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ABSTRACT. We present an abstract functional analytic formulation of the cel-
ebrated div-curl lemma found by F. Murat and L. Tartar. The viewpoint in
this note relies on sequences for operators in Hilbert spaces. Hence, we draw
the functional analytic relation of the div-curl lemma to differential forms
and other sequences such as the Grad grad-sequence discovered recently by
D. Pauly and W. Zulehner in connection with the biharmonic operator.
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1. INTRODUCTION

In the year 1978 a groundbreaking result in the theory of homogenisation
has been found by Frangois Murat and Luc Tartar, the celebrated div-curl lemma
(110 or [29D).

THEOREM 1.1. Let Q C R? open, (tn)n, (0n)n in LZ(Q)d weakly convergent.
Assume that

d .
(divien) = (Y ), (eurluen)n = (@i = anl’) )
=1 "

are relatively compact in H=1(Q) and H=1(Q)%*?, respectively.
Then ((un, Un)ca)n converges in D'(Q2) and we have

Jim G s =  Jim o Jim on)
Ever since people were trying to generalise the latter theorem in several di-
rections. For this we refer to [2], [6], [9] and [10], just to name a few. It has been

observed that the latter theorem has some relationship to the de Rham cohomol-
ogy, see [3], [19]. We shall also refer to [22], where the Helmholtz decomposition
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has been used for the proof of the div-curl lemma for the case of 3 space dimen-
sions. We will meet the abstract counterpart of the Helmholtz projection in our
abstract approach to the div-curl lemma. In any case, the sequence property of
the differential operators involved plays a crucial role in the derivation of the
div-curl lemma. Note that, however, there are results that try to weaken this
aspect, as well, see [5]. In this note, in operator-theoretic terms, we shall fur-
ther emphasise the intimate relation of the sequence property of operators from
vector analysis and the div-curl lemma. In particular, we will provide a purely
functional analytic proof of the div-curl lemma. More precisely, we relate the
so-called “global” form ([18]) of the div-curl lemma to functional analytic real-
isations of certain operators from vector analysis, that is, to compact sequences
of operators in Hilbert spaces. Moreover, having provided this perspective, we
will also obtain new variants of the div-curl lemma, where we apply our abstract
findings to the Pauly—Zulehner Grad grad-sequence, see [12] and [16]. With these
new results, we have paved the way to obtain homogenisation results for the bi-
harmonic operator with variable coefficients, which, however, will be postponed
to future research.

The next section contains the functional analytic prerequisites and our main
result itself — the operator-theoretic version of the div-curl lemma. The subse-
quent section is devoted to the proof of the div-curl lemma with the help of the
results obtained in Section2} In the concluding section, we will apply the general
result to a sequence of operators obtained recently by [12].

2. AN ABSTRACT div-curl LEMMA

We start out with the definition of a (short) sequence of operators acting in
Hilbert spaces. Note that in other sources sequences are also called “complexes”.
We use the usual notation of domain, range, and kernel of a linear operator A,
that is, dom(A), ran(A), and ker(A). Occasionally, we will write dom(A) to
denote the domain of A endowed with the graph norm.

DEFINITION 2.1. Let H; be Hilbert spaces, j € {0,1,2}. Let Ap : dom(Ap) C
Hy — Hj, and A : dom(A;) C H; — H, densely defined and closed. The pair
(Ao, Aq) is called a (short) sequence, if ran(Ag) C ker(Aj). We say that the se-
quence (Ap, A1) is closed, if both ran(Ap) € Hy and ran(A;) C Hj are closed. The
sequence (Ao, Ay) is called compact, if dom(A;) Ndom(Af) — Hj is compact.

We recall some well-known results for sequences of operators in Hilbert
spaces, we refer to [12] and the references therein for the respective proofs.
THEOREM 2.2. Let (Ag, A1) be a sequence. Then the following statements hold:
() (A}, Af) is a sequence;
(ii) (Ao, A1) is closed if and only if (A}, A§) is closed;
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(iii) (Ao, A1) is compact if and only if (A}, Aj) is compact;

(iv) if (Ao, A1) is compact, then (Ao, A1) is closed;

(v) (Ao, A1) is compact if and only if both dom(Ag) Nker(Ag)* — ker(Ag)* and
dom(A}) Nker(A})+ < ker(A})* are compact and ker(Ay) Nker(Ay) is finite-
dimensional.

Next, we need to introduce some notation.

DEFINITION 2.3. Let Hy, H; be Hilbert spaces, A : dom(A) € Hy — Hj.
Then we define the canonical embeddings:
(1) tran(a) : Tan(A) < Hy;
(if) trer(a) : ker(A) = Ho;
(iii) Tlran(A) *= lran
(iv) Tler(A) = ¢

A)lran( )
Al ker( )

If a densely defined closed linear operator has closed range, it is possible
to continuously invert this operator in an appropriate sense. For convenience
of the reader and since the operator to be defined in the next theorem plays an
important role in the following, we provide the results with the respective proofs.
Note that the results are known, as well, see for instance again [12].

(
ker(

THEOREM 2.4. Let Hy, Hy Hilbert spaces, A : dom(A) C Hy — Hj densely
defined and closed. Assume that ran(A) C Hjy is closed. Then the following statements
hold:

(i) B := ran( A)A ran(A*) 1s continuously invertible;

(11) B* = lran(A*)A lran( )
(111) the operator A* : H; — dom(B)*,¢ — (v — (¢, Av)y, ) is continuous; and
B* = A¥| ran(A) 1S an isomorphism that extends B*.

Proof. We prove (i). Note that by the closed range theorem, we have that
ran(A*) C Hy is closed. Moreover, since ker(A)+ = ran(A*), we have that B
is injective and since ¢ an(4) Projects onto ran(A), we obtain that B is also onto.
Next, as A is closed, we infer that B is closed. Thus, B is continuously invertible
by the closed graph theorem.

For the proof of (ii), we observe that B* is continuously invertible, as well.
Moreover, it is easy to see that B* = A* on dom(A*) Nker(A*)!, see also Lem-
ma 2.4 of [20]]. Thus, the assertion follows.

In order to prove (iii), we note that A* is continuous. Next, it is easy to see
that B* extends B*. We show that B* is onto. For this, let ¥ € dom(B)*. Then
there exists w € dom(B) such that (w, v)y, + (Bw, Bv)g, = ¥(v) (v € dom(B)).
Define ¢ := (B~!)*w + Bw € ran(A). Then we compute for all v € dom(B)

(B*¢)(v) = (¢, Bo)m, = ((B~")*w + Bw, Bv)y,
= (w, B~ 'Bo)y, + (Bw, Bv)p, = ¢(v).
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Hence, B*¢ = ¢. We are left with showing that B* is injective. Let B*¢ = 0. Then,
for all v € dom(B) we have

0= <4), BZ)>H1 .
Hence, ¢ € dom(B*) and B*¢ = 0. Thus, ¢ = 0, as B* is one-to-one. Hence, B* is
one-to-one. 1

REMARK 2.5. In the situation of the previous theorem, we remark here a
small pecularity in statement (iii): one could also define

A* : Hy — dom(A)*, ¢ — (v— (¢, Av) g, )
to obtain an extension of A*. In the following, we will restrict our attention to the
consideration of A*. The reason for this is the following fact:

~ ~

dom(A)* D ran(A*) ¥ ran(A*) C dom(B)*,
where the identification is given by

A\*(P = (Av*(P)'dom(B) (4) € Hl)'
Indeed, let ¢ € H;. Then

sup (A*9) ()| = sup (¢, AV) h, |

UEdom(A)r HUHdom(A)gl vedom(A), HUHdom(A)gl

= sup (¢, Av)h, |
vedom(A)Nker(A)L, [[0]lgom(a) <1

= sup | <(P/ AU>H1 |
vedom(B), Hdeom(B)gl
= sup [(A%)(v)].
vedom(B), [|v]|gom(p) <1
The latter remark justifies the formulation in the div-curl lemma, which we
state next.

THEOREM 2.6. Let (Ag, A1) be a closed sequence. Let (uy)n, (n)n in Hy be
weakly convergent. Assume

(A\a”n)n/ (A\lvn)n
to be relatively compact in dom(Ag)* and dom(A7)*, respectively. Further, assume
that ker(Ag) Nker(Ay) is finite dimensional. Then

Lim (uy, vn)H, = < lim u,, lim vn> .
n—oo n—oo n—oo H,

We emphasise that in this abstract version of the div-curl lemma no com-
pactness condition on the operators Ay and A; is needed.

On the other hand, it is possible to formulate a statement of similar type
without the usage of (abstract) distribution spaces. For this, however, we have
to assume that (Ag, A1) is a compact sequence. The author is indebted to Dirk
Pauly for a discussion on this theorem. It is noteworthy that the proof for both
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Theorem [2.6) and 2.7 follows a commonly known standard strategy to prove the
so-called “Maxwell compactness property”, see [1], [15], [21].

THEOREM 2.7. Let (Ag, A1) be a compact sequence. Let (uy)n, (vn)n be weakly
convergent sequences in dom(Ag) and dom(A,), respectively. Then

Lim (uy, vn)H, = < lim u,, lim vn> .
n—oo n—o0 n—oco H,

In order to prove Theorem [2.6] and 2.7l we formulate a corollary of Theo-
rem 2.4 first.

COROLLARY 2.8. Let Hy, Hy be Hilbert spaces, A : dom(A) C Hy — H;
densely defined and closed. Assume that ran(A) C Hy is closed. Let B be as in Theorem
For (¢n)n in Hy the following statements are equivalent:

(i) (A*¢n)y is relatively compact in dom(B)*;
(i) (7Tran(a)Pn)n is relatively compact in Hj.
If (¢n)n weakly converges to ¢ in Hy, then either of the above conditions imply, in Hy,

Tlran(A) Pn — Tlran(A) ¢.

Proof. From ran(A) = ker(A*)L and ker(A*) = ker(A*), we deduce that

A*p = A\*nran(A)(P for all ¢ € Hy. Next, E*nran(A)(p = B*/* ran(4)®? forall ¢ € Hy.

Thus, as B* is an isomorphism by Theorem [2.4, we obtain that (i) is equivalent to

(e ran( <pn) being relatively compact in ran(A). The latter in turn is equivalent

to (11) s1nce (t;fan( A)q)n) being relatively compact is (trivially) equivalent to the
ran ¢71)Tl - ( ran 4)71)

The last assertion follows from the fact that 77,,,(4) is (weakly) continu-
ous. Indeed, weak convergence of (¢), to ¢ implies weak convergence of the
sequence (7t Tlran(A (pn)n tO TTran(a)@- This together with relative compactness im-
plies 7Tan(a)Pn % Ttran(4)¢ With the help of a subsequence argument. &

same property of (Lian(4)

COROLLARY 2.9. Let Hy, Hy be Hilbert spaces, A : dom(A) C Hy — H;
densely defined and closed. Assume dom(A) Nker(A)* o < Hy compact. Let (¢)n
weakly converging to ¢ in dom(A*). Then nlgn Tran(A)Pn = Tran(A)@ in Hi.

Proof. We note that, by a well-known contradiction argument, dom(A) N
ker(A)*Ho < Hy compact implies the Poincaré type inequality
Jc> 0V € dom(A) Nker(A)T : [|¢]ln, < cl|Ad]|n,-
The latter together with the closedness of A implies the closedness of ran(A) C

Hy. Thus, Theorem 2.4is applicable. Let B as in Theorem 2.4}
We observe that the assertion is equivalent to nlgr.}o l:an( ayPn = l:an( 2P in

ran(A). We compute with the help Theorem[2.4for n € N

l;kan(A)(P” = (B ) 'B* :(an )(P” = ( ) ! :an(A*)A lran(A) ran(A)(Pn
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= (B*)7ll:an(A*)A*7Tran(A)¢n = (B*)ill:an(A*)A*(P”'
By hypothesis, A*¢, — A*¢ in Hy and so l:an(A*)A*(P” — ‘:an(A*)A*‘P inran(A*)
as n — oo since l:an( A%) is (weakly) continuous. Next B~! is compact by assump-

tion and thus so is (B*) 1. Therefore (B*)_llfan(A*)A*an — (B*)_lt;*an(A*)A*q) in

lran(4)- The assertion follows from (B*)’lt;‘an(A*)A*cp = l:jan(A)(P' 1

Proof of Theorem [2.6|land Theorem 2.7, By the sequence property, we deduce

that Tran(4,) < Ther(A;) AN Tran (A1) < Tier(a3)- By Corollary (Theorem or
Corollary(Theorem, we deduce that 7Tan(a) Un = Tran(4,)4 N Tran(43)On

— Tlan(a1)? in Hy. From ker(A1) Nker(A{) being finite-dimensional (cf. Theo-
rem[2.2), we obtain
Tlker(Ap)Nker(Ag)Un = Tlker(Ay)Nker(Aj) Y

as Tlxer(Ay)rker(A;) 1S compact. Thus, we obtain for n € N

(un, Un>H1
= ((Tran(Ag) F Tker(Ag)nker(Ar) + Ter(A%)nran(Af) ) ins (Tran(At) + Tker(Ay))Vn) Hy
= (Un, Tran(A3)Vn) Hy
+ ((Tran(4) T Mer(A7)riker(A) F Tker(Ag)nran(A7) ) Uns Ter(A;)Vn) Hy
= (un, 7Tran(A;*)vn>H1
+ (Tran(Ag) s Tker(Ay)On) Hy + (Mker(A%)nker(Ay) s Tker(A;)Vn) Hy

— < lim u,, im vn> R |
n—00 n—00 H;

A closer look at the proof of our main result reveals the following converse
of Theorem 2.6

THEOREM 2.10. Let (Ao, A1) be a closed sequence. Assume that for all weakly
convergent sequences (y)n, (Un)y in dom(Af) and dom(Ay), respectively, we obtain

Bm (uy, p) 1, = < lim u,, im vn>
n—o0 n—oo n—o0 H,

Then ker(A§) Nker(Ay) is finite-dimensional.
For the proof of the latter, we need the next proposition.

PROPOSITION 2.11. Let H be a Hilbert space. Then the following statements are
equivalent:
(i) H is infinite-dimensional;
(ii) there exists (uy ), weakly convergent to 0 such that ¢ == nhﬁrr;o (un, uy) exists with

¢ #0.
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Proof. Let H be infinite-dimensional. Without loss of generality, we may
assume that H = L?(0,27). Then uy, := sin(n-) — 0 weakly as n — co and

27 27
/(sin(nx))zdx — % /(sin(x))zdx > 0.
0 0

If H is finite-dimensional, then weak convergence and strong convergence coin-
cide, and the desired sequence cannot exist. 1

Proof of Theorem Suppose that the space ker(Aj) Nker(A;) is infinite-
dimensional. Choose (i), in ker(A§) Nker(A;) as in Proposition Then,
clearly, (u,), is weakly convergent in dom(Aj) and dom(A;). Hence,

0= im o fim ), = Jim G )i, = ¢ 0. 8

We will need the next abstract results for the proof of the div-curl lemma in
the next section. Note that this is only needed for the formulation of the div-curl
lemma where the divergence and the curl operators are considered to map into
H~!. For this, we need some notation. Let A € L(Hy, Hy). The dual operator
A" € L(Hf, H}) is given by

(A'9)() = p(Ap).
We also define A° : Hy — Hj via A® := A’RHl, where Ry, : Hy — Hj denotes
the Riesz isomorphism.

PROPOSITION 2.12. Let Hy, Hy, D Hilbert spaces, A : dom(A) C Hy — H;
densely defined and closed. Assume D — dom(A) continuously and ran(A|p) =
ran(A) C Hy closed. Define A : D — Hy, ¢ — A¢. Then A* = A°, that is, for every
v € Hj we have A°v can be uniquely extended to an element of dom(A)*, the extension
is given by A*v, where A* is given in Theorem

Proof. Letv € Hy. Then for all ¢ € D we have

(A*0)(¢) = (0, Ap)n, = (v, AP)n, = Ri,0(A9) = (A'Rpy,0)(9) = (A°0)(9).
Since A is continuous, it is densely defined and closed. We obtain that B =
Lan( A)Alran( 4+) is a Hilbert space isomorphism from D N ker(A)*? to ran(A) =
ran(A), by Theorem Note that AB~! = idyan(4) = idyan(a)- For ¢ € dom(A)
and v € Hy, we define

(A°0)e(y) = (A°0) (B Ap).
Next, if ¢ € dom(A), then with the above computations, we obtain
(A°0)e(9) = (A°0) (B~ Ap) = (0, AB ' Ap), = (v, Ap)p, = (A*0)().

Thus, (A°0). indeed extends .A°v and coincides with A*v. We infer also the
continuity property for A°v. The uniqueness property follows from ran(A) =
ran(A). 1
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From Proposition it follows that ran(A*) = ran(.A°). This is the actual
fact used in the following lemma.

LEMMA 2.13 ([12], Lemma 2.14). Let Hy, H1, H be Hilbert spaces and let A €
L(Hy, Hy) be onto. Then ran(A®) C Hj is closed and (A°)~! € L(ran(A°®), Hp).

Proof. By the Riesz representation theorem A® and A’ are unitarily equiva-
lent. Thus, it suffices to prove the assertions for A’ instead of A°. By the closed
range theorem, ran(A’) is closed, since ran(A) = H; is. Next, A is onto, hence
A’ € L(Hj, H) is one-to-one, and, thus, by the closed graph theorem, we obtain
that (A’) ! maps continuously from ran(A’) into H;. 1

COROLLARY 2.14. Let Hy, Hy be Hilbert spaces, A : dom(A) C Hy — H;
densely defined and closed, C : dom(C) C Hy — Hj densely defined, closed. Assume
that ran(A) C Hy is closed, dom(C) < dom(A) continuous.

If
(2.1) ran(A) = {A¢; ¢ € dom(C)},
then ran(A*) = dom(B)* C dom(C)* is closed, where B is given in Theorem
Proof. Since dom(C) — dom(A) continuously, we obtain that
A :dom(C) — ran(A) =ran(B), ¢ +— A¢p

is continuous. Moreover, by (2.1I), we infer that .4 is onto. Hence, by Lemmam
we obtain that ran(A°) C dom(C)* is closed. Thus, we are left with showing that
ran(A°®) = dom(B)*. B Proposition we realise that ran(A°) = ran(A*) =
ran(B*). By Theorem 2.4} we get that B* maps onto dom(B)*. &

REMARK 2.15. Corollary 2.14]particularly applies to A = C.

3. THE CLASSICAL div-curl LEMMA
Before we formulate Theorem [3.3] the classical div-curl lemma, we need to
introduce some differential operators from vector calculus.

DEFINITION 3.1. Let Q C R4 open. We define:

grad, : CZ(Q) C L*(Q) = LX), ¢ (9¢))jeqr,..ap
d
dive : C2(Q) C L2(Q)" = LX(Q),  ($)jeq1,.ar — L 9i¢ji
=

Grad. : CZ(0)" C L2(Q) — L2 ()™, (¢))iecqr,.ap = Okd)iken,..ap

d

Dive : C2(Q)P I CIX(@)™ 5 L2(Q),  (9j)jkept,ay > LOWPik)
=1 je{l,...d}
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Curle : C2(Q)? C L2(Q)? = LX), (¢)jeqr,..ar — Okdj — 0i00) ke, .0}
= Grad ¢ — (Grad ¢)T.
Moreover, we set grad := grad_and, similarly, div, Div, Cﬁrl, Grad. Furthermore,
we put div = — groad*, Div = — Groad*, grad == — div*, Grad := — Div’ and
Curl := (2 Div skew)*, where skew A := 1(A — AT) denotes the skew symmetric

part of a matrix A.

REMARK 3.2. Itis an elementary computation to establish that the operators
just introduced with ° are restrictions of the ones without.

As usual, we define, H~1(Q) := dom(grad)*. We may now formulate the
classical div-curl lemma. We slightly rephrase the lemma, though.

THEOREM 3.3 (div-curl lemma — global version). Let (1)n, (Un)n be weakly
convergent sequences in L2(B(0,1))%, with

U (sptun Uspto,) € B(0,6) = {x € R ||x| < 6}
neN
for some 6 < 1. Assume
(divuy)y, (Curluy)y,

are relatively compact in H=*(B(0,1)) and H=1(B(0,1))?*%, respectively. Then
Jim G, o)z = (i w Jim, on)
We recall here that in [18], Theorem [3.3]is called “global div-curl lemma”.
We provide the connection to the classical, the “local” version of it, in the follow-
ing remark.

REMARK 3.4 (div-curl lemma — local version). We observe that the asser-
tions in Theorem and in Theorem are equivalent. For this, observe that
Theorem implies Theorem Indeed, for 2 = B(0,1), the assumptions of
Theorem (3.3 imply the same of Theorem Moreover, let ¢ € CP(B(0,1)) be

such that ¢ = 1 on the compact set |J (sptu, Usptv,). Then, by Theorem
neN
and putting # := lim u, and v := lim v,, we obtain
n—oo n—oo

(un,vu)yz = [ ol on) > [ 9lu2) = (wv)
O Q

On the other hand, let the assumptions of Theorem I.1]be satisfied. With the help
of Theorem 3.3} we have to prove that for all ¢ € C(Q2) we get

3.1) /¢<un,vn> = /¢<u,v>.
0 (@]

To do so, we let ¢ € CP(Q) be such that p = 1 on spt¢p. Then there exists
R > 0 such that sptyp C B(0,R). By rescaling the arguments, the statement in
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follows from Theorem [3.3] once we proved that
(div(¢un))n = (P div(u,) + grad(¢)u,), and
(Curl(yo,))n = (2skew((grad )ov)) + v Curlv,),
are relatively compactin H~1(B(0,R + 1)) and H~1(B(0, R + 1))¥*?. This, how-
ever, follows from the hypothesis and the compactness of the embedding
L*(B(0,1)) = H *(B(0,1)),
which in turn follows from Rellich’s selection theorem.
The rest of this section is devoted to prove Theorem [3.3]by means of Theo-
rem 2.6} We will apply Theorem [2.6]to the following setting:
(32)  Hy=L?*(B(0,1)), H;=L2%(B(0,1))%, Ag:=grad, A;:=Curl.
PROPOSITION 3.5. With the setting in (3.2), (Ao, A1) is a sequence.
Proof. By Schwarz’s lemma, it follows for all ¢ € CP(B(0,1)) that

Curl grad ¢ = Curl(9;)jc (1. 4y = (3¢ — 0;0kP) i ke 1,y = 0.
Thus, Curl ngad C0. n
Next, we address the compactness property.

THEOREM 3.6. With the setting in (3.2), (Ao, A1) is compact.

For the proof of Theorem we could use compactness embedding theo-
rems such as Weck'’s selection theorem ([21]) or Picard’s selection theorem ([[15]).
However, due to the simple geometric setting discussed here, it suffices to walk
along the classical path of showing compactness by proving Gaffney’s inequal-
ity and then using Rellich’s selection theorem. We emphasise, however, that
meanwhile there have been developed sophisticated tools detouring Gaffney’s
inequality, to obtain compactness results for very irregular (2, which do not sat-
isfy Gaffney’s inequality. For convenience of the reader, we shall provide a proof
of Theorem [3.6|using the following regularity result for the Laplace operator, see
Theorems 10 and 14 of [8] or since we use the respective result for a d-dimensional
ball, only, see inequality (3,1,1,2) of [7Z]. For this, we denote the Dirichlet-Laplace
operator by A := div grad.

THEOREM 3.7. Let ) C R4 open, bounded and convex. Then for allu € dom(A),
we have u € dom(Grad grad) and

| Grad grad ul| ()0 < [|Aul| ().

Based on the latter estimate, we shall prove Friedrich’s inequality. For the
proof of which, we will follow the exposition of [17]. Since the exposition in
[17] is restricted to 2 or 3 spatial dimensions, only, we provide a proof for the
“multi-d”-case in the following theorem.
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THEOREM 3.8 ([17], Theorem 2.2). Let (2 C R pe open, bounded, convex. Then
dom(Curl) N dom(div) < dom(Grad). Moreover, we have

1, . )
| Gradu||%2(md < 5” CurluH%Z(Q)dxd + |l dlqu%Z(Q)

for all u € dom(Curl) N dom(div).
LEMMA 3.9 ([17], Lemma 2.1). Let (2 C R? be open, bounded. Denote
Vi={$;Fp € C(Q)": ¢ = +grad(—A+ 1) L divy}.
Then V is dense in dom(Curl) N dom(div).

Proof. First of all note that V C X := dom(Curl) N dom(div). Indeed, for
¢ = ¥+ grad(—A+ 1)~ div ¢ for some p € C*(2), we get Curlgp = Curl ¢ €
L2(Q)%*4, by Proposition Moreover, divp = (—A+1)"1divy € L2(Q).
Thus, V' C X. Next, we show the density property. For this, we endow X with
the scalar product

(u,0)x = (Curlu, Curlv) + (div u, div o) + (u,v).

Let u € VX C X. We need to show that u = 0. For all ¢y € C®(Q) and
w = (—A+1)"1divy we have

0= (u,¢+gradw)x
= (Curl u, Carl ) + (div u, div ) + (div u, div grad w) + (u, ) + (u, grad w)
= (Curl u, Carl ) + (div u, div ¢) + (div u, Aw) + (u,p) — (div u, w)
= (Curl u, Carl ) + (u, ).

Thus, (Carl” Curl +1)u = 0, which yields u = 0.

Before we come to the proof of Theorem we mention an elementary
formula to be used in the forthcoming proof: for all ¢ € C(2)? we have
—Aljy 49 = — DivGrad ¢ = — DivCurl ¢ — grad div ¢.

Proof of Theorem By Lemma 3.9]it suffices to show the inequality for u €
V. For this, let ¢ € C(Q)% and put u := ¢ + grad w withw := (—A+1) "1 div ¢.
We compute

| Grad u||? = || Grad(y + grad w)]|?
= (Grad ¢, Grad ) 4 2R(Grad ¢, Grad grad w) + || Grad grad w||?.
We aim to discuss every term in the latter expression separately. We have
(Grad ¢, Grad ¢) = —(Div Grad ¢, ) = —(Div Curl ¢, ) — (grad div ¢, ¢p)
= —(Div skew Curl ¢, 9) + (div ¢, div ¢)

= %(Curl P, Curl ¢) + (div ¢, div ¢).
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Next,
(Grad ¢, Grad grad w) = — (Div Grad ¢, grad w)

— —(Div Curl ¢, grad w) — (grad div ¢, grad w)
= (div Div Curl ¢, w) — (grad div ¢, grad w)
= —(grad div ¢, grad w).

By Theorem 3.7, we estimate

| Grad grad w|* < [|Awl||* = [|w — div y|* = [|w]|* — 2R (w, div ) + || div |
Note that since divy € C¥ (), we obtain from w = (—A + 1) ! div ¢ that
(grad w, grad div ) + (w, div ¢) = (div ¢, div ).
Thus, all together,
| Grad u||?

< %(Curl ¥, Curl ) + (div ¢, div ) — 2R (grad div ¢, grad w)
+ Jlw||* — 2R (w, div y) + || div |
= %(Curl P, Curl ¢) + (div ¢, div ¢)
+ 2R (w, div ¢) — 2(div ¥, div ) + ||w||* — 2R (w, div ) + || div ¢||
= 2 (Curly, Curly) + ] = 2| Curlul® + |[divul? s
Proof of Theorem By Theorem 3.8|as B(0, 1) is convex, we obtain that
dom(A;) Ndom(A}) = dom(Curl) Ndom(div) < dom(Grad).

On the other hand dom(Grad) < L2(B(0,1))? is compact by Rellich’s selection
theorem. This yields the assertion. 1

LEMMA 3.10. Assume the setting in (3.2). Then ker(div) Nker(Curl) = {0}.

The assertion follows from the connectedness of B(0,1). See e.g. [4], [14].
For the next proposition, we closely follow a rationale given by Pauly and
Zulehner, see [13]. We also refer to [1] for a similar argument.

—

PROPOSITION 3.11. Assume the setting in (8.2). Then ran(Curl) C H~1(2)?*d
is closed.

Proof. In this proof, we need to consider the differential operators on vari-
ous domains. To clarify this in the notation, we attach the underlying domain as
an index to the differential operators in question, that is, grad = grad, and when
the domains are considered we write dom(grad) = dom(grad, (2) and similarly
for ran and ker. We apply Corollaryto A= CflrlB(O,l), C= GroadB(O,l). Note
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that ran(A) is closed by Theorem [3.6| and Theorem Thus, we are left with
showing that
ran(Curl, B(0,1)) = {CﬁrlB(O/l) ¢; ¢ € dom(Grad, B(0,1))}.
From Proposition [3.5|and by Theorem 3.8] we infer
ran(Curlyq 1)) = {Curlyg ) ¢; ¢ € ker(div, B(0,1)) N dom(Curl, B(0,1))}
= {C{lﬂB(O,l) ¢; ¢ € dom(Grad, B(0,1)) Ndom(Curl, B(0,1))}.

So, let ¢ = Curlp(g 1) ¢ for some ¢ € dom(Curl, B(0,1)) N dom(Grad, B(0,1)).
Extend ¢ and ¢ by zero to B(0,2), we call the extensions ¢ and .. Note that ¢ €
dom(Curl, B(0,2)) and CaﬂB(O,Z) ¢e = Pe. By the above applied to 2 = B(0,2),
we find ¢, € dom(Curl, B(0,2)) N dom(Grad, B(0,2)) such that CﬁrlB(m) b =
CCII‘IB(OQ) (Pe = l/]e. Thus,

¢r — ¢e € ker(Curl, B(0,2)) = ran(grad, B(0,2)),
by Lemma Thus, we find u € dom(grad, B(0,2)) with gr;dB(O,z) U= ¢r— Pe.
On B(0,2) \ B(0,1) we have
0=tpe =¢r— gradB(m)\mu.

Therefore, gradB(0 B = ¢r on B(0,2) \ B(0,1). Hence,

u € dom(Grad grad, B(0,2) \ B(0,1)) = H?(B(0,2) \ B(0,1)).
By Calderon’s extension theorem, there exists
ue € dom(Grad grad, B(0,2)) = H?(B(0,2)) with ue = u on B(0,2) \ B(0,1).

Next, we observe that ¢ = ¢r — gradgq,) e € dom(Grad, B(0,2)) as well as
u — ue € dom(grad, B(0,2)) and

¢r = Pro — gradp ) (1 — tte).

Moreover, on B(0,2) \ B(0,1), we have ¢,9 = 0 as well as u — ue = 0. Thus,
¢ro € dom(Grad, B(0,1)) and u — u € dom(grad, B(0,1)). Thus,

p = Curlp () ¢ = Curlp(g 1) Pr
= CurlB(O,l) (fr0 — gradg(og) (u—ue)) = ClolrlB(og) ¢r0-

Therefore,
ran(Curl, B(0,1)) = {C{lrlB(O,l) ¢; ¢ € dom(Grad, B(0,1)) N dom(Curl, B(0,1))}
= {Curl () ¢; ¢ € dom(Grad, B(0,1))}. 1
LEMMA 3.12. Let Q C R? be open, bounded, ¢ € LZ(Q)d with spt¢ C Q. Then
dom(Div skew)* 3 Curl ¢ = Curl¢ € dom(Div skew)*.
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Proof. We have dom(Div skew)* < dom(Div skew)*. Let § € C®(2) with
the property 7 = 1 on spt¢. Then for all ¢ € dom(Divskew) we have ¢ €
dom (Div skew) and so,

(Curl ¢, p) = (¢,2 Divskew ) = (¢, 2 Divskew n¢p) = (¢, 2 Div skew 1)
= (Curl¢, 7).
Thus, there is k¥ > 0 such that for all y € dom(Div skew)

|(Curl ) ()| = |(Curl(¢) ()| = [(Curl(¢) (79))] < K| dom(Div skew)-

This yields the assertion. 1

Finally, we can prove the div-curl lemma with operator-theoretic methods.
We shall also formulate a simpler version of the div-curl lemma, which needs
less technical preparations. In fact, the simpler version only uses Theorem
and Theorem[3.6

Proof of Theorem We apply Theorem[2.6|with the setting in (3.2). For this,
by Lemma we note that Curlv, = Curl Up = Curl vy, With Theorem ﬁ at

hand, we need to establish that (Curlv,), is relatively compact in dom(Cﬁrl*)*.
By Corollary appliedtoC = A = Curl’, the latter is the same as show-

ing that (Curlv,), is relatively compact in ran(Curl). On the other hand, by
Proposition ran(C/l—ol\rl) is closed in H~1(Q)%*4. Thus, since (C/l—l;l Up )n is rel-
atively compact in H~1(Q)%*“, we get that (C/{l\rlvn)n is relatively compact in
dom(Cﬁrl*)*. This yields the assertion. 1

Theorem[2.7|with the setting in (3.2) reads as follows. Note that the assertion
follows from Theorem 3.6l

THEOREM 3.13. Let (uy), in dom(div) and (v,), in dom(Curl) be weakly
convergent sequences. Then

lim = < lim lim > .
n—)oo<un'vn>L2(O)d n—o0o uﬂ'n—)oo Un L2(0)d

It is well-known that the sequence property and the compactness of the se-
quence is true also for submanifolds of RY and the covariant derivative on tensor
fields of appropriate dimension and its adjoint. We conclude this exposition with
a less known sequence, the Pauly—Zulehner Grad grad-complex, see [12].

4. AN EXAMPLE — THE PAULY-ZULEHNER-Grad grad-COMPLEX
In the whole section, we let Q2 C R3 to be a bounded Lipschitz domain. We

will denote by curl the usual 3-dimensional curl operator that maps vector fields
to vector fields. Some definitions are in order.
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DEFINITION 4.1. We define

| o
grad_grad : H*(Q) C L*(Q) — L%,,(Q),¢ — grad, grad ¢;

sym

Cﬁrlr,sym s dom(curly) N L2 (Q) C L2, (Q) = L3, (Q),¢ — curl; ¢;

sym sym dev

div, gey : dom(div,) N L3, (Q) C L3,,(Q) — L2(Q)4,¢ — Div¢;

dev sym

1 . ) ) o
div divy sym : dom(div Diveym) C Lgym (2) — L7(Q2), ¢ = div Div ¢;

sym

symcurl, g : dom(curly) N L3, (Q) C L3, (Q) — Lgym(Q),qb — sym curl; ¢;

dev
devgrad, : H(Q)® C L*(Q)* — L3, (Q),¢ — devgrad, ¢.
The subscript “r” refers to row-wise application of the vector-analytic operators,

where it is attached. Moreover, as before, we have attached a “°” above the dif-
ferential operators in question, if we consider the completion of smooth tensor
fields with compact support with appropriate norm. The operators dev and sym
are the projections on the deviatoric and symmetric parts of 3 X 3-matrices, that is,
for a matrix A € C3*3, we put

devA:=A— %tr(A)I3X3, symA = %(A + AT).

Moreover, we define

L3, (Q) = dev[L*(Q)**%] and Lgym(Q) = sym[L2(0Q)>*3].
Next, we gather some of the main results of Pauly—Zulehner.

THEOREM 4.2 ([12], Lemma 3.5, Remark 3.8, and Lemma 3.21). The pairs

o

1 . o
(gradr gr ad, Curlr,sym ) ’ (Cur 1r,syrn/ ler,dev ) ’

(—devgrad,, symcurl; gey), (symcurl; gey, div divy sym)

o *

*

I 1 I 1 )
are compact sequences. Moreover, we have grad, grad = div divy sym, curl, g =

sym curly gey, dividev = —devgrad,.
We have now several theorems being consequences of our general observa-
tion in Theorem We will formulate the versions for Theorem 2.6| only. The

analogues to Theorem are straightforwardly written down, which we will
omit here.

THEOREM 4.3. (i) Let (utn)n, (vn)n be weakly convergent in Lgym(()). Assume
that

. 1 o
(div divy sym tn)n, (curlysym on)n
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o

1
are relatively compact in dom(grad, grad)* and dom(sym curl,)*. Then

lim (uy,v,) = < lim u,, lim vn>.
n—oo n—o0 n—oo

i) Let (1), (v )y be weakly convergent sequences in L2 (). Assume that
Y 8 q dev

(symcurly gey n)n, (CﬁVr,dev On)n

are relatively compact in dom(cﬁrlr,sym)* and dom(dev grad,)*. Then
Y G on) = (_fim o fim o).
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