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ABSTRACT. We consider the C∗-algebra IsomQ, where Q = (qij)
n
i,j=1 is a ma-

trix of complex numbers. This algebra is generated by n isometries a1, . . . , an
satisfying the relations a∗i aj = qijaja∗i , i 6= j with max |qij| < 1. This C∗-algebra
is shown to be nuclear. We prove that the Fock representation of IsomQ is
faithful. Further we describe an ideal in IsomQ which is isomorphic to the
algebra of compact operators.
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1. INTRODUCTION

Operator algebras generated by various deformations of the canonical com-
mutation relations (CCR) have been extensively studied in the last two decades.
In particular, considerable attention has been paid to the study of so-called
Q-CCR introduced by M. Bozejko and R. Speicher, see [3]. Assume that Q =
(qij)

n
i,j=1 satisfy the following conditions:

|qii| < 1, qii ∈ R, i = 1, . . . , n; |qij| 6 1, qji = qij, qij ∈ C, i 6= j.

Then define Q-CCR to be a ∗-algebra generated by elements ai, a∗i , i = 1, . . . , n,
satisfying the following relations:

a∗i ai = 1 + qiiaia∗i ; a∗i aj = qijaja∗i for i 6= j.

It is a deformation of ∗-algebras of the classical commutation relations in the sense
that in the Fock realisation, the limiting cases qij = 1 and qij = −1 correspond to
∗-algebras of the canonical commutation relations (CCR) and the canonical anti-
commutation relations (CAR) respectively.

Let us describe the main results on the subject.
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The ∗-algebra Q-CCR possesses a particular representation πF called the
Fock representation. It is determined uniquely up to a unitary equivalence by the
following property: there exists a cyclic vector Ω such that πF(a∗i )(Ω) = 0 for
i = 1, . . . , n. The problem of existence and uniqueness of πF was studied in [3],
[6], [10] and in [19] for a more general class of Wick algebras.

It can easily be verified that in any ∗-representation π of the ∗-algebra
Q-CCR by bounded operators one has

‖π(ai)‖ 6
1√

1− |qii|
, i = 1, . . . , n.

Hence, there exists a universal enveloping C∗-algebra associated to Q-CCR de-
noted below by Q-CCR.

When max |qij| < 1 it is natural to think of the C∗-algebra Q-CCR as a de-
formation of the Cuntz–Toeplitz algebra KOn. Recall that KOn is the universal
C∗-algebra generated by si, s∗i , i = 1, . . . , n subject to the relations

s∗i sj = δij1, i, j = 1, . . . , n.

This point of view was justified by P.E.T. Jorgensen, L.M. Schmidt and R.F. Werner
who showed that Q-CCR ' KOn whenever max |qij| <

√
2− 1, see [9] for more

details. It remains a conjecture that Q-CCR ' KOn whenever max |qij| < 1.
Many authors were also interested in the study of the C∗-algebra gener-

ated by operators of the Fock representation of Q-CCR. Namely, K. Dykema
and A. Nica in [5] proved that πF(Q-CCR) ' KOn for slightly larger value of
max |qij|. Also an embedding of KOn into πF(Q-CCR) was constructed for any
values of deformation parameters with max |qij| < 1.

Later M. Kennedy in [11] showed the existence of an embedding of
πF(Q-CCR) into KOn and proved that πF(Q-CCR) is an exact C∗-algebra.

Let us stress out that results concerning πF(Q-CCR) cannot be automati-
cally lifted to the universal C∗-algebra level since at the moment we do not know
whether or not πF is a faithful ∗-representation of Q-CCR for any |qij| < 1. How-
ever πF is a faithful representation of Q-CCR, i.e. it is faithful on the ∗-algebraic
level, see [7].

Some boundary cases of Q-CCR corresponding to |qii| < 1, i = 1, . . . , n,
|qij| = 1, i 6= j were studied in [12], [16], see also [18]. For these values of qij
it was shown that Q-CCR ' IsomQ where IsomQ is a C∗-algebra generated by
isometries a1, . . . , an such that a∗i aj = qijaja∗i , i 6= j. It was also shown that for the
values of parameters qij specified above, the C∗-algebra IsomQ is nuclear and its
Fock representation is faithful.

Notice, that the C∗-algebras IsomQ with max |qij| < 1 have completely dif-
ferent structure than in the case of |qij| = 1, i 6= j. It was shown in [16] that for
two generators and |q1| = |q2| = 1, Isomq1 ' Isomq2 if and only if q1 = q2 or
q1 = q2. If |q| < 1 one has Isomq ' KO2 as established in [8]. For more than
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two generators the isomorphism problem for IsomQ and KOn with max |qij| < 1
remains open.

In this paper we study the C∗-algebras IsomQ with max |qij| < 1, i, j =
1, . . . , n. Notice that this C∗-algebra is the same as Q-CCR with qii = 0, i =
1, . . . , n.

When a C∗-algebra admits an action of a compact group, some of its prop-
erties can be studied at the level of the fixed point subalgebra for this action. In
Section 3 we discuss conditions for a compact group to define a filtration preserv-
ing action on Q-CCR (and in particular on IsomQ). We find the largest admissible
group acting on Q-CCR regardless of the values of qij — it happens to be the n-
dimensional torus Tn. Then we begin to study the fixed point subalgebra with
respect to the action of Tn named GICARQ.

From Section 4 till the end of the paper we will consider the case of IsomQ,
i.e. qii = 0, i = 1, . . . , n. In this case GICARQ turns out to be an AF-algebra. As
a consequence it will follow that IsomQ is nuclear.

In Section 5 we describe the Bratteli diagram of GICARQ and conclude its
independence of the values of qij. Hence, we get an isomorphism of the fixed
point subalgebras of IsomQ and KOn.

Another problem which can be reduced to the fixed point subalgebra level
is faithfulness of a ∗-homomorphism. Using information on the structure of the
fixed point subalgebra, we prove in Section 6 that the Fock representation of
IsomQ, max |qij| < 1, is faithful. This allows us to extend results and techniques
of [5], [11] to the case of IsomQ.

In Section 7 we prove the existence of an ideal KQ ⊂ IsomQ isomorphic
to the algebra of compact operators and describe a generator of this ideal as a
projection in some finite-dimensional subalgebra of IsomQ.

2. THE DEFORMED FOCK INNER PRODUCT

As it was mentioned in the introduction, the qij-deformed Fock representa-
tion has been the subject of numerous studies. For our purpose we only need a
few basic facts about the structure of the Fock representation space of Q-CCR.

Let H = Cn and {ξ1, . . . , ξn} be its orthonormal basis. Consider the full
tensor space

T(H) = {Ω} ⊕
⊕
k>1

H
⊗

k.

Put H
⊗

k ⊥ H
⊗

l , k 6= l, and supply each H
⊗

k with the inner product 〈·, ·〉Fock
specified below, see [3] for more details. Namely,

〈Ω, Ω〉Fock = 1, and
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〈ξi1 ⊗ · · · ⊗ ξik , ξ j1 ⊗ · · · ⊗ ξ jk 〉Fock

=
k

∑
t=1

δj1it qj1i1 · · · qj1it−1〈ξi1 ⊗ · · · ⊗ ξ̂it ⊗ · · · ⊗ ξik , ξ j2 ⊗ · · · ⊗ ξ jk 〉Fock,

where 1 6 i1, . . . , ik, j1, . . . , jk 6 n, and the hat over ξit means that ξit is deleted
from the tensor. Note that the natural basis ξi1 ⊗ · · · ⊗ ξik ofH⊗k is not orthogonal
with respect to 〈·, ·〉Fock.

3. COMPACT GROUP ACTIONS ON Q-CCR

In this part of our paper we discuss symmetries of the C∗-algebra Q-CCR
and explain how they can be useful. First, recall the definition of a group action.

DEFINITION 3.1. Let G be a compact group, and A a C∗-algebra.
(i) An action of G on A is a homomorphism γ : G → Aut(A) which is contin-

uous in the point-norm topology.
(ii) The fixed point subalgebra Aγ is the subset of all a ∈ A such that γg(a) = a

for all g ∈ G.

Recall that for every action of a compact group G on a C∗-algebra A one
can construct a faithful conditional expectation Eγ : A→ Aγ onto the fixed point
subalgebra, given by

Eγ(a) =
∫
G

γg(a)dλ,

where λ is the Haar measure on G.
The following proposition explains our interest in studying the fixed point

subalgebras.

PROPOSITION 3.2 ([4] Section 4.5, Theorem 1, 2). (i) Let γ be an action of a
compact group G on a C∗-algebra A. Then A is nuclear if and only if Aγ is nuclear.

(ii) Let α, β be actions of a compact group G on C∗-algebras A and B respectively and
π : A→ B is a ∗-homomorphism such that

π ◦ αg = βg ◦ π for any g ∈ G.

Then π is injective on A if and only if π is injective on Aα.

Our aim is to find a way to generate suitable actions on Q-CCR. Recall that
the Cuntz–Toeplitz algebra KOn admits a natural filtration preserving action for
every closed subgroup of the unitary group Un. For the reader’s convenience we
provide below a short proof of this well-known fact.
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PROPOSITION 3.3. Let G be a closed subgroup of Un and si, i = 1, . . . , n be the
generators of KOn. Then there exists an action γ of G on KOn such that

γg(si) =
n

∑
j=1

sjgji, g = (gij) ∈ G.

Proof. One has to examine that γg(si), i = 1, . . . , n, satisfy the basic relations
of KOn. Indeed,

γg(s∗i )γg(sj) =
n

∑
k,l=1

s∗k sl gkigl j =
n

∑
k,l=1

δkl gkigl j =
n

∑
k=1

gkigkj = δij.

Thus, there is a correctly defined ∗-homomorphism γg : KOn → KOn.
Since g is unitary, this ∗-homomorphism is an automorphism.

Our goal is to verify when the construction above is applicable to Q-CCR.
Unlike for KOn, not every closed subgroup of Un gives a well-defined action on
Q-CCR. In the next lemma we state the conditions for an element of Un to define
an automorphism of Q-CCR.

LEMMA 3.4. Suppose u ∈ Un, ai, i = 1, . . . , n are generators of Q-CCR and

a′i =
n

∑
j=1

ajuji, i = 1, . . . , n.

Then the relations
a′∗i a′j − qija′ja

′∗
i = δij, i, j = 1, . . . , n

hold if and only if
qklukiul j = qijul juki, i, j, k, l = 1, . . . , n.

Proof. Suppose that

a′∗i a′j − qija′ja
′∗
i = δij, for any i, j = 1, . . . , n.

Then
δij = a′∗i a′j − qija′ja

′∗
i = ∑

k,l
(a∗k alukiul j − qijala∗k ul juki)

= ∑
k,l
((δlk1 + qklala∗k )ukiul j − qijala∗k ul juki)

= ∑
k

ukiukj + ∑
k,l
(qklala∗k ukiul j − qijala∗k ukiul j)

= δij + ∑
k,l

ala∗k ukiul j(qkl − qij).

The linear independence of ala∗k , l, k = 1, . . . , n, implies the claim.

Notice that if the groups G1, G2 ⊂ Un act on Q-CCR as in Lemma 3.4 and
G1 6 G2 then the fixed point subalgebra by the action of G2 is included into the
fixed point subalgebra by the action of G1. Hence we would like to act by the
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largest possible subgroup of Un to make the fixed point subalgebra as small as
possible. In the following theorem we prove that the largest subgroup exists for
an arbitrary choice of the parameters {qij}.

THEOREM 3.5. Let G = {u ∈ Un : qklukiul j = qijul juki, i, j, k, l = 1, . . . , n}.
Then G is a closed subgroup of Un.

Proof. Step 1. Let u be the identity matrix. Then

qklukiul j = qklδkiδl j = qijδl jδki = qijul juki.

Step 2. Suppose u ∈ G. We prove that u−1 = u∗ ∈ G, where u∗ij = uji. If uik
or ujl equal to 0 then trivially

qklu∗kiu
∗
l j = qiju∗l ju

∗
ki.

Otherwise, for u ∈ G we know that

qijuikujl = qklujluik,

so qkl = qij and
qklu∗kiu

∗
l j = qiju∗l ju

∗
ki.

Step 3. Suppose u, v ∈ G. Let h = uv. As u, v ∈ G we get

qklukαulβ = qαβulβukα, qαβvαivβj = qijvβjvαi

for α, β = 1, . . . , n. Then

qklhkihl j = ∑
α,β

qklukαvαiulβvβj = ∑
α,β

qαβulβvαiukαvβj = ∑
α,β

qijulβvβjukαvαi

= qijhl jhki.

Consider the subgroup of diagonal matrices in Un. It is isomorphic to Tn.

REMARK 3.6. The subgroup Tn of diagonal matrices in Un satisfies the fol-
lowing properties:

(i) Tn defines a well-defined action on Q-CCR for any Q = (qij)
n
i,j=1. In par-

ticular, if u ∈ Tn is diagonal then

qklukiul j = qklδkiδl jukiul j = qijδl jδkiul juki = qijul juki.

(ii) There exists a special choice of {qij} such that the group defined in Theo-
rem 3.5 is isomorphic to Tn. Indeed, take arbitrary {qij} with qii 6= qjj whenever
i 6= j. Then in particular

ujiuji(qjj − qii) = 0.
Hence uji = 0 for j 6= i.

We denote the action of Tn defined above by Ψ. For w = (w1, . . . , wn) ∈ Tn

let Ψw : Q-CCR → Q-CCR,

Ψw(ai) = wiai, i = 1, . . . , n

be the corresponding automorphism.
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Now we would like to describe the fixed point subalgebra for the action Ψ
on Q-CCR.

Recall that by applying the qij-relations, any monomial in ai, a∗i can be
brought into a normal form with all starred operators to the right of all unstarred
ones. For a multi-index µ = (µ1, . . . , µk), µi ∈ {1, . . . , n} we write

aµ = aµ1 · · · aµk .

The following result follows obviously from the Diamond lemma (see [1]).

PROPOSITION 3.7. The monomials aµa∗σ, where µ, σ vary over all multi-indices,
form a linear basis of Q-CCR.

The following technical statement is easily obtained (see [2]).

PROPOSITION 3.8. Let γ be an action of a compact group on a C∗-algebra B and
B0 be a dense ∗-subalgebra of B. If Eγ is a conditional expectation onto the corresponding
fixed point subalgebra Bγ of B and Eγ(B0) ⊂ B0, then B0 ∩ Bγ is dense in Bγ.

Put occi(µ) to be the number of occurrences of i in a multi-index µ. For a
multi-index µ let occ(µ) = (occ1(µ), . . . , occn(µ)) ∈ Zn

+. Write occ(µ) = occ(σ) if
occi(µ) = occi(σ) for i = 1, . . . , n.

Consider the linear space GICARQ = span{aµa∗σ : occ(µ) = occ(σ)}.

THEOREM 3.9. If x ∈ Q-CCR then Ψw(x) = x for every w ∈ Tn if and only if
x ∈ GICARQ.

Proof. Compute the action of Ψw, w = (w1, . . . , wn) on the basis of Q-CCR:

Ψw(aµa∗σ) = wµ1 · · ·wµk wσ1 · · ·wσk aµa∗σ =

= wocc1(µ)
1 wocc1(σ)

1 · · ·woccn(µ)
n woccn(σ)

n aµa∗σ.

If aµa∗σ ∈ GICARQ then for i = 1, . . . , n we have wocci(µ)
i wocci(σ)

i = 1, so
Ψw(aµa∗σ) = aµa∗σ. Thus if x ∈ GICARQ then Ψw(x) = x.

Conversely, if x ∈ Q-CCR then we can write x = ∑
µ,σ

Cµ,σaµa∗σ. Suppose

Ψw(x) = x for any w ∈ Tn. In particular it is true for wi = (1, . . . , 1, z, 1, . . . , 1),
where z is on the i-th place. Then

0 = Ψwi (x)− x = ∑
µ,σ

(zocci(µ)zocci(σ) − 1)Cµ,σaµa∗σ for any z ∈ T.

Since aµa∗σ are linearly independent, the above equality implies occ(µ) = occ(σ)
whenever Cµ,σ 6= 0.

Theorem 3.9 easily implies that GICARQ is a ∗-subalgebra of Q-CCR. Com-
bining Proposition 3.8 with Theorem 3.9 we obtain the following corollary.

COROLLARY 3.10. Let GICARQ = GICARQ. Then the fixed point subalgebra
(Q-CCR)Ψ coincides with GICARQ.
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4. NUCLEARITY OF IsomQ

Starting from this section we will only consider the case of IsomQ, i.e. Q =
(qij)

n
i,j=1 such that qii = 0, i = 1, . . . , n. For such Q we will prove that GICARQ

is an AF-algebra.
In the following lemma we present the multiplication rules for elements of

GICARQ.

LEMMA 4.1. Let qii = 0, i = 1, . . . , n. Let aµ(1)a∗σ(1), aµ(2)a∗σ(2) ∈ GICARQ.
Then aµ(1)a∗σ(1)aµ(2)a∗σ(2) = αaµ(3)a∗σ(3) for some α ∈ C. Moreover,

occi(µ(3)) = max(occi(µ(1)), occi(µ(2)))

for i = 1, . . . , n.

Proof. First rewrite the product aµ(1)a∗σ(1) and aµ(2)a∗σ(2) as an element of
span{aµa∗σ}:

(i) If σ(1)i 6= µ(2)k for any k, then move a∗
σ(1)i

to the right of aµ(2) using the
qij-commutation relations.

(ii) If σ(1)i = µ(2)k for some k, then move a∗
σ(1)i

right to aµ(2)k
using the

qij-commutation relations and annihilate them using the fact that aσ(1)i
is an isom-

etry.
As a result we get an expression of the form αaµ(3)a∗σ(3) for some α ∈ C.
If occi(σ(1)) > occi(µ(2)), then each occurrence of ai in aµ(2) annihilates

with the corresponding element of a∗
σ(1). Hence, occi(µ(3)) = occi(µ(1)) and

occi(σ(3)) = occi(σ(2)) + (occi(σ(1))− occi(µ(2))). But occi(µ(1)) = occi(σ(1))
and occi(µ(2)) = occi(σ(2)). Hence occi(σ(3)) = occi(µ(3)) = occi(σ(1)).

If occi(σ(1)) 6 occi(µ(2)), then the same arguments as in the first case lead
us to occi(σ(3)) = occi(µ(3)) = occi(µ(2)).

Therefore occi(µ(3)) = max(occi(µ(1)), occi(µ(2))).

Put

(4.1) Wk = span
{

aµa∗σ ∈ GICARQ : max
i

occi(µ) 6 k
}

.

Lemma 4.1 implies the following statement.

COROLLARY 4.2. If qii = 0, i = 1, . . . , n then Wk is a finite-dimensional
∗-subalgebra of GICARQ.

THEOREM 4.3. If qii = 0, i = 1, . . . , n then GICARQ is an AF-algebra.

Proof. Since any x ∈ GICARQ belongs toWk for sufficiently large k, we get

GICARQ =
⋃
k

Wk.

Hence GICARQ is an AF-algebra.
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Every AF-algebra is nuclear (see [2]). Therefore we obtain an important
corollary of Theorem 4.3 and Proposition 3.2.

THEOREM 4.4. IsomQ is nuclear.

5. STABILITY OF GICARQ

In this section we prove that the structure of GICARQ does not depend
on {qij}, i.e. GICARQ ' GICAR0 for any Q such that max |qij| < 1, qii = 0,
i = 1, . . . , n. For this purpose we compute the Bratelli diagram of GICARQ.

Denote by Zn
+ the set of all n-tuples of non-negative integers. For v =

(v1, . . . , vn), u = (u1, . . . , un) ∈ Zn
+ put v + u, v − u, max(v, u) for an n-tuple

which is obtained by componentwise application of the corresponding functions
to the entries of v and u. We write v 6 u if vi 6 ui and v = u if vi = ui for all
i = 1, . . . , n. For S ⊂ {1, . . . , n} denote by δS the n-tuple which has 1 in the i-th
entry when i ∈ S and 0 otherwise. For k > 0 write kn for the n-tuple (k, . . . , k).

For v ∈ Zn
+ we put

Wv = span{aµa∗σ : occ(µ) = occ(σ) = v}.

From Lemma 4.1 one can easily get that if qii = 0, i = 1, . . . , n then

(5.1) Wv · Wu ⊂ Wmax(v,u).

As a consequence of this inclusion, we have that Wv is closed under mul-
tiplication, so it is a ∗-subalgebra of GICARQ. In the following two lemmas we
construct some faithful ∗-representation ofWv.

LEMMA 5.1. For v ∈ Zn
+ put

Hv = span{ξα : occ(α) = v}.

Equip Hv with the Fock inner product (see Section 2). Notice that a∗βaα = 〈aα, aβ〉v · 1
for some 〈aα, aβ〉v ∈ C. Then for ξα, ξβ ∈ Hv one has

〈ξα, ξβ〉Fock = 〈aα, aβ〉v.

Proof. If v = 0 then

〈1, 1〉0 = 1 = 〈Ω, Ω〉Fock.

Assume v1 + · · ·+ vn = m + 1 for some m > 0. Take ξµ, ξσ ∈ Hv. Let t0 be
index of the first occurrence of σ1 in µ. Since qii = 0 for i = 1, . . . , n, we get

〈ξµ1 ⊗ · · · ⊗ ξµm+1 , ξσ1 ⊗ · · · ⊗ ξσm+1〉Fock

=
m+1

∑
t=1

δσ1µt qσ1µ1 · · · qσ1µt−1〈ξµ1 ⊗ · · · ⊗ ξ̂µt ⊗ · · · ⊗ ξµm+1 , ξσ2 ⊗ · · · ⊗ ξσm+1〉Fock

= qσ1µ1 · · · qσ1,µt0−1〈ξµ1 ⊗ · · · ⊗ ξ̂µt0
⊗ · · · ⊗ ξµm+1 , ξσ2 ⊗ · · · ⊗ ξσm+1〉Fock
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= qσ1µ1 · · · qσ1,µt0−1〈aµ1 · · · aµt0−1 aµt0+1 · · · aµm+1 , aσ2 · · · aσm+1〉v−ffi{σ1}

= qσ1µ1 · · · qσ1,µt0−1〈aµ1 · · · aµt0−1 a∗σ1
aµt0

aµt0+1 · · · aµm+1 , aσ2 · · · aσm+1〉v−ffi{σ1}

= 〈a∗σ1
aµ1 · · · aµm+1 , aσ2 · · · aσm+1〉v−ffi{σ1}

= 〈aµ, aσ〉v.

In what follows we write Mn for the C∗-algebra of n by n complex matrices.

LEMMA 5.2. For v ∈ Zn
+ define the ∗-representation πv :Wv → B(Hv) by

πv(aµa∗σ)(ξα) = 〈ξα, ξσ〉Fockξµ.

Then πv is a faithful and surjective ∗-representation ofWv and

Wv ' B(Hv) ' M (v1+···+vn)!
v1!···vn !

.

Proof. Multiplicativity of πv follows from Lemma 5.1:

πv(aµ1 a∗σ1
)πv(aµ2 a∗σ2

)(ξα) = πv(aµ1 a∗σ1
)〈ξα, ξσ2〉Fockξµ2

= 〈ξα, ξσ2〉Fock〈ξµ2 , ξσ1〉Fockξµ1 ,

πv(aµ1 a∗σ1
aµ2 a∗σ2

)(ξα) = πv(aµ1 a∗σ2
)〈aµ2 , aσ1〉vξα

= 〈ξµ2 , ξσ1〉Fock〈ξα, ξσ2〉Fockξµ1 .

Recall that the set of all rank one operators on a finite-dimensional Hilbert space
H generates the whole algebra B(H). Hence surjectivity of πv follows from the
fact that every rank one operator onHv is in the image of πv.

Observe that dimWv = ( (v1+···+vn)!
v1!···vn ! )2 = dimB(Hv). Therefore πv is injec-

tive, since it is surjective.

Notice that Wv and Wu are not orthogonal with respect to the multiplica-
tion for v 6= u. Hence we cannot simply take the direct sum of πv to obtain a
∗-representation of the subalgebrasWk defined by (4.1). Nevertheless the follow-
ing result holds.

THEOREM 5.3. We have:

Wk '
⊕

v6kn

M (v1+···+vn)!
v1!···vn !

.

Proof. We buildWk in nk steps starting from j = 1 to j = nk.
Step 1. PutW (1)

k =Wk. ThenWkn ⊂ W (1)
k . By property (5.1) it is an ideal in

W (1)
k . Lemma 5.2 implies thatWkn ' M (nk)!

(k!)n
. LetW (2)

k = W (1)
k /Wkn . Then due

to dimWk < ∞ one has
Wk ' M (nk)!

(k!)n
⊕W (2)

k .

Step 2. Suppose thatWk ' Jj ⊕W
(j)
k , where

Jj =
⋃

v1+···+vn>nk−j+1

Wv '
⊕

v1+···+vn>nk−j+1

M (v1+···+vn)!
v1!···vn !
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and W (j)
k = Wk/Jj. We will from this assumption now show that Wk ' Jj+1 ⊕

W (j+1)
k . Let σj : Wk → W

(j)
k be a projection. LetWv andWu inWk be such that

∑
t

vt = ∑
t

ut = nk− j + 1. By property (5.1) if v 6= u thenWv · Wu ⊂ Wmax(v,u) ⊂

Jj. Hence σj(Wv) and σj(Wu) are ideals inW (j)
k such that σj(Wv) · σj(Wu) = 0.

By Lemma 5.2

σj(Wv) ' Wv ' M (v1+···+vn)!
v1!···vn !

.

Let

W (j+1)
k =

W (j)
k⊕

v1+···+vn=nk−j+1 σj(Wv)
.

Then

W (j)
k =

⊕
v1+···+vn=nk−j+1

M (v1+···+vn)!
v1!···vn !

⊕W (j+1)
k .

Step 3. To complete the proof it remains to note that with j = nk we get
W (nk)

k ' C.

Denote by V k
v the component M (v1+···+vn)!

v1!···vn !
of Wk from the decomposition

above. The following proposition follows from the proof of Theorem 5.3:

PROPOSITION 5.4. Let 1k
v be a unit of V k

v. Then:
(i) V k

v coincides withWv · 1k
v. Hence,

Wk =
⊕

v6kn

V k
v =

⊕
v6kn

Wv · 1k
v.

(ii) Denote Jv = span
{ ⋃

v6j6kn
Wj

}
. Then:

∑
v6j6kn

V k
v = Jv.

The structure of Wk is independent of the values of qij as it follows from
Theorem 5.3. For the analysis of embedding of Wk into Wk+1 we construct a
special ∗-representation ofWk.

In Lemma 5.2 we have constructed a bijective ∗-representation πv of Wv.
Since V k

v =Wv · 1k
v, we can define a bijective ∗-representation π̂k

v

π̂k
v : V k

v → B(Hv), π̂k
v(x1k

v) = πv(x), x ∈ Wv.

Put

Hk =
⊕

v6kn

Hv.
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Let x ∈ Wk. Then there exists yv ∈ Wv such that x1k
v = yv1k

v. Define the
∗-representation πk :Wk → B(Hk) by

πk(x) =
⊕

v6kn

π̂k
v(x1k

v) =
⊕

v6kn

π̂k
v(yv1k

v) =
⊕

v6kn

πv(yv).

πk is obviously faithful since if x ∈ ker πk then π̂k
v(x1k

v) = 0. Since π̂k
v is faithful,

x1k
v = 0 for any v 6 kn.

LEMMA 5.5. Let u, v ∈ Zn
+, u, v 6 kn. If v 
 u then πk(Wv)|Hu = 0.

Proof. Let Jv be as in Proposition 5.4. Jv is an ideal inWk by property (5.1). If
v 
 u then Jv has zero intersection with V k

u, because V k
u ∩ V k

j = 0 for v 6 j 6 kn.

HoweverWv · 1k
u ⊂ J∩V k

u, soWv · 1k
u = 0 and πk(Wv)|Hu = π̂k

u(Wv · 1k
u) = 0.

Let u > v and Pu
v ∈ B(Hu) be the orthogonal projection onto the subspace

of Hu spanned by ξµ ∈ Hu such that occ(µ1, . . . , µv1+···+vn) = v. Notice that this
subspace has dimension equal to dimHv · dimHu−v. Put pu

v = π−1
u (Pu

v ) ∈ Wu.
If u 
 w then πk(pu

v)|Hw = 0 due to Lemma 5.5. Also observe that if u1 6 w and
u2 6 w then πk(pu1

v )|Hw = πk(pu2
v )|Hw .

In the following lemma we express 1k
v as a sum of the projections pu

v .

LEMMA 5.6. Let v ∈ Zn
+ such that v 6 kn. Then

(5.2) 1k
v = ∑

S⊂{1,...,n}, v+δS6kn
(−1)l(δS)pv+δS

v ,

where l(δS) =
n
∑

i=1
(δS)i.

Proof. We show that (5.2) acts as the identity operator onHv and as the zero
operator onHu for u 6= v in the representation πk. Consider the following cases:

Case 1. If v = u then whenever δS 6= 0n, we have

πk(pv+δS
v )|Hu = 0.

Hence

∑
S⊂{1,...,n}, v+δS6kn

(−1)l(δS)πk(pv+δS
v )|Hu = πk(pv

v)|Hu = idHu .

Case 2. If v 
 u then by Lemma 5.5 πk(pv+δS
v )|Hu = 0 for arbitrary S ⊂

{1, . . . , n}.
Case 3. The other case is v < u 6 kn. If ut > vt then for S ⊂ {1, . . . , n} one

has v + δS 6 u if and only if v + δS\{t} 6 u, so

πk(pv+δS
v )|Hu = πk(p

v+δS\{t}
v )|Hu .
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Hence

∑
S⊂{1,...,n}, v+δS6kn

(−1)l(δS)πk(pv+δS
v )|Hu

= ∑
S⊂{1,...,n}\{t}, v+δS6kn

((−1)l(δS\{t})πk(pv+δS
v )|Hu+(−1)1+l(δS\{t})πk(p

v+δS+δ{t}
v )|Hu)

= 0.

Recall that every ∗-homomorphism φ : B(V1) → B(V2), where V1 and V2
are finite-dimensional, is determined up to a unitary equivalence by a natural
number m and has the form

φ(x) =
[

1m ⊗ x 0
0 0

]
.

This number can be determined as

m =
dim Im φ(idV1)

dim V1
.

THEOREM 5.7. Let v, u ∈ Zn
+ be such that v 6 kn, u 6 (k + 1)n. Then V k

v is
embedded into V k+1

u with nonzero multiplicity mv,u if and only if 0n 6 u− v 6 1n with
ut > vt only in the case when vt = k. If the multiplicity is nonzero then it is equal to
(∑t ut−vt)!
∏t(ut−vt)!

.

Proof. Suppose v 
 u. Then by Lemma 5.5 for S ⊂ {1, . . . , n} one has
πk+1(pv+δS

v )|Hu , so

πk+1(1
k
v) = ∑

S⊂{1,...,n}, v+δS6kn
(−1)l(δS)πk+1(pv+δS

v )|Hu = 0.

Hence for the embedding to be nonzero we need v 6 u.
If there exists t such that min(ut, k) > vt then using the same argument as

in the Case 3 of Lemma 5.6 one has πk+1(1k
v)|Hu = 0. Hence for the embedding

to be nonzero we need to have u − v 6 1n and ut = k + 1 whenever ut > vt.
Hence for t = 1, . . . , n we have either ut = vt or ut = k + 1, so if S ⊂ {1, . . . , n} is
non-empty then v + δS 
 min(u, kn) and πk+1(1k

v)|Hu = πk+1(pv
v)|Hu .

Now we calculate the multiplicity mv,u when the embedding is nonzero:

mv,u =
dim{πk+1(1k

v)(Hu)}
dimHv

=
dim{πk+1(pv

v)(Hu)}
dimHv

=
dim{πk+1(pu

v)(Hu)}
dimHv

=
dimHv dimHu−v

dimHv
=

(∑t ut − vt)!
∏t(ut − vt)!

.

Hence we proved that the multiplicities of the embeddings do not depend
on qij. Since two AF-algebras are isomorphic if they have equal Bratelli diagrams,
we have GICARQ ' GICAR0.
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6. FAITHFULNESS OF THE FOCK REPRESENTATION

In this section we prove that the Fock representation of IsomQ is faithful for
any Q such that max |qij| < 1, qii = 0, i = 1, . . . , n. Recall that the Fock represen-
tation πF of IsomQ is the one, determined uniquely up to a unitary equivalence
by the following property: there exists a cyclic vector Ω such that πF(a∗i )(Ω) = 0
for i = 1, . . . , n.

To prove faithfulness of πF we will apply the second part of Proposition 3.2.
In the following lemma we describe an automorphism which interwines πF with
the action Ψ of Tn defined in Section 3.

LEMMA 6.1. For any w ∈ Tn there exists an automorphism ΨFock
w of πF(IsomQ)

such that ΨFock
w ◦ πF = πF ◦Ψw.

Proof. Let A′i = wiπF(ai) and Ω be a cyclic vector such that πF(a∗i )(Ω) = 0,
i = 1, . . . , n. Then by Remark 3.6, A′i satisfies the qij-commutation relations and
Ω is a cyclic vector such that A′∗i (Ω) = 0, i = 1, . . . , n. By the uniqueness of the
Fock representation, there is a unitary U acting on the deformed Fock space which
implements an isomorphism between πF(IsomQ) and the C∗-algebra generated
by A′i, i.e.

U∗πF(ai)U = A′i, i = 1, . . . , n.

These algebras coincide because πF(ai) = wi A′i, so U implements an automor-
phism of πF(IsomQ). Let ΨFock

w (x) = U∗xU. Then

ΨFock
w (πF(ai)) = U∗πF(ai)U = A′i = wiπF(ai) = πF(wiai) = πF(Ψw(ai)).

Since the relation ΨFock
w ◦πF = πF ◦Ψw holds on πF(ai) and {πF(ai) : i = 1, . . . , n}

generates πF(IsomQ), the proof is completed.

Now Proposition 3.2 can be applied to the actions ΨFock
w and Ψw and the

representation πF.

THEOREM 6.2. The Fock representation πF of the C∗-algebra IsomQ is faithful.

Proof. If x ∈ ⋃
k
Wk then x ∈ Wk for a sufficiently large k. Since 1 ∈ Wk,

‖x‖ = ‖x‖Wk
. It follows from the main result of [7] that πF is faithful on the

dense ∗-subalgebra of IsomQ generated by ai, a∗i , i = 1, . . . , n. Hence, πF|Wk is
an injective ∗-homomorphism from the C∗-algebrasWk to πF(IsomQ), so ‖x‖ =
‖x‖Wk

= ‖πF(x)‖. Hence by Theorem 4.3 and Corollary 3.10 πF is faithful on
GICARQ and by Proposition 3.2 πF is faithful on IsomQ.
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7. DESCRIPTION OF THE IDEAL KQ IN IsomQ

Consider Q such that max |qij| < 1, qii = 0, i = 1, . . . , n. In this section
we describe an ideal KQ in IsomQ which is isomorphic to the algebra of compact
operators K.

Recall that K can be described as the universal C∗-algebra generated by eij,
i, j > 0 satisfying the relations eijekl = δjkeil , e∗ij = eji (see [2]).

When qij = 0 for i, j = 1, . . . , n, we have Isom0 ' KOn, which is an
extension of On by an ideal isomorphic to K. In this case it is generated by
p = 1−∑

k
aka∗k . Notice that p is a nontrivial projection such that

psi = 0, i = 1, . . . , n.

In the next theorem we prove that the same conditions are sufficient for an ele-
ment p in IsomQ to generate an ideal isomorphic to K.

THEOREM 7.1. Let p ∈ IsomQ be a nontrivial projection such that

pai = 0, i = 1, . . . , n.

Then the ideal KQ generated by p is isomorphic to K.

Proof. By Proposition 3.7 the span of all words of the form aµ1 a∗σ1
paµ2 a∗σ2

is
dense in the ideal generated by p. If σ1 6= 0 or µ2 6= 0 then this monomial is equal
to 0 since a∗i p = 0, pai = 0, i = 1, . . . , n. Therefore the span of monomials of the
form aµ pa∗σ is dense in the ideal generated by p.

Let H = span{aµ : µ ∈ Zn
+}. Split H into the subspaces Hv and equip it

with 〈aµ, aσ〉v as in Lemma 5.1. Apply the orthogonalization process to the basis
{aµ} ofHv and denote the result by {âµ}. Consider the following cases:

(i) If occ(α) = occ(β) = v ∈ Zn
+ then pâ ∗β âα p = p〈âα, âβ〉v p = δαβ p.

(ii) If occ(α) 6= occ(β) then â ∗β âα is a non-trivial monomial, so pâ ∗β âα p = 0.

Put eαβ = âα pâ ∗β . Then

eαβeσµ = âα pâ ∗β âσ pâ ∗µ =

{
âα pδσβ â ∗µ if occ(β) = occ(σ),
0 otherwise,

= δσβ âα pâ ∗µ = δβσeαµ.

The homomorphism from K to KQ obtained from the universal property is
injective because K is simple. Hence KQ ' K.

So it remains to prove the existence of p ∈ IsomQ satisfying the conditions
of Theorem 7.1.

PROPOSITION 7.2. There exists an element p ∈ IsomQ such that

p 6= 0, p = p∗, p2 = p, pai = 0, i = 1, . . . , n.
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Proof. Let B be the C∗-subalgebra generated by aia∗i , i = 1, . . . , n. Since
B ⊂ W1, it is finite-dimensional. Every finite-dimensional C∗-algebra is unital.
Obviously, the unit of IsomQ does not belong to B. Let 1B be the unit of B. Then
for any i = 1, . . . , n we observe:

(1− 1B)ai = ai − 1Bai = ai − 1Bai(a∗i ai) = ai − (1Baia∗i )ai = ai − (aia∗i )ai = 0.

Thus p = 1 − 1B is a nontrivial projection satisfying all required condi-
tions.
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