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ABSTRACT. Let G be a second countable locally compact Hausdorff groupoid
with a continuous Haar system. We remove the assumption of amenability
in a theorem by Clark about GCR groupoid C∗-algebras. We show that if the
groupoid C∗-algebra of G is GCR then the orbit space of G is a T0 topological
space.
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INTRODUCTION

C∗-algebras can be divided into classes based on their representation theory.
Two such classes of well-behaved C∗-algebras are GCR and CCR C∗-algebras.
Let K(H) denote the compact operators on a Hilbert space H. A C∗-algebra A
is called CCR, if for every irreducible representation π : A → B(Hπ) we have
π(A) = K(Hπ). A is called GCR if for every irreducible representation π we
have π(A) ⊃ K(Hπ).

We investigate the orbit spaces of groupoids whose C∗-algebras are GCR or
CCR. The techniques used in the GCR and CCR cases are quite different. In this
paper, the first of two, we treat the classes of groupoids whose C∗-algebras are
GCR, or equivalently type I. In [3] Clark gives the following characterization for
groupoids whose C∗-algebras are GCR.

THEOREM (Clark). Let G be a second-countable locally compact Hausdorff
groupoid with a Haar system. Suppose that all the stability subgroups of G are amenable.
Then C∗(G) is GCR if and only if the orbit space is T0 and the stability subgroups of G
are GCR.

Clark’s theorem generalizes a theorem for C∗-algebras of transformation
groups by Gootman [11]. However, Gootman does not assume that the stabi-
lizers are amenable. Due to the lack of an amenability assumption in Gootman’s
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GCR characterization, Clark conjectures that the amenability hypothesis in the
groupoid characterization is unnecessary [3]. We provide an affirmative answer
to Clark’s conjecture.

Clark defines a map from the orbit space of the groupoid into the spectrum
C∗(G)∧ of the groupoid C∗-algebras C∗(G), and requires amenable stabilizers to
show that this map is continuous. Clark’s GCR proof only uses the continuity
of this map, and thus amenability, to prove that “if C∗(G) is GCR then the orbit
space is T0”. Therefore, to remove the amenability assumption from Clark’s GCR
characterization we only need to show that if C∗(G) is GCR, then the orbit space
is T0.

Clark uses a different approach than Gootman. We show that Gootman’s
approach can be adapted to the groupoid setting. In a second countable locally
compact Hausdorff groupoid the stabilizers always vary measurably, even when
the stabilizers do not vary continuously, ([20], Lemma 1.6). With an appropri-
ate measure we construct a direct integral representation of C∗(G) from repre-
sentations that are induced from stabilizers. We prove a groupoid version of
Lemma 4.2 in [8] by Effros, that imposes a condition on the measure which en-
sures that the direct integral is a type I representation. Then we prove the contra-
positive: if the orbit space is not T0, then Ramsay’s Mackey–Glimm dichotomy
for groupoids ([18], Theorem 2.1) ensures we have a non-trivial ergodic measure
on the unit space. Then by our groupoid version of Effros’ lemma, if the measure
is non-trivially ergodic, then the direct integral representation cannot be type I.
Since a C∗-algebra is GCR if and only if it is type I ([10], [14], [21]), the result
follows.

1. PRELIMINARIES

Throughout G is a second-countable locally compact Hausdorff groupoid,
with a continuous Haar system {λu}u∈G(0) (see [19] for these definitions). Let r
and s denote the range and source maps, respectively, from G onto the unit space
G(0). For u ∈ G(0) we let Gu := r−1(u), Gu := s−1(u) and the stabilizer or stability
subgroup at u is Gu

u := r−1(u) ∩ s−1(u). For x ∈ G, the map R(x) := (r(x), s(x))
defines an equivalence relation ∼ on G(0). For u ∈ G(0) we let [u] := {v ∈ G(0) :
u ∼ v} denote the orbit of u. The orbit space G(0)/G is the quotient space for the
equivalence relation ∼ on G(0).

Throughout Cc(X) denotes the continuous compactly supported functions
from the topological space X into C. If f , g ∈ Cc(G), then

f ∗ g(x) :=
∫
G

f (y)g(y−1x) dλr(x)(y) and f ∗(x) := f (x−1),

define convolution and involution operations on Cc(G), respectively. With these
operations Cc(G) is a ∗-algebra. LetH be a separable Hilbert space and B(H) the
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bounded linear operators on H. A representation of Cc(G) is a ∗-homomorphism
π : Cc(G) → B(H) such that ‖π( f )‖ 6 ‖ f ‖I , where ‖ f ‖I is the I-norm on Cc(G)
(see [19] for the I-norm). Then C∗(G) is the completion of Cc(G) in the norm

‖ f ‖ := {sup ‖π( f )‖ : π is a representation of Cc(G)}.
We assume all representations are non-degenerate.

We use representations of C∗(G) which are induced from the trivial repre-
sentations of stabilizers. Fix u ∈ G(0), f ∈ Cc(G) and φ, ψ ∈ Cc(Gu). The trivial
representation 1u of Gu

u is given by 1u(t) = 1 for every t ∈ Gu
u . The integrated

form of 1u is the representation π1u : Cc(Gu
u)→ C given by

π1u(a) :=
∫

Gu
u

a(t) ∆u(t)−1/2 dβu(t),

which extends to give a representation of C∗(Gu
u). Note: the modular function in

the integrand above is due to the fact that we view the stabilizers as subgroupoids.
Clark [3] and Ionescu and Williams [12] show that we can induce π1u to get a
representation

IndG
Gu

u
π1u : C∗(G)→ B(Hu).

We briefly describe how the induced representation is constructed and introduce
some notation. Clark and Ionescu and Williams use induction via Hilbert mod-
ules. They show that Cc(Gu) is a right C∗(Gu

u)-pre-Hilbert module, where the
right inner product on Cc(Gu) is given by

(1.1) 〈ψ, φ〉Cc(Gu
u )
(t) = ψ∗ ∗ φ(t).

The completion of Cc(Gu) in the inner product (1.1) gives a right C∗(Gu
u)-Hilbert

module X . Furthermore, for all γ ∈ Gu,

f · φ(γ) :=
∫
G

f (η)φ(η−1γ) dλr(γ)(η) = f ∗ φ(γ)(1.2)

defines an action of Cc(G) on Cc(Gu) as adjointable operators, which extends to
an action of C∗(G) on X . Before the induced representation, we first consider the
representation space. Define an inner product on Cc(Gu) by

(φ | ψ)u =π1u(〈ψ, φ〉
C∗(Gu

u )
)=π1u(ψ

∗ ∗ φ)=
∫

Gu
u

ψ∗ ∗ φ(t)∆u(t)−1/2 dβu(t).(1.3)

Denote the completion of Cc(Gu) in the inner product in (1.3) by Hu. Then the
induced representation IndG

Gu
u

π1u : Cc(G)→ Cc(Gu) is defined by

(1.4) IndG
Gu

u
π1u( f )(φ) = f ∗ φ.

By Proposition 2.66 of [17], IndG
Gu

u
π1u extends to give a representation of C∗(G) as

bounded linear operators on the Hilbert spaceHu. To simplify notation we write

lu := IndG
Gu

u
π1u ,
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for any u ∈ G(0). Finally, each representation lu, u ∈ G(0), is an irreducible repre-
sentation of C∗(G) [4], [12].

GCR GROUPOID C∗-ALGEBRAS. Section 2 addresses the measurability of a map
on the units space which is used to construct a direct integral representation. In
Section 3 we construct a Borel–Hilbert bundle and a direct integral representation.
The direct integral representation acts on the Hilbert space of square integrable
sections of the Borel–Hilbert bundle. We also prove Proposition 3.10, a groupoid
version of a result by Effros, giving a condition on the measure used for the di-
rect integral representation to be type I. Section 4 contains our main GCR result,
Theorem 4.2.

2. A BOREL MAP ON THE UNIT SPACE

For the construction of the direct integral representation, we need Proposi-
tion 2.1 below, which gives the measurability of certain maps on the unit space.
These maps have the form of an integral, where the group with respect to which
we integrate and its Haar measure depend on the particular unit in G(0). This
dependence is fine, since Renault shows ([20], Lemma 1.5) that the stabilizer map
u 7→ Gu

u from G(0) to the space of all closed subgroups with the Fell topology,
always varies measurably. However, the integrand also has a modular function
that depends on the unit in G(0). We show that despite the modular function
these maps are still Borel. Specifically we show the following proposition.

PROPOSITION 2.1. Let u ∈ G(0) and f ∈ Cc(G). There exists a Haar measure
βu on Gu

u with associated modular function ∆u such that the following map is Borel:

u 7→
∫

Gu
u

f (t) ∆u(t)−1/2 dβu(t).

For a locally compact Hausdorff space X let B(X) be the Borel σ-algebra on
X. A Borel measure is a positive Radon measure on B(X).

Let
S :=

⋃
u∈G(0)

Gu
u

denote the stability subgroupoid of G. Then the range and source maps agree on
S and S(0) = G(0). Because G(0) is Hausdorff, S is a closed subset of G.

Let C (S) be the set of all closed subsets of S with the Fell topology. Then
C (S) is a compact Hausdorff space, ([22], Proposition H.3). Since S is second
countable, so is C (S). Let

Σ := {H ∈ C (S) : H is a closed subgroup of S}.
Give

Σ ∗ S := {(H, γ) ∈ Σ× S : H ∈ Σ, γ ∈ H}
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the relative topology inherited from the product topology on Σ× S. Note: Σ ∗ S
is a group bundle groupoid, and its unit space is identified with Σ. We show that
Σ ∗ S is locally compact Hausdorff.

LEMMA 2.2. The groupoid Σ ∗ S is second-countable, locally compact and Haus-
dorff.

Proof. We first show that Σ × S is second-countable, locally compact and
Hausdorff. Then we show that Σ ∗ S is closed in Σ× S.

As a subspace S is automatically second countable and Hausdorff. Since S
is closed in G, it is locally compact. As a subspace of C (S), Σ is second-countable
and Hausdorff. Since Σ ∪ {∅} is compact in C (S) and C (S) is Hausdorff, we
have that Σ ∪ {∅} is closed in C (S). Also, C (S) Hausdorff implies {∅} is closed
in C (S). Thus, Σ = (Σ ∪ {∅})\{∅} is open in C (S), and hence locally compact.
Since both S and Σ are second-countable locally compact and Hausdorff, so is
Σ× S.

We show that Σ ∗ S is closed in Σ× S. Suppose that {(Hi, γi)} is a sequence
in Σ ∗ S converging to some (H, γ) in Σ × S. Then Hi → H in C (S), γi ∈ Hi
for every i, and γi → γ. Thus γ ∈ H, by the characterization of convergence in
C (S) ([22], Lemma H.2). Then (H, γ) ∈ Σ ∗ S, which shows that Σ ∗ S is closed
in Σ× S. Since Σ ∗ S is closed in Σ× S, it is locally compact. Second-countability
and Hausdorffness are automatic for subspaces. Thus Σ ∗ S is second-countable,
locally compact and Hausdorff.

The next lemma is used in the proof of Proposition 2.1. It shows that we can
associate with every f ∈ Cc(G) a function in Cc(Σ ∗ S).

LEMMA 2.3. Suppose that f ∈ Cc(G). For all (H, γ) ∈ Σ ∗ S define

F(H, γ) := f (γ).

Then F ∈ Cc(Σ ∗ S).

Proof. Note that F is just f composed with the projection onto the second
coordinate. Since both f and the projection are continuous, it follows that F is
also continuous.

We show that F has compact support. Let {(Hi, γi)} be a sequence in the
support of F. Then {γi} is a sequence in the support of f . Since f has compact
support, {γi} has a convergent subsequence such that (after relabelling) γj →
γ in supp( f ). Then {Hj} is a sequence in the compact space Σ ∪ {∅}. Thus
{Hj} has a convergent subsequence, such that (after relabelling) Hk → H in Σ ∪
{∅}. Since γk ∈ Hk and γk → γ, the characterization of convergent sequences
in C (S) ([22], Lemma H.2) implies that γ ∈ H. Thus (Hi, γi) has a convergent
subsequence (Hk, γk) converging to (H, γ) in supp(F). Thus supp(F) is compact,
and so F ∈ Cc(Σ ∗ S).
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In [20], Renault deals with possibly non-Hausdorff groupoids. He therefore
introduces locally conditionally compact groupoids. We use a result from [20] in
Proposition 2.1 to claim that Σ ∗ S has a Haar system. So we need to know that
S =

⋃
u∈G(0)

Gu
u is locally conditionally compact.

A set L in a groupoid G is called left (respectively right) conditionally compact
if for every compact set K ⊂ G(0), the set KL = L ∩ r−1(K) (respectively LK =
L∩ s−1(K)) is compact. The set L is called conditionally compact if it is both left and
right conditionally compact. If every point in the groupoid has a conditionally
compact neighbourhood, then G is locally conditionally compact.

LEMMA 2.4. Let G be a locally compact Hausdorff groupoid. Then S =
⋃

u∈G(0)
Gu

u

is locally conditionally compact.

Proof. Since S is closed in G, it is locally compact and Hausdorff in the rela-
tive topology from G. Let γ ∈ S. Then γ has a compact neighbourhood L ⊂ S. Let
K be any compact set in G(0). Since G(0) is Hausdorff, K is closed in G(0). Since
rS := r|S is continuous, r−1

S (K) is closed in S. The intersection of the compact set
L and the closed set r−1

S (K) is compact in S. Hence S is left conditionally compact.
Put sS := s|S. Since rS = sS on S, it follows that L ∩ s−1(K) is also compact. Thus
S is right conditionally compact. Since every γ ∈ G has a conditionally compact
neighbourhood, S is locally conditionally compact.

Now we prove Proposition 2.1.

Proof of Proposition 2.1. Recall that Σ ∗ S is a group-bundle groupoid with
unit space Σ. By Lemma 2.4, S is locally conditionally compact. Hence, by Corol-
lary 1.4 of [20], the groupoid Σ ∗ S has a continuous Haar system {βH}H∈Σ.

Set βu := βGu
u for each u ∈ G(0). We claim that each βu is a Haar measure on

Gu
u . From the definition of a Haar system, each βu is a non-zero Radon measure

such that supp(βu) = supp(βGu
u ) = Gu

u . With f ∈ Cc(G), we set F(H, γ) :=
f (γ). Then F ∈ Cc(Σ ∗ S) by Lemma 2.3. Suppose that x, γ ∈ Gu

u . Then the left
invariance of the Haar system {βH}H∈Σ gives∫

Gu
u

f (xγ)dβu(γ) =
∫

Gu
u

F(Gu
u , xγ) dβGu

u (γ) =
∫

Gu
u

F[(Gu
u , x)(Gu

u , γ)] dβGu
u (γ)

=
∫

Gu
u

F(Gu
u , γ) dβGu

u (γ) =
∫

Gu
u

f (γ) dβu(γ).

Hence every βu is a non-zero left invariant Radon measure on Gu
u , that is, βu is a

Haar measure on Gu
u .

For every H ∈ Σ, let ∆H denote the modular function of the group H cor-
responding to a Haar measure βH . For the particular case where H = Gu

u for
some u ∈ G(0), we write ∆u := ∆Gu

u . By Lemma 5.3 of [3] the map D : Σ ∗ S→ R
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given by D(H, γ) = ∆H(γ) is continuous. Hence the pointwise product F ·D−1/2

belongs to Cc(Σ ∗ S). Since {βH}H∈Σ is a Haar system, the map

(2.1) Gu
u 7→

∫
Gu

u

F(Gu
u , γ)D(Gu

u , γ)−1/2 dβGu
u (γ)

is continuous. Also, by Lemma 1.5 of [20] the stabilizer map u 7→ Gu
u is Borel. By

composing the stabilizer map with (2.1), we get that

u 7→
∫

Gu
u

F(Gu
u , γ)D(Gu

u , γ)−1/2 dβGu
u (γ) =

∫
Gu

u

f (γ)∆u(γ)
−1/2 dβu(γ)

is Borel.

3. A DIRECT INTEGRAL REPRESENTATION OF C∗(G)

In this section we construct a direct integral representation of C∗(G), and
give a condition on the measure which ensures that the direct integral repre-
sentation is type I. The idea is to associate with every u ∈ G(0) the irreducible
representation lu of C∗(G). Then with an appropriate measure on G(0), we com-
bine all the lu’s and their representations spaces in a measurable way to form a
new representation of C∗(G). We construct our direct-integral Hilbert space via
a Borel–Hilbert bundle, as defined Appendix F.2 of [22]. Thus our first goal is to
construct a Borel–Hilbert bundle.

A Polish space is a topological space which is homeomorphic to a separable
complete metric space. A subset E in a Polish space X is analytic if there is a Polish
space Y and a continuous map f : Y → X such that f (Y) = E.

Suppose that {Hx}x∈X is a family of non-zero Hilbert spaces indexed by a
set X. Let

X ∗ H := {(x, h) : x ∈ X, h ∈ Hx}
be the disjoint union and ρ : X ∗ H → X the projection onto the first coordinate.
A section is a function f : X → X ∗ H such that ρ ◦ f (x) = x. So a section has the
form f (x) = (x, f̂ (x)), with f̂ (x) ∈ Hx. As is common in the literature, we do not
always make a distinction between f and f̂ .

We recall the definition of a Borel–Hilbert bundle.

DEFINITION 3.1 ([22], Definition F.1). LetH = {Hx}x∈X be a family of sep-
arable Hilbert spaces indexed by an analytic Borel space X. Then (X ∗ H, ρ) is a
Borel–Hilbert bundle if X ∗ H has a Borel structure such that:

(i) ρ is a Borel map;
(ii) there is a sequence { fn} of sections such that

(a) the maps f̃n : X ∗ H → C, defined by

f̃n(x, h) := ( f̂n(x) | h)Hx ,
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are Borel for each n;
(b) for every m and n,

x 7→ ( f̂n(x) | f̂m(x))Hx

is Borel; and
(c) the functions { f̃n} ∪ {ρ} separate points of X ∗ H.

The sequence { fn} is called a fundamental sequence for (X ∗ H,ρ). A Borel
section is a section f of (X ∗ H,ρ) such that

x 7→ ( f̂ (x) | f̂n(x))Hx

is Borel for all n. Let B(X ∗ H) be the set of all Borel sections.

Suppose that u ∈ G(0). Recall that lu denotes the irreducible representation
of C∗(G) that acts on the completionHu of Cc(Gu). We show that

G(0) ∗ H := {(u, h) : u ∈ G(0), h ∈ Hu}
is a Borel–Hilbert bundle by invoking the following proposition.

PROPOSITION 3.2 ([22], Proposition F.8). Suppose that X is an analytic Borel
space and thatH = {Hx}x∈X is a family of separable Hilbert spaces. Suppose that { fn}
is a countable family of sections of X ∗ H such that conditions (b) and (c) of Defini-
tion 3.1 are satisfied. Then there is a unique analytic Borel structure on X ∗ H such that
(X ∗ H, ρ) becomes an analytic Borel–Hilbert bundle and { fn} is a fundamental se-
quence.

To apply Proposition 3.2 we need candidates for sections that satisfy condi-
tions (b) and (c) of Definition 3.1. We use a sequence of functions from Cc(G) that
is dense in the inductive limit topology, and such that their restrictions to Cc(Gu)

are dense in Hu, for every u ∈ G(0). It is almost certainly well-known to experts
that Cc(G) is separable in the inductive limit topology. We still give a proof as
the construction is used to show that the sequence is also dense in eachHu when
restricted to Cc(Gu). When considering the inductive limit topology, it will suf-
fice to know that if fi → f uniformly and the supp( fi) is eventually contained in
some compact set, then fi → f in the inductive limit topology. Note: the converse
of this statement is false (see Example D.9 of [17] for a counter example).

LEMMA 3.3. There is a countable sequence of functions { fi} in Cc(G) which is
dense in Cc(G) in the inductive limit topology. Moreover, the restrictions { fi|Gu} are
dense inHu for every u ∈ G(0).

Proof. Suppose that U is an open set with compact closure in G. Then every
f ∈ C0(U) extends to Cc(G) by putting f (x) = 0 if x /∈ U. In this way we view
C0(U) as a ∗-subalgebra of Cc(G) consisting of functions which vanish outside
of the compact set U. Since G is second-countable and locally compact, we can
write G as the union of a sequence of open sets {Ui} such that Ui ⊂ Ui+1 and
Ui is compact. The set Ui is second-countable for every i ∈ N. Thus C0(Ui) is a
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separable Banach space in the uniform norm ‖ · ‖∞. For each i ∈ N, let { fik}k be a
countable dense set in C0(Ui), which we view as a subset of Cc(G).

Let f ∈ Cc(G). We show that f can be approximated by functions of the
form { fik}k in the inductive limit topology. Since {Ui} is an increasing sequence
of open sets with compact closure, it follows that supp( f ) ⊂ Ui for some i. Then
f ∈ C0(Ui) and there is a subsequence { fik(j)

}j of { fik}k such that fik(j)
→ f uni-

formly in C0(Ui) as j → ∞. Viewing each fik(j)
as an element of Cc(G) we have

supp( fik(j)
) ⊂ Ui for all j. Thus fik(j)

converges to f in Cc(G) in the inductive limit
topology. Since f was arbitrary, it follows that { fik}i,k is countable and dense in
Cc(G) in the inductive limit topology.

Fix u ∈ G(0). We show that { fik}i,k restricted to Gu is dense in Hu. Suppose
that h ∈ Hu and let ‖ · ‖u denote the norm defined by the inner product on Hu.
Let ε > 0. Then there is an f ∈ Cc(Gu) such that

(3.1) ‖h− f ‖u <
ε

2
.

Since Gu is closed in G, the support of f is compact in G. By Lemma 1.42 of [22],
we extend f to Cc(G) (using the same notation f for the extension). Since {Ui} is
an increasing chain of relatively compact sets, there is an i such that supp( f ) ⊂
Ui. Then (after relabelling) there is a subsequence { f j} of { fik}i,k such that f j → f
uniformly and supp( f j) ⊂ Ui for every j.

We now consider two cases. First suppose that Ui ∩Gu
u = ∅. Then supp( f −

f j) ∩ Gu
u = ∅, and thus

‖ f− f j‖u =[( f− f j, f − f j)u]
1/2=

[ ∫
Gu

u

(( f− f j)
∗ ∗ ( f− f j))(t) ∆u(t)−1/2 dβu(t)

]1/2

=
[ ∫

Gu
u

∫
Gu

u

( f − f j)
∗(s)( f − f j)(s−1t) dβu(s) ∆u(t)−1/2 dβu(t)

]1/2
= 0.(3.2)

Second, suppose that Ui ∩ Gu
u 6= ∅. Put

M2 :=
(

sup{∆−1/2
u (t) : t ∈ Ui ∩ Gu

u}
)
(βu(Ui ∩ Gu

u))
2.

Then M2 < ∞, since ∆u is continuous in t and Ui ∩ Gu
u is compact. Then we have

that

‖ f− f j‖u =[( f− f j, f− f j)u]
−1/2=

[ ∫
Gu

u

(( f− f j)
∗ ∗ ( f− f j))(t) ∆u(t)−1/2 dβu(t)

]1/2

=
[ ∫

Gu
u

∫
Gu

u

( f − f j)
∗(s)( f − f j)(s−1t) dβu(s) ∆u(t)−1/2 dβu(t)

]1/2
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6
[
‖ f − f j‖2

∞ sup
t∈Ui∩Gu

u

{∆u(t)−1/2} βu(Ui ∩ Gu
u)

2
]1/2

= ‖ f − f j‖∞ M.(3.3)

Since f j → f uniformly and supp( f j) ⊂ Ui for every j, it follows that there
is a j0 ∈ N such that if j > j0, then

‖ f − f j‖∞ <
ε

2M
.

Fix any j > j0. Then it follows from (3.1), (3.2) and (3.3) that

‖h− f j‖u 6 ‖h− f ‖u + ‖ f − f j‖u 6 ‖h− f ‖u + ‖ f − f j‖∞ M < ε.

Thus every neighborhood of h contains some f j ∈ { fik}i,k, which shows that
{ fik}i,k is dense inHu.

Next we show that G(0) ∗ H is a Borel–Hilbert bundle.

PROPOSITION 3.4. There is a sequence { fi} of functions that is dense in Cc(G)

in the inductive limit topology. For every i and every u ∈ G(0) put

ĝi(u) := fi|Gu .

Then G(0) ∗ H is a Borel–Hilbert bundle with fundamental sequence {gi} given by

gi(u) := (u, ĝi(u)).

Proof. By Lemma 3.3 there is a sequence { fi} ⊂ Cc(G) which is dense in
Cc(G) in the inductive limit topology.

We continue our convention of writing gi(u) to mean ĝi(u) if no confusion is
possible. We show that the conditions of Proposition 3.2 are satisfied for G(0) ∗H
and {gi}. Because G is Hausdorff, G(0) is closed in G. Thus G(0) is also second-
countable, locally compact and Hausdorff. Hence G(0) is Polish ([22], Lemma 6.5),
and thus an analytic Borel space.

Next we show that the sequence of sections {gi} satisfy conditions (b) and
(c) of Definition 3.1. Fix m, n ∈ N. Then

u 7→ (gn(u) | gm(u))u =
∫

Gu
u

( f ∗m ∗ fn)(t) ∆u(t)−1/2 dβu(t),

which is Borel by Proposition 2.1. Thus (b) is satisfied.
Let ρ : G(0) ∗ H → G(0) be the projection onto the first coordinate. Let g̃i be

as in Definition 3.1(a). We show that {g̃i} ∪ {ρ} separate the points of G(0) ∗ H.
Suppose that {g̃i} ∪ {ρ} do not separate points. Then there exist distinct points
(u, h) and (v, k) in G(0) ∗H such that, for every φ ∈ {g̃i} ∪ {ρ}, we have φ(u, h) =
φ(v, k). First notice that if φ = ρ, then ρ(u, h) = ρ(v, k) implies u = v. Thus
k ∈ Hu. Then, besides ρ, we have g̃i(u, h) = g̃i(u, k) for every i ∈ N. That is,

(gi(u) | h) = (gi(u) | k),
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or
0 = (gi(u) | h− k) = ( fi|Gu | h− k).

Thus h− k is in the orthogonal complement { fi|Gu : i ∈ N}⊥ inHu. By Lemma 3.3
the set { fi|Gu} is dense in Hu. Thus { fi|Gu : i ∈ N}⊥ = {0}, implying h = k. So
(u, h) = (v, k), which contradicts the assumption that these points are distinct. So
condition (c), and hence all the conditions of Proposition 3.2 are satisfied, show-
ing that G(0) ∗ H is a Borel–Hilbert bundle with fundamental sequence {gi}.

Next we form an L2-space with sections of B(G(0) ∗ H). To form this L2-
space we use a quasi-invariant measure (see for example Definition 3.1 in [19]).
Since we work in second-countable, locally compact Hausdorff spaces, all Borel
measures are σ-finite. The class of measures equivalent to any such σ-finite mea-
sure contains a finite measure. For groupoids the notions of quasi-invariance
and ergodicity depend on the measure class. So we may assume without loss of
generality that our quasi-invariant measure is a probability measure. Also, if G
is second-countable, locally compact and Hausdorff, then there always exists a
quasi-invariant measure on G(0) ([19], Proposition 3.6).

Let µ be a quasi-invariant measure on G(0) and let

L 2(G(0) ∗ H, µ) := { f ∈ B(G(0) ∗ H) : u 7→ ‖ f (u)‖2
u is µ-integrable}.

Let L2(G(0) ∗H, µ) be the vector space formed by taking the quotient of L 2(G(0) ∗
H, µ), where sections agreeing µ-a.e. are equivalent. As is common in the liter-
ature, we use the same symbol f for the class of sections in L2(G(0) ∗ H, µ) to
which f belongs. Let f , g ∈ L2(G(0) ∗ H, µ). The functions u 7→ ‖ f (u)‖2

u and
u 7→ ‖g(u)‖2

u belong to L2(G(0), µ). By Hölder’s inequality u 7→ ‖ f (u)‖u ‖g(u)‖u

is in L1(G(0), µ). Then, by the Cauchy–Schwarz inequality∣∣∣ ∫
G(0)

( f (u) | g(u))udµ(u)
∣∣∣ 6 ∫

G(0)

|( f (u) | g(u))u| dµ(u)

6
∫

G(0)

‖ f (u)‖u‖g(u)‖u dµ(u) < ∞.

Thus u 7→ ( f (u) | g(u))u is µ-integrable, and so

( f | g) :=
∫

G(0)

( f (u) | g(u))u dµ(u)

defines an inner product on L2(G(0) ∗ H, µ). With this inner product L2(G(0) ∗
H, µ) is a Hilbert space. The Hilbert space L2(G(0) ∗ H, µ) is what is known as
the Hilbert space direct integral, also denoted by

∫
G(0)

⊕Hu dµ(u) in the literature.

We turn our attention to the direct integral representation, which will act
on L2(G(0) ∗ H, µ). Fix a ∈ C∗(G). For every f ∈ L2(G(0) ∗ H, µ) and u ∈ G(0),
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define (L(a) f )(u) := (u, lu(a)( f (u))). We write

(3.4) (L(a) f )(u) = lu(a)( f (u))

to shorten notation.

PROPOSITION 3.5. Let a ∈ C∗(G). Then L(a) is a bounded linear operator on
L2(G(0) ∗ H, µ), and the map a 7→ L(a) defines a representation of C∗(G) on L2(G(0) ∗
H, µ).

Proof. Note that the linearity of L(a) follows from the linearity of each lu(a).
To show that L(a) is a bounded linear operator on L2(G(0) ∗ H, µ), we first show
that L(a) maps Borel sections to Borel sections. Let k ∈ B(G(0) ∗ H). We claim
that L(a)k ∈ B(G(0) ∗H). To see this, let {gi} be the fundamental sequence given
by Proposition 3.4. Recall, gi(u) = (u, gi(u)) with gi(u) = fi|Gu , and where { fi}
is a countable sequence in Cc(G) which is dense in the inductive limit topology.
We must show that

u 7→ ((L(a)k)(u) | gn(u))u = (lu(a)(k(u)) | gn(u))u

is Borel for every n. Since {gi} is a fundamental sequence, it is sufficient to show
that

(3.5) u 7→ (lu(a)gn(u) | gm(u))u

is Borel for all m and n ([5], Proposition 1). First we show that (3.5) is Borel
for functions in the dense subspace Cc(G) of C∗(G), and then for an arbitrary
a ∈ C∗(G). Let h ∈ Cc(G) and fix m and n. Then

(lu(h)gn(u) | gm(u))u =
∫

Gu
u

[ f ∗m ∗ (lu(h) fn)](t)∆u(t)−1/2dβu(t)

=
∫

Gu
u

[ f ∗m ∗ (h ∗ fn)](t)∆u(t)−1/2dβu(t)

=
∫

Gu
u

( f ∗m ∗ h ∗ fn)(t)∆u(t)−1/2dβu(t).

Since f ∗m ∗ h ∗ fn ∈ Cc(G), it follows from Proposition 2.1 that

(3.6) u 7→
∫

Gu
u

( f ∗m ∗ h ∗ fn)(t)∆u(t)−1/2dβu(t)

is Borel. Now, let a ∈ C∗(G) be arbitrary. Then there is a sequence {hi} in
Cc(G) such that hi → a in the C∗-norm. Put φi(u) = (lu(hi)gn(u) | gm(u))u
and φ(u) = (lu(a)gn(u) | gm(u))u. By (3.6), {φi} is a sequence of Borel mea-
surable functions on G(0) for all m and n. Since inner products and the lu’s are
continuous, φi(u) → φ(u) for every u ∈ G(0). This pointwise convergence im-
plies that φ is Borel measurable. Hence the map (3.5) is Borel and it follows that
L(a) f ∈ B(G(0) ∗ H).
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Next we show that L(a) maps L2(G(0) ∗ H, µ) into L2(G(0) ∗ H, µ). That
is, we show that for every k ∈ L2(G(0) ∗ H, µ) and a ∈ C∗(G), the map u 7→
‖(L(a)k)(u)‖2

u is µ-integrable. In this case we have∫
G(0)

‖(L(a)k)(u)‖2
u dµ(u) =

∫
G(0)

‖lu(a)(k(u))‖2
u dµ(u)

6 ‖a‖2
∫

G(0)

‖k(u)‖2
u dµ(u) = ‖a‖2‖k‖2

2 < ∞.(3.7)

Thus the map u 7→ ‖(L(a)k)(u)‖2
u is µ-integrable, showing that L(a)k ∈ L2(G(0) ∗

H, µ).
The boundedness of L(a) follows from (3.7), since

‖L(a)k‖2
2 =

∫
G(0)

‖lu(a)k(u)‖2
u dµ(u) 6 ‖a‖2‖k‖2

2.

Hence L(a) ∈ B(L2(G(0) ∗ H, µ)) for every a ∈ C∗(G).
Lastly, that a 7→ L(a) is a representation of C∗(G) follows from (3.4) and the

fact that every lu is a representation of C∗(G).

The representation L of (3.4) is a direct integral representation ([6], Defini-
tion 8.1.3), and is denoted by

L :=
∫

G(0)

⊕
lu dµ(u).

The operators L(a), a∈C∗(G), are called decomposable operators, and are denoted by

L(a) :=
∫

G(0)

⊕
lu(a) dµ(u).

We need a few last remarks on von Neumann algebras and some lemmas
which we use to prove a groupoid version of Effros’ lemma for transformation
groups.

IfH be a Hilbert space andM a self-adjoint subset of B(H), then we denote
byM′ the commutant ofM. We sayM is a von Neumann algebra ifM =M′′.
The centre of a von Neumann algebraM is the abelian von Neumann algebra

Z(M) :=M′ ∩M.

LEMMA 3.6. LetM be a von Neumann algebra and suppose thatN is a maximal
abelian von Neumann subalgebra ofM′, in the sense that N is not properly contained
in any other abelian von Neumann subalgebra ofM′. Then Z(M) ⊂ N .

Proof. The structure of the proof is as follows: we first show that the von
Neumann algebra K sot generated byZ(M) andN is a von Neumann subalgebra
ofM′. Then we show that K sot is an abelian von Neumann algebra. Lastly, we
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show that K sot contains both Z(M) and N . By the maximality of N , we then
have Z(M) ⊂ N .

Suppose that z ∈ Z(M) and n ∈ N . Then z ∈ M and n ∈ M′. Thus
zn = nz. Hence any product formed from elements of Z(M) and N are of the
form zn, with z ∈ Z(M) and n ∈ N . Let K = span{zn : z ∈ Z(M), n ∈ N}.
Then K is an abelian ∗-subalgebra ofM′, sinceM′ is itself a von Neumann alge-
bra and contains both Z(M) and N . Then von Neumann’s double commutant
theorem ([2], Theorem 2.4.11) implies the strong operator closure K sot of K is a
von Neumann subalgebra ofM′. Also, K sot contains both Z(M) and N .

We claim that K sot is abelian. First suppose that S∈K and T∈K sot. Let (Tα)
be a net in K converging to T in the strong operator topology. The maps T→ ST
and T→TS are continuous in the strong operator topology (for the fixed S). Thus
TαS→TS. Since K is an abelian ∗-algebra we also have that TαS=STα→ST. Since
the strong operator topology is Hausdorff, it follows that

(3.8) ST = TS.

Now let S, T ∈ K sot, and let {Sα} be a sequence in K such that Sα → S in the
strong operator topology. Applying equation (3.8), we have that SαT = TSα for
every α. Taking the limit now shows that ST = TS.

We showed that K sot is an abelian von Neumann subalgebra ofM′ which
contains both Z(M) and N . But, N is maximal abelian inM′. Thus K sot

= N
and Z(M) ⊂ N .

DEFINITION 3.7. Let B(G(0)) be the Borel subsets of G(0). A projection-
valued measure E for L2(G(0) ∗ H, µ) is a function from B(G(0)) into the set of
orthogonal projections on L2(G(0) ∗ H, µ) such that:

(i) E(G(0)) = 1;
(ii) E(A ∩ B) = E(A)E(B), for A, B ∈ B(G(0)); and

(iii) E(
⋃

Ai) = ∑ E(Ai) for pairwise disjoint Borel subsets Ai.
For A ⊂ G(0) let 1A denote the characteristic function on A. Then, for every
f ∈ L2(G(0) ∗ H, µ),

(3.9) (EA f )(u) := 1A(u) f (u)

defines a projection-valued measure called the canonical projection-valued measure.
Note that for a fixed A ⊂ G(0), the projection EA is the decomposable operator
EA =

∫
G(0)

⊕1A(u) Iu dµ(u).

Applying Corollary IV.12 of [9] to our specific direct integral representation
L =

∫
G(0)

⊕ludµ(u) of C∗(G) gives the following proposition.
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PROPOSITION 3.8 ([9], Corollary IV.12). The representations lu in the direct in-
tegral representation L =

∫
G(0)

⊕ludµ(u) are µ-almost all irreducible if and only if the

range of the canonical projection valued measure for L2(G(0) ∗H, µ) is a maximal abelian
algebra of projections in L(C∗(G))′.

A set A ⊂ G(0) is invariant if r(s−1(A)) = A. If µ is a quasi-invariant mea-
sure on G(0), then µ is ergodic if µ(A) = 0 or µ(G(0)\A) = 0 for all invariant sets
A ⊂ G(0). If, in addition, µ is concentrated on an orbit, then µ is trivially ergodic.

LEMMA 3.9. Let A ⊂ G(0) be a Borel set and µ a Borel measure on G(0). Then
r(s−1(A)) is measurable.

Proof. The continuity of r and s implies that they are Borel measurable.
Hence s−1(A) is a Borel subset of G and thus analytic. Then r(s−1(A)) is an
analytic set in G(0) by Theorem 3.3.4 and Corollary 1 of [1]. Hence

r(s−1(A))

is µ-measurable by Theorem 3.2.4 of [1].

Suppose that π is a representation of a C∗-algebra A on a Hilbert space H.
Then π is a factor representation if the centre of the von Neumann algebra π(A)′′
consists of scalar multiples of the identity operator on H. If the von Neumann
algebra π(A)′′ is a type I von Neumann algebra then π is a type I representation.
The C∗-algebra A is type I if every representation of A is type I.

We now adapt Effros’ proof of Lemmma 4.2 in [8] from transformation
groups to groupoids. We only need one direction of Effros’ “if and only if” state-
ment, that is, type I implies trivially ergodic.

PROPOSITION 3.10. Let µ be an ergodic Borel measure on G(0). Then
(i) the direct integral representation L =

∫
G(0)

⊕ludµ(u) is a factor representation of

C∗(G); and
(ii) if L is a type I factor representation, then µ is trivially ergodic.

We give a brief overview of the structure of the proof of (i) in an attempt to
make the proof easier to read. We prove the contrapositive of (i), and split the
proof into three main parts.

Existence of a direct integral projection. We show that if L is not a factor rep-
resentation, then there is a projection P and a Borel set B ∈ B(G(0)) such that
P =

∫
G(0)

1B(u)Iudµ(u) with P 6= I and P 6= 0.

Convergence of integrands off a null set N. We show that there is sequence
{an} ⊂ C∗(G) and a null set N ∈ B(G(0)) such that lu(ank ) → 1B(u)Iu strongly
for every u ∈ G(0)\N.
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An invariant set neither null nor conull. Lastly, we show that C := r(s−1(B\N))
is invariant, and is neither null nor conull under µ. That is, µ is not ergodic.

Proof. (i) Existence of a direct integral projection. Suppose that L is not a factor
representation of C∗(G). Then the centre L(C∗(G))′ ∩ L(C∗(G))′′ has elements
other than multiples of the identity. Since von Neumann algebras are generated
by their projections ([16], Theorem 4.1.11) and the centre is an abelian von Neu-
mann algebra, there exists a projection P ∈ L(C∗(G))′ ∩ L(C∗(G))′′ with P 6= 0
and P 6= I (I being the identity operator in B(L2(G(0) ∗ H, µ))). Let E denote
the canonical projection-valued measure from B(G(0)) into the set of orthog-
onal projections in B(L2(G(0) ∗ H, µ)). Since every lu is irreducible, it follows
from Proposition 3.8 that the range E(B(G(0))) of the canonical projection-valued
measure is a maximal abelian algebra in L(C∗(G))′. Thus the set of projections
contained in the image of the canonical projection-valued measure generates a
maximal abelian von Neumann subalgebra E(B(G(0)))′′ of L(C∗(G))′. Then
L(C∗(G))′ ∩ L(C∗(G))′′ ⊂ E(B(G(0)))′′, by Lemma 3.6. Hence P ∈ E(B(G(0)))′′.
Because E(B(G(0)))′′ is generated by its projections E(B(G(0))), it follows that
P ∈ E(B(G(0))). Hence there is a Borel set B in B(G(0)) such that 0 6= µ(B) 6=
µ(G(0)) and P = EB =

∫
G(0)

1B(u)Iudµ(u) (where 1B is the indicator function of B).

Convergence of integrands off a null set N. By Lemmma 3.1 of [7] L is a non-
degenerate representation because each lu is non-degenerate. By von Neumann’s
double commutant theorem ([2], Theorem 2.4.11) L(C∗(G)) is dense in L(C∗(G))′′

in the strong operator topology. By Kaplansky’s density theorem the unit ball of
L(C∗(G)) is strongly dense in the unit ball of L(C∗(G))′′ ([13], Theorem 5.3.5).
With Kaplansky’s density theorem and because the unit ball of L(C∗(G))′′ is
metrizable in the strong operator topology ([5], Proposition 1) we may replace
nets with sequences in the strong closure of the unit ball of L(C∗(G)). Thus, since
‖EB‖ = 1, there is a sequence {an} ⊂ C∗(G) such that L(an) is in the unit ball of
L(C∗(G))′′, and

L(an) =
∫

G(0)

⊕
lu(an) dµ(u)→ EB =

∫
G(0)

1B(u)Iu dµ(u)

in the strong operator topology. Now, due to the strong convergence of the se-
quence of direct integrals above ([5], Proposition 4 of Part II, Chapter 2) tells us
there is a subsequence ank such that for µ-a.e. u ∈ G(0)

(3.10) lu(ank )→ 1B(u)Iu

strongly. That is, there is a Borel set N ⊂ G(0) such that µ(N) = 0 and lu(ank ) →
1B(u)Iu strongly for every u ∈ G(0)\N.

An invariant set neither null nor conull. Let C := r(s−1(B\N)). Then C is
an invariant subset of G(0). Moreover C is measurable by Lemma 3.9. It will
suffice to show that µ(C) = µ(B), because then µ(C) 6= 0 and µ(G(0)\C) =



THE ORBIT SPACES OF GROUPOIDS WHOSE C∗ -ALGEBRAS ARE GCR 183

µ(G(0))− µ(C) = µ(G(0))− µ(B) 6= 0, which shows that µ is not ergodic. Note,
since B\N ⊂ C, it follows that µ(B\N) 6 µ(C). Then, since µ(N) = 0, we get

(3.11) µ(B\N) = µ(B)− µ(N) = µ(B).

Thus µ(B) 6 µ(C). Similarly, to get the reverse inequality we show that C\N ⊂ B.
Suppose that w ∈ C\N. Since C = {u ∈ G(0) : u ∈ [v] and v ∈ B\N}, there is
a v ∈ B\N such that v is equivalent to w. Lemma 5.1 of [3] shows that the map
[u] 7→ [lu] from the orbit space G(0)/G into the spectrum C∗(G)∧ is well-defined.
Lemma 5.5 of [3] shows that this map [u] 7→ [lu] is injective. Hence v is equivalent
to w if and only if lv is unitarily equivalent to lw. So since v ∼ w there is a unitary
operator U : Hv → Hw such that lw(a) = Ulv(a)U∗, for every a ∈ C∗(G). Since
w /∈ N, we apply (3.10) to lw, that is,

lw(ank )→ 1B(w)Iw.

Since v ∈ B\N, it follows that 1B(v) = 1, and we can also apply (3.10) to lv. Then

lw(ank ) = Ulv(ank )U
∗ → U1B(v)IvU∗ = UIvU∗ = Iw.

Limits are unique in the strong operator topology. Thus 1B(w)Iw = Iw, which
implies that 1B(w) = 1. Hence w ∈ B. That is, C\N ⊂ B. Now a similar compu-
tation to (3.11) shows that µ(C) 6 µ(B). Hence µ(C) = µ(B), proving (i).

(ii) Suppose that L is a factor representation of type I. Then by Theorem 2.7
of [15], almost all lu are unitarily equivalent. That is, there is a conull set A ⊂ G(0)

such that u ∼ v for all u, v ∈ A. Suppose that u ∈ A. Then A ⊂ {w ∈ G(0) : w ∼
u} and µ({w ∈ G(0) : w ∼ u}) 6= 0. On the other hand, µ({v ∈ G(0) : v � u}) =
0. Thus

µ(G(0)) = µ({w ∈ G(0) : w ∼ u} ∪ (G(0)\{w ∈ G(0) : w ∼ u}))

= µ({w ∈ G(0) : w ∼ u}) + µ({v ∈ G(0) : v � u})

= µ({w ∈ G(0) : w ∼ u}).
Hence µ is concentrated on an orbit, and is thus trivially ergodic.

4. CHARACTERIZING GCR GROUPOID C∗-ALGEBRAS

After one last lemma we prove Theorem 4.2 which says that if C∗(G) is
type I (or equivalently GCR) then G(0)/G is T0.

LEMMA 4.1. Let G be a second-countable, locally compact and Hausdorff groupoid.
Let R : G → G(0) × G(0), defined by R(γ) := (r(γ), s(γ)), be the equivalence relation
induced on G(0). Then R(G) is an Fσ subset in G(0) × G(0).

Proof. Since G is second-countable and locally compact we can express G in

form G =
∞⋃

i=1
Ui, where each Ui is a neighborhood with compact closure. Since
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the range and source maps are continuous and G(0) is Hausdorff, it follows that
r(Ui) and s(Ui) are compact for every i, and thus closed in G(0)×G(0). So R(G) =

R
( ∞⋃

i=1
Ui

)
=

∞⋃
i=1

R(Ui) is an Fσ set in G(0) × G(0).

THEOREM 4.2. Let G be a second-countable locally compact and Hausdorff
groupoid with a Haar system. If C∗(G) is type I then G(0)/G is T0.

Proof. We prove the contrapositive. Suppose that G(0)/G is not T0. By
Lemma 4.1 the hypotheses of Theorem 2.1 in [18] are satisfied. So there exists
a non-trivial ergodic measure µ on G(0). By Proposition 3.10 the direct integral
representation L =

∫
ludµ is a non-type I factor representation. Hence C∗(G) is

not type I, which concludes the proof.

Combining Theorem 4.2 and Clark’s Theorem 7.1 in [3] we can formulate a
refined characterization of GCR groupoids C∗-algebras without amenability.

THEOREM 4.3. Let G be a second-countable, locally compact and Hausdorff
groupoid with a Haar system. Then C∗(G) is GCR if and only if the stability subgroups
of G are GCR and G(0)/G is T0.
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