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ABSTRACT. Let G be a locally compact quantum group. We give a 1-1 corre-
spondence between group-like projections in L®(G) preserved by the scaling

group and idempotent states on the dual quantum group G. As a byprod-
uct we give a simple proof that normal integrable coideals in L*(G) which
are preserved by the scaling group are in 1-1 correspondence with compact
quantum subgroups of G.
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1. INTRODUCTION

Let G be a group, X a non-empty subset of G and 1x : G — {0,1} its
characteristic function. It is easy to check that X is a subgroup of G if and only if
(1.1) Ix(st)Lx(t) = Lx(s)Lx(t)
foralls,t€G. Let G be a locally compact group and A: L*(G) = L*(G)® L*(G)
the comultiplication on L*(G):

A(f)(s, 1) = f(st)
for all f € L®(G). Suppose that P € L®(G) is a non-zero group-like projection,
i.e. P satisfies
(1.2) A(P)(1g®P) = P® P.

Equation implies that P is a continuous function on G (see Lemma[2.6). De-
noting

X={seG:P(s) =1},
we have P = 1x and 1y satisfies (L.I). In particular X is a subgroup of G and
the continuity of 1x implies that X is open. Thus we get a 1-1 correspondence
between open subgroups of G and group-like projections in L*(G).
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Let G be a locally compact group. The Banach dual Cy(G)* of Cy(G) equip-
ped with the convolution product is a Banach algebra. We say that a state w €
Co(G)* is an idempotent state on Cy(G) if w * w = w. In fact, as proved by Kelley
([8], Theorem 3.4) there is a 1-1 correspondence between idempotent states on
Co(G) and compact subgroups of G, where given a compact subgroup H C G the
corresponding state is of the form w(f) = [ f(h)dh for all f € Cy(G).

H

Let G 3 ¢ — Ry € B(L?(G)) be the right regular representation, vN(G) =

{Rg : g € G} the group von Neumann algebra of G and A : vN(G) — vN(G)&

vN(G) the comultiplication, where AA(Rg) = Re®@Rg for all g € G. It is not

difficult to see that P = [ R,dh € vN(G) is a group-like projection in vN(G), i.e.
H

it satisfies

AP)(1®P) =P®P.

Theorem[4.3and Kelley’s result show that all group-like projections in vN(G) are
of this form. In other words we have a 1-1 correspondence between idempotent
states on Co(G) and group-like projections in vN(G). Theorem .1]together with
Theorem[4.3]yield a generalization of this correspondence to the context of locally
compact quantum groups.

A locally compact quantum group G is a virtual object that is assigned with
a von Neumann algebra L*(G) equipped with a comultiplication A : L*(G) —
L®(G)® L*(G). A projection P € L*(G) is called a group-like projection if

A(P)(1®P) =P®P.

A locally compact quantum group G is also assigned with the C*-algebra Cy(G)
and universal C*-algebra Cj(G). Both Banach duals Cj(G)* and Co(G)* are in
fact Banach algebras. We say that a state w € C{(G)* is an idempotent state (on
G) if w* w = w. As already mentioned, our results establish a 1-1 correspon-
dence between idempotent states on G and group-like projections on the dual G
which are preserved by the scaling group of G. As a byproduct of our study we
get a relatively simple proof that normal integrable coideals in L*(G) which are
preserved by the scaling group are in 1-1 correspondence with compact quan-
tum subgroups of G. Our proof, unlike the previous proof ([4], Theorem 5.15),
uses only the von Neumann techniques and does not invoke the universal C*-
algebra Cj (G).

2. PRELIMINARIES

We will denote the minimal tensor product of C*-algebras with the symbol
®. The ultraweak tensor product of von Neumann algebras will be denoted by
®. For a C*-subalgebra B of a C*-algebra the multipliers M(A) of A, the norm
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closed linear span of the set {ba : b € B,a € A} will be denoted by BA. A mor-
phism between two C*-algebras A and B is a *-homomorphism 7t from A into the
multiplier algebra M(B), which is non-degenerate, i.e 71(A)B = B. We will de-
note the set of all morphisms from A to B by Mor(A, B). The non-degeneracy of a
morphism 7t yields its natural extension to the unital *-homomorphism M(A) —
M(B) also denoted by 7. Let B be a C*-subalgebra of M(A). We say that B is non-
degenerate if BA = A. In this case M(B) can be identified with a C*-subalgebra
of M(A). The symbol ¢ will denote the flip morphism between tensor product
of operator algebras. If X C A, where A is a C*-algebra then X"°™Is denotes
the norm closure of the linear span of X; if X C M, where M is a von Neumann
algebra then X7"Weakdls denotes the o-weak closure of the linear span of X. For a
C*-algebra A, the space of all functionals on A and the state space of A will be de-
noted by A* and S(A) respectively. The predual of a von Neumann algebra N will
be denoted by N.. For a Hilbert space H the C*-algebras of compact operators
on H will be denoted by IC(H). The algebra of bounded operators acting on H
will be denoted by B(H). For ¢, € H, the symbol wg,, € B(H). is the functional
T — (¢, Tn).

For the theory of locally compact quantum groups we refer to [9]], [10], [11]].
Let us recall that a von Neumann algebraic locally compact quantum group is a
quadruple G = (L*(G), 4, ¢, ), where L*(G) is a von Neumann algebra with a
coassociative comultiplication A : L®(G) — L®(G)® L®(G), ¢ and ¢ are, respec-
tively, normal semifinite faithful left and right Haar weights on L*(G). The GNS
Hilbert space of the right Haar weight 1 will be denoted by L?(G) and the cor-
responding GNS map will be denoted by 7. Let us recall that g : Ny — L*(G),
where Ny = {x € L®(G) : p(x*x) < oo}. The antipode, the scaling group and
the unitary antipode will be denoted by S, (7;);cr and R. We have S = Ro T_; /5.
Moreover, for all a,b € N, the following holds (see Corollary 5.35 of [10]):

(2.1) 5((ld® ¢)(A(@)(1©b))) = (id® ¢)((1 ©a*)A(b)).

We will denote (07 )cg and (Ut‘/} )ter the modular automorphism groups assigned to
¢ and ¢ respectively.

The multiplicative unitary W¢ € B(L?(G) ® L?(G)) is a unique unitary
operator such that

WE (6 (x) ©16(y)) = (16 @ 16) (A (x) (1 ®@y))
forall x,y € D(5jg); WC satisfies the pentagonal equation WHW3EWS, = WEWE,
[1], [15]. Using WG, G can be recovered as follows:
L®(G) = H{(w® id)WG tw e B(LZ(G))*r} o-weakcls Ag(x) = WG(x ® ]I)WG*.

A locally compact quantum group admits a dual object G. It can be described in
terms of WC = o(W®)*:

K

L°(@) = {(w @id)WE : w € B(LA(G)),} "k, A (x) = WE(x 1)WE,
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Note that WE € L*(G)® L®(G).

DEFINITION 2.1. A von Neumann subalgebra N of L®(G) is called
(i) left coideal if Ag(N) C L®(G)&®N;

(i) invariant subalgebra if Ag(N) C N®N;

(iii) Baaj—Vaes subalgebra if N is an invariant subalgebra of L*(G) which is pre-
served by the unitary antipode R and the scaling group (7)ser of G;

(iv) normal if WE (1 @ NYWE™ c L®(G)&®N;

(v) integrable if the set of integrable elements with respect to the right Haar
weight 1 is dense in N7; in other words, the restriction of g to N is semifinite.

If N is a coideal of L*(G), then N = N'NL®(G) is a coideal of L*(G) called

the codual of N; it turns out that N = N (see Theorem 3.9 of [6]).
The C*-algebraic version (Cy(G), Ag) of a given quantum group G is recov-
ered from W€ as follows:

Co(G) = {(w @id)WE : w € B(LA(G)),} "omels A (x) = WE(x @ 1)WE™.

The comultiplication can be viewed as a morphism Ag € Mor(Cy(G), Co(G) ®
Co(G)) and we have W& € M(Cy(G) ® Cy(G)). Since M(Co(G) ® Co(G)) C
M(K(L?*(G)) ® Co(G)) we conclude that for all x € L®(G)

(2.2) Ac(x) = WE(x @ 1)WE" € M(K(L2(G)) ® Co(G)).
Replacing Ag with Ager we also get that
(2.3) Ag(x) € M(Co(G) ® K(L*(G)))

for all x € L®(G).
Let H be a Hilbert space and U € M(Cy(G) ® K(H)) a unitary. We say that
U is a representation of G on H if
(A¢ ®id)(U) = UzUss.
Let us recall the definition of an action of a quantum group G on a von Neumann

algebra.

DEFINITION 2.2. A (left) action of quantum group G on a von Neumann
algebra N is a unital injective normal *-homomorphism « : N — L®(G)&N such
that (Ag ®id) oa = (id ®a) oa. If M C N is a von Neumann subalgebra then
we say that M is preserved by « if «(M) C L®(G)&M.

Given an action « : N — L% (G)®N we have (see Corollary 2.6 of [6])
N = {(‘M ®id)oc(x) X e N,y c LW((G)*}U-weakcls

which will be referred to as the Podles condition. We can always find a unitary
representation U € M(Cy(G) ® K(H)) on a Hilbert space H and a normal faithful
s-homomorphism 77 : N — B(H) such that

(id ® ) (a(x)) = U*(1 ® nt(x))U.
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In this case we shall say that U implements the action «. For the construction of
the canonical implementation see [14].

A locally compact quantum group G is assigned with a universal version
[9]. The universal version Cj(G) of Cy(G) is equipped with a comultiplication
A% € Mor(Ci(G), Cj(G) ® C§(G)). The counit is a x-homomorphism ¢ : Cj(G)
— C satisfying (id ® ) 0 A}, = id = (e ®id) o AY,. The multiplicative unitary
WE € M(Co(G) ® Co(G)) admits the universal lift V¢ € M(CY(G) ® C¥(G)).
The reducing morphisms for G and G will be denoted by Ag € Mor (C§(G), Co(G))
and Ag € Mor(Cg(@), Co(G)), respectively. We have (Ag® Ag)(VVE) = WE,
We shall also use the half-lifted versions of W&, W& = (id ® Ag)(VV®) €
M(CY(G) ® Co(G)) and W & = (Ag ®id)(VV®) € M(Co(G) @ C(G)). They
satisfy the appropriate versions of pentagonal equation:

WHWEWS = WEWE, WHW EW S =W HWE.

The half-lifted versions of comultiplication are denoted by A"eMor (Co(G), Co(G)
®CY(G)) and AJ™ € Mor(Co(G), Co(G) @ CY(G)), e.g.

AMx)=WEx@1)WE", xeCyG).
We have
(2.4) (Ag @id) 0 A% = A" o Ag, (Ag®id) oA =AM o Ag.

If U e M(Co(G) ® KC(H)) is a unitary representation of G on a Hilbert space then
there exists a unique unitary U € M(C{(G) ® K(H)) such that U = (Ag ®id)(U)
and
(A" ®id)(U) = Uy3Ugs.

Actually Uy = Ui, (AY" ®id)(U).

Given a locally compact quantum group G, the comultiplications Ag and
A, induce Banach algebra structures on L®(G), and Cj(G)*, respectively. The
corresponding multiplications will be denoted by * and *. We shall identify
L*®(G)« with a subspace of Cj(G)* when convenient. Under this identification
L®(G) forms a two sided ideal in Cj (G)*. Following [9], for any u € C§(G)* we
define a normal map L®(G) — L*(G) such that x — (id ® u)(W € (x @ 1) &)
for all x € L*(G). We shall use the notation ¥ x = (id ® p)(W & (x @ 1)W ).

THEOREM 2.3. Let N be a von Neumann algebra and a« : N — L®°(G)&N an
action of Gon N. Let x € N, x* = x and

Ny = {(p @id)(a(x)) : p € L¥(G).}".

Then Ny is the smallest unital von Neumann subalgebra of N preserved by G and con-
taining x.

Proof. Let us consider
S={(p@id)(a(x)) : p € L%(G).}.
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Then S forms a selfadjoint subset of S. In particular Ny is the (unital) von Neu-
mann algebra generated by S. Noting that

(w1 ®id)(a((w2 ®id)a(x))) = (w2 x w1 @id)(a(x)) € Ny

we conclude that Ny is preserved by G.

Every M C N preserved by G and containing x must contain Ny, so it re-
mains to prove that x € Ny. For this we may assume that N C B(H) and « is
implemented by a unitary representation U € M(Cy(G) ® K(H))

a(x) =U*(1®x)U.

Unitary implementation enables us to define a morphism ag € Mor(IC(H), Cj(G)
®IC(H)), where ap(x) = U*(1 ® x)U. Thus, using natural extension of the mor-
phism a to B(H) = M(K(H)) we can further extend « to an action on B(H) and
we shall assume in what follows that N = B(H). As the conclusion of the above
observation we see that, given a C*-algebra B, an element X € M(B® K(H)) and
a functional 4 € B* we have

(2.5) a((p®id)(X)) = (p@id ®id)((id ® a)(X)).
Let U € M(Cj(G) ® IC(H)) be the universal lift of U. Let us note that
M:= {(¢®id)(U*(1 @ x)U) : p € C(G)*}"

is a von Neumann subalgebra of B(H) containing x (for the latter take y = ¢) and
Ny C M. Furthermore, for every w € L®(G), we have

26) (w®id)(a((p®id)(U*(1®x)U)) = (1Fw @id)(x(x)) € Ny C M

where we used (2.5). This shows that M is preserved by G (note that for the proof
of the containment "€" in equation we use it ¥ w € L®(G)y). Since the action
of G on M satisfies the Podle$ condition, M is generated by elements of the form
(¥ w®id)(a(x)), p € C§(G)*, w € L*(G)+. Since p* w € L*(G),, we conclude
that M C Ny and in particular x € Ny. 1

REMARK 2.4. If in the context of Theorem [2.3| we start with a not necessary
self-adjoint x € N, then the smallest von Neumann subalgebra of N containing x
is given by

Ny = {(p ®@id)(a(x)), (p @id)(a(x")) : p € L¥(G).}".

DEFINITION 2.5. Let N be a von Neumann algebra with an action « : N —
L*(G)&N of a locally compact quantum group G and let x € N. We say that N is
G-generated by x if Ny = N.

A state w € S(C{(G)) is said to be an idempotent state if w* w = w. For
a nice survey describing the history and motivation behind the study of idem-
potent states see [12]]. For the theory of idempotent states we refer to [13]. We
shall use Proposition 4 of [13] which in particular states that an idempotent state
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w € S(CY(G)) is preserved by the universal scaling group 7;* and the universal
unitary antipode R" : Cf(G) — C§(G), i.e.
(2.7) wot!' =w=woR"

forall t € R. Anidempotent state w € S(C(G)) yields a conditional expectation
w : Co(G) = Co(G) (see [13]),

Euv(x) =w*x

for all x € Cy(G). Using (2.7), we easily get
(2.8) % (Ew (%)) = Ew(T(x))-
The conditional expectation extends to E,, : L®(G) — L®(G) and clearly
holds for all x € L*(G). The image N = E,(L*(G)) of E, forms a coideal in
L®(G).

Let H and G be locally compact quantum groups. A morphism 7 €
Mor (Cj(G), Cj(H)) such that

(T m)o AL = Afjom
is said to define a homomorphism from H to G. If 77(C§(G)) = Cj(H), then H is
called a Woronowicz-closed quantum subgroup of G [2] A homomorphism from H
to G admits the dual homomorphism 7 € Mor(C“( ), C“(G)) such that
(id® m)(VVC) = (7 @id)(VVH).

A homomorphism from H to G identifies H as a closed quantum subgroup of G if
there exists an injective normal unital *-homomorphism v : L®(H) — L®(G)
such that

A@ o ﬁ(x) = OAﬁ(x)

forall x € C(‘)l(ﬁl). Let H be a closed quantum subgroup of G, then H acts on
L*(G) (in the von Neumann algebraic sense) by the following formula

a:L%(G) = LY(G)®LT(H), x—V(x®1)VF,
where
(2.9) V = (y®id)(WH).
The fixed point space of « is denoted by
L*(G/H) = {x € L”(G) : a(x) = x @ 1}

and referred to as the algebra of bounded functions on the quantum homoge-
neous space G/H. If H is a compact quantum subgroup of G, then there is a
conditional expectation E : L*(G) — L®(G) onto L*(G/H) which is defined by

(2.10) E=(d®yy)oa
where ¢y is the Haar state of H.
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According to Definition 2.2 of [9] we say that H is an open quantum subgroup
of G if there is a surjective normal *-homomorphism p : L*(G) — L*(H) such
that

Agop = (p®p)oAg.
Every open quantum subgroup is closed ([3]], Theorem 3.6). We recall that a pro-
jection P € L*(G) is a group-like projection if Ag(P)(1 ® P) = P ® P. Note that
implies that Ag(P)(1 ® P) € M(Cy(G) ® K(L?(G)). In particular we have
the following lemma.
LEMMA 2.6. Let P € L*®(G) be a group-like projection. Then P € M(Cy(G)).

There is a 1-1 correspondence between (isomorphism classes of) open quan-
tum subgroups of G and central group-like projections in G ([3], Theorem 4.3).
The group-like projection assigned to H, i.e. the central support of p, will be de-
noted by 1.

3. FROM IDEMPOTENT STATES TO GROUP-LIKE PROJECTIONS

Let G be a locally compact quantum group and w € Cj(G)* an idempotent
state on G and let E,, : L*(G) — L*®(G) be the conditional expectation assigned
to w:

Ew(x) = w*x.
We note that
M6 (Ew(¥)) = g (wF x) = (id @ w) (W )yg(x),
where in the last equality we use Proposition 7.4 of [5]. The element (id ® w) (W)
€ L®(G) is a hermitian projection which we denote by P,,. In particular

3.1) 16(Ew(x)) = Puwic(x)-

Let N = E,,(L*(G)) be the coideal assigned to w. The set

(32 Eo({(p@id)(W):p € L(G)s}) = {(Po - p ®id)(W) : p € L¥(G).}
is weakly dense in N.

Let us recall that N ¢ L®(G) denotes the codual coideal of N. Since N is
preserved by 7€, N is preserved by 7©.

THEOREM 3.1. Adopting the above notation we have
N={x€L®(G): Pox=xP,} and N={yeL®(G):A5(y)(1®P,)=y® P.}.
Moreover, P, € N is a minimal central projection of N and it satisfies:
(@) Tg(Pw) =P, forallt e R;
(i) R®(Py) = Pu;
(iii) o7 (P,) = Py forall t € R;
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@v) o? (P,) = P, forall t € R;
(V) Ag(Pw)(1 ® Py) = Py @ Py = Ag(Pw)(Po @ 1).

Proof. The equalities Tt@ (Po) =P, and RE(P,,) =P, follow easily from (2.7).

Let x € L®(G). Using we see that the condition
(3.3) Pox = xP,
holds if and only if

16 (Ew(x2)) = 116 (xEw(2))

for all z € Ny. The latter is equivalent to the identity E,,(xz) = xE(z) holding
for all z € Ny. Since Ny C L®(G) forms a dense subset of L¥(G), we see that
(3.3) is equivalent with E,(x) = x.

Using (3:2), we can see that y € N if and only if

(p@id)(1oy)W(P, ®1)) = (p®id)(W(P, ®y))
for all 4 € L®(G).. Equivalently y € N if and only if
W (1®y)W(P,®1)=P,®y
which is in turn equivalent with
Ag()(1®Py) =y ® Po-

Since P, € N we get A@(Pw)(]l ® Py) =Py @ P,.

Using Podles condition N= { (4 ® id)(Az(y)) 1y € N, i€ L®(G), } o-weakdls
we conclude that P, is a minimal central projection in N. Indeed, for all y € N
and u € L®(G), we have

(n@id)(Ag(y))Pw = p(y)Pw = Po(p @ id)(Ag(y))-

Thus NP, = CP, (i.e. P, is minimal in N) and P, € Z (N) Minimality and
centrality of P, € N yield a unique normal character &, : N — C such that
yPw =€, (y)P, forall y € N.

Using Ag o at‘p = ((Ttl’b ® 1%,) 0 Ag (see Proposition 6.8 of [10]) we get

A@(Pw
A@(Pa}

Aa(0f (P)) (1@ Po) = (of & 78)(

= (o} ©15)(

))(1® Py)
)(1® P)) = o (Pu) @ Py

and U’;P(Pw) € N. In particular Pa,U;p(Pw) = £W(U;P(Pw))Pw, where sw(atlp(Pw)) €

{0,1} for all t € R. Since themap R > t —> Sw(O':P(Pw)) € R is continuous and
sw(atlp(Pw))\tzo = 1, we conclude that Pwa;p(Pw) = P, ie. (rtlp(Pw) > P, for all
t € R. Thus also (Tft(Pw) < P, forallt € Rand UZP(Pw) =D,

Since P, is preserved by R@, the identity A@(Pa,)(]l ® P,) = P, ® P, im-
plies that
Ag(Py)(Py @1) = Py @ Py.
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Finally using af = RCo Uﬂ o RE we get O’?(Pw) =P, forallt cR. 1

For the concept of @-generation used in the next lemma, see Deﬁnition

LEMMA 3.2. Let w € Cy(G)* be an idempotent state, N = Ew(Lw(G)) the
corresponding coideal and N C L®(G) the codual of N. Then N is G-generated by
P, €N.

Proof. Let us recall that x € N if and only if x € L®(G) and xP, = P,x.
Let V = (J)W*(J®]) € L®(G)®L®(G)" where | : L2(G) — L2(G) is the
Tomita-Takesaki antiunitary conjugation assigned to . Then for all y € L*(G)
we have

Agly) =V (1ey)V
In particular if x € L®(G) and P,x = xP,, then
(3.4) Ag(Po)(1®@x) =V (1®P)V(A®x) = (1®x)As(Po).
Conversely, if (3.4) holds then
Py ® Pyx = Ag(Pu)(1®x)(Py®1) = (1 @x)Ag(Pw)(Pw®1) = Pu @ xPy
and we get P,x = xP,,. In particular N = S’ N L*(G), where
S={(n®id)(Ag(Pw)) : 1 € L™(G)x}.

Let us note that S is the smallest coideal of L*(G) containing P, (see The-
orem[2.3). Since N = S’ N L®(G) = (") N L™®(G) we getS” = N. u

LEMMA 3.3. Adopting the above notation we have Tt@ (x) = af (x) forallx € N
and t € R.

Proof. Using the formula A® o (7; = (TF’ ® (Tt93 )o AC (see Proposition 5.38 of
[10]) and Ao Tt (Tt@’ ® TF’) o AP (see Result 5.12 of [[10]), we conclude that for
all u € L=(G),

P ((n@id)(Ag(Po)) = of (1 ©id) (A5 (Po)))

(note that for the latter we also use TC-invariance and o?-invariance of P,). Since

N is G- -generated by P,,, we are done. I
Next result is a strengthening of Lemma
THEOREM 3.4. Adopting the assumptions and notation of Lemma[3.2Jwe have

(3.5) N={(n®id)(A5(P)) : p € L=(G).}

Proof. From C-invariance of N it follows that N N D(Sél) is a dense subset
of N. Suppose that x € NN D(Sél). We shall prove that

(3.6) Ag(Po)(1 @ x) = Ag(Puo) (S5 (x) @ 1).

weak
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From this, it follows that {(y ®1id)(Az(Pw)) : 4 € Lw(@)*}weak is an ideal in N
(in particular a von Neumann subalgebra of N). It is also easy to check that the
right hand side of equation is G-invariant. By ergodicity of the action of G on
N, we conclude that equation holds (here we use the same argument as in the
final part of the proof of Theorem 3.3 in [3]). It remains to prove equation (3.6). To

this end, we continue assuming that x is T®-analytic. Note that by Corollary
it is also o¥-analytic. Let a,b € ;. We compute

(id ® @) (1 @a")Ag (bPy) (S5 (x) © 1))

=5z([d @) (x©1)Ag(a") (1 © bP)) =S¢ (id © §) (x @ Puw)Ag (a”) (1 @ D))
=5((id © §)((1 © Py)Ag (xa®) (1 ®D))) = S5((id ® §)(Ag (xa™) (1 ® bPy)))
=(id® §)((1 @ xa")Ag (bPw)) = (id ® §)((1 @ a*)Ag (bPu) (1 ® 0;(x)))

where in the first and the fifth equality, we use equation (2.I) and in the second
and the fourth equality, we use o ?-invariance of P,,. Thus we get

Ag(Pu)(Sa(x) ® 1) = Ag(Po) (1@ 0?,(x)).

Replacing x with (T?(x) and using Corollary we get for T@—analytic x.
Since the space of 7¢-analytic elements forms a core of Sél we get (3.6). 1

Theorem .4]is a generalization of Theorem 3.3 in [3]. Note that in the proof
of Theorem 3.3 in [3], which treats the case of central P,, a small mistake was
done where instead of equation (3.6) the following formula was derived:

Aa(Pw)(1®x) = Ag(Py)(Ra(x) ®1).

The next theorem was first proved in Theorem 5.15 of [4]. The previous
proof strongly uses the universal C*-version of G. In what follows we give a
simpler proof which is based on the von Neumann version of G.

THEOREM 3.5. Let N C L®(G) be an integrable normal coideal preserved by T©.
Then there exists a unique compact quantum subgroup H C G such that N = L®(G/H).

Proof. Using Theorem 4.2 of [4] we conclude the existence of an idempo-
tent state w € C§(G)* such that N = E,(L®(G)). Let N be the codual coideal.

Then, since N is preserved by ¢, N is preserved by 7G (see Proposition 3.2 of
[7]). Normality of N is equivalent with A@(N) C N®N (see Proposition 4.3 of [7]).
Moreover, using Theorem 3.4 we see that

S={(n®id)(A5(Pw)) : p € L*(G).}
is weakly dense in N. Let us note that RC (n2id)(Ag (Pw))=(id®p o R@) (A& (Py)).

Since P, € N we have Aa(Pw) € N&N and we see that R@(S) C N. Thus we con-
clude that R¢(N) C N. Summarizing N forms a Baaj-Vaes subalgebra of L®(G)
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and there exists H C G such that N = L®(H). Since N = L®(G /H) is integrable,
we use Theorem A.3 of [5] for concluding that H is a compact quantum group. 1

4. FROM GROUPS-LIKE PROJECTIONS TO IDEMPOTETNT STATES

Let ¢ be an n.s.f. weight on a von Neumann algebra N and ¢ : R — Aut(N)
the KMS-group of automorphisms assigned to 1. We denote

Ty = {x € Ny NNy : xis o-analytic and 0z (x) € Ny NNy forall z € C}.

Note that if x € Ty then 0;(x) € Ty for all z € C. Let us recall that the KMS-
condition for ¢ yields that if x € Ny N Dom(¢;/2) then 03/5(x)* € Ny and

(4.1) p(x"x) = ¢loi/2(x)oisa(x)").
LEMMA 4.1. Let x € Ty and suppose that y is c-analytic. Then yx € Ty.

Proof. Let x € Ty. Clearly yx is o-analytic. Since NV forms a left ideal in N
we have yx € Ny. Moreover (yx)* is also c-analytic and

P((yx)™ (yx)") = P(oi/2((yx)*)oi2((yx)*)*) = p(o_ij2(yx) o_i/2(yx))
= (0 ij2(x) 0 ip(y) o isa(y)o_is2(x))
< Nlo—ipWIPP(o—ija(x) 0 ijn(x)) < oo.

Thus we get yx € Ny NANj. Replacing x with 0z(x) and y with cz(y) in the
above reasoning, we conclude that o (yx) € Ny N Nl; Thus yx € Ty and we are
done. 1

REMARK 4.2. Let G be a locally compact quantum group. In the course of
the proof of the next theorem, the symbol 7 denotes the GNS map for the Haar
weight ¢ on G. We will use the fact that if a,b € T@ then the slice (y5,)5) ®
id)(W) is an element of Ny, (see Lemma 8.4 and Proposition 8.13 of [10] with the
roles of G and G reversed).

~

THEOREM 4.3. Let G be a locally compact quantum group and let P € L*(G) be

a non-zero group-like projection such that ¢ (P) = P for all t € R. Then there exists an
idempotent state w € Cy(G) such that P = (id ® w) (W ).

Proof. Let us consider N ¢ L®(G), where
N={yeL®@G):A:(y)(1®P) =y®@Pand Az (y*)(1®P) = y* @ P}.

We will show that N forms a coideal in L®(G) and we will focus on its codual

N C L®(G). Let us first note that P € N and N is T®-invariant. Moreover it is
easy to see that N is a von Neumann subalgebra of L*(G). Let us check that N
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forms a coideal of L®(G). For y € N we have

([d®Ag)(As(y)(1©1® P)
= (Az ®id)(Az(y)
— (Ag @id)(y@ P) =

)(]1 @1®P) = (Az ®id)(Ag(y)(1®P))
Ag(y) ® P.

Similarly we show that (id ® Az )(Az(¥)*) (1 ® 1 ® P) = Ag(y)* ® P and we get
Aa(y) € L®(G)®N. Repeating the reasoning presented in the fourth paragraph
of the proof of Theorem B.1|we conclude that P is a minimal central projection of
N. Using 7 invariance of P and repeating the reasorung presented in the fifth

paragraph of the proof of Theorem we see that o} ( ) = P. In particular P is
o¥-analytic.

Let N C L®(G) denote the codual of N. Since N is preserved by €, N is
preserved by T¢. Moreover following backward the reasoning presented in the
third paragraph of the proof of Theorem 3.1| we show that (P-p®id)(W) e N
forall u € L®(G)x.

Leta,b € Ty and let us consider p = pz(5) 70) € L®(G)yandx = (P-u®
id)(W) (note that P -y = pz(,) 7(pp))- Using Lemma we see that Pb € Tj.
In particular, as explained in Remark x € Ny. Clearly there exists a,b € T@
such that the corresponding x is non-zero. Indeed, suppose the converse holds:
(P psa),500) ®1d)(W) = 0 for all a,b € '71 Then P - pga) 5y (v) = 0 for all
y € L®(G). Thus, taking y = 1 we get (7j(a )|P17( )) =0foralla,b e Tj- Since
7 (Ttﬁ) is dense in L?(G), we conclude that P = 0, contradiction. In particular N
contains a nonzero element x € NN ANy Since (¢ ®id)Ag (x*x) = p(x*x) we see
that N contains a non-zero integrable element with respect to the action Ag |y and
using Proposition 3.2 of [5] we conclude that N is integrable.

Summarizing, N is an integrable coideal of L*(G) preserved by 7€. Using
Theorem 4.2 of [4] we see that there exists an idempotent state w € Cj(G)* such
that N = E,,(L*(G)), where E,, is the conditional expectation assigned to w.

Let P, = (id ® w) (W ). Then P,, € N is a minimal central projection. More-
over,

(P-p©id)(W) = Eo((P- p ©id)(W)) = (PuP - p @id)(W)

forally € Lw(@)*. Thus P = P, P and we see that P, > P. Using the minimality
of P, weget P, =P. 1
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