · · α

(N)
s+r )) = 0.

Proof. Since the free cumulants are multilinear, it suffices to prove the result
for Pk monomials; that is

αk = (Sω(k))lk − φ((Sω(k))lk )

for l1, l2, . . . , ls+r some positive integers.
As before, let M0 = 0 and Mj = Mj−1 + lj for j ∈ [s + r]. Let m = l1 + · · ·+

ls = Ms, let n = ls+1 + · · ·+ ls+r = Ms+r −Ms and M = m + n = Ms+r. Define
ε : [M]→ {(1), (−1)} via ε(p) = ω(k) whenever Mk−1 < p 6 Mk. Also, denote

W1 = (Sω(1))l1 · (Sω(2))l2 · · · (Sω(s))ls = Sε(1)Sε(2) · · · Sε(m),

W2 = (Sω(ls+1))ls+1 · · · (Sω(s+r))ls+r = Sε(m+1)Sε(m+2) · · · Sε(m+n),

E = Tr(W1)Tr(W2), and F = Tr(W1W2).
Let β be the interval partition on [M] with blocks B1, . . . , Bs+r of lengths

l1, l2, . . . , ls+r in this order. The definitions of W1 and W2 give that if k, l ∈ B(i),
then ε(k) = ε(l) = ω(i). Corollary 6.3 gives that

(6.3) ϕ ◦ Tr(α1 · · · αs+r) = ∑
π∈NC2(M)\NC2(M,γ,s)

v(F, π).

Let γ be the interval partition on [M] with two blocks D1, D2 of lengths m
and n in this order. In particular, if k ∈ Di, then Sε(k) is a factor in Wi. We will
prove by induction on M the following property:

(6.4)

{
v(F, π) = O(N) for all π ∈ NC2(M) \ NC2(M, γ, s),
v(F, π) = O(1) if π /∈ NC2(M, γ, c) \ NC2(M, β, s).

If M is odd, the property is vacuously true. If M = 2, the first equation
follows from ϕ ◦ Tr(S2) = N while the second is again vacuously true. For the
induction step, first note that, from Lemma 6.2, we can suppose that π does not
pair consecutive elements from the same block of β, henceforth, since π is non-
crossing, it does not pair any elements from the same block of β. Then, applying
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Lemma 2.2, π does pair two consecutive elements k, k + 1 of [M] that are in differ-
ent blocks, Bi and Bi+1 of γ. If π /∈ NC2(M, γ, c), then Bi and Bi+1 are in the same
block of γ, so ω(i) 6= ω(i+ 1). Then the induction hypothesis and the second part
of Remark 6.2 imply that v(F, π) = 1

N O(N) = O(1). If π ∈ NC2(M, γ, c), from
the argument above it suffices to show the property for π pairing only elements
from different blocks of β, that is for m = n and π = {(j, M− j + 1) : j ∈ [m]}.
Then we apply Remark 6.2 to the block (m, m + 1) and note that, with the nota-
tions from Lemma 6.2, π(m+1) ∈ NC2(M, γ, c) \ NC2(M, β, s). Hence the conclu-
sion follows from the induction hypothesis.

Equation (6.3) and property (6.4) give that

(6.5) lim
N→∞

1
N

ϕ ◦ Tr(α1 · · · αs+r) = lim
N→∞

∑
π∈NC2(M,γ,c)\NC2(M,β,s)

1
N

v(F, π).

On the other hand, Remark 6.4 and Corollary 6.3 give that

(6.6) κ2(Tr(α1 · · · αs), Tr(αs+1 · · · αs+r)) = ∑
π∈NC2(M,γ,c)\NC2(M,β,s)

v(E, π).

Let us first consider the case ω(s) = ω(s + 1); that is ε(m) = ε(m + 1).
According to Lemma 6.6, it suffices to show that

lim
N→∞

κ2(Tr(α1 · · · αs), Tr(αs+1 · · · αs+r)) = lim
N→∞

1
N

ϕ ◦ Tr(α1 · · · αs+r).

Hence it suffices to show that

(6.7) v(E, π) =
1
N

v(F, π)

for all π ∈ Nc2(M, β, c) \ NC2(M, γ, s).
We shall prove (6.7) by induction on M. If M = 2, then s = r = 1 and

π = (1, 2). Also ε(1) = ε(2), hence

v(F, π) = ∑
i1,i2∈[N]

ϕ(cε(1)
i1i2

cε(1)
i2i1

) = N2 · 1
N

= N

while

v(E, π) = ∑
i1∈[N]

ϕ(cε(1)
i1i1

cε(1)
i1i1

) = N · 1
N

= 1.

For the induction step, suppose first that if π pairs two elements, k and l
from the same block of β. Then the restriction of π to the set {k, k + 1, . . . , l}
is a noncrossing pair partition, hence contains a block consisting on consecutive
elements. Then (6.7) follows from the application of Remark 6.2 in both sides,
and from the induction hypothesis.

We can suppose though that all blocks of π contain one element from each
block of γ, that is one element from [m] and one from [M] \ [m]. Then m must
equal n and, since π is non-crossing, we have that π = {(j, M + 1− j) : j ∈ [m]}.
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Denote by
−→
i the M-tuple (i1, i2, . . . , iM). Also, let

−→
j = (i1, i2, im, im+1, im+2)

and denote by
−→
i∗ the (M− 6)-tuple obtained by eliminating the indices i1, i2, im,

im+1, im+2 and iM from
−→
i . The definition of v(F, π) gives that

v(F, π)= ∑
−→
i ∈[N]M

m

∏
k=1

ϕ(cε(k)
ik ik+1

cε(M+1−k)
iM+1−k ,iM+2−k

)

= ∑
−→
j ∈[N]6

[
ϕ(cε(1)

i1i2
cε(M)

iM i1
)ϕ(cε(m)

imim+1
cε(m+1)

im+1im+2
) · ∑
−→
j ∈[N]M−6

m−1

∏
k=2

ϕ(cε(k)
ik ik+1

cε(M+1−k)
iM+1−k ,iM+2−k

)
]
.

On the other hand, since ε(m) = ε(m + 1), we have that

ϕ(cε(m)
imim+1

cε(m+1)
im+1im+2

) =
1
N

δim ,im+2 .

Hence, denoting

Eπ(i2, im, im+2, iM) = ∑
−→
j ∈[N]M−6

m−1

∏
k=2

ϕ(cε(k)
ik ik+1

cε(M+1−k)
iM+1−k ,iM+2−k

),

we have that

v(F, π) =
N

∑
i1,i2,iM=1

ϕ(cε(1)
i1i2

cε(M)
iM i1

) ·
N

∑
im ,im+1,im+2=1

1
N

δimim+2 · Eπ(i2, im, im+2, iM)

=
N

∑
i1,i2,iM=1

ϕ(cε(1)
i1i2

cε(M)
iM i1

) ·
N

∑
im ,im+1=1

1
N
· Eπ(i2, im, im, iM)

= N ·
N

∑
i1,i2,iM=1

ϕ(cε(1)
i1i2

cε(M)
iM i1

) · Eπ(i2, im, im, iM).

With the same notations,

v(E, π) = ∑
−→
j ∈[N]6

ϕ(cε(1)
i1i2

cε(M)
iM im+1

)ϕ(cε(m)
imi1

cε(m+1)
im+1im+2

) · Eπ(i2, im, im+2, iM).

Since ε(m) = ε(m + 1), we have that ϕ(cε(m)
imi1

cε(m+1)
im+1im+2

) = 1
N δi1im+1 δimim+2 . Hence

v(E, π) =
N

∑
i1,i2,iM=1

ϕ(cε(1)
i1i2

cε(M)
iM i1

) ·
N

∑
im ,im+2=1

1
N

δim ,im+2 · Eπ(i2, im, im+2, iM)

=
N

∑
i1,i2,iM=1

ϕ(cε(1)
i1i2

cε(M)
iM i1

) · 1
N

N

∑
im=1
Eπ(i2, im, im, iM)

=
N

∑
i1,i2,iM=1

ϕ(cε(1)
i1i2

cε(M)
iM i1

) · Eπ(i2, im, im, iM).

Hence (6.7).
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Suppose now that ε(m) 6= ε(m + 1). We shall show first that

(6.8) v(E, π) =



O(N−1) if (k, l) ∈ π with ε(k) 6= ε(l) and k, l
in the same block of γ,

O(N−1) if π has at least 3 blocks with elements
from different blocks of γ,

O(1) otherwise.

We will prove (6.8) by induction on M. If M = 2, the first two relations are
vacuously true, while the last one follows from

ϕ(Tr(S)Tr(St)) = ϕ
(( N

∑
i=1

cii

)
·
( N

∑
j=1

cjj

))
=

N

∑
i,j=1

ϕ(ciicjj) =
N

∑
i,j=1

1
N

δij = 1.

For the induction step, let (k, k + l) be a block of π. Then the restriction of π
to [k + l] \ [k− 1] is noncrossing. Hence π contains a block of the form (p, p + 1).
If k and k + l are from the same block of γ, then so are p and p + 1. Therefore
applying the first part of Lemma 6.2, we get that v(E, π) = v(E(p), π(p)). Since
π(p) is in NC2(M, β, c) \ NC2(M, γ, s), the conclusion follows from the induction
hypothesis. If π does not connect elements from the same block of γ, then p
and p + 1 are from different blocks of γ, but from the same block of β so ε(p) 6=
ε(p + 1). The second part of Lemma 6.2 gives then v(E, π) = 1

N v(E(p), π(p)) and
the conclusion follows again from the induction hypothesis.

We can suppose then that π contains only pairs from different cycles of
β, that is π = {(j, M + 1 − j) : j ∈ [m]}. Denoting now

−→
i the multi-index

(i1, i−1, . . . , iM, i−M), with the notations from Section 6.1 and according to Lem-
ma 6.1, we have that

v(E, π) = N](γ̃∨επ̃)−M/2.

As shown in the proof of Theorem 6.5, each cycle of γ̃∨ επ̃ has at least 4 elements,
hence v(E, π) 6 1 for all π as above. It only remains to show that γ̃∨ επ̃ contains
a cycle with strictly more than 4 elements if π has at least 3 blocks with elements
from different blocks of γ. In this case m > 3, so (1, M), (m − 1, m + 2) and
(m, m + 1) are distinct blocks of π (see Figure 8 below).

Figure 8.

If ε(m) = (1) and ε(m + 1) = (−1), we have that

επ̃ε(m) = επ̃(m) = ε(−(m + 1)) = m + 1.
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Similarly, if ε(m) = (−1) and ε(m + 1) = (1), we have that

επ̃ε(m) = επ̃(−m) = ε(−(m + 1)) = m + 1,

so m and m + 1 are in the same block of επ̃ε.
On the other hand, γ̃(−(m− 1)) = m and γ̃(m + 1) = −M, while

|επ̃ε(−(m− 1))| = |π(m− 1)| = m + 2.

Therefore −(m − 1), m, m + 1,−M and επ̃ε(−(m − 1)) are 5 distinct ele-
ments of the same cycle of γ̃ ∨ επ̃, hence the proof of (6.7) is complete.

Last, we shall show that property (6.8) implies Theorem 6.7(ii). Suppose
though that ω(s) 6= ω(s + 1) and s 6= r or s, r > 3. Let π ∈ NC2(M, γ, c) \
NC2(M, β, s). It suffices to show that lim

N→∞
v(E, π) = 0. Since π /∈ NC2(M, β, c),

each block of β must be connected to at least one other block of β.
If π connects two blocks of β from the same block of γ, then, since π is non-

crossing, π also connects two consecutive blocks Bk, Bk+1 from the same block of
γ. But ω(k) 6= ω(k + 1) and the first part of property (6.8) implies that v(E, π) =
O(N−1).

Suppose that π connects only blocks of β from different blocks of γ. If s, r >
3, then v(E, π) = O(N−1) from the second part of property (6.8). If s = 1 and
r = 2, from the first part of Lemma 6.4, we can suppose that β has 3 cycles, first
with 2 elements and the others with one element. Then

v(E, π) = ∑
−→
i ∈[N]4

ϕ(cω(1)
i1i2

cω(3)
i4i4

)ϕ(cω(1)
i2i1

cω(3)
i3i3

) =
N

∑
i1,i2,i3,i4=1

1
N

δi1i4 δi2i4δi1i3 δi2i3 =
1
N

.

The case s = 2 and r = 1 is similar.

REMARK 6.8. Since S(1)
N = SN and S(−1)

N = St
N are asymptotically free, if

ω(s) 6= ω(s + 1) we have that

lim
N→∞

φ(α
(N)
s α

(N)
s+1) = 0.

So the formula from (i) also holds true under the assumptions from (ii).
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