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ABSTRACT. We show that every unilateral weighted backward shift T on `p,
where 1 6 p < ∞, has the factorization T = AB with two hypercyclic oper-
ators A and B, one of which is a unilateral weighted backward shift and the
other one is a bilateral weighted shift.
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1. INTRODUCTION

A bounded linear operator T : H → H on a separable, infinite-dimensional,
complex Hilbert space H is cyclic if there exists a vector h in H such that the set
{p(T)h : p is a polynomial} is dense in H. Since the vector p(T)h takes the form
p(T)h = a0h + a1Th + a2T2h + · · ·+ anTnh, where ai ∈ C, we see that p(T)h ∈
span {h}+ ran T. Thus the dimension of (ran T)⊥ is at most 1. In other words,
if the dimension of (ran T)⊥ = k > 2, then T cannot be cyclic. Nevertheless Wu
([18], Theorem 2.12) showed that such an operator T is indeed the product of at
most k + 2 cyclic operators. Switching from the product to the sum, Wu ([18],
Theorem 1.5) further showed that every bounded linear operator T : H → H is
the sum of two cyclic operators.

In the present paper, we focus on a property of an operator, called hyper-
cyclicity, which is stronger than cyclicity. By the definition, a bounded linear
operator T : X → X on a separable, infinite-dimensional, complex Banach space
X is hypercyclic if there exists a vector x in X whose orbit {Tnx : n > 0} is dense
in X. As a hypercyclic generalization of one of Wu’s results, Grivaux [10] showed
that every bounded linear operator on the Hilbert space H is the sum of two hy-
percyclic operators.

Along the line of sums and products of cyclic or hypercyclic operators, we
show in the present paper how to factor a unilateral weighted backward shift
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on the sequence Banach space `p as the product of two hypercyclic weighted
shifts on `p. Weighted shifts, as defined in (1.1) through (1.4) below, often serve
as a fundamental testing ground for many theories about operators; see Shields
[17]. In fact, the first example of a hypercyclic operator on a Banach space is
a unilateral weighted backward shift offered by Rolewicz [13]. Later, Salas [15]
provided a necessary and sufficient condition for a unilateral weighted backward
shift to be hypercyclic, and also a necessary and sufficient condition for a bilateral
weighted shift to be hypercyclic. The two conditions are given in terms of the
weight sequences of the weighted shifts. They are used in our present work to
show a weighted shift is hypercyclic.

To precisely describe the results in the present paper, we need definitions
of weighted shifts on the Banach space `p, with 1 6 p < ∞. For that we let Z+

denote the set of all nonnegative integers and let {ei : i ∈ Z+} = {e0, e1, e2, . . .}
be the canonical basis of `p, where e0 = (1, 0, 0, 0, . . .), e1 = (0, 1, 0, 0, . . .), e2 =
(0, 0, 1, 0, . . .), . . . etc. With respect to the canonical basis {ei : i ∈ Z+} every
vector α = (α0, α1, α2, . . .) in `p is represented as a convergent series

α =
∞

∑
i=0

αiei.

The canonical basis {ei : i ∈ Z+} can be rearranged and relabelled, via a bijection
σ : Z→ Z+, as a two-sided sequence

{eσ(i) : i ∈ Z} = {. . . , eσ(−2), eσ(−1), eσ(0), eσ(1), eσ(2), . . .}.

Correspondingly every vector α in `p can be represented as a two-sided conver-
gent series

α = (. . . , α−2, α−1, α0, α1, α2, . . .) =
∞

∑
i=−∞

αieσ(i),

whose norm becomes

‖α‖ =
( ∞

∑
i=−∞

|αi|p
)1/p

.

No matter whether a vector α in `p is represented as a one-sided convergent series
with respect to the canonical basis {ei : i ∈ Z+} or as a two-sided convergent
series via a bijection σ : Z→ Z+, its norm ‖α‖ stays the same.

In the present paper, we always use `p to denote the same sequence Ba-
nach space, regardless whether the canonical basis is represented as a one-sided
sequence or a two-sided sequence. Furthermore, we allow a permutation, or a
reordering, of a given canonical basis to define a weighted shift. To make our
definitions precise, we take the one-sided canonical basis {ei : i ∈ Z+} of `p,
where 1 6 p < ∞.

DEFINITION 1.1. A bounded linear operator T : `p → `p is said to be a
unilateral weighted backward shift, or unilateral backward shift for the sake of brevity,
if there are a bijection σ : Z+ → Z+ and a bounded positive weight sequence
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{wi : i ∈ N} such that Teσ(0) = 0 and Teσ(i) = wieσ(i−1) whenever i ∈ N. In other

words, for any vector α =
∞
∑

i=0
αieσ(i) in `p, we have

(1.1) Tα = T
( ∞

∑
i=0

αieσ(i)

)
=

∞

∑
i=1

wiαieσ(i−1).

When the canonical basis is shifted in the opposite direction, we have the
following definition.

DEFINITION 1.2. A bounded linear operator T : `p → `p is a unilateral
weighted forward shift, or unilateral forward shift for the sake of brevity, if there exist
a bijection σ : Z+ → Z+ and a bounded positive weight sequence {wi : i ∈ Z+}
such that Teσ(i) = wieσ(i+1), whenever i ∈ Z+. In other words, for any vector

α =
∞
∑

i=0
αieσ(i) in `p, we have

(1.2) Tα = T
( ∞

∑
i=0

αieσ(i)

)
=

∞

∑
i=0

wiαieσ(i+1).

With the same one-sided canonical basis {ei : i ∈ Z+} of `p, we use a bijec-
tion σ : Z→ Z+ to rearrange it as a two-sided canonical basis {eσ(i) : i ∈ Z} of `p

and define the following two types of shift operators.

DEFINITION 1.3. A bounded linear operator T : `p → `p is a bilateral weighted
backward shift, or bilateral backward shift for the sake of brevity, if there exist a bijec-
tion σ : Z → Z+ and a bounded positive weight sequence {wi : i ∈ Z} such that

Teσ(i) = wieσ(i−1) whenever i ∈ Z. In other words, for any vector α =
∞
∑

i=−∞
αieσ(i)

in `p, we have

(1.3) Tα = T
( ∞

∑
i=−∞

αieσ(i)

)
=

∞

∑
i=−∞

wiαieσ(i−1).

Similar to the unilateral case, the two-sided sequence {eσ(i) : i ∈ Z}may be
shifted in the forward direction.

DEFINITION 1.4. A bounded linear operator T : `p → `p is a bilateral weighted
forward shift, or bilateral forward shift for the sake of brevity, if there exist a bijection
σ :Z→Z+ and a bounded positive weight sequence {wi : i∈Z} such that Teσ(i)=

wieσ(i+1) whenever i∈Z. In other words, for any vector α=
∞
∑

i=−∞
αieσ(i) in `p,

(1.4) Tα = T
( ∞

∑
i=−∞

αieσ(i)

)
=

∞

∑
i=−∞

wiαieσ(i+1).

Obviously, a bilateral forward shift becomes a bilateral backward shift, if
we replace the bijection σ in its definition (1.3) with the bijection σ0(i) where
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σ0(i) = σ(−i). Thus we simply use the term bilateral weighted shift, or bilateral shift
for the sake of brevity, without referring to the direction, forward or backward,
when the direction does not play a role in our discussion. More generally, we
use the term shift to mean any of the above four types of unilateral and bilateral
shifts. In any case, one can easily verify that whenever T is a shift corresponding
to a bounded positive weight sequence {wi}, we have

‖T‖ = sup{wi}.

In the present paper, we only consider shifts T with positive weight se-
quences {wi}. However, the assumption on the positivity of the weight sequence
does not cause any loss of generality in the results of our paper, because a shift
with a complex weight sequence is indeed similar to a shift with a positive weight
sequence; see Shields ([17], Corollary 1). Furthermore, hypercyclicity of an oper-
ator is preserved under similarity of operators.

As mentioned earlier, we are interested in hypercyclic factorizations of a
unilateral backward shift T on `p; that is, factoring T as the product T = AB,
where A and B are two hypercyclic shifts on `p. In order to have the factorization
work, we need to determine the allowable types of shifts A and B within the
factorization. First, A and B cannot be two bilateral shifts because ABei 6= 0 for
all integers i while there is an integer j such that Tej = 0.

Second, A and B cannot be two unilateral backward shifts. To see this by
the way of contradiction, without loss of generality suppose T is given by (1.1)
and in particular Te0 = 0, and suppose A and B are two such shifts given by two
bijections ρ : Z+ → Z+ and respectively σ : Z+ → Z+. Then Beσ(0) = Aeρ(0) = 0.
Since Teσ(0) = ABeσ(0) = 0, we have σ(0) = 0. Furthermore, there is an integer
j with j > 1 such that Beσ(j) is a nonzero multiple of eρ(0), say Beσ(j) = αeρ(0).
Since j 6= 0, we have σ(j) 6= 0 and Teσ(j) = ABeσ(j) = αAeρ(0) = 0, which is a
contradiction.

Lastly, neither of A, B can be a unilateral forward shift. To show this, ob-
serve that for any such a shift, by (1.2) one of the vectors in the canonical basis
{ei : i ∈ Z+} cannot be in its range. On one hand, if there is a vector en such
that en 6∈ ran A, then en 6∈ ran AB = ran T, which is a contradiction. On the other
hand, suppose there is a vector em such that em 6∈ ran B. Since the vector Aem is
a nonzero multiple of a canonical basis vector with Aem 6∈ ran AB = ran T, we
have again a contraction.

On the positive side, in Section 2 we show that every unilateral backward
shift T : `p → `p can be factored as T = UB, where U is a hypercyclic unilateral
backward shift and B is a hypercyclic bilateral shift; see Theorem 2.3 below. In
Section 3, we show that T can also be factored in the reversed order; that is, T =
B′U′ where B′ is a hypercyclic bilateral shift and U′ is a hypercyclic unilateral
backward shift; see Theorem 3.1 below.

One special case of interest to us is when the weight sequence {wi : i ∈
N} of the unilateral backward shift T in Theorems 2.3 and 3.1 is bounded away
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from 0. In that case, the factors B, U, B′, U′ obtained from both theorems can
have additional properties, for which we need the following definitions. For a
bounded linear operator S : X → X on a Banach space X, a vector x in X is
said to be a periodic point of S if there is a positive integer n such that Snx =
x. The operator S is said to be chaotic if S is hypercyclic and has a dense set of
periodic points. Next, an operator S : X → X is said to be mixing if for any two
nonempty open subsets O1,O2 of X, there exists a positive integer N such that
Tn(O1) ∩ O2 6= ∅, whenever n > N. It is known that S is hypercyclic if S is
mixing. Lastly, S is said to be frequently hypercyclic if there exists a vector x in X
such that for every nonempty open subsetO of X, the set E = {n > 1 : Tnx ∈ O}
has a positive lower density given by

dens(E) = lim inf
N→∞

card(E ∩ [1, N])

N
,

where card denotes the cardinality.
When the weight sequence of a unilateral backward shift T on `p is bounded

away from 0, we show with both factorizations T = UB and T = B′U′ given by
Theorem 2.3 and Theorem 3.1, that all factors B, U, B′ and U′ can be selected so
that they are chaotic, mixing, and frequently hypercyclic (Corollaries 2.5 and 3.2).

To conclude our discussion in this section, we remark that if T is a unilat-
eral forward shift, then T 6= AB, for any two hypercyclic operators A, B. This
is obvious because if A, B are two hypercyclic operators, then they both have a
dense range, and so does their product AB. Nevertheless, by (1.2) the closure of
the range ran T of T has codimension 1, and so it is not dense. Indeed, with this
dense-range argument, it is obvious that T cannot be factored as the product of
two unilateral backward shifts, or two bilateral shifts, or one unilateral backward
shift and one bilateral shift, all of which possess a dense range.

2. A FACTORIZATION FOR UNILATERAL WEIGHTED BACKWARD SHIFTS

In this section and the next section, we show that every unilateral backward
shift T can be factored as a product of two hypercyclic shifts. More specifically,
in Theorem 2.3 of this section, we show that T can be factored as T = UB, where
B is a hypercyclic bilateral shift and U is a hypercyclic unilateral backward shift.
Then in Theorem 3.1 of the next section, we show that T can also be factored in the
reversed order as T = B′U′, where B′, U′ are respectively, a hypercyclic bilateral
shift and a hypercyclic unilateral backward shift.

For a unilateral backward shift to be hypercyclic, we quote the following
necessary and sufficient condition in terms of its weight sequence, established by
Salas ([15], Corollary 2.9).

THEOREM 2.1. Let 1 6 p < ∞ and {wi : i ∈ N} be a bounded sequence of
positive weights. Suppose T : `p → `p is the unilateral backward shift given by Te0 = 0
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and Tei = wiei−1 for all positive integers i. Then T is hypercyclic if and only if

sup{w1w2 · · ·wn : n > 1} = sup{‖Tnen‖ : n > 1} = ∞.

For a bilateral backward shift T on `p to be hypercyclic, Salas ([15], The-
orem 2.1) offered the following necessary and sufficient condition in terms of a
two-sided canonical basis { fi : i ∈ Z} of `p: let T be given by T fi = wi fi−1 for all
integers i. Then T is hypercyclic if and only if for any positive ε and any positive integer
N, there exists an arbitrarily large n such that whenever |j| 6 N,

n−1

∏
i=0

wj−i < ε, and
n

∏
i=1

wj+i >
1
ε

.

The above necessary and sufficient condition is more general than what we
need in the present paper. As an immediate corollary, the following simple suffi-
cient condition is helpful for the arguments presented in this paper.

THEOREM 2.2. Let 1 6 p < ∞. Suppose T : `p → `p is a bilateral backward shift
with T fi = wi fi−1, whenever i ∈ Z. Then T is hypercyclic if there exist positive scalars
a, b and integers M, N with N > M such that whenever i > N > M > j, we have

0 < wj 6 a < 1 < b 6 wi 6 ‖T‖.
Using Theorems 2.1 and 2.2, we now proceed to obtain Theorem 2.3 that

factors a unilateral backward shift as the product of two hypercyclic shifts. Since
both shifts are hypercyclic, their norms must be larger than 1. On the positive
side, the theorem guarantees that their norms are kept well under control.

THEOREM 2.3. Let 1 6 p < ∞. If T : `p → `p is a unilateral weighted backward
shift, then there exist a hypercyclic unilateral weighted backward shift U : `p → `p, and
a hypercyclic bilateral weighted shift B : `p → `p such that

T = UB.

Moreover, for any positive ε, the shifts U and B can be chosen so that their norms
‖U‖, ‖B‖ are no larger than (1 + ε)max{1, ‖T‖}.

Proof. Without loss of generality, by reordering the canonical basis {ei : i ∈
Z+} of `p if necessary, we can assume T is given by

(2.1) Tei =

{
0 if i = 0,
wiei−1 if i > 1,

where each weight wi satisfies 0 < wi 6 ‖T‖. For any given positive ε, select two
positive scalars a, b such that

(2.2) b = (1 + ε)max{1, ‖T‖} and b−1 < a < 1.
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Next, let j0 = 0, and inductively select a strictly increasing sequence {jk : k > 0}
of nonnegative even integers that satisfy the following two inequalities:

(2.3) jk+1 > 2jk + 4 and bjk+1/2 >
kbk+1

bjk/2akwj1 wj2 · · ·wjk
, whenever k > 0.

Using the sequence {jk : k > 0}, we construct the hypercyclic bilateral shift B and
a hypercyclic unilateral backward shift U such that T = UB, in the following two
separated steps.

Step I. Construction of the shift B. First, we need to define a bijection σ : Z→
Z+ to reorder the members in the canonical basis {ei : i ∈ Z+} as a two-sided
sequence {eσ(i) : i ∈ Z} listed in (2.4) below, in which e0 = ej0 is placed in the
0-th position of the two-sided sequence; that is, σ(0) = j0 = 0. In addition, the
right-hand side of e0 consists of all ejk and the left-hand side of e0 consists of the
remaining vectors ej in ascending order of the index j as we go to the left:

(2.4) . . . , e2+jk ,

missing ejk (k > 1)︷ ︸︸ ︷
e1+jk , e−1+jk , e−2+jk , . . . , e3, e2,

eσ(−1)︷︸︸︷
e1 ,

eσ(0)︷︸︸︷
e0 ,

eσ(1)︷︸︸︷
ej1 , ej2 , ej3 , . . . .

Claim 1. Corresponding to the rearrangement in (2.4), the bijection σ : Z →
Z+ is given by the formula:

σ(i) =

{
ji if i > 0,
|i|+ k if (k + 1)− jk+1 6 i 6 (k− 1)− jk and k > 0.

Proof of Claim 1. From the rearrangement of the canonical basis in (2.4), we
clearly have σ(i) = ji for all nonnegative integers i.

Focusing on σ(i) for the negative integers i, we observe that when k = 0
the formula in our claim gives σ(i) = |i| if 1− j1 6 i 6 −1. That is, σ(−1) =
1, σ(−2) = 2, . . . , σ(1− j1) = −1 + j1, which give the rearrangement in (2.4) for
integers i satisfying 1− j1 6 i 6 −1.

Inductively suppose σ(i) = |i| + k for (k + 1) − jk+1 6 i 6 (k − 1) − jk.
In particular, σ((k + 1)− jk+1) = −1 + jk+1. It follows from the omission of the
vector ejk+1

between e−1+jk+1
and e1+jk+1

in (2.4) that σ(k − jk+1) = 1 + jk+1 =

|k− jk+1|+ (k + 1), and hence σ(i) = |i|+ (k + 1) whenever (k + 2)− jk+2 6 i 6
k− jk+1. This finishes the proof of Claim 1 by mathematical induction.

Using the bijection σ, define the bilateral shift B : `p → `p by

(2.5) Beσ(i) =


a−1eσ(i−1) if i > 1,
eσ(−1) = e1 if i = 0,
b−1wσ(i)eσ(i−1) if i 6 −1.

From the selection of the scalars a, b in (2.2), the weights of the shift B satisfy

b−1wσ(i) 6 b−1‖T‖ 6 (1 + ε)−1 < 1 < a−1 < b.
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Thus ‖B‖ 6 b, giving us the desired upper bound on the norm of B. Furthermore,
since

b−1wσ(i) 6 (1 + ε)−1 < 1 < a−1,

the shift B is hypercyclic by a direct application of Theorem 2.2.
Step II. Construction of the shift U. Moving on to defining the unilateral back-

ward shift U, we need a bijection ρ : Z+ → Z+ to reorder the members of the
canonical basis {ei : i ∈ Z+}. For that we define ρ(i) for integers i in the interval
[jk−1, jk − 1] using an inductive process on the integer k > 1.

The first step is to reorder those vectors ei with indices i in the interval
[0, j1 − 1] = [j0, j1 − 1]. We put all vectors ei with odd indices i in the interval
[j0, j1 − 1] before all vectors ei with even indices i in the same interval [j0, j1 − 1]
as follows:

(2.6)
ei with odd indices i︷ ︸︸ ︷

e1, e3, . . . , e−3+j1 , e−1+j1 ,
ei with even indices i︷ ︸︸ ︷

e0, e2, . . . , e−4+j1 , e−2+j1 .

Since ρ : Z+ → Z+ provides the above reordering of e0, e1, . . . , e−1+j1 , we must
have ρ(0) = ρ(j0) = 1, ρ(1) = 3, . . . , and lastly ρ(−1 + j1) = −2 + j1. Further-
more, we have

(2.7) ρ
( j1 + j0

2

)
= 0.

To see this, we first observe that there are altogether j1 − j0 = j1 vectors in the
list (2.6), exactly half of which ei have odd indices i. Since ρ(0) = 1, the vector
e0 = ej0 with the first even index in (2.6) must be at the (j0 + (j1 − j0)/2)-th
position, which establishes (2.7).

All vectors listed in (2.6) precede all vectors ei with indices i in the interval
[j1,−1 + j2], which are reordered in the second step. Those reordered in the sec-
ond step in turn precede all vectors ei with indices i in the interval [j2,−1 + j3],
which are reordered in the third step and so on.

In the (k + 1)st step, where k > 0, the vectors ei with indices i in the interval
[jk,−1 + jk+1] are reordered as follows:

(2.8)
ei with odd indices i︷ ︸︸ ︷

e1+jk , e3+jk , . . . , e−1+jk+1
,

ei with even indices i︷ ︸︸ ︷
ejk , e2+jk , . . . , e−2+jk+1︸ ︷︷ ︸

(k + 1)st step of the rearrangement

.

Correspondingly ρ(jk) = 1 + jk and

(2.9) ρ
( jk + jk+1

2

)
= jk,

and lastly ρ(−1+ jk+1) = −2+ jk+1. Inductively we complete the rearrangement
of the canonical basis {ei : i ∈ Z+}. Summarizing the above rearrangements
provided by (2.6) and (2.8), we provide the following formula for the bijection
ρ : Z+ → Z+, written in terms of odd and even values of ρ(i):



HYPERCYCLIC SHIFT FACTORIZATIONS FOR UNILATERAL WEIGHTED BACKWARD SHIFT OPERATORS 357

(2.10) ρ(i) =

{
(2m + 1) + jk if i = m + jk, for k > 0, 0 6 m 6 jk+1−jk

2 − 1,
2m + jk if i = m +

jk+1+jk
2 , for k > 0, 0 6 m 6 jk+1−jk

2 − 1.

In terms of ρ, define the unilateral backward shift U : `p → `p by

(2.11) Ueρ(i) =


0 if i = 0,
awjk+1

eρ(i−1) if ρ(i) = jk, for some k > 0,
beρ(i−1) if ρ(i) 6= jk, for any k > 0.

To show ‖U‖ 6 b as stated in the theorem, we simply observe that by (2.2)
we get awjk+1

6 a‖T‖ < ‖T‖ < b.

Claim 2. U is hypercyclic.

Proof of Claim 2. For each integer k > 1, set

nk =
jk+1 + jk

2
− 1 = m + jk, where m =

jk+1 − jk
2

− 1.

Observe that if 1 6 i 6 nk, then by (2.10), ρ(i) = j` for some integer ` exactly
when i = (j`+1 + j`)/2, for ` = 0, 1, 2, . . . , k − 1. Thus ρ(i) = j` for exactly k
values of `. Therefore by (2.11),

Unk eρ(nk)
= akwj1 · · ·wjk b−k+nk eρ(0).

It follows from the definition of nk and the selection of the sequence {jk} in (2.3)
that

‖Unk eρ(nk)
‖ = akwj1 · · ·wjk b−k+nk = akwj1 · · ·wjk b(jk+1+jk)/2−k−1 > k.

Thus by Theorem 2.1, the unilateral shift U is hypercyclic, finishing the proof of
Claim 2 and our construction of U in Step II.

Having constructed the shifts B and U, we now complete the proof of The-
orem 2.3 with the final step.

Step III. To verify T = UB. By (2.1) we need to verify that UBeσ(0) = Teσ(0) =
0 and

UBeσ(i) = Teσ(i) = wσ(i)eσ(i)−1,

for each positive integer i.
First, when i = 0, by (2.5), (2.10), and (2.11) we have UBeσ(0) = Ue1 =

Ueρ(0) = 0. Second, for all positive integers i, we see from Claim 1 that σ(i) = ji
and σ(i− 1) = ji−1. Furthermore it follows from (2.9) that if ` = (ji + ji−1)/2 then
ρ(`) = ji−1 = σ(i− 1). Letting

m =
ji − ji−1

2
− 1,
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we have `− 1 = m + ji−1, and so by (2.10) we have ρ(`− 1) = (2m + 1) + ji−1 =
−1 + ji = σ(i)− 1. Hence by (2.5) and (2.11),

UBeσ(i) = a−1Ueσ(i−1) = a−1Ueji−1 = a−1Ueρ(`) = wji eρ(`−1) = wσ(i)eσ(i)−1,

finishing the proof for the second case.
Third, suppose the integer i 6 −1 and σ(i) = −1+ jk for some integer k > 1.

Since the definition of σ gives the listing in (2.4), we see that σ(i − 1) = 1 + jk.
Similarly, since the definition of ρ gives the listing in (2.8), we see that if ` is the
integer satisfying ρ(`) = 1+ jk then ρ(`− 1) = −2+ jk = σ(i)− 1. Hence by (2.5)
and (2.11), we have

UBeσ(i) = b−1wσ(i)Ueσ(i−1) = b−1wσ(i)Ue1+jk

= b−1wσ(i)Ueρ(`) = wσ(i)eρ(`−1) = wσ(i)eσ(i)−1,

finishing the proof for the third case.
Lastly, suppose the integer i 6 −1 and σ(i) 6= −1 + jk for any integer k > 0.

Since the definition of σ gives the listing in (2.4), we see that σ(i− 1) = σ(i) + 1 6=
jm and σ(i) + 1 6= 1 + jm for any integer m > 0. Therefore, if ` is the integer with
ρ(`) = σ(i− 1) then ρ(`) 6= jm and ρ(`) 6= 1 + jm for any integer m > 0. Thus by
(2.8), ρ(`− 1) = −2+ ρ(`) = −2+ σ(i− 1) = σ(i)− 1. Hence, by (2.5) and (2.11)
we have

UBeσ(i) = b−1wσ(i)Ueσ(i−1) = b−1wσ(i)Ueρ(`) = wσ(i)eσ(i)−1,

which finishes Step III, and hence the whole proof of Theorem 2.3.

Continuing with the argument in the above proof, we can show that the
shifts U, B in the factorization T = UB can be chaotic, mixing, and frequently
hypercyclic under an additional assumption on T; see Corollary 2.5. For that,
we need to quote the frequent hypercyclicity criterion, which is a sufficient condi-
tion introduced by Bayart and Grivaux [3] to show that an operator is frequently
hypercyclic.

THEOREM 2.4. A bounded linear operator T : X → X on a Banach space X is
chaotic, mixing, and frequently hypercyclic if there exist a dense subset X0 of X and a
mapping S : X0 → X0 such that for any x ∈ X0,

(i)
∞
∑

k=0
Tkx converges unconditionally,

(ii)
∞
∑

k=0
Skx converges unconditionally, and

(iii) TSx = x.

Theorem 2.4 can be applied to the factors U and B in Theorem 2.3 when the
weight sequence {wi : i ∈ N} of the unilateral backward shift T is bounded away
from 0; that is, there is a scalar δ > 0 such that wi > δ > 0 for all i.
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COROLLARY 2.5. Let 1 6 p < ∞. Suppose T : `p → `p is a unilateral weighted
backward shift, and U, B : `p → `p are two shifts that satisfy the conclusion of Theo-
rem 2.3. If the weight sequence of T is bounded away from 0, then both U and B can be
selected to be chaotic, mixing, and frequently hypercyclic, with weight sequences bounded
away from 0. In particular, B is invertible.

Proof. Without loss of generality, by rearranging and relabelling the canon-
ical basis {ei : i ∈ Z+} of `p if necessary, assume T is given by Te0 = 0 and Tei =
wiei−1 whenever i > 1. Also let δ be a real scalar such that 0 < δ < wi 6 ‖T‖ for
all positive integers i.

For any given positive ε, select the same positive scalars a, b satisfying in-
equalities in (2.2) as in the proof of Theorem 2.3. Next select a real scalar C such
that

(2.12) C > max{1, a−1δ−1}.

In the rest of the proof, we follow all other notations and definitions in the proof
of Theorem 2.3, except that we require the strictly increasing sequence {jk} of
nonnegative even integers in that proof to satisfy (2.3), along with the following
additional condition:

(2.13) bjk >
(

1 +
ε

2

)jk
Ckbk.

The above inequality (2.13) is possible because b > 1 + ε.
To show the shifts U and B given by (2.11) and (2.5) satisfy the frequent

hypercyclicity criterion in Theorem 2.4, we set X0 in the statement of the theorem
to be X0 = span{ej : j ∈ Z+}.

Claim 3. Define a map R : X0 → X0 by taking

Reρ(i) =

{
a−1w−1

jk+1
eρ(i+1) if i > 0 and ρ(i + 1) = jk, for some k > 0,

b−1eρ(i+1) if i > 0 and ρ(i + 1) 6= jk, for any k > 0,

and extending linearly to X0. Then the shifts U and R satisfy conditions (i), (ii)
and (iii) of Theorem 2.4.

Proof of Claim 3. First, for the unilateral backward shift U, we have Un+1eρ(n)
= 0 whenever n > 0. Hence by the linearity of U, condition (i) of Theorem 2.4 is
obviously satisfied for any vector x in X0.

It is clear from (2.11) that UReρ(i) = eρ(i) for any nonnegative integer i, and
hence by linearity, URx = x for any x ∈ X0, and so condition (iii) of Theorem 2.4
is satisfied.

To finish the proof of our claim, it remains to show that R satisfies condi-
tion (ii) of Theorem 2.4 for any vector x in X0. By linearity and the triangle in-

equality, it suffices to show that
∞
∑

n=1
‖Rneρ(i)‖ < ∞, for any nonnegative integer i.

Even more, by the definition of R, each eρ(i) is a nonzero multiple of Rieρ(0). Thus
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it suffices to only show that

(2.14)
∞

∑
n=1
‖Rneρ(0)‖ < ∞.

To estimate the norm ‖Rneρ(0)‖ in the infinite sum, note from (2.9) that
ρ(i + 1) = j`, for some integer ` precisely when i + 1 = (j`+1 + j`)/2. Thus the es-
timation of ‖Rneρ(0)‖ using the definition of R depends on the number of integers
` such that (j`+1 + j`)/2 6 n. For that reason, we first calculate Rmeρ(j`), where
` > 0 and 0 6 m 6 j`+1− j`. Note that from (2.10), ρ(j`) = 1 + j`. Also from (2.8),
there are (j`+1 − j`)/2 vectors ei with odd indices i. Hence by the definition of R
and (2.8), we have

(2.15) Rmeρ(j`) =

{
b−meρ(m+j`) if 0 6 m 6 j`+1−j`

2 − 1,

b−m+1a−1w−1
j`+1

eρ(m+j`) if j`+1−j`
2 6 m 6 j`+1 − j`.

Use (2.15) repeatedly with integers ` = 0, 1, . . . , k − 1. Corresponding to
each value of `, take m = j`+1 − j` and obtain

Rjk eρ(0) = Rjk−j1(Rj1−j0 eρ(j0)) = b−(j1−j0)+1a−1w−1
j1

Rjk−j1 eρ(j1)(2.16)

= b1−j1 a−1w−1
j1

Rjk−j2(Rj2−j1 eρ(j1)) = b2−j2 a−2w−1
j1

w−1
j2

Rjk−j2 eρ(j2)

= · · · = bk−jk a−kw−1
j1

w−1
j2
· · ·w−1

jk
eρ(jk).

Using (2.16), we proceed to estimate Rneρ(0) for any integer n > 1. We first
obtain the integer k > 0 such that jk 6 n < jk+1, and so

‖Rneρ(0)‖ = ‖Rn−jk (Rjk eρ(0))‖(2.17)

6 bk−jk a−kw−1
j1
· · ·w−1

jk
‖Rn−jk eρ(jk)‖ (by (2.16))

6 bk−jk Ck‖Rn−jk eρ(jk)‖ (by (2.12))

<
(

1 +
ε

2

)−jk
‖Rn−jk eρ(jk)‖ (by (2.13)).

To estimate the norm ‖Rn−jk eρ(jk)‖ in the above inequality, we observe that
0 6 n− jk < jk+1 − jk, and so by (2.15),

‖Rn−jk eρ(jk)‖ 6 max{b−n+jk , b−n+1+jk a−1w−1
j1+k
}

6 bCb−n+jk 6 bC(1 + ε)−n+jk (by (2.2)).

Combining the above inequality with (2.17) yields

‖Rneρ(0)‖ 6 bC
(

1 +
ε

2

)−jk
(1 + ε)−n+jk

6 bC
(

1 +
ε

2

)−jk(
1 +

ε

2

)−n+jk
= bC

(
1 +

ε

2

)−n
.

Hence
∞
∑

n=1
‖Rneρ(0)‖ < ∞, which concludes the proof of Claim 3.
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We proceed to show the shift B satisfies the frequent hypercyclicity criterion
as well.

Claim 4. Define a linear map S : X0 → X0 by taking

Seσ(i) =


aeσ(i+1) if i > 0,
eσ(0) if i = −1,
bw−1

σ(i+1)eσ(i+1) if i 6 −2,

and extending linearly to X0. Then the shifts B and S satisfy conditions (i), (ii),
and (iii) in Theorem 2.4.

Proof of Claim 4. To show B satisfies condition (i) of Theorem 2.4, by linearity
it suffices to show

∞

∑
n=0

Bneσ(j)

converges unconditionally for any integer j. Since B is a bilateral backward shift,
for any integer j there is a nonnegative integer n such that j − n is a negative
integer, and Bneσ(j) is a nonzero multiple of eσ(j−n). Hence we need only to focus
on a negative integer j in showing the unconditional convergence of ∑ Bneσ(j). We
have by (2.5) and our choice of b in (2.2), Beσ(j) = b−1wσ(j)eσ(j−1) where b−1wσ(j)

6 b−1‖T‖ 6 (1 + ε)−1. Thus, by repeating the argument, we have ‖Bneσ(j)‖ 6

(1 + ε)−n. Hence for any integer i we have
∞
∑

n=1
‖Bneσ(i)‖ < ∞, showing that B

satisfies condition (i).
To show B and S satisfy condition (iii) in Theorem 2.4, we use (2.5) to verify

that BSeσ(i) = eσ(i) for all integers i, and hence by linearity, BSx = x for any
vector x in X0.

To show that S satisfies condition (ii) in Theorem 2.4, we establish that
∞
∑

n=1
‖Snx‖ < ∞ whenever x is a vector in X0. However, by the linearity of S,

it suffices for us to show
∞
∑

n=1
‖Sneσ(i)‖ < ∞ for any integer i. Since there is a

nonnegative integer n so that n + i is a positive integer and Sneσ(i) is a nonzero
multiple of eσ(n+i). Thus it suffices to show

(2.18)
∞

∑
n=1
‖Sneσ(i)‖ < ∞ for the case that the integer i > 1.

In that case, we have Seσ(i) = aeσ(i+1), and so by repeating the argument we get

‖Sneσ(i)‖ = an which leads to
∞
∑

n=1
‖Sneσ(i)‖ < ∞ by (2.2), completing the proof of

our claim.
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To finish the proof of our corollary, we note the weights of the shift U, as
defined in (2.11), are given by b and awjk+1

, which satisfy b > ‖T‖ > a‖T‖ >
awjk+1

> aδ. Thus ‖U‖ 6 b and the weights of U are greater than aδ.
Similarly for the shift B defined in (2.5), using (2.2) we see that its weights

a−1, 1, b−1wσ(i), satisfy b > a−1 > 1 > b−1‖T‖ > b−1wσ(i) > b−1δ. Thus ‖B‖ 6 b,
and the weights of B are greater than b−1δ, which makes the bilateral shift B
invertible. This finishes the proof of our corollary.

To conclude this section, we observe that Claim 4 in the proof of Corol-
lary 2.5 is established without using the hypothesis that the weight sequence of
T is bounded away from 0. Hence the exact same proof of Claim 4 can be applied
in the proof of Theorem 2.3 and show that the bilateral shift B in the factorization
T = UB given by Theorem 2.3 is indeed chaotic, mixing and frequently hyper-
cyclic.

3. ANOTHER FACTORIZATION FOR UNILATERAL WEIGHTED BACKWARD SHIFTS

After successfully factoring in the previous section a unilateral backward
shift T as T = UB, where U is a hypercyclic unilateral backward shift and B is a
hypercyclic bilateral shift, in this section we show that the order of the factoriza-
tion can be reversed.

THEOREM 3.1. Let 1 6 p < ∞. If T : `p → `p is a unilateral weighted backward
shift, then there exist a hypercyclic bilateral weighted shift B : `p → `p, and a hypercyclic
unilateral weighted backward shift U : `p → `p such that

T = BU.

Moreover, for any given positive ε, the shifts B, U can be chosen so that both norms
‖B‖, ‖U‖ are no larger than (1 + ε)max(1, ‖T‖).

Proof. The constructions of the desired shifts U, B are similar to those in the
proof of Theorem 2.3, but with a different twist. Starting the same way as in the
proof of Theorem 2.3, without loss of generality, by reordering the canonical basis
if necessary, assume T is given by

Tei =

{
0 if i = 0,
wiei−1 if i > 1.

where each wi satisfies 0 < wi 6 ‖T‖.
For any positive ε, select two positive numbers a, b for which

(3.1) b = (1 + ε)max{1, ‖T‖} and b−1 < a < 1.
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Next let j0 = 0 and inductively select a strictly increasing sequence {jk : j > 0} of
nonnegative even integers that satisfy the following two inequalities:

(3.2) jk+1 > 2jk + 4 and bjk+1/2 >
kbk

bjk/2akw1+j0 w1+j1 · · ·w1+jk−1

, for k > 1.

Using the sequence {jk : k > 0}, we construct the hypercyclic bilateral shift
B and a hypercyclic unilateral backward shift U such that T = BU, in the follow-
ing two separated steps.

Step I. Construction of the shift B. To define the bilateral shift B, use the same
bijection σ : Z→ Z+ giving (2.4) to rearrange the canonical basis as follows:

(3.3) . . . , e2+jk ,

missing ejk (k > 1)︷ ︸︸ ︷
e1+jk , e−1+jk , e−2+jk , . . . , e3, e2,

eσ(−1)︷︸︸︷
e1 ,

eσ(0)︷︸︸︷
e0 ,

eσ(1)︷︸︸︷
ej1 , ej2 , ej3 , . . .

That is, σ : Z → Z+ is given by the same formula as in Claim 1 of the proof of
Theorem 2.3:

(3.4) σ(i) =

{
ji if i > 0,
|i|+ k if (k + 1)− jk+1 6 i 6 (k− 1)− jk, and k > 0.

Define the bilateral shift B : `p → `p on {eσ(i) : i ∈ Z} by

(3.5) Beσ(i) =

{
a−1eσ(i−1) if i > 1,
b−1w1+σ(i−1)eσ(i−1) if i 6 0.

The weights of B satisfy

(3.6) b−1w1+σ(i−1) 6 b−1‖T‖ 6 (1 + ε)−1 < 1 < a−1 < b, (by (2.2)).

Therefore ‖B‖ < b, giving the desired upper bound for the norm of the shift B.
Furthermore by (3.6), B is hypercyclic by a direct application of Theorem 2.2.

Step II. Construction of the shift U. Moving on to defining the unilateral back-
ward shift U, we recall that the corresponding unilateral backward shift in the
proof of Theorem 2.3 is constructed by grouping the canonical basis {ei : i ∈ Z+}
into blocks in each of which all vectors ei with odd indices i are placed before
all vectors ei with even indices i; see (2.8). For the unilateral weighted shift
U : `p → `p that works for our current proof, we reverse the roles of the even
and odd indices.

To be precise, define a bijection ρ : Z+ → Z+ inductively for blocks of
integers [1 + jk, jk+1], where k > 0. We begin by keeping e0 in its original zeroth
position; that is, setting ρ(0) = 0. Then in the first step, we reorder the vectors
e1, e2, . . . , ej1 by placing all vectors ei with even indices i in [1, j1] = [1 + j0, j1]
before all vectors ei with odd indices i in [1 + j0, j1]. That is, we reorder the first
1 + j1 vectors in the canonical basis as

(3.7)

eρ(0)︷︸︸︷
e0 ,

ei with even indices i︷ ︸︸ ︷
e2, e4, . . . , e−2+j1 , ej1 ,

ei with odd indices i︷ ︸︸ ︷
e1, e3, . . . , e−3+j1 , e−1+j1 .
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Since ρ : Z+ → Z+ defines this reordering, we have ρ(1) = ρ(1 + j0) = 2 =
2 + j0, and furthermore, ρ(2) = 4, . . . , and lastly ρ(j1) = −1 + j1. Since there are
an equal number (j0 + j1)/2 of even and odd indices in [1 + j0, j1], it follows that

ρ
( j0 + j1

2

)
= j1 and ρ

( j0 + j1
2

+ 1
)
= 1 = 1 + j0.

Repeat this procedure for all vectors ei with indices i in the interval [1 +
j1, j2] in the second step, and then for all vectors ei with indices i in the interval
[1 + j2, j3] in the third step, and so on. For the general (k + 1)st step with k > 0,
we reorder the vectors ei with indices i in the interval [1 + jk, jk+1] as follows:

(3.8)
ei with even indices i︷ ︸︸ ︷

e2+jk , e4+jk , . . . , ejk+1
,

ei with odd indices i︷ ︸︸ ︷
e1+jk , e3+jk , . . . , e−1+jk+1

,︸ ︷︷ ︸
(k + 1)st step of the rearrangement

In particular, note that

(3.9) ρ(1 + jk) = 2 + jk, and ρ(jk+1) = −1 + jk+1,

and furthermore,

(3.10) ρ
( jk + jk+1

2

)
= jk+1, and ρ

( jk + jk+1
2

+ 1
)
= 1 + jk.

Summarizing the above computations, we provide the following formula
for the bijection ρ : Z+ → Z+, written in terms of even and odd values of ρ(i):

(3.11) ρ(i)=


0 if i = j0 = 0,
2m + jk if i = m + jk, with k > 0 and 1 6 m 6 jk+1−jk

2 ,
(2m−1)+ jk if i=m+

jk+1+jk
2 with k>0 and 16m6 jk+1−jk

2 .

Using the bijection ρ : Z+ → Z+, define the unilateral backward shift U :
`p → `p by

Ueρ(i) =


0 if i = 0,
aw1+jk eρ(i−1) if ρ(i) = 1 + jk for some k > 0,
beρ(i−1) if ρ(i) 6= 1 + jk for any k > 0.

(3.12)

Obviously ‖U‖ = b, because the weights of U satisfy aw1+jk 6 a‖T‖ < ‖T‖ < b,
which establishes the desired norm estimate for U.

Claim 5. The unilateral backward shift U is hypercyclic.

Proof of Claim 5. Set nk = (jk+1 + jk)/2 for each positive integer k. Note nk =
m + jk, where m = (jk+1 − jk)/2. Thus (3.11) gives ρ(nk) = jk+1. Hence it follows
from (3.11), or (3.8), that for integers i with 1 6 i 6 nk, we have ρ(i) = 1 + j`
for some integer `, precisely when i = 1 + (j`+1 + j`)/2, for ` = 0, 1, 2, . . . , k− 1.
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Thus ρ(i) = 1 + j` for exactly k values of `. Hence for each positive integer k, by
the definition of U in (3.12) we have

‖Unk eρ(nk)
‖ = ‖akw1+j0 w1+j1 · · ·w1+jk−1

b−k+nk e0‖

=
bjk+1/2bjk/2akw1+j0 · · ·w1+jk−1

bk

> k, (by (3.2)).

Therefore by a direct application of Theorem 2.1, the shift U is hypercyclic.

To complete the proof of Theorem 3.1, it remains to check the following
factorization.

Step III. To verify T = BU. Clearly from (3.12), BUeρ(0) = BUe0 = 0 = Teρ(0).
Thus in the rest of this step, it suffices to focus on showing BUeρ(i) = Teρ(i) =
wρ(i)e−1+ρ(i) for all positive integers i.

First, consider the case when ρ(i) = 1 + jk for some integer k > 0. By (3.10)
we get

i = 1 +
jk+1 + jk

2
and ρ(i− 1) = ρ

( jk+1 + jk
2

)
= jk+1.

Thus by (3.12),

(3.13) Ueρ(i) = aw1+jk eρ(i−1) = awρ(i)ejk+1
.

Now by (3.4), σ(k + 1) = jk+1 and σ(k) = jk = −1 + ρ(i). By the definition of B
in (3.5), we have

(3.14) Bejk+1
= Beσ(k+1) = a−1eσ(k) = a−1e−1+ρ(i).

Combining (3.13) and (3.14) yields

BUeρ(i) = wρ(i)e−1+ρ(i),

finishing the proof for the first case.
Second, consider the case when ρ(i) = 2 + jk for some integer k > 0. If

k = 0, then by (3.7), i = 1, ρ(i) = 2, and ρ(i − 1) = ρ(0) = 0. In addition, by
(3.12), (3.5), and (3.3), we have

BUeρ(1) = BUe2 = bBe0 = bBeσ(0) = w1+σ(−1)eσ(−1) = w2e1 = wρ(1)e−1+ρ(1).

Next suppose k > 1 and ρ(i) = 2+ jk. Hence by (3.9), we have i = 1+ jk and also
ρ(i− 1) = ρ(jk) = −1 + jk. Thus by (3.12),

(3.15) Ueρ(i) = beρ(i−1) = be−1+jk .

Now if σ(`) = −1 + jk for some negative integer `, by the reordering given in
(3.3) we get σ(`− 1) = 1 + jk. Thus by (3.5),

Be−1+jk =Beσ(`)=b−1w1+σ(`−1)eσ(`−1)=b−1w2+jk e1+jk =b−1wρ(i)e−1+ρ(i).(3.16)

Combining (3.15) and (3.16) yields

BUeρ(i) = wρ(i)e−1+ρ(i),
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finishing the proof for the second case.
Lastly, consider the case when ρ(i) 6= 1+ jk and ρ(i) 6= 2+ jk, for any integer

k > 0. Thus by (3.12),

(3.17) Ueρ(i) = beρ(i−1).

From the reordering given by (3.8), we see that ρ(i− 1) = −2 + ρ(i), and hence
ρ(i − 1) 6= −1 + jk or jk. It follows from the reordering given in (3.3) that if
σ(`) = ρ(i− 1) then ` 6 −1 and σ(`− 1) 6= 1 + jk, and thus σ(`− 1) = 1 + σ(`).
Consequently by (3.5),

Beρ(i−1) = Beσ(`) = b−1w1+σ(`−1)eσ(`−1)(3.18)

= b−1w2+σ(`)e1+σ(`) = b−1wρ(i)e−1+ρ(i).

Combining (3.17) and (3.18) yields BUeρ(i) = wρ(i)e−1+ρ(i), which completes
Step III and concludes the proof of our theorem.

Parallel to Corollary 2.5, we can show that the two shifts B, U in the conclu-
sion of Theorem 3.1 can have additional properties if the weights of the unilateral
backward shift T are bounded away from zero.

COROLLARY 3.2. Let 1 6 p < ∞. Suppose T : `p → `p is a unilateral weighted
backward shift, and B, U : `p → `p are two shifts that satisfy the conclusion of Theo-
rem 3.1. If the weight sequence of T is bounded away from 0, then both B and U can be
selected to be chaotic, mixing, and frequently hypercyclic, with weight sequences bounded
away from 0. In particular, B is invertible.

Proof. Without loss of generality, by reordering the canonical basis if neces-
sary, let T be given by Te0 = 0 and Tei = wiei−1 whenever i > 1. Let δ be a real
scalar such that 0 < δ < wi 6 ‖T‖, for each integer i > 1.

For any given positive ε, select the same positive scalars a, b that satisfy (3.1)
as in the proof of Theorem 3.1. Next select a real scalar C such that

(3.19) C > max{1, a−1δ−1}.

In the rest of the proof, we follow all other notations and definitions in the proof
of Theorem 3.1, except that we require the sequence {jk} of nonnegative even
integers to satisfy (3.2), along with the following additional condition:

(3.20) bjk >
(

1 +
ε

2

)jk
Ckbk.

Such a selection of {jk} is possible because b > 1 + ε.
To prove our corollary, we show that the shifts B, U given by (3.5) and (3.12)

satisfy the frequently hypercyclicity criterion in Theorem 2.4. Set X0 in the theo-
rem to be X0 = span {ei : i ∈ Z+}.
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Claim 6. Define a map R : X0 → X0 by taking

Reρ(i) =

{
a−1w−1

1+jk
eρ(i+1) if ρ(i + 1) = 1 + jk for some k > 0,

b−1eρ(i+1) if ρ(i + 1) 6= 1 + jk for any k > 0,

and extending linearly to X0. Then the shifts U and R satisfy conditions (i), (ii),
(iii) in Theorem 2.4

Proof of Claim 6. For the unilateral backward shift U, and any positive inte-
ger n, we have Un+1eρ(n) = 0. Hence U satisfies condition (i).

It is easy to use (3.12) to check that UReρ(i) = eρ(i), and hence by linearity
URx = x whenever x ∈ X0, and so condition (iii) is satisfied.

To show R satisfies condition (ii), we note that each eρ(n) is a nonzero multi-
ple of Rneρ(0). Hence it suffices to check that

∞

∑
n=1
‖Rneρ(0)‖ < ∞.

To estimate ‖Rneρ(0)‖ in the infinite sum, note from (3.10) that ρ(i+ 1) = 1+
j` for some integer ` > 0, precisely when i = (j` + j`+1)/2. Thus the estimation
of ‖Rneρ(0)‖ using the definition of R depends on the number of integers ` so that
(j` + j`+1)/2 6 n. For that reason, we first calculate Rmeρ(j`), where ` > 0 and
0 6 m < j`+1 − j`. Note that from (3.11), ρ(j`) = j` − 1. Thus by the definition of
R and (3.8),

(3.21) Rmeρ(j`) =

{
b−meρ(m+j`) if 0 6 m 6 j`+1−j`

2 ,

b−m+1a−1w−1
1+j`

eρ(m+j`) if j`+1−j`
2 + 1 6 m 6 j`+1 − j`.

Use (3.21) repeatedly for integers ` = 0, 1, . . . , k− 1, and take m = j`+1 − j`
corresponding to each value of `. We get

Rjk eρ(0)=Rjk−j1(Rj1−j0 eρ(j0)) = b−(j1−j0)+1a−1w−1
1+j0

Rjk−j1 eρ(j1)

=b1−j1 a−1w−1
1+j0

Rjk−j2(Rj2−j1 eρ(j1))=b2−j2 a−2w−1
1+j0

w−1
1+j1

Rjk−j2 eρ(j2)

= · · · = bk−jk a−kw−1
1+j0

w−1
1+j1
· · ·w−1

1+jk−1
eρ(jk).(3.22)

Using (3.22), we proceed to estimate Rneρ(0) for any integer n > 1. We first
obtain the integer k > 0 such that jk 6 n < jk+1, and so by (3.22),

‖Rneρ(0)‖ = ‖Rn−jk Rjk eρ(0)‖ = b−jk+ka−kw−1
1+j0

w−1
1+j1
· · ·w−1

1+jk−1
‖Rn−jk eρ(jk)‖

6 b−jk bkCk‖Rn−jk eρ(jk)‖, (by (3.19))

<
(

1 +
ε

2

)−jk
‖Rn−jk eρ(jk)‖, (by (3.20))

6 bC
(

1 +
ε

2

)−jk
(1 + ε)−n+jk , (by (3.21), (3.19) and (3.1))
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6 bC
(

1 +
ε

2

)−n
.

Hence we have
∞

∑
n=1
‖Rneρ(0)‖ < ∞,

which concludes the proof of Claim 6.

We now proceed to show B satisfies the hypotheses in Theorem 2.4.
Claim 7. Define S : `p → `p by taking

Seσ(i) =

{
aeσ(i+1) if i > 0,
bw−1

1+σ(i)eσ(i+1) if i 6 −1,

and extending linearly to X0. Then the shifts B and S satisfy conditions (i), (ii),
and (iii) of Theorem 2.4.

Proof of Claim 7. Clearly it follows from (3.5) that BSeσ(i) = eσ(i) for all in-
tegers i and hence by linearity BSx = x whenever x is in X0, showing condition
(iii) of Theorem 2.4.

To show S satisfies condition (ii), we observe that if n > 0 then Sneσ(0) is a
nonzero multiple of eσ(n). Furthermore if n < 0, then eσ(0) is a nonzero multiple

of S|n|eσ(n). Thus to show
∞
∑

n=1
‖Snx‖ < ∞ for each x ∈ X0, it suffices to show,

by linearity and the triangle inequality, that
∞
∑

n=1
‖Sneσ(0)‖ < ∞. This is obvious

because it directly follows from the definition of S that ‖Sneσ(0)‖ = an.
To finish the proof of our claim, it remains to show B satisfies condition (i).

For the exact same reason as for S above, it suffices to show that
∞
∑

n=1
‖Bneσ(0)‖ <

∞. Hence it follows from the definition of B in (3.5) that

‖Bneσ(0)‖ = b−nw1+σ(−1)w1+σ(−2) · · ·w1+σ(−n) 6
(‖T‖

b

)n
6 (1 + ε)−n,

by (3.1). Hence we have established Claim 7.

To finish the proof of our corollary, we remark that the weights of the shift
B, as defined in (3.5), are given in the form of a−1 and b−1w1+σ(i−1), which by
(3.1) satisfy b > a−1 > 1 > b−1‖T‖ > b−1w1+σ(i−1) > b−1δ. Thus ‖B‖ 6 b, and
the weights of B are greater than b−1δ. Since the shift B is bilateral, it is invertible.

Similarly for the shift U defined in (3.12), its weights are in the form of b
and aw1+jk , which satisfy b > ‖T‖ > a‖T‖ > aw1+jk > aδ. Thus ‖U‖ 6 b and the
weights of U are greater than aδ.

We remark that by Corollary 3.2, we have T = BU and B is an invertible
hypercyclic bilateral shift, and so B−1T = U. Note that B−1 is hypercyclic because
B is hypercyclic by a result of Kitai ([11], Corollary 2.2). Thus there is a hypercyclic
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bilateral shift A = B−1 such that AT = U, which is a mixing, chaotic, frequently
hypercyclic unilateral backward shift. Similarly we can apply the exact same
argument to the result of Corollary 2.5 and summarize as follows.

COROLLARY 3.3. Let 1 6 p < ∞, Suppose T : `p → `p is a unilateral weighted
backward shift whose weight sequence is bounded away from 0. Then there exist invertible
hypercyclic bilateral weighted shifts A1 and A2 such that A1T and TA2 are unilateral
weighted backward shifts which are mixing, chaotic and frequently hypercyclic.

To conclude our discussion in this section, we remark the pair of factors U
and B in the factorization given by Theorem 2.3 must be different from the pair
given by Theorem 3.1, because any such pair do not commute. In other words,
if there are a unilateral backward shift U and a bilateral shift B such that UB
is a unilateral backward shift T, then T 6= BU. To prove that, without loss of
generality, by relabeling the canonical basis {ei : i ∈ Z+} if necessary, assume

Tei =

{
0 if i = 0,
wiei−1 if i > 1,

where 0 < wi 6 ‖T‖ for each integer i > 1. By way of contradiction, suppose
there exist a unilateral backward shift U and a bilateral shift B such that T =
UB = BU.

We now show that the unilateral backward shift U : `p → `p is given by

(3.23) Uei =

{
0 if i = 0,
uiei−1 if i > 1,

where 0 < ui 6 ‖U‖ for each integer i > 1. For that, we observe that there is a
bijection ρ : Z+ → Z+ and a bounded positive weight sequence {ui : i ∈ Z+} for
which Ueρ(0) = 0 and Ueρ(i) = uρ(i)eρ(i−1) for all positive integers i. To this end,
we show that ρ(i) = i.

Since U and B commute, for each positive integer i we have 0 = Tiei−1 =
BiUiei−1. Since the bilateral shift B is one-to-one, we have Uiei−1 = 0. In other
words

ei−1 ∈ {eρ(0), eρ(1), . . . , eρ(i−1)}, whenever i > 1.

Putting i = 1, 2, 3, . . . in respective order, we get ρ(i) = i, establishing (3.23).
It follows from (3.23) that if i > 0 then

Bei = u−1
i+1BUei+1 = u−1

i+1Tei+1 = u−1
i+1wi+1ei,

which contradicts that B is a bilateral shift.

4. FINAL REMARKS

In this last section we provide a few remarks on future research directions.
First, Theorem 2.3 and Theorem 3.1 naturally lead to the question whether we
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can factor a bilateral shift T : `p → `p as the product of two hypercyclic shifts. If
one of the two hypercyclic shifts is a unilateral backward shift, then their product
must have a nontrivial kernel, which is in the form of span{ei} for some vector
ei of the canonical basis, and hence the product cannot be the bilateral shift T.
Nevertheless, it has been proved in [9] that every bilateral shift T is the product
of two hypercyclic bilateral shifts. Indeed, if T is invertible, then both bilateral
shifts can also be selected to be invertible.

Second, there are many applications for operator decompositions such as
the polar decomposition of a Hilbert space operator, the LU decomposition for
a matrix and Cholesky decomposition for a Hermitian positive definite matrix.
Since the hypercyclic factorizations given in Theorem 2.3 and Theorem 3.1 are
examples of operator decompositions, we raise the following question.

QUESTION 4.1. Are there applications of the factorization in Theorem 2.3 or
Theorem 3.1?

Third, we observe that in both proofs of Theorem 2.3 and Theorem 3.1, the
canonical basis is carefully rearranged to define the hypercyclic unilateral back-
ward shift U and the hypercyclic bilateral shift B. In the next set of four questions,
we ask whether we can make further arrangements on the canonical basis to al-
low the two shifts U and B to have other properties often exhibited in hypercyclic
operators.

We begin with the property of having a hypercyclic subspace, which by defi-
nition, is an infinite dimensional, closed subspace of `p that consists entirely, ex-
cept for the zero vector, of hypercyclic vectors. It was proved by León-Saavedra
and Montes-Rodríguez [12] that every hypercyclic bilateral shift has a hypercyclic
subspace. In addition, they also proved that for a unilateral backward shift U de-
fined by (1.1), U has a hypercyclic subspace if and only if

sup
n

w1 · · ·wn = ∞, and sup
n

(
inf

k
wk+1wk+2 · · ·wk+n

)1/n
6 1.

A subspace is said to be a common hypercyclic subspace of a family of op-
erators, if it is a hypercyclic subspace for each operator in the family. With the
techniques established by Aron, Bès, León and Peris [1], and Bayart [2] for show-
ing the existence of a common hypercyclic subspace, one may ask the following
question.

QUESTION 4.2. Can the two hypercyclic shifts U and B in Theorem 2.3 or
Theorem 3.1 be chosen to have a common hypercyclic subspace?

We now turn our attention to the next property of dual hypercyclicity. By
definition, a bounded linear operator T : X → X on a separable, infinite dimen-
sional Banach space X with a separable dual space X∗ is said to be dual hypercyclic
if both T and its adjoint T∗ are hypercyclic. Indeed whenever X∗ is separable,
Salas [16] proved that there is a dual hypercyclic operator T on X. Back to the
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setting of our present paper, the adjoint of a unilateral backward shift is a unilat-
eral forward shift, which cannot be hypercyclic. In the case when the underlying
Banach sequence space is `p with p > 1, its dual space is separable. We may try
to make the bilateral shift B in Theorem 2.3 and Theorem 3.1 dual hypercyclic,
by modifying the definitions of {jk} in (2.3) and (3.2) and arrange some of the
vectors ejk on the left hand side of e0 in (2.4) and (3.3). To this end, the techniques
of Chan [7] or Salas [14] may be helpful in producing a dual hypercyclic bilateral
shift B.

For the case of `1, its dual space `∞ is not separable, and so no operator on
the dual space `∞ can be hypercyclic. In this case, with the weak* topology, a shift
T on `∞ can be hypercyclic; that is, there is a vector x in `∞ so that {x, Tx, T2x, . . .}
is weak-star dense in `∞. For the details of weak-star hypercyclicity of a shift on
`∞, one may refer to the work of Bès, Chan and Sanders [4]. To summarize the
above two cases of different values of p, we raise the following question.

QUESTION 4.3. On the sequence space `p with 1 < p < ∞, can the bilateral
shift B in Theorem 2.3 or Theorem 3.1 be chosen to be dual hypercyclic? When
p = 1, can the hypercyclic bilateral shift B in Theorem 2.3 or Theorem 3.1 be
chosen so that its adjoint B∗ : `∞ → `∞ is weak-star hypercyclic?

Suppose Question 4.3 has a positive answer for the bilateral shift B in The-
orem 2.3 for the case when 1 < p < ∞. Since the adjoint of a unilateral forward
shift F : `p → `p is a unilateral backward shift F∗, we can write by Theorem 2.3

F∗ = UB,

where U is a hypercyclic unilateral backward shift, and B is a dual hypercyclic
bilateral shift. Then by taking the adjoint on both sides of the equation, we obtain

F = B∗U∗.

Thus we conclude that every unilateral forward shift is the product of a dual
hypercyclic bilateral shift and a unilateral forward shift. Similarly, if Question 4.3
has a positive answer for the shift B in Theorem 3.1, or for the case p = 1, we
have an analogous conclusion.

Moving on to the next property of hypercyclicity relative to the weak topol-
ogy of a Banach space, we say that a bounded linear operator T : X → X on a
separable, infinite dimensional Banach space X is weakly hypercyclic if there is a
vector x ∈ X whose orbit {x, Tx, T2x, . . .} is weakly dense in X. Of course, every
hypercyclic operator is a weakly hypercyclic operator, but it was shown by Chan
and Sanders [8] that there exists a bilateral shift that is weakly hypercyclic but
fails to be hypercyclic. Thus we have the following question.

QUESTION 4.4. Can the hypercyclic shift B in Theorem 2.3 or Theorem 3.1
be chosen to be weakly hypercyclic but not hypercyclic?
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We now switch our focus to disjoint hypercyclicity for a finite number of
bounded linear operators T1, T2, . . . , TN with N > 2 on a separable, infinite di-
mensional Banach space X. We say the operators T1, T2, . . . , TN are disjoint hy-
percyclic if there exists a vector x ∈ X for which the N-tuple (x, x, . . . , x) is a
hypercyclic vector for the direct sum operator

T1 ⊕ T2 ⊕ · · · ⊕ TN .

For disjoint hypercyclic operators, the dynamics exhibited in certain orbits are so
distinct that the same power for each of the operators T1, T2, . . . , TN can be used to
approximate completely different vectors. Disjoint hypercyclicity for shifts was
well-studied by Bès and Peris in [6] and by Bès, Martin and Sanders in [5]. It
naturally follows to ask the following question.

QUESTION 4.5. Since the factorization T = UB in Theorem 2.3 is not unique
for a unilateral backward shift T, do there exist two factorizations T = U1B1 =
U2B2 such that U1, U2 are disjoint hypercyclic and B1, B2 are disjoint hypercyclic?
A similar question can be asked for the factorization T = BU in Theorem 3.1.

A positive answer to Question 4.5 shows that different hypercyclic shift fac-
torizations of the same shift T may exhibit drastically different dynamics.

Lastly, we raise two questions about operators that shift vectors outside the
original canonical basis {ei : i ∈ Z+} of `p, in relation to the work of Grivaux [10]
who showed that every operator T on a separable, infinite dimensional Hilbert
space is the sum of two hypercyclic operators. In light of Theorem 2.3 and Theo-
rem 3.1, we wonder whether we can additively decompose a unilateral backward
shift T, as the sum of a hypercyclic unilateral backward shift U and a hypercyclic
bilateral shift B. It is easy to see that such an additive decomposition does not
work if we strictly follow the definitions in (1.1) and (1.3), because if we have
Tei = wiei−1, then it follows that Uei and Bei are in span{ei−1}. Thus it cannot
happen that B is a bilateral shift and U is a unilateral backward shift at the same
time. However, we can consider another basis { f j : j ∈ Z} of `p, for instance
each vector f j in span {e0, e1, e2, . . .}, so that B is of the form B f j = bj f j−1 for some
positive scalar bj. In other words, B is a bilateral shift on a basis that is different
from the original canonical basis {ei : i ∈ Z+}. Similarly, we can also have the
unilateral backward shift on a different basis as well.

QUESTION 4.6. For any unilateral backward shift T : `p → `p given by
Te0 = 0 and Tei = wiei−1 for i > 1, do there exist a hypercyclic unilateral back-
ward shift U and a hypercyclic bilateral shift B on bases of `p that are different
from the original canonical basis {ei : i ∈ Z+} such that T = U + B?

Similarly, if we allow to have shifts on different bases of `p, we also have
the following question.

QUESTION 4.7. For any unilateral backward shift T : `p → `p given by
Te0 = 0 and Tei = wiei−1 for i > 1, do there exist hypercyclic unilateral backward
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shifts U1 and U2 on bases of `p that are different from the original canonical basis
{ei : i > 0} such that T = U1 + U2?

To conclude this section, we remark that we cannot write the shift T in Ques-
tion 4.7 as the sum T = U1 + U2 of two hypercyclic unilateral backward shifts
U1, U2, if we strictly follow the definition (1.1) without using a different basis
{ fi : i > 0}. This is easy to see because if Tei = wiei−1 for some positive weight wi
where i > 1, then it follows that for such U1 and U2, we must have U1ei = u1,iei−1
and U2ei = u2,iei−1 for some weights u1,i, u2,i > 0. Hence,

(4.1) wi = u1,i + u2,i.

Thus if wi < 1 for all positive integers i, then both u1,i, u2,i < 1, and so U1 and
U2 cannot be hypercyclic. Despite the above nonhypercyclicity of U1 and U2, if
we allow u1,i and u2,i to be negative weights, then we can modify Theorem 2.1
to work for complex weights so (4.1) presents no obstacle for U1 and U2 to be
hypercyclic operators.
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