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ABSTRACT. In this article, we develop a structural theorem for the q-Gaussian
algebras, namely, we construct a Riesz basis for the q-Fock space in the spirit
of Rădulescu. As an application, we show that the generator subalgebra is
maximal amenable inside the q-Gaussian von Neumann algebra for any real
number q with |q| < 1

9 .
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INTRODUCTION

In this paper, we investigate the structure of von Neumann algebras called
the “q-Gaussian von Neumann algebras”, which can be viewed as deformed
free group factors. First of all, let us explain the history of the q-Gaussians.
Voiculescu’s free probability theory [19] identified the free group factors with von
Neumann algebras acting on the full Fock spaces, leading to many deep results
about the free group factors. One of the vital points in Voiculescu’s analysis is that
the left creation operators of the full Fock spaces satisfy the following equation:

`(η)∗`(ξ)− 0 · `(ξ)`(η)∗ = 〈ξ, η〉
for any ξ, η ∈ HR. This equation is similar to the “Bosonic” or “Fermionic” equa-
tions

`(η)∗`(ξ)− (±1) · `(ξ)`(η)∗ = 〈ξ, η〉.
This similarity raises a natural question: are there operators interpolating

the above equations? Do there exist operators satisfying the following equation:

`(η)∗`(ξ)− q · `(ξ)`(η)∗ = 〈ξ, η〉, for all −1 6 q 6 1?

As an affirmative answer to this question, Bożejko and Speicher [4] constructed
the q-Fock spaces, and the left creation operators on those q-Fock spaces do the



126 SANDEEPAN PAREKH, KOICHI SHIMADA, AND CHENXU WEN

job. Similar to Voiculescu’s free Gaussian functor, Bożejko–Speicher’s q-Gaussian
functor naturally generates a finite von Neumann algebra to any real Hilbert
space, called the q-Gaussian von Neumann algebras. The q-Gaussian algebras are
currently under intense study, and many interesting properties such as factori-
ality [17], non-injectivity [13], fullness [18], and strong solidity [1] are known.
Furthermore, when the dimension of the real Hilbert space is finite and when |q|
is sufficiently small, the corresponding q-Gaussian is isomorphic to the free group
factors [10].

When q 6= 0, the difficulty of analysing the q-Gaussian algebras lies in the
wild behaviour of the inner product arising from the trace, making it hard to
estimate the L2-norms of the operators. This situation is in contrast to that of the
free group factor case: when q = 0, given an orthonormal basis of the underlying
real Hilbert space, the set of all finite words of those basis vectors naturally forms
an orthonormal basis of the full Fock space, which behaves well while acted by
the left and right annihilation operators. On the other hand, if q 6= 0, the same
idea fails to give us a well-behaving basis. Therefore, it is natural to call for a new
basis for the q-Fock space.

In this paper, we present a basis. More precisely, the following theorem.

THEOREM A. Let HR be a real Hilbert space and let q be a real number with
|q| < 1

9 . Let e ∈ HR be a unit vector and let A be the von Neumann algebra generated
by s(e) := c(e) + a(e). Then, there exists a Riesz basis {ηi

r,s : i ∈ I, r, s > 0} for the
orthogonal complement of L2(A) in the q-Fock space such that for any fixed i, the vector
a(e)kηi

r,s is a finite linear combination of the ηi
r,s’s.

Conceptually, our idea comes from Rădulescu’s basis for the radial masa
of the free group factors. Indeed, in [8] the Rădulescu’s basis is used to show
that the radial masa is maximal injective inside the free group factors. One of the
advantages of our basis is that it is compatible with multiplication by the right
and left annihilation operators of e. In particular, the operator s(e) preserves finite
sums of ηi

r,s, which turns out to be useful in investigating the q-Gaussian algebras.
As a corollary, we show the maximal amenability of the generator subalgebra.

THEOREM B. With the same assumptions as in the above theorem, A is maximal
amenable inside M. Moreover, if B is another distinct maximal amenable subalgebra of
M, then A ∩ B is atomic.

The above theorem can be viewed as a generalization of Popa’s original
result [15] on the maximal amenability of the generator masa in free group factors,
which corresponds to the case q = 0.

In addition, one can apply the structural result to give another proof of the
fullness of the q-Gaussian algebras (cf. [18]).

The paper consists of 5 sections. Section 1 is on preliminaries for the q-Fock
space and we establish some notations which will be used throughout the paper.
In Section 2 we develop some q-combinatorics for later use. The next two sections
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will take up the majority of our paper: Section 3 includes the construction of the
Riesz basis in the spirit of Rădulescu and Section 4 contains the key estimates for
elements in the relative commutant of A in the ultraproduct. In the last section,
we establish the asymptotic orthogonality property for the inclusion of the gener-
ator subalgebra A ⊂ M and finish the proof of the main theorem. We also include
a proof for the fullness of the q-Gaussian algebras using our basis.

1. PRELIMINARIES

Throughout the paper we assume that −1 < q < 1 and let HR be a real
Hilbert space with dimHR > 2. Denote by H := HR ⊗R C the complexification
ofHR. Define an inner product on

⊕
n>0
H⊗n by

〈e1 ⊗ · · · ⊗ en, f1 ⊗ · · · ⊗ fm〉q = δn,m ∑
σ∈Sm

q|σ|〈e1 ⊗ · · · ⊗ en, fσ(1) ⊗ · · · ⊗ fσ(m)〉,

where Sm is the group of permutations on {1, . . . , m}, H⊗0 = CΩ is the space
spanned by the vacuum vector Ω, the inner product on the right-hand side is
the usual one on H⊗m and by |σ| we mean the number of inversions of σ ∈ Sm
given by

|σ| = #{(i, j) ∈ {1, . . . , m}2 : i < j, σ(i) > σ(j)}.

The q-deformed Fock space Fq(HR) is the completion of (
⊕

n>0H⊗n, 〈·, ·〉q)
and ‖ · ‖q is the norm induced by this inner product. For simplicity, sometimes
we will suppress the subscript q for the inner product and the norm on the q-Fock
space.

For e ∈ HR, we define the left creation operator c(e) and the right creation
operator cr(e) on Fq(HR) by c(e)(Ω) = e = cr(e)(Ω) and

c(e)(e1 ⊗ · · · ⊗ en) = e⊗ e1 ⊗ · · · ⊗ en,

cr(e)(e1 ⊗ · · · ⊗ en) = e1 ⊗ · · · ⊗ en ⊗ e,
(1.1)

for n > 1. Both c(e) and cr(e) are bounded operators ([4], Lemma 4) and their
adjoints a(e) = c∗(e), ar(e) = c∗r (e) are called the left annihilation operator and
the right annihilation operator, respectively, which are given by a(e)(Ω) = 0 =
ar(e)(Ω) and

a(e)(e1 ⊗ · · · ⊗ en) = ∑
16i6n

q(i−1)〈e, ei〉e1 ⊗ · · · ⊗ êi ⊗ · · · ⊗ en,

ar(e)(e1 ⊗ · · · ⊗ en) = ∑
16i6n

q(n−i)〈e, ei〉e1 ⊗ · · · ⊗ êi ⊗ · · · ⊗ en,
(1.2)

for n > 1, where êi means the letter being removed. Note that c(e) and cr( f )
commute but c(e) and ar( f ) do not commute in general.
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The operators c(e), cr(e) satisfy the following important q-commutation rela-
tions [4]:

(1.3) a(e)c( f )− qc( f )a(e) = 〈e, f 〉Id, ar(e)cr( f )− qcr( f )ar(e) = 〈e, f 〉Id.

For e ∈ HR, let

s(e) = c(e) + a(e)

and let Γq(HR) be the von Neumann algebra generated by {s(e) : e ∈ HR}.
We call it the q-Gaussian algebra associated with HR. It is known that Γq(HR) is a
type II1 factor ([17], Corollary 1) and Ω is a separating and cyclic vector which
gives the trace for Γq(HR) ([5], Theorem 4.3, 4.4). Consequently, each element x ∈
Γq(HR) is uniquely determined by ξ = x ·Ω ∈ Fq(HR) and we write x = s(ξ).
This notation is consistent with the above definition for s(e), e ∈ HR.

One can also define sr(e) = cr(e) + ar(e) for e ∈ HR and define Γq,r(HR) :=
{sr(e) : e ∈ HR}′′. Then similar to the group von Neaumann algebra case we
have Γq,r(HR) = Γq(HR)

′.
Here we record two facts that will be used in this paper.

(•) Let e ∈ H be a unit vector, then

(1.4) ‖e⊗n‖2
q = [n]q!,

where [k]q = 1−qk

1−q and [n]q! = [1]q · · · [n]q. We also define [0]q! := 1.
(•) [Wick formula [3], Proposition 2.7] Let e1 ⊗ · · · ⊗ en ∈ H⊗n, then

s(e1 ⊗ · · · ⊗ en) =
n

∑
i=0

∑
σ∈Sn/(Sn−i×Si)

q|σ|c(eσ(1)) · · · c(eσ(n−i))

× a(eσ(n−i+1)) · · · a(eσ(n)),

(1.5)

where σ is the representative of Sn−i × Si in Sn with minimal number of inver-
sions.

From now on we fix a unit vector e ∈ HR and we call the von Neumann
subalgebra Γq(Re) ⊂ Γq(HR) a generator subalgebra. It is shown by Ricard in [17]
that this gives a maximal abelian subalgebra (masa) of Γq(HR).

Let T : HR → HR be an R-linear contraction. We still denote by T its
complexification given by T(ξ + iη) = T(ξ) + iT(η), ∀ξ, η ∈ HR. Then the first
quantization Fq(T), is the bounded operator on Fq(HR) defined by

Fq(T) = IdCΩ ⊕
⊕
n>1

T⊗n.

The second quantization of T, is the unique unital completely positive map
Γq(T) on Γq(HR) defined as

Γq(T)(s(ξ)) = s(Fq(T)(ξ)).

In particular, if T = Ee : HR → Re is the orthogonal projection, then Fq(Ee) is the
conditional expectation of Γq(HR) onto Γq(Re).
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To simplify notations, from now on we will write A := Γq(Re) for the gen-
erator subalgebra and M := Γq(HR) for the q-Gaussian algebra.

2. SOME q-COMBINATORICS

In this section we will develop some formulas about combinatorics in
q-Gaussians that will be needed in later sections.

For n, m ∈ N∪ {0}, n > m, set(
n
m

)
q
=

[n]q!
[m]q![n−m]q!

=
n−m

∏
i=1

1− qm+i

1− qi .

We make the following convention(
n
m

)
q
= 0 whenever m > n or m < 0.

The following q-analogue of the Pascal’s identity for these q-binomial coef-
ficients (cf. Proposition 1.8 of [3]) can be easily checked.

LEMMA 2.1. For all m ∈ Z and n > 0,

(2.1)
(

n + 1
m

)
q
= qm

(
n
m

)
q
+

(
n

m− 1

)
q
=

(
n
m

)
q
+ qn−m+1

(
n

m− 1

)
q
.

Continuing the analogy, the q-binomial coefficients (n
m)q can also be seen

to count “number” of weighted paths in the “q-Pascal’s triangle” from (0, 0) to
(n−m, m). The q-Pascal triangle is formed from the ordinary Pascal triangle by
putting a weight of qi on each (right) edge from (i, j) to (i, j+ 1) , as shown below.
All the other (left) edges will have weight 1. The weight of a path is the product
of the weights on its constituent edges.

(0,0)

(1,0) (0,1)

(2,0) (1,1) (0,2)

(3,0) (2,1) (1,2) (0,3)

(4,0) (3,1) (2,2) (1,3) (0,4)

q0

q1

q2

q3

q0

q1

q2

q0

q1 q0

For instance, the sum of all weighted paths from (0, 0) to (1, 2) is 1 + q +
q2 = [3]q = (3

2)q. It is clear from the diagram that they satisfy the second recur-
rence relation mentioned above, with the other one following from the symmetry
of the q-binomial coefficient.
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LEMMA 2.2. For n1, n2, m ∈ N∪ {0} with n1 + n2 > m, we have the following:

(2.2)
m

∑
i=0

q(n1−i)(m−i)
(

n1

i

)
q

(
n2

m− i

)
q
=

(
n1 + n2

m

)
q
.

Proof. Any path from (0, 0) to (n1 + n2 −m, m) will pass through (n1 − i, i)
for some 0∨m− n2 6 i 6 m ∧ n1. This range of index corresponds exactly to the
terms with non-zero contribution in the above sum. Now (n1

i )q counts the sum of
weighted paths from (0, 0) to (n1 − i, i). To go from (n1 − i, i) to (n1 + n2 −m, m)
involves travelling along paths counted by ( n2

m−i)q.

(0,0)

(n1 − i,0)

(n1 + n2 −m,0)

(n1 − i,i)

(0,i)

(0,m)

(n1 + n2 −m,m)

n1 − i

m− i

However now every right edge in such a path has its weight multiplied by
an extra factor of qn1−i. Moreover there are exactly m − i right edges in such
paths. The result now follows.

Let X, Y, Z, W be indeterminates satisfying the following relations:

XY = qYX + 1, XZ = ZX + W, WZ = qZW, XW = qWX.(2.3)

For convenience, we make the convention that x0 = 1, for all x ∈ {X, Y, Z, W}.

REMARK 2.3. As we will see, in the following we will sometimes use nega-
tive powers of the indeterminates, however their coefficients will all be zero.

We first discuss the commutation relations between powers of X and Y.

LEMMA 2.4. For n, m ∈ N, we have

XmYn =
m

∑
i=0

q(n−i)(m−i)[i]q!
(

n
i

)
q

(
m
i

)
q
Yn−iXm−i.(2.4)

Proof. We prove it by induction on m and n.
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An easy induction shows that

XYn = qnYnX + [n]qYn−1, XmY = qmYXm + [m]qXm−1,

which are special cases of (2.4).
Now suppose that (2.4) holds up to m, n. Then

Xm+1Yn =
m

∑
i=0

q(n−i)(m−i)[i]q!
(

n
i

)
q

(
m
i

)
q
XYn−iXm−i

=
m

∑
i=0

(
q(n−i)(m−i+1)[i]q!

(
n
i

)
q

(
m
i

)
q
Yn−iXm+1−i

+ q(n−i)(m−i)[i]q!
(

n
i

)
q

(
m
i

)
q
[n− i]qYn−1−iXm−i

)
=

m+1

∑
i=0

[
Yn−iXm+1−i

(
q(n−i)(m+1−i)[i]q!

(
n
i

)
q

(
m
i

)
q

+ q(n−i+1)(m+1−i)[i− 1]q!
(

n
i− 1

)
q

(
m

i− 1

)
q
[n + 1− i]q

)]
=

m+1

∑
i=0

Yn−iXm+1−iq(n−i)(m+1−i)[i]q!
(

n
i

)
q

((m
i

)
q
+ qm+1−i

(
m

i− 1

)
q

)
=

m+1

∑
i=0

Yn−iXm+1−iq(n−i)(m+1−i)[i]q!
(

n
i

)
q

(
m + 1

i

)
q
.

Here in the second equation we used (2.3); the third equality is due to the simple
fact

[i− 1]q!
(

n
i− 1

)
q
[n− i + 1]q = [i]q!

(
n
i

)
q
,

and the last equality comes from (2.1).
The case for XmYn+1 is completely similar so we omit the details.

Now we turn to the relation between powers of X and Z. Naturally, W also
comes into play.

LEMMA 2.5. For m, n ∈ N, we have

(2.5) XmZn =
m

∑
i=0

[i]q!
(

n
i

)
q

(
m
i

)
q
Zn−iWiXm−i.

Proof. Let’s proceed by induction on m and n.
One can easily show that

XZn = ZnX + [n]qZn−1W, XmZ = ZXm + [m]qWXm−1,

which are special cases for (2.5).
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Suppose that (2.5) holds up to m, n. Then

Xm+1Zn =
m

∑
i=0

[i]q!
(

n
i

)
q

(
m
i

)
q
XZn−iWiXm−i

=
m

∑
i=0

[i]q!
(

n
i

)
q

(
m
i

)
q
(Zn−iX + [n− i]qZn−i−1W)WiXm−i

=
m

∑
i=0

[i]q!
(

n
i

)
q

(
m
i

)
q
(qiZn−iWiXm+1−i + [n− i]qZn−i−1Wi+1Xm−i)

=
m+1

∑
i=0

[
Zn−iWiXm+1−i

×
(
[i]q!

(
n
i

)
q

(
m
i

)
q
qi + [i− 1]q!

(
n

i− 1

)
q

(
m

i− 1

)
q
[n− i + 1]q

)]
=

m+1

∑
i=0

[i]q!
(

n
i

)
q

(
m + 1

i

)
q
Zn−iWiXm+1−i.

The other case is completely similar.

PROPOSITION 2.6. Let X = a(e), Y = c(e), Z = cr(e) and W be the bounded
operator on Fq(HR) defined by

W(ξ) = qnξ, ∀ξ ∈ H⊗n.

Then X, Y, Z, W satisfy the relations listed in (2.3). Consequently, (2.4) and (2.5) hold
true.

Proof. (2.3) can be checked by direct computations hence (2.4) and (2.5) fol-
low from the previous two lemmas.

3. RĂDULESCU BASIS IN q-FOCK SPACES

In this section we construct the Rădulescu basis for Fq(HR), which will
be the fundamental tool to study the generator subalgebra. The construction is
motivated by the original construction of Rădulescu in [16].

For each integer k > 0, we consider the following subspace of H⊗k ⊂
Fq(HR):

(3.1) Tk := {ξ ∈ H⊗k : a(e)ξ = ar(e)ξ = 0}.
It is clear that T0 = CΩ and each Tk is non-zero (for instance, if we choose f ∈ HR
with f ⊥ e, then f⊗k ∈ Tk).

For each ξ ∈ H⊗k and for all s, t ∈ N∪ {0}, define

(3.2) ξs,t = e⊗s ⊗ ξ ⊗ e⊗t ∈ H⊗(k+s+t).

We also make the convention that ξs,t = 0 if either s < 0 or t < 0.
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We start with a few important observations.

LEMMA 3.1. For ξ ∈ Tk and s, t > 0, we have the following:

(3.3) a(e)ξs,t = [s]qξs−1,t + qs+k[t]qξs,t−1, ar(e)ξs,t = qt+k[s]qξs−1,t + [t]qξs,t−1.

Proof. Since the left and right annihilation operators behave similarly, we
just show the first equation. This is a consequence of the following identity

a(e)(W1 ⊗W2 ⊗W3) = (a(e)W1)⊗W2 ⊗W3 + q|W1|W1 ⊗ (a(e)W2)⊗W3

+ q|W1|+|W2|W1 ⊗W2 ⊗ (a(e)W3),

where Wi, i = 1, 2, 3 are basic words and |Wi| stands for the length. By linearity,
the equation still holds even if W2 is a linear combination of basic words with the
same length. Thus for ξ ∈ Tk, we have

a(e)ξs,t = a(e)(e⊗s ⊗ ξ ⊗ e⊗t)

= (a(e)e⊗s)⊗ ξ ⊗ e⊗t + qse⊗s ⊗ (a(e)ξ)⊗ e⊗t + qs+ke⊗s ⊗ ξ ⊗ (a(e)e⊗t)

= [s]qξs−1,t + 0 + qs+k[t]qξs,t−1.

LEMMA 3.2. For ξ ∈ Tk, we have

s(e)nsr(e)mξ ∈ span{ξs,t : s, t > 0}, ∀n, m > 0,

ξs,t ∈ span{s(e)nsr(e)mξ : n, m > 0}, ∀s, t > 0.
(3.4)

Proof. For the first inclusion,

s(e)nsr(e)mξ = (c(e) + a(e))n(cr(e) + ar(e))mξ

= (cr(e) + ar(e))m(c(e) + a(e))nξ.
(3.5)

The q-commutation relations imply that we can write (c(e) + a(e))n and (cr(e) +
ar(e))m as polynomials of the form

(3.6) (c(e) + a(e))n = ∑
i,j>0

ai,jc(e)ia(e)j, (cr(e) + ar(e))m = ∑
s,t>0

bs,tcr(e)sar(e)t.

Thus s(e)nsr(e)mξ is a linear combination of

c(e)ia(e)jcr(e)sar(e)tξ,

where i, j, s, t ∈ N ∪ {0}. By the previous lemma, all such terms are in span{ξl,p :
l, p > 0}, which yields the first inclusion.

We prove the second inclusion by induction on s + t. When s + t = 0, the
conclusion clearly holds. Suppose now that the inclusion holds for s + t 6 N. By
Lemma 3.1 we have that

s(e)ξs,t = ξs+1,t + [s]qξs−1,t + qs+k[t]qξs,t−1,

sr(e)ξs,t = ξs,t+1 + qt+k[s]qξs−1,t + [t]qξs,t−1.

Hence the conclusion holds for s + t = N + 1 as well.
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For k > 0, let
Qk : Fq(HR)→ H⊗k,

be the orthogonal projections from the q-Fock space ontoH⊗k and we define

Sk := H⊗k 	 Tk.

For notational convenience, we letH⊗i = {0}, for all i < 0.
We first characterize Sk as in the following lemma.

LEMMA 3.3. For all k>0, Sk =span{Qk(s(e)η), Qk(sr(e)η) : η∈H⊗l , l< k}.

Proof. It suffices to show that ξ ∈ H⊗k belongs to Tk if and only if

〈ξ, Qk(s(e)η)〉q = 〈ξ, Qk(sr(e)η)〉q = 0

for any η ∈ H⊗l , l < k.
To see this, notice that

〈ξ, Qk(s(e)η)〉q = 〈ξ, Qk(c(e)η)〉q = 〈a(e)ξ, η〉q.

Since a(e)ξ ∈ H⊗(k−1), we have that 〈ξ, Qk(s(e)η)〉q = 0 for any η ∈ H⊗l , l < k if
and only if a(e)ξ = 0.

Similarly, 〈ξ, Qk(sr(e)η)〉q =0 for any η∈H⊗l , l<k if and only if ar(e)ξ=0.

LEMMA 3.4. For all k>0,H⊗k⊂span{s(e)nsr(e)mξ : ξ∈Tl , l6k, n, m>0}.
Proof. We prove it by induction. When k = 0, the statement is clearly true.

Assume that the lemma holds up to k − 1 and let η ∈ H⊗k. We may further
assume that η ∈ Sk.

By Lemma 3.3, η is a linear combination of Qk(s(e)ξ) and Qk(sr(e)ξ), ξ ∈
H⊗(k−1). By the induction hypothesis, each ξ ∈ H⊗(k−1) is a linear combination
of s(e)nsr(e)mξ ′, ξ ′ ∈ Tl , l 6 k − 1, n, m > 0. Thus η is a linear combination of
Qk(s(e)nsr(e)mξ ′), ξ ′ ∈ Tl , l 6 k− 1, n, m > 0.

Now, by Lemma 3.2, Qk(s(e)nsr(e)mξ ′) ∈ span{ξ ′r,s : r, s > 0, r + s + |ξ ′| =
k} but again by Lemma 3.2, each ξ ′r,s ∈ span{s(e)nsr(e)mξ ′ : n, m > 0}. Therefore,
we are done.

LEMMA 3.5. Suppose that ξ ∈ Tt and r, s, k > 0 are non-negative integers, then
we have

a(e)kξr,s = ∑
i+j=k,i,j>0

[r]q!
[r− j]q!

·
[s]q!

[s− i]q!
·
(

k
i

)
q
q(t+r−j)iξr−j,s−i,

ar(e)kξr,s = ∑
i+j=k,i,j>0

[r]q!
[r− i]q!

·
[s]q!

[s− j]q!
·
(

k
i

)
q
q(t+s−j)iξr−i,s−j.

(3.7)

The proof is just an induction via direct computations so we omit the details.
Now we compute the inner products between ξr,s.
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LEMMA 3.6. Let ξ, η ∈ ⋃
k>0

Tk with ξ ⊥ η, then for any r, s, r′, s′ non-negative

integers, we have

(3.8) 〈ξr,s, ηr′ ,s′〉 = 0.

Moreover, if r + s 6= r′ + s′, then

〈ξr,s, ξr′ ,s′〉 = 0.

Proof. The second statement is trivial so we focus on the first. By Lemma 3.2
and the fact that s(e)sr(e) = sr(e)s(e), it suffices to show that

s(e)nsr(e)mξ ⊥ η

for all n, m non-negative integers. Again by Lemma 3.2, it reduces to show that

ξr,s ⊥ η

for all r, s non-negative integers. This is clear by the definition of Tk unless r =
s = 0, but then the assumption ξ ⊥ η leads to the conclusion.

PROPOSITION 3.7. Let r, s, r′, s′, k be non-negative integers with r + s = r′ + s′

and ξ ∈ Tk of norm 1, then

(3.9) 〈ξr,s, ξr′ ,s′〉 =
r′

∑
i=0

q(r−i)(r′−i)+k(r−i)+k(r′−i) · [r′]q! · [s′]q! ·
(

r
i

)
q
·
(

s
r′ − i

)
q
.

Proof. The proof is simply a direct but lengthy computation. However for
the convenience of the readers, we include the details here. For simplicity, we
write αi

n,m := [i]q!(n
i )q(

m
i )q for n, m, i > 0. Note that by our convention, αi

n,m = 0
when either i > n or i > m.

Now we compute

〈ξr,s, ξr′ ,s′〉 = 〈c(e)rcr(e)sξ, c(e)r′cr(e)s′ξ〉 = 〈a(e)r′c(e)rcr(e)sξ, cr(e)s′ξ〉

(2.4)
=
〈 r′

∑
i=0

q(r−i)(r′−i)αi
r,r′c(e)

r−ia(e)r′−icr(e)sξ, cr(e)s′ξ
〉

(2.5)
=
〈 r′

∑
i=0

q(r−i)(r′−i)αi
r,r′c(e)

r−i
r′−i

∑
j=0

α
j
r′−i,scr(e)s−jW ja(e)r′−i−jξ, cr(e)s′ξ

〉
(∗)
=
〈 r′

∑
i=0

q(r−i)(r′−i)αi
r,r′c(e)

r−iαr′−i
r′−i,scr(e)s−(r′−i)Wr′−iξ, cr(e)s′ξ

〉
=

r′

∑
i=0

q(r−i)(r′−i)q(r
′−i)kαi

r,r′α
r′−i
r′−i,s〈cr(e)s−(r′−i)ξ, a(e)r−icr(e)s′ξ〉

(2.5)
=

r′

∑
i=0

[
q(r−i)(r′−i)q(r

′−i)kαi
r,r′α

r′−i
r′−i,s
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×
〈

cr(e)s−(r′−i)ξ,
r−i

∑
j=0

α
j
r−i,s′cr(e)s′−jW ja(e)r−i−jξ

〉]
(∗)
=

r′

∑
i=0

[q(r−i)(r′−i)q(r
′−i)kq(r−i)kαi

r,r′α
r′−i
r′−i,sαr−i

r−i,s′

× 〈cr(e)s−(r′−i)ξ, cr(e)s′−(r−i)ξ〉]

=
r′

∑
i=0

q(r−i)(r′−i)q(r
′−i)kq(r−i)kαi

r,r′α
r′−i
r′−i,sαr−i

r−i,s′ [s− r′ + i]q!

=
r′

∑
i=0

q(r−i)(r′−i)+k(r−i)+k(r′−i) · [r′]q! · [s′]q! ·
(

r
i

)
q
·
(

s
r′ − i

)
q
,

where in the equations with (∗) we used the fact that a(e)ξ = 0.

For later use, we define two constants depending on q:

C(q) :=
∞

∏
i=1

1
1− qi , D(q) :=

∞

∏
i=1

(1 + |q|i).

Basic calculus shows that whenever −1 < q < 1, the above two limits exist
unconditionally.

We record a simple but very useful estimate here for later references.

LEMMA 3.8. For all −1 < q < 1 and for all n, m > 0, we have∣∣∣(n
m

)
q

∣∣∣±1
6 D(q)C(|q|).

LEMMA 3.9. Let r, s, r′, s′, k be non-negative integers with r+s= r′+s′, r>r′ and
ξ∈Tk of norm 1. Then for each −1<q< 1, there are constants E(q), F(q) such that

(3.10) E(q)|q|k(r−r′)[r + s]q! 6 |〈ξr,s, ξr′ ,s′〉| 6 F(q)|q|k(r−r′)[r + s]q!.

Moreover, we have that

lim
q→0

E(q) = lim
q→0

F(q) = 1.

Proof. When 0 6 q < 1, we have

〈ξr,s, ξr′ ,s′〉 =
r′

∑
i=0

q(r−i)(r′−i)+k(r−i)+k(r′−i) · [r′]q! · [s′]q! ·
(

r
i

)
q
·
(

s
r′ − i

)
q

6 qk(r−r′)
r′

∑
i=0

q(r−i)(r′−i) · [r′]q! · [s′]q! ·
(

r
i

)
q
·
(

s
r′ − i

)
q

(2.2)
= qk(r−r′) · [r′]q! · [s′]q! ·

(
r + s

r′

)
q

= qk(r−r′)[r + s]q!,
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where the last equality comes from the assumption r + s = r′ + s′. This proves
the inequality on the right side.

For the inequality on the left side, simply note that

r′

∑
i=0

q(r−i)(r′−i)+k(r−i)+k(r′−i) · [r′]q! · [s′]q! ·
(

r
i

)
q
·
(

s
r′ − i

)
q

>
r′

∑
i=r′

q(r−i)(r′−i)+k(r−i)+k(r′−i) · [r′]q! · [s′]q! ·
(

r
i

)
q
·
(

s
r′ − i

)
q

= qk(r−r′)[r′]q![s′]q! ·
(

r
r′

)
q
= qk(r−r′)[r′]q![s′]q! ·

[r]q!
[r′]q![r− r′]q!

·
[r + s]q!
[r + s]q!

= qk(r−r′)[r + s]q! ·
[s′]q![r]q!

[r− r′]q![r + s]q!

= qk(r−r′)[r + s]q! · (1− qr−r′+1) · · · (1− qr)

(1− qs′+1) · · · (1− qr+s)

> qk(r−r′)[r + s]q! · (1− qr−r′+1) · · · (1− qr) >
1

C(q)
qk(r−r′)[r + s]q!.

Thus if we let E(q) = 1
C(q) , F(q) = 1, we are done.

Now assume −1 < q < 0. By Lemma 3.8 we have

[r′]q![s′]q! 6 [r′ + s′]q!D(q)C(|q|).

Therefore,

∣∣∣ r′

∑
i=0

q(r−i)(r′−i)+k(r−i)+k(r′−i) · [r′]q! · [s′]q! ·
(

r
i

)
q
·
(

s
r′ − i

)
q

∣∣∣
6 D(q)3C(|q|)3[r′ + s′]q!

r′

∑
i=0
|q|(r−i)(r′−i)+k(r−i)+k(r′−i)

6 D(q)3C(|q|)3[r′ + s′]q! · |q|k(r−r′) · 1
1− |q| .

Meanwhile, we have

∣∣∣ r′

∑
i=r′

q(r−i)(r′−i)+k(r−i)+k(r′−i) · [r′]q! · [s′]q! ·
(

r
i

)
q
·
(

s
r′ − i

)
q

∣∣∣
= |q|k(r−r′)[r′]q! · [s′]q! ·

(
r
r′

)
q
= |q|k(r−r′)[r + s]q! · (1− qr−r′+1) · · · (1− qr)

(1− qs′+1) · · · (1− qr+s)

> |q|k(r−r′)[r + s]q! · (1− |q|
r−r′+1) · · · (1− |q|r)

(1 + |q|s′+1) · · · (1 + |q|r+s)
>
|q|k(r−r′)

D(q)C(|q|) · [r + s]q!,
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and ∣∣∣ r′−1

∑
i=0

q(r−i)(r′−i)+k(r−i)+k(r′−i) · [r′]q! · [s′]q! ·
(

r
i

)
q
·
(

s
r′ − i

)
q

∣∣∣
6

r′−1

∑
i=0
|q|(r−i)(r′−i)+k(r−i)+k(r′−i) · [r′]q! · [s′]q! ·

(
r
i

)
q
·
(

s
r′ − i

)
q

6 |q|k(r−r′)
r′−1

∑
i=0
|q|(r−i)[r + s]q!D(q)3C(|q|)3

6 |q|k(r−r′) |q|
1− |q|D(q)3C(|q|)3[r + s]q!.

Hence by the triangle inequality,

∣∣∣ r′

∑
i=0

q(r−i)(r′−i)+k(r−i)+k(r′−i) · [r′]q! · [s′]q! ·
(

r
i

)
q
·
(

s
r′ − i

)
q

∣∣∣
>
|q|k(r−r′)

D(q)C(|q|) · [r + s]q!− |q|
k(r−r′)+1

1− |q| D(q)3C(|q|)3[r + s]q!

= |q|k(r−r′)
( 1

D(q)C(|q|) −
|q|

1− |q|D(q)3C(|q|)3
)
· [r + s]q!.

Finally, if we let E(q) = 1
D(q)C(|q|) −

|q|
1−|q|D(q)3C(|q|)3, F(q) = D(q)3C(|q|)3

1−|q| , the
proof is complete.

The following corollary will be used multiple times later.

COROLLARY 3.10. Let r, s, k be non-negative integers and let ξ ∈ Tk be of norm
1. Then there is a positive number α > 0, such that whenever |q| 6 α, we have

(3.11)
1
2
[r + s]q! 6 ‖ξr,s‖2

q 6 2[r + s]q!.

REMARK 3.11. Lemma 3.9 and Corollary 3.10 hold when − 1
7 < q < 1

4 .

To prove the main theorem of this section, we need another lemma.

LEMMA 3.12. Let α ∈ R with |α| < 1. For any n ∈ N we define

Eα =


0 −α · · · −αn−1

−α
. . . . . .

...
...

. . . . . . −α

−αn−1 · · · −α 0

 ,

then the operator norm ‖Eα‖ 6 2|α|
1−|α| .
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Proof. Clearly we have∥∥∥∥∥∥∥∥∥∥∥∥


0 −αk 0

. . . . . .
. . . −αk

0 0



∥∥∥∥∥∥∥∥∥∥∥∥
= |α|k.

Hence ‖Eα‖ 6 2
n−1
∑

i=1
|α|i 6 2|α|

1−|α| .

Take an orthonormal basis {ξ i
j : j ∈ Ik} for Tk, k > 1. We may re-order the

set
⋃

i∈N
{ξ i

j : j ∈ Ik} as {ξ i : i ∈ I} for some index set I and we set that ξ0 = Ω.

Finally we are ready to state and prove the main result of this section.

THEOREM 3.13. For any real number q satisfying |q| < 1
9 , the set{ ξ i

r,s

‖ξ i
r,s‖

: i ∈ I, r, s > 0
}

forms a Riesz basis for L2(M)	 L2(A), i.e., its linear span is dense in L2(M)	 L2(A)
and there exists some constants Aq, Bq > 0, such that for all λi

r,s ∈ C, one has

(3.12) Aq ∑
r,s,i
|λi

r,s|2‖ξ i
r,s‖2 6

∥∥∥∑
r,s,i

λi
r,sξ i

r,s

∥∥∥2
6 Bq ∑

r,s,i
|λi

r,s|2‖ξ i
r,s‖2.

Proof. By Lemma 3.6, it suffices to find such Aq, Bq > 0 which are indepen-
dent of i ∈ I and k > 0 such that

Aq ∑
r+s=k

|λi
r,s|2‖ξ i

r,s‖2 6
∥∥∥ ∑

r+s=k
λi

r,sξ i
r,s

∥∥∥2
6 Bq ∑

r+s=k
|λi

r,s|2‖ξ i
r,s‖2

holds for any λi
r,s ∈ C. Fixing ξ = ξ i ∈ Tt for some t ∈ N, for simplicity, we will

omit the superscript i in the rest of the proof. Fix 0 < ε < 1
7 . As explained in

Remark 3.11, both Lemma 3.9 and Corollary 3.10 hold. Then for all q with |q| 6 ε,∥∥∥ ∑
r+s=k

λr,sξr,s

∥∥∥2
> ∑

r+s=k
|λr,s|2‖ξr,s‖2 − ∑

r+s=r′+s′=k, r 6=r′
|λr,sλr′ ,s′ | · |〈ξr,s, ξr′ ,s′〉|

(3.10)
> ∑

r+s=k
|λr,s|2‖ξr,s‖2 − 2 ∑

r+s=r′+s′=k, r 6=r′
|λr,sλr′ ,s′ | · |q|t|r−r′ |[k]q!

> ∑
r+s=k

|λr,s|2‖ξr,s‖2 − 2 ∑
r+s=r′+s′=k

r 6=r′

|λr,sλr′ ,s′ | · |q||r−r′ |[k]q!

(3.11)
> ∑

r+s=k
|λr,s|2‖ξr,s‖2−4 ∑

r+s=k, r′+s′=k, r 6=r′
|λr,sλr′ ,s′ | · |q||r−r′ |‖ξr,s‖‖ξr′ ,s′‖
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=
〈
(1 + 4E|q|)

|λk,0|‖ξk,0‖
...

|λ0,k|‖ξ0,k‖

 ,

|λk,0|‖ξk,0‖
...

|λ0,k|‖ξ0,k‖

〉,

where E|q| is the matrix defined in the previous lemma. When |q| < 1
9 , 1+ 4E|q| is

strictly positive since we have that 1 + 4E|q| > 1− 4‖E|q|‖ > 1− 4 ·
( 2|q|

1−|q|
)
> 0.

Also, notice that the strict positivity of 1 + 4E|q| depends on neither i nor k. This
shows the existence of Aq > 0 satisfying the first half of (3.12).

Similarly,

∥∥∥ ∑
r+s=k

λr,sξr,s

∥∥∥2
6 ∑

r+s=k
|λr,s|2‖ξr,s‖2 + ∑

r+s=r′+s′=k, r 6=r′
|λr,sλr′ ,s′ | · |〈ξr,s, ξr′ ,s′〉|

(3.10)
6 ∑

r+s=k
|λr,s|2‖ξr,s‖2 + 2 ∑

r+s=r′+s′=k, r 6=r′
|λr,sλr′ ,s′ | · |q|t|r−r′ |[k]q!

6 ∑
r+s=k

|λr,s|2‖ξr,s‖2 + 2 ∑
r+s=r′+s′=k, r 6=r′

|λr,sλr′ ,s′ | · |q||r−r′ |[k]q!

(3.11)
6 ∑

r+s=k
|λr,s|2‖ξr,s‖2+4 ∑

r+s=k, r′+s′=k, r 6=r′
|λr,sλr′ ,s′ | · |q||r−r′ |‖ξr,s‖‖ξr′ ,s′‖

=
〈
(1− 4E|q|)

|λk,0|‖ξk,0‖
...

|λ0,k|‖ξ0,k‖

 ,

|λk,0|‖ξk,0‖
...

|λ0,k|‖ξ0,k‖

〉,

and the existence of Bq is obvious.
The completeness is already shown in Lemma 3.4, therefore we are done.

REMARK 3.14. Recall that ξ0 = Ω. If we consider

{ ξ0
r,0

‖ξ0
r,0‖

: r > 0
}
∪
{ ξ i

r,s

‖ξ i
r,s‖

: i ∈ I, r, s > 0
}

,

then this is a Riesz basis of the entire q-Fock space L2(M).

4. LOCATING THE SUPPORTS OF ELEMENTS IN THE RELATIVE COMMUTANT

Throughout this section we will assume that q is a real number with |q| < 1
9

such that the conclusions in Corollary 3.10 and Theorem 3.13 hold.
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For N > 0, define the idempotent LN , RN : L2(M)→ L2(M) by LN |Fq(Re) =

RN |Fq(Re) = 0 and

LN

(
∑

i∈I,r,s>0
ci

r,sξ i
r,s

)
= ∑

i∈I,s>0,06r6N
ci

r,sξ i
r,s,

RN

(
∑

i∈I,r,s>0
ci

r,sξ i
r,s

)
= ∑

i∈I,r>0,06s6N
ci

r,sξ i
r,s.

(4.1)

By Theorem 3.13, LN and RN are both well-defined. Moreover, with a little abuse
of notation, sometimes we will also use LN(respectively RN) to denote the image
of LN(respectively RN).

Let C ⊂ A be a diffuse subalgebra and fix a free ultrafilter ω ∈ β(N)\N. Let
z = (zn)n ∈ (Mω 	 Aω) ∩ C′. Without loss of generality we assume that ‖z‖ = 1
and ‖zn‖ 6 1 (the operator norm is bounded above by 1) and zn ∈ M 	 A, ∀n.
Just as in [20], we would like to show that the support of z eventually escapes
both LN and RN . To this end, we need some preparations.

The first key step towards our goal is to show that LN is asymptotically
right-A modular.

Recall that Qk is the orthogonal projection from Fq(HR) ontoH⊗k.

LEMMA 4.1. For any k ∈ N, we have

lim
n→ω

Qk(zn) = 0.

Proof. Suppose this is not the case, then there exists some k ∈ N with

H⊗k 3 z0 = lim
n→ω

Qk(zn) 6= 0.

In particular, zn → y weakly for some non-zero y ∈ M. Clearly y ∈ C′ ∩M	 A.
However, it is known that the generator masa A is mixing in M (see [2], [21]).

Thus by Proposition 5.1 in [7] we must have that C′ ∩M = A, a contradiction.

The next estimate will be essential in order to establish the right-A modu-
larity of LN .

LEMMA 4.2. Let x ∈ L2(M)	 L2(A) whose Fourier expansion along {ξ i
r,s : i ∈

I, r, s > 0} is of the form

x = ∑
r>N+1,s>0

λr,sξr,s,

where ξ = ξ i for some fixed i ∈ I with ξ ∈ Tt. Then we have

‖LN(ar(e)kx)‖2
2 6

4kBqC(|q|)3D(q)6

(1− q)k(1− q2t)
∑

r,s>0
q2(t+s+r−k−N−1)|λr,s|2‖ξr,s‖2

2,(4.2)

for all k, N > 0.
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Proof. We let λr,s = 0 for all r 6 N and s > 0. By (3.7), we have

LN

(
ar(e)k ∑

r>N+1,s>0
λr,sξr,s

)
= LN

(
∑

r>N+1,s>0
λr,s ∑

i+j=k,i,j>0

[r]q!
[r− i]q!

·
[s]q!

[s− j]q!
·
(

k
i

)
q
q(t+s−j)iξr−i,s−j

)
= ∑

r6N,s>0
ξr,s ∑

i+j=k,r+i>N+1,j>0
λr+i,s+j

[r + i]q!
[r]q!

·
[s + j]q!
[s]q!

·
(

k
i

)
q
q(t+s)i.

Note that for all −1 < q < 1,

(•) [r+i]q !
[r]q ! ·

[s+j]q !
[s]q ! 6 D(q)2

(1−q)k , ∀i + j = k;

(•) (k
i)q 6 D(q)C(|q|).

Therefore, for each r 6 N,∣∣∣ ∑
i+j=k,r+i>N+1,j>0

λr+i,s+j
[r + i]q!
[r]q!

·
[s + j]q!
[s]q!

·
(

k
i

)
q
q(t+s)i

∣∣∣2
6
∣∣∣ ∑

i+j=k,r+i>N+1,j>0
|λr+i,s+j|‖ξr+i,s+j‖2 ·

1
‖ξr+i,s+j‖2

C(|q|)D(q)3

(1− q)k |q|(t+s)i
∣∣∣2

6
(

∑
i+j=k, r+i>N+1, j>0

|λr+i,s+j|2‖ξr+i,s+j‖2
2

)
·
(

∑
i+j=k, r+i>N+1, j>0

1
‖ξr+i,s+j‖2

2

C(|q|)2D(q)6

(1− q)2k q2(t+s)i
)

(3.11)
6

(
∑

i+j=k,r+i>N+1,j>0
|λr+i,s+j|2‖ξr+i,s+j‖2

2

)
× 2

[r + s + k]q!
· C(|q|)2D(q)6

(1− q)2k ∑
i+j=k,r+i>N+1,j>0

q2(t+s)i

6
(

∑
i+j=k, r+i>N+1, j>0

|λr+i,s+j|2‖ξr+i,s+j‖2
2

) 2
[r + s + k]q!

· C(|q|)2D(q)6

(1− q)2k

· q2(t+s)(N+1−r)

1− q2(t+s)

6
(

∑
i+j=k, r+i>N+1, j>0

|λr+i,s+j|2‖ξr+i,s+j‖2
2

) 2C(|q|)2D(q)6

(1− q)2k(1− q2)
· q2(t+s+r−N−1)

[r + s + k]q!
,

where in the last inequality we used the fact that ab > a− b for all a, b > 1.
Finally, we have

‖LN(ar(e)kx)‖2
2
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=
∥∥∥ ∑

r6N,s>0
ξr,s ∑

i+j=k,r+i>N+1,j>0
λr+i,s+j

[r + i]q!
[r]q!

·
[s + j]q!
[s]q!

·
(

k
i

)
q
q(t+s)i

∥∥∥2

2

6 Bq ∑
r6N,s>0

‖ξr,s‖2
2

∣∣∣ ∑
i+j=k,r+i>N+1,j>0

λr+i,s+j
[r + i]q!
[r]q!

·
[s + j]q!
[s]q!

·
(

k
i

)
q
q(t+s)i

∣∣∣2
6 Bq ∑

r6N,s>0

[
‖ξr,s‖2

2 ·
(

∑
i+j=k,r+i>N+1,j>0

|λr+i,s+j|2‖ξr+i,s+j‖2
2

)
× 2C(|q|)2D(q)6

(1− q)2k(1− q2)
· q2(t+s+r−N−1)

[r + s + k]q!

]
(3.11)
6 2Bq ∑

r6N,s>0

[
[r + s]q!

(
∑

i+j=k,r+i>N+1,j>0
|λr+i,s+j|2‖ξr+i,s+j‖2

2

)
× 2C(|q|)2D(q)6

(1− q)2k(1− q2)
· q2(t+s+r−N−1)

[r + s + k]q!

]
6 4Bq ∑

r6N,s>0

[(
∑

i+j=k,r+i>N+1,j>0
|λr+i,s+j|2‖ξr+i,s+j‖2

2

)
× C(|q|)3D(q)6

(1− q)k(1− q2)
· q2(t+s+r−N−1)

]
6

4kBqC(|q|)3D(q)6

(1− q)k(1− q2)
∑

r,s>0
q2(t+s+r−k−N−1)|λr,s|2‖ξr,s‖2

2,

where the second last inequality is due to the fact that

[r + s]q!
[r + s + k]q!

6 (1− q)kC(|q|).

PROPOSITION 4.3. For all N, m ∈ N and for any x = (xn) ∈ (L2(M 	 A))ω

such that lim
n→ω

Qk(xn)→ 0, ∀k ∈ N, we have

lim
n→ω
‖LN(sr(e⊗m)xn)− sr(e⊗m)LN(xn)‖2 = 0.

In particular, for all unitary u in the C∗-algebra C∗(s(e)) generated by s(e), N ∈ N and
(zn) ∈ Mω 	 Aω ∩ C′,

lim
n→ω
‖LN(znu)− LN(zn)u‖2 = 0.

Proof. Each sr(e⊗m) can be written as a finite linear combination of products
of the form cr(e)kar(e)l with k, l > 0 and k + l = m, hence it suffices to show

lim
n→ω
‖LN(cr(e)kar(e)l xn)− cr(e)kar(e)l LN(xn)‖2 = 0,

for all k, l > 0, k + l = m.
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Since cr(e)LN(ξ) = LN(cr(e)ξ) for all ξ ∈ L2(M 	 A), it then reduces to
prove

lim
n→ω
‖LN(ar(e)kxn)− ar(e)kLN(xn)‖2 = 0,

for all 0 6 k 6 m.
Suppose that xn = ∑

i∈I,r,s>0
λi,n

r,s ξ i
r,s is the Fourier decomposition along the

Riesz basis {ξ i
r,s}, observe that

LN(ar(e)kxn)−ar(e)kLN(xn)=LN(ar(e)kxn)− LN(ar(e)kLN(xn))

=LN(ar(e)k(1−LN)(xn))=LN

(
ar(e)k ∑

i∈I,r>N+1,s>0
λi,n

r,s ξ i
r,s

)
=∑

i∈I
LN

(
ar(e)k ∑

r>N+1,s>0
λi,n

r,s ξ i
r,s

)
.

By Lemma 4.2, we have

‖LN(ar(e)kxn)− ar(e)kLN(xn)‖2
2

= ∑
i∈I

∥∥∥LN

(
ar(e)k ∑

r>N+1,s>0
λi,n

r,s ξ i
r,s

)∥∥∥2

2

6 ∑
i∈I

4kBqC(|q|)3D(q)6

(1− q)k(1− q2)
∑

r,s>0
q2(|ξ i |+s+r−k−N−1)|λi,n

r,s |2‖ξ i
r,s‖2

2.

We may assume that for each n, there exists a natural number tn such that:
(1) tn → ∞ as n → ω and (2) λi,n

r,s = 0 for any i, r, s with |ξi|+ r + s 6 tn + N + 1.
Thus

‖LN(ar(e)kxn)− ar(e)kLN(xn)‖2
2 6

4kBqC(|q|)3D(q)6

(1− q)k(1− q2)
· q2(tn−k) ∑

i,r,s
|λi,n

r,s |2‖ξ i
r,s‖2

2

6
4kBqC(|q|)3D(q)6

(1− q)k(1− q2)Aq
· q2(tn−k)‖xn‖2

2.

As n → ω, tn diverges to infinity. Therefore the right-hand side of the above
inequality converges to 0 (uniformly on the unit ball of L2(Mω 	 Aω)).

The case for u ∈ C∗(s(e)) and z = (zn) ∈ Mω 	 Aω ∩ C′ is an easy conse-
quence of Lemma 4.1 and the fact that {s(e⊗n) : n > 0} spans norm-densely in
C∗(s(e)).

Our next step is to show that for any x ∈ M 	 A and for all sequence of
unitary elements (uk)k in C∗(s(e)) which goes to 0 weakly, (ukLN(x))k is asymp-
totically orthogonal to the subspace LN .

PROPOSITION 4.4. There exists a positive number G(q) > 0 such that

‖LN1(s(e
⊗n)LN2(x))‖2 6 G(q) · (n + 1)3/2 · |q|(n−N1−N2)‖x‖2(4.3)
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for any N1, N2 ∈ N and x ∈ M	 A. The choice of G(q) is independent of N1, N2, x.

Proof. By the Wick formula (1.5), one has

LN1(s(e
⊗n)LN2(x)) =

n

∑
k=0

(
n
k

)
q
LN1(c(e)

ka(e)n−kLN2(x)).

Also, notice that in the above summation, only the terms with 0 6 k 6 N1 will be
able to contribute something non-zero.

Let us estimate each summand for 0 6 k 6 N1. Suppose x = ∑
i

∑
r,s

λi
r,sξ i

r,s

be the Fourier decomposition along {ξ i
r,s}, then LN1(c(e)

ka(e)n−kLN2(x)) can be
decomposed as a sum over index i. Each summand is of the form:

LN1

(
c(e)k ∑

r6N2, s>0
λi

r,s ∑
j1+j2=n−k, j26r

[r]q!
[r− j2]q!

[s]q!
[s− j1]q!

(
n− k

j1

)
q
q(|ξ

i |+r−j2)j1 ξ i
r−j2,s−j1

)
= LN1

(
∑

r6N2, s>0
λi

r,s ∑
j1+j2=n−k, j26r

[r]q!
[r− j2]q!

[s]q!
[s− j1]q!

(
n− k

j1

)
q

· q(|ξ i |+r−j2)j1 ξ i
r+k−j2,s−j1

)
= ∑

k6r6N1, s>0

{
ξ i

r,s ∑
j1+j2=n−k,j1>n−2k+r−N2

[
λi

r+j2−k,s+j1 ×
[r + j2 − k]q!
[r− k]q!

·
[s + j1]q!
[s]q!

·
(

n− k
j1

)
q
q(|ξ

i |+r−k)j1
]}

.

Now for k 6 r 6 N1,∣∣∣ ∑
j1+j2=n−k, j1>n−2k+r−N2

λi
r+j2−k,s+j1

[r + j2 − k]q!
[r− k]q!

[s + j1]q!
[s]q!

·
(

n− k
j1

)
q
q(|ξ

i |+r−k)j1
∣∣∣2

6 ∑
j1+j2=n−k, j1>n−2k+r−N2

|λi
r+j2−k,s+j1 | ·

D(q)2

(1− q)n−k · C(|q|)D(q) · |q|j1

6
(

∑
j1+j2=n−k, j1>n−2k+r−N2

|λi
r+j2−k,s+j1 |

2‖ξr+j2−k,s+j1‖
2
2

)
×
(

∑
j1+j2=n−k, j1>n−2k+r−N2

1
‖ξr+j2−k,s+j1‖

2
2

C(|q|)2D(q)6

(1− q)2(n−k)
q2j1
)

6
(

∑
j1+j2=n−k, j1>n−2k+r−N2

|λi
r+j2−k,s+j1 |

2‖ξr+j2−k,s+j1‖
2
2

)
× 2

[r + s + n− 2k]q!
· C(|q|)2D(q)6

(1− q)2(n−k)
· q2(n−N1−N2)

1− q2

6
(

∑
j1+j2=n−k, j1>n−2k+r−N2

|λi
r+j2−k,s+j1 |

2‖ξr+j2−k,s+j1‖
2
2

)
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× 2C(|q|)2D(q)6

(1− q)2(n−k)(1− q2)[r + s + n− 2k]q!
· q2(n−N1−N2).

Hence

‖LN1(c(e)
ka(e)n−kLN2(x))‖2

2

= ∑
i

∥∥∥ ∑
k6r6N1, s>0

[
ξ i

r,s ∑
j1+j2=n−k, j1>n−2k+r−N2

λi
r+j2−k,s+j1

[r + j2 − k]q!
[r− k]q!

[s + j1]q!
[s]q!

·
(

n− k
j1

)
q
· q(|ξ i |+r−k)j1

]∥∥∥2

2

6Bq ∑
i

∑
k6r6N1,s>0

[
‖ξ i

r,s‖2
2

∣∣∣ ∑
j1+j2=n−k, j1>n−2k+r−N2

λi
r+j2−k,s+j1

[r + j2 − k]q!
[r− k]q!

[s + j1]q!
[s]q!

·
(

n− k
j1

)
q
· q(|ξ i |+r−k)j1

∣∣∣2]
6 Bq ∑

i
∑

k6r6N1, s>0

(
∑

j1+j2=n−k, j1>n−2k+r−N2

|λi
r+j2−k,s+j1 |

2‖ξr+j2−k,s+j1‖
2
2

)
× 4C(|q|)3D(q)6

(1− q)n(1− q2)
· q2(n−N1−N2)

6
4(n + 1)BqC(|q|)3D(q)6

(1− q)n(1− q2)Aq
· q2(n−N1−N2)‖x‖2

2.

Finally, using the rough estimate (n
k)q 6 C(|q|)D(q) and the triangle in-

equality, we conclude that ‖LN1(s(e
⊗n)LN2(x))‖2 can be bounded above by

(n + 1)C(|q|)D(q)

√
4(n + 1)BqC(|q|)3D(q)6

(1− q)n(1− q2)Aq
· |q|(n−N1−N2)‖x‖2.

Setting G(q) =
2B1/2

q C(|q|)5/2D(q)4

(1−q)n/2(1−q2)1/2 A1/2
q

, we are done.

Finally, we are ready to prove our main result in the section.

THEOREM 4.5. For all N ∈ N and z = (zn)n ∈ Mω 	 Aω ∩ C′, we have

lim
n→ω
‖LN(zn)‖2 = lim

n→ω
‖RN(zn)‖2 = 0.(4.4)

Proof. The proof is similar to the ones in [15], [20], but for completeness we
include a sketch.

Fix N ∈ N. Let (un)n be a sequence of unitary elements in C which con-
verges to 0 weakly. Let (u′n)n be a sequence of unitaries in C∗(s(e)) such that
‖un − u′n‖2 6 1

2n . Then as in the proof of Lemma 9 in [20], we further approxi-
mate u′n with finitely supported elements in C∗(s(e)).

Claim. There exists a sequence (vk) of elements in C∗(s(e)) which are linear
combinations of s(e⊗k)’s and increasing sequences of natural numbers (nk) and
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(Mk), a positive constant H(q), such that

‖u′nk
− vk‖2 6

1
2k , ‖LN(vk(LMk+1 − LMk )(x))− LN(vkx)‖2 < H(q)|q|2k/3‖x‖2

for all x ∈ M	 A.

Proof of the Claim. We choose (vk), (nk) and (Mk) inductively. Assume that
we have already chosen them up to {Mk, nk−1, vk−1}. Since un → 0 weakly, if
we choose a large nk, then it is possible to well-approximate u′nk

in operator-
norm with an element vk in C∗(s(e)) which is a linear combination of s(e⊗i)’s
with i ∈ [Mk + N + k + 1, Nk] for some Nk ∈ N. By Proposition 4.4, we have
‖LN(vkLMk (x))‖2 6 G(q)|q|2(k+1)/3‖x‖2 for all x ∈ M	 A, where G(q) is a pos-
itive constant which only depends on q. If we take Mk+1 > Nk + N + 1 large
enough, then we have ‖LN(vk(LMk+1(x)− x))‖2 < |q|k. Thus we are done.

Let us continue with the proof. On one hand, using z ∈ C′ ∩ Mω and the
asymptotic right-A modularity of LN as in Proposition 4.3, we have

lim
n→ω

N2

∑
k=N1

〈LN(unk zn), LN(unk zn)〉

= lim
n→ω

N2

∑
k=N1

〈LN(znunk ), LN(znunk )〉

> lim
n→ω

N2

∑
k=N1

(〈LN(znu′nk
), LN(znu′nk

)〉 − ‖LN(zn(unk − u′nk
))‖2

2)

> lim
n→ω

N2

∑
k=N1

(
〈LN(zn)u′nk

, LN(zn)u′nk
〉 − ‖LN‖2‖zn‖2

22nk

)
> (N2 − N1) lim

n→ω

(
‖LN(zn)‖2

2 −
‖LN‖2‖zn‖2

22N1

)
.

On the other hand,

lim
n→ω

N2

∑
k=N1

〈LN(unk zn), LN(unk zn)〉

≈ lim
n→ω

N2

∑
k=N1

〈LN(vk(LMk+1 − LMk )(zn)), LN(vk(LMk+1 − LMk )(zn))〉

6 lim
n→ω
‖LN‖2‖vk‖2

N2

∑
k=N1

〈(LMk+1 − LMk )(zn), (LMk+1 − LMk )(zn)〉

6
4Bq

Aq
lim
n→ω
‖LN‖2‖zn‖2

2.

By combining the above two estimates and by increasing N2− N1 and N1, we get
the conclusion for LN . The statement about RN follows by symmetry.
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5. STRONG ASYMPTOTIC ORTHOGONALITY PROPERTY

DEFINITION 5.1. Let B ⊂ N be an inclusion of finite von Neumann algebras.
We say that the inclusion has the strong asymptotic orthogonality property (s-AOP
for short), if for all a, b ∈ N 	 B and x = (xn) ∈ Nω 	 Bω ∩ C′, where C ⊂ B is
any diffuse subalgebra of B, we have

ax ⊥ xb.

Fix an orthonormal basis {ej : j ∈ J} ofHR with e = ej0 for some j0 ∈ J.
Recall that for any s, t > 0 and for any ξ ∈ L2(M), we set

ξs,t = c(e)scr(e)tξ.

The following lemma is a direct consequence of the definition of annihila-
tion operators.

LEMMA 5.2. For all x ∈ L2(M), N ∈ N and j ∈ J\{j0},

a(ej)xN,N = qN(a(ej)x)N,N .

The next estimate is the key technical result of this section.

LEMMA 5.3. For all x ∈ L2(M	 A), N ∈ N and j ∈ J\{j0}, we have

(5.1) ‖a(ej)xN,N‖2
2 6

16B2
q

A2
q
· D(q)C(|q|) · q2N‖a(ej)‖∞‖xN,N‖2

2.

Proof. Suppose that along the Riesz basis {ξ i
r,s : i∈ I, r, s>0}∪{ξ0

r,0 : r>0},
we have the Fourier expansions

x = ∑
i,r,s

λi
r,sξ i

r,s, a(ej)x = ∑
i,r,s

µi
r,sξ i

r,s + ∑
r>0

µ0
r ξ0

r,0.

First note that
(•) [r + s + 2N]q! 6 D(q)

(1−q)2N · [r + s]q!, and

(•) [r + s + 2N]q! > 1
(1−q)2NC(|q|) · [r + s]q!.

By the previous lemma,

‖a(ej)xN,N‖2
2 = q2N‖(a(ej)x)N,N‖2

2 = q2N
∥∥∥∑

i,r,s
µi

r,sξ i
r+N,s+N + ∑

r>0
µ0

r ξ0
r+2N,0

∥∥∥
2

6 q2N Bq

(
∑
i,r,s
|µi

r,s|2‖ξ i
r+N,s+N‖2

2 + ∑
r>0
|µ0

r |2‖ξ0
r+2N,0‖2

2

)
6 2q2N Bq

(
∑
i,r,s
|µi

r,s|2[r + s + 2N]q! + ∑
r>0
|µ0

r |2[r + 2N]q!
)

6
2q2N BqD(q)
(1− q)2N

(
∑
i,r,s
|µi

r,s|2[r + s]q! + ∑
r>0
|µ0

r |2[r]q!
)
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6
4q2N BqD(q)
(1− q)2N

(
∑
i,r,s
|µi

r,s|2‖ξ i
r,s‖2

2 + ∑
r>0
|µ0

r |2‖ξ0
r,0‖2

2

)
6

4q2N BqD(q)
(1− q)2N Aq

‖a(ej)x‖2
2 6

4q2N BqD(q)
(1− q)2N Aq

‖a(ej)‖∞‖x‖2
2.

On the other hand,

‖xN,N‖2
2 =

∥∥∥∑
i,r,s

λi
r,sξ i

r+N,s+N

∥∥∥2

2
> Aq ∑

i,r,s
|λi

r,s|2‖ξ i
r+N,s+N‖2

2

>
Aq

2 ∑
i,r,s
|λi

r,s|2[r + s + 2N]q! >
Aq

2(1− q)2NC(|q|) ∑
i,r,s
|λi

r,s|2[r + s]q!

>
Aq

4(1− q)2NC(|q|) ∑
i,r,s
|λi

r,s|2‖ξ i
r,s‖2

2 >
Aq

4(1− q)2N BqC(|q|)‖x‖
2
2.

Combine these two inequalities, we have

‖a(ej)xN,N‖2
2 6

16B2
q

A2
q
· D(q)C(|q|) · q2N‖a(ej)‖∞‖xN,N‖2

2.

THEOREM 5.4. The inclusion A ⊂ M has the strong asymptotic orthogonality
property, whenever |q| is less than 1

9 .

Proof. Suppose C ⊂ A is a diffuse subalgebra and z = (zn) ∈ Mω 	 Aω ∩C′

with ‖zn‖ 6 1. By Theorem 4.5, we can assume that for any N ∈ N,

lim
n→ω
‖LN(zn)‖2 = lim

n→ω
‖RN(zn)‖2 = 0.

A density argument reduces the problem to showing that

lim
n→ω
〈s(ei(1) ⊗ · · · ei(k1)

)zn, sr(ej(1) ⊗ · · · ej(k2)
)zn〉 = 0,

for all k1, k2 > 1 and i(1), . . . , i(k1), j(1), . . . , j(k2) ∈ J such that {i(l) : 1 6 l 6
k1}\{j0} 6= ∅ and {j(l) : 1 6 l 6 k2}\{j0} 6= ∅.

By the Wick formula (1.5), it suffices to show the inner product between the
following two elements

c(ei(1)) · · · c(ei(t))a(ei(t+1)) · · · a(ei(k1)
)zn and

cr(ej(1)) · · · cr(ej(s))ar(ej(s+1)) · · · ar(ej(k2)
)zn

goes to 0 as n→ ω for any 0 6 t 6 k1 and 0 6 s 6 k2. There are two cases.
Case 1. There exists some l1 > t + 1 with i(l1) 6= j0 such that the previous

lemma implies that for any N ∈ N, one has

‖c(ei(1)) · · · c(ei(t))a(ei(t+1)) · · · a(ei(k1)
)zn‖2 6

16B2
q

A2
q
· D(q)C(|q|) · q2N‖zn‖2,

once n gets sufficiently large. By letting N → ∞, we clearly have that the inner
product goes to 0 as n→ ω.
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Case 2. i(t + 1) = · · · = i(k1) = j(s + 1) = · · · = j(k2) = j0. Let 1 6 l1 6 t
be the smallest number such that i(l1) 6= j0. Taking adjoint, we consider

a(ei(l1)) · · · a(ei(1))cr(ej(1)) · · · cr(ej(s))ar(ej(s+1)) · · · ar(ej(k2)
)zn.(5.2)

A direct computation shows that

a( f1)cr( f2) = cr( f2)a( f1) + 〈 f1, f2〉W,

where W ∈ B(L2(M)) is defined by

W|H⊗n = qnId, ∀n > 0.

Observe also that a( f )W = qWa( f ).
Applying these relations to a(ei(l1)) · · · a(ei(1))cr(ej(1)) · · · cr(ej(s)), we can

write (5.2) as a finite linear combination of terms of the following form:

D1 · · ·Dm1 a(ei(l1))
ta(e)m2 ar(e)k2−szn,

where m1, m2 > 0, t ∈ {0, 1} and Dl ∈ {cr(ej(1)), . . . , cr(ej(s)), W}, ∀1 6 l 6 m1. If
t = 1, then we are back to Case 1.

If t = 0, then one of the Dk, 1 6 k 6 m1 must be W. But we know that W will
decrease the size of the vector in an exponential rate with respect to the length of
its basic words, so as n→ ω, the length of zn goes to infinity, thus

‖D1 · · ·Dm1 a(e)m2 ar(e)k2−szn‖2 → 0 as well.

A consequence of the theorem is a strengthening of maximal amenability.

THEOREM 5.5. Let q be a real number with |q| < 1
9 ; then the inclusion A ⊂ M

of the generator masa inside the q-Gaussian von Neumann algebra, has the absorbing
amenability property as introduced in [6] (see also [12], [20]). That is, for any diffuse
subalgebra C ⊂ A, A is the unique maximal amenable extension inside M.

Proof. A is shown to be mixing in M by [2], [21]. Thus Theorem 8.1 of [11]
applies. One can alternatively use the argument in Proposition 1 of [20].

As another application of the Rădulescu basis, we can give a very short
proof of non-Gamma for the q-Gaussian algebras, whenever Theorem 3.13 is true.

COROLLARY 5.6 (See also [1]). LetHR be a real Hilbert space with dimHR > 2.
Let q be any real number with |q| < 1

9 . Then Γq(HR) is a full factor.

Proof. Let e, f ∈ HR be two orthogonal unit vectors and let A = Γq(Re)
(respectively B = Γq(R f )) be the generators subalgebra associated with e (respec-
tively f ). We construct as in the previous section the Rădulescu basis {ξ i

r,s : i ∈
I, r, s > 0} with respect to A. Notice that f⊗n ∈ Tn, thus we may choose the basis

such that for each n > 1, f⊗n√
[n]q !

= ξ in
0,0 for some in ∈ I.

Suppose x ∈ M′∩Mω with τ(x)=0. Since x ∈ A′∩Mω, by applying The-
orem 4.5 for A and by the choice of the basis, we can assume that EBω (x)= 0.
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Choose a Haar unitary u of A. Note that ux= xu and u⊥B. Therefore by the
s-AOP for B⊂M as shown in Theorem 5.4, we have that τ(uxu∗x∗)=τ(xx∗)=0.

REMARK 5.7. It is already known that for all −1 < q < 1 and for all sep-
arable real Hilbert space HR with dimHR > 2, Γq(HR) does not have property
Gamma: Avsec [1] showed the strong-solidity for all Γq(HR) and it follows from
an argument in [14] that solid factors do not have the property Gamma.
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[5] M. BOŻEJKO, R. SPEICHER, Completely positive maps on Coxeter groups, deformed
commutation relations, and operator spaces, Math. Ann. 300(1994), 97–120.

[6] A. BROTHIER, C. WEN, The cup subalgebra has the absorbing amenability property,
Int. J. Math. 27(2016), no. 11, 111703, 24p. (2016).

[7] J. CAMERON, J. FANG, K. MUKHERJEE, Mixing subalgebras of finite von Neumann
algebras, New York J. Math. 19(2013), 343–366.

[8] J. CAMERON, J. FANG, M. RAVICHANDRAN, S. WHITE, The radial masa in a free
group factor is maximal injective, J. London Math. Soc. 82(2010), 787–809.

[9] A. CONNES, Classification of injective factors. Cases II1, II∞, IIIλ, λ 6= 1, Ann. of Math.
(2) 104(1976), 73–115.

[10] A. GUIONNET, D. SHLYAKHTENKO, Free monotone transport, Invent. Math.
197(2014), 613–661.

[11] C. HOUDAYER, Structure of II1 factors arising from free Bogoljubov actions of arbi-
trary groups, Adv. Math. 260(2014), 414–457.

[12] C. HOUDAYER, Gamma stability in free product von Neumann algebras, Comm. Math.
Phys. 336(2015), 831–851.

[13] A. NOU, Non-injectivity of the q-deformed von Neumann algebra, Math. Ann.
330(2004),17–38.

[14] N. OZAWA, Solid von Neumann algebras, Acta Math. 192(2004), 111–117.



152 SANDEEPAN PAREKH, KOICHI SHIMADA, AND CHENXU WEN

[15] S. POPA, Maximal injective subalgebras in factors associated with free groups, Adv.
Math. 50(1983), 27–48.
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