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ABSTRACT. This paper is concerned with polynomially generated submod-
ules of the Hardy module H2(D∞

2 ). Since the polynomial ring P∞ in infinitely
many variables is not Noetherian, some standard tricks for finitely many vari-
ables fail to work. Therefore, we need to introduce new techniques to the
situation of infinitely many variables. It is shown that some classical results of
H2(Dn) remain valid for infinitely many variables. However, some new phe-
nomena indicate that the Hardy module H2(D∞

2 ) diverges considerably from
the case in finitely many variables.
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1. INTRODUCTION

To begin with, we introduce some notations. Let D denote the unit disk in
the complex plane C, and as in [18], set C∞ = {(λ1, λ2, . . .) : λn ∈ C for every n}.
Denote by D∞

2 the Hilbert’s multidisk; that is,

D∞
2 =

{
λ = (λn) ∈ C∞ :

∞

∑
n=1
|λn|2 < +∞ and |λn| < 1 for each n

}
.

We write z = (z1, z2, . . .), and let Z∞
+ denote the set of all finitely supported se-

quences of non-negative integers, that is, Z∞
+ =

∞⋃
n=1

Zn
+, which is an additive

semigroup. For each multi-index α = (α1, . . . , αn, 0, . . .) in Z∞
+ , define zα =

n
∏

k=1
zαk

k .

Denote by H2(D∞
2 ) the Hardy space over the Hilbert multidisk D∞

2 consisting of
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formal power series f (z) = ∑
α∈Z∞

+

cαzα satisfying

‖ f ‖2 = ∑
α∈Z∞

+

|cα|2 < +∞.

To simplify notation, rewrite H2(D∞
2 ) = H2

∞. The space H2
∞ is a reproducing ker-

nel Hilbert space on D∞
2 with the kernel Kλ(z) =

∞
∏

n=1
1/(1− λnzn) for λ = (λn) ∈

D∞
2 , where the infinite product

∞
∏

n=1
1/(1− λnzn) converges because {λnzn} is

a sequence in l1. This space was extensively used in the study of Dirichlet se-
ries, and the Riesz basis problem and the completeness problem of the standard
Lebesgue space L2(0, 1) [15], [18]. Also as is shown in [18], there is a close con-
nection between cyclic vectors of H2

∞ and the Riemann’s hypothesis. We refer the
reader to the references [3], [4], [5], [6], [7], [19] for more information.

In this paper, we are mainly concerned with invariant subspaces of H2
∞. A

closed subspace M is called an invariant subspace of H2
∞ if zi M ⊆ M for i =

1, 2, . . .. This is equivalent to pM ⊆ M for each polynomial p. A cyclic vector f
of H2

∞ is such that [ f ] = H2
∞, where [ f ] denotes the invariant subspace generated

by f . As indicated by Helson [16], such invariant subspaces are not yet well
understood. Building on ideas of Beurling and Bohr [7], [8], below we briefly
describe the background of the research on invariant subspaces and cyclic vectors
of the space H2

∞.
Let H be a separable Hilbert space with a given orthonormal basis

{e1, e2, . . .}. For each natural number n, define an isometric operator on H by
Tnek = enk, k = 1, 2, . . . . In essence, the operator semigroup (Tn) is independent
of choices of orthonormal bases of H. Then the map n 7→ Tn is a representation
of the multiplicative semigroup of natural numbers N on H. We are interested
in invariant subspaces and cyclic vectors of the semigroup (Tn). By an invari-
ant subspace of (Tn), we mean a closed subspace M ⊆ H such that Tn M ⊆ M
for each natural number n, and a cyclic vector h is such that [h] = H, where
[h] = span {Tnh : n ∈ N}. Set p1 = 2, p2 = 3, p3 = 5, . . . to be consecutive prime
numbers. For n ∈ N, by applying the fundamental theorem of arithmetic, it fol-
lows that there exists a unique decomposition n = pk1

1 pk2
2 · · · p

km
m . Define the map

α : N → Z∞
+ by α(n) = (k1, k2, . . . , km, 0, . . .), then α is a semigroup isomorphism

from N onto Z∞
+ . For h = ∑

n
anen, the Bohr transform ([8], [15]) is

B : H → H2
∞, Bh(z) = ∑

n
anzα(n),

which is a unitary transform. It is easy to verify that

BTnB−1 f (z) = zα(n) f (z), f ∈ H2
∞,
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and hence BLat(Tn) = Lat(Mzn), that is, M is an invariant subspace of (Tn) if and
only if BM is an invariant subspace of H2

∞. In particular, a vector h ∈ H is cyclic
for the semigroup (Tn) if and only if Bh is cyclic in H2

∞.
Let us mention three well known examples to illuminate the significance

of the research on invariant subspaces and cyclic vectors of the space H2
∞. The

first is the standard Lebesgue space L2(0, 1). For each φ in L2(0, 1), φ is consid-
ered as a function on the whole real line by extending φ to an odd periodic func-
tion of period 2. The space L2(0, 1) has a canonical orthonormal basis {φk(x) =√

2 sin(kπx) : k ∈ N}. Then the operator Tn defined above is a dilation oper-
ator Dn : L2(0, 1) → L2(0, 1) defined by Dnφ(x) = φ(nx). As presented in [7],
Beurling’s completeness problem asks for which functions φ ∈ L2(0, 1), the di-
lation system {φ(nx)}n>1 is a complete sequence in L2(0, 1), that is, the linear
span of {φ(nx)}n>1 is dense in L2(0, 1). As mentioned above, this is equivalent
to the characterization of cyclic vectors of H2

∞. A problem closely related to the
Beurling’s completeness problem, is the Riesz basis problem of L2(0, 1): for which
functions φ ∈ L2(0, 1), the dilation system {φ(nx)}n>1 is a Riesz basis of L2(0, 1)
(an orthonormal basis with respect to an equivalent norm). This problem was
discussed in [15] in great detail, and has a complete answer. Translated in the
language of H2

∞, the answer reads as follows: the dilation system {φ(nx)}n>1 is
a Riesz basis of L2(0, 1) if and only if Bφ is an invertible multiplier of H2

∞.
The second example is the case of Dirichlet series. A Dirichlet series is a

formal series f (s) =
∞
∑

n=1
ann−s involving a complex variable s. With the norm of

‖ f ‖ =
(

∑
n
|an|2

)1/2
< ∞,

such Dirichlet series form, in a natural way, a Hilbert space of analytic functions
on the half-plane Rs > 1/2, and denoted by H. Note that the space H has a
canonical orthonormal basis {en = n−s : n = 1, 2, . . .}. For each natural number
m, define an isometric operator on H by Mmek = emk, k = 1, 2, . . . . Then for a

function f (s) =
∞
∑

n=1
ann−s ∈ H, Mm f (s) = m−s f (s) for m = 1, 2, . . .. This says

that invariant subspaces of (Mm) are just those for multipliers of H. Picking an
s ∈ C with Rs > 1/2, thenMs = { f ∈ H : f (s) = 0} is an invariant subspace
for multipliers with codimension 1. By the Bohr transform, BMs is an invariant
subspace for H2

∞ with codimension 1. By applying Theorem 3.2 of this paper, we
show that this invariant subspace is the closure of a maximal ideal of P∞ with
its zero point in D∞

2 . This implies that for φ ∈ H, if Bφ has no zero point in D∞
2 ,

then φ has necessarily no zero point in the half-plane Rs > 1/2. This helps us
to study which Dirichlet series it have no zero point in the half-plane Rs > 1/2.
Some examples are presented in Section 3.

The third is the Hardy space H2(D) on the unit disk. Set

H2
0 = { f ∈ H2(D) : f̂ (0) = f (0) = 0},
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with a canonical orthonormal basis {z, z2, . . .}. For each natural number n, as in
[18], define a power dilation operator on H2

0(D) by Pn f (z) = f (zn). The study
of invariant subspaces and cyclic vectors of the semigroup (Pn) is related to the
zeros of the Riemann zeta function, see pp. 1605–1608 of [18]. Therefore, the
characterization of invariant subspaces and cyclic vectors of the semigroup (Pn)
is interesting and challenging in itself.

We now come back to the situation of invariant subspaces of H2
∞. Intuitively,

the study of invariant subspaces of H2
∞ is analogous to the situation of the Hardy

space H2(Dn). In the past forty years, the theory of Hilbert modules developed
by Douglas and Paulsen [10] has provided some useful methods to approach the
study of invariant subspaces of the Hardy space H2(Dn). Set Pn = C[z1, . . . , zn],
the polynomial ring of n-complex variables. Following [11], let X be a repro-
ducing Banach space on some domain Ω in Cn, and we call X a reproducing
Pn-module on Ω if p · X is contained in X for every p ∈ Pn. Then H2(Dn) is a
reproducing Pn-module on Dn, where the module action is defined by multipli-
cations by polynomials, and a submodule of H2(Dn) is just a closed subspace in-
variant under multiplications by polynomials. The submodules of H2(Dn) stud-
ied in this context were the ones that are the closures of ideals of polynomials.
The techniques involved come mainly from commutative algebra and algebraic
geometry. For an ideal I of Pn, we write [I ] for the closure of I in H2(Dn). Then
[I ] is a finitely generated submodule of H2(Dn) since Pn is a Noetherian ring [2],
[11]. The ring Pn has a natural topology induced by the norm of H2(Dn). Then
an ideal I is closed in this topology if and only if [I ]∩Pn = I . Then these closed
ideals can be put in one-to-one correspondence with the submodules generated
by them, and hence they can be used to “label” these submodules. It follows that
the study of these submodules reduces to the characterization for closed ideals.
Along this line, a remarkable result was obtained by Douglas, Paulsen, Sah and
Yan [11]. They proved the following theorem.

THEOREM 1.1. If each algebraic component of the zero variety Z(I) of I has a
nonempty intersection with Dn, then I is closed.

Let us mention that in their paper the authors called these ideals contracted.
Douglas and Paulsen conjectured that the opposite direction is also true [10]. For
n = 2, Gelca gave an affirmative answer to the Douglas–Paulsen’s conjecture [9],
[12]. However, it remains unknown whether this holds in general. The above
result indicates the study of closedness of ideals is closely connected to geometry
of zero varieties of ideals. When Z(I) is finite and lies in Dn, this reduces to
a remarkable algebraic reduction theorem for finite codimensional submodules
studied in [1] by Ahern and Clark. This theorem is the following one.

THEOREM 1.2. Suppose M is a submodule of H2(Dn) of finite codimension. Then
M ∩ Pn is a closed ideal of the ring Pn, and

(i) M ∩ Pn is dense in M;
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(ii) dim Pn/M ∩ Pn = dim H2(Dn)/M;
(iii) Z(M ∩ Pn) is finite and lies in Dn.

Conversely, if I is an ideal of the polynomial ring Pn, and Z(I) ⊆ Dn, then the ideal I
is closed, and dim Pn/I = dim H2(Dn)/[I ] < ∞.

In this paper we partially generalize the above stated results to the situation

of submodules of H2
∞. Putting P∞ =

∞⋃
n=1
Pn, then P∞ is a polynomial ring in in-

finitely many variables for which each polynomial only depends on finitely many
variables. Then the Hardy space H2

∞ is a reproducing P∞-module on D∞
2 . It is

shown that the Ahern–Clark Theorem 1.2 remains true for a finite codimensional
submodule M of H2

∞. However, in general the latter part of the Ahern–Clark the-
orem is not valid in the case of infinitely many variables. Since the polynomial
ring P∞ is not Noetherian, some rather standard tricks in dealing with submod-
ules of finitely many variables fail to work. Therefore, we need to introduce some
new techniques in commutative algebra for the study of submodules in infinitely
many variables. By applying the Hilbert Nullstellensatz in infinitely many vari-
ables, one obtains that every ideal of P∞ with finitely many zeros can be uniquely
decomposed as a finite intersection of primary ideals for which each has exactly
one zero point. This enables us to characterize closedness and density of those
ideals with finitely many zeros in the topology of H2

∞. Applying the characteris-
tic space technique, we establish an inequality to link multiplicities of zeros and
codimensions of submodules.

This paper is arranged as follows. Section 2 provides some preliminaries
for the commutative algebra in infinitely many variables. Section 3 discusses the
version of the Ahern–Clark theorem in infinitely many variables. Some examples
are presented to show that the case of H2

∞ diverges considerably from the situa-
tion of finitely many variables. This section also establishes an inequality to link
multiplicities of zeros and codimensions of submodules. Section 4 considers the
closedness and density of a class of ideals of P∞.

2. SOME PRELIMINARIES FOR THE POLYNOMIAL RING IN INFINITELY MANY VARIABLES

This section establishes some preliminaries for the commutative algebra in
infinitely many variables, especially for primary ideals and radical ideals for P∞,
the ring of polynomials in infinitely many variables.

It is well known that for a positive integer n each maximal ideal m of Pn
is generated by z1 − µ1, . . . , zn − µn, where µ1, . . . , µn are complex numbers (de-
pending on m). For λ ∈ C∞, denote by Mλ the ideal of all polynomials that
vanish at λ. The following proposition is a consequence of the main result of
[17]. For completeness, we present a direct proof which applies a well known
argument.
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PROPOSITION 2.1. Suppose I is a proper ideal of P∞. The following are equiva-
lent:

(i) I is maximal;
(ii) dim P∞/I = 1;

(iii) there exists some λ = (λ1, λ2, . . .) ∈ C∞ such that I = Mλ; that is, I is
generated by {zn − λn : n > 1} .

Proof. (i)⇒ (ii) Denote by K the quotient ring P∞/I of P∞ modulo I . Then
K is an extension field of C. To prove the field extension K/C is algebraic, assume,
on the contrary, that there exists a transcendental element t in K over C. Then
{1/(t− a)}a∈C are linearly independent, which implies dimC K > ℵ1, where
dimC denotes the algebraic dimension of a complex vector space over C. On the
other hand, dimC K 6 dimC P∞ = ℵ0, a contradiction. Thus, K/C is algebraic.
Since C is algebraically closed, we have K = C.

(ii)⇒ (iii) follows directly from P∞ = I +C.
(iii) ⇒ (i) For each polynomial p in P∞, we have p− p(λ) ∈ I . Thus I is

maximal.

By Zorn’s lemma, each proper ideal is contained in a maximal ideal. Then
Proposition 2.1 immediately gives the Hilbert Nullstellensatz for infinitely many
variables.

COROLLARY 2.2. For each proper ideal I of P∞, Z(I) is nonempty.

For an ideal I , its radical ideal r(I) is defined to be the ideal of all polyno-
mials p such that pk ∈ I for some positive integer k [2]. The following proposition
comes from [17].

PROPOSITION 2.3. For an ideal I of P∞, we have r(I)={p∈P∞ : p|Z(I)=0}.
Following the definition in [2], an ideal I of P∞ is called primary if for any

two polynomials p and q, the conditions pq ∈ I and p 6∈ I imply the existence
of an integer k such that qk ∈ I . In this case, I is called r(I)-primary. When I is
primary, its radical ideal r(I) is prime, i.e., if pq ∈ r(I), then either p is in r(I),
or q is in r(I).

Recall that Pn is a Noetherian ring, and the Lasker–Noether decomposition
theorem states that each ideal of Pn admits a finite primary decomposition [24].
However, in general this is not true for P∞ (Example 4.8). The following shows
that every ideal of P∞ with finitely many zeros has a finite primary decomposi-
tion.

PROPOSITION 2.4. Suppose I is an ideal of P∞ with finitely many zeros λ(1),
. . . , λ(k). Then I has a unique primary decomposition

I =
k⋂

i=1

p(i),
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where p(i) are primary ideals satisfying r(p(i)) =Mλ(i) .

Proof. By Proposition 2.3,

r(I) = {p ∈ P∞ : p(λ(i)) = 0, i = 1, . . . , k} =
k⋂

i=1

Mλ(i) .

For each positive integer n, put m(i)
n = {p ∈ Pn : p(λ(i)

1 , . . . , λ
(i)
n ) = 0} and set

In = I ∩ Pn, an ideal of Pn. Then

rn(In) = r(I) ∩ Pn =
( k⋂

i=1

Mλ(i)

)
∩ Pn =

k⋂
i=1

(Mλ(i) ∩ Pn) =
k⋂

i=1

m
(i)
n ,

where rn(In) is the radical ideal of In in Pn. Let N be the minimal integer such
that

(λ
(i)
1 , . . . , λ

(i)
N ) 6= (λ

(j)
1 , . . . , λ

(j)
N )

when i 6= j. For each integer n > N, In has an irredundant primary decomposi-
tion in Pn

In =
m⋂

j=1

qj.

Then for each j = 1, . . . , m,

k⋂
i=1

m
(i)
n = rn(In) =

m⋂
l=1

rn(ql) ⊆ rn(qj).

Since rn(qj) is prime, there is an integer ij ∈ {1, . . . , k} such that

m
(ij)
n = rn(qj).

Combining the equality
k⋂

i=1

m
(i)
n =

m⋂
j=1

rn(qj)

with the uniqueness of {rn(q1), . . . , rn(qm)}, we have m = k. Hence, without a
loss of generality, we let p(i)n =qi for i=1, . . . , k such that m(i)

n = rn(p
(i)
n ) for each i.

Next we will show that for n > N,

p
(i)
n = p

(i)
n+1 ∩ Pn.

For this, note that

(2.1) rn(p
(i)
n+1 ∩ Pn) = rn+1(p

(i)
n+1) ∩ Pn = m

(i)
n+1 ∩ Pn = m

(i)
n .

It is known that if the radical ideal of an ideal p is maximal, then p is primary
([2], p. 51, Proposition 4.2). Therefore p

(i)
n+1 ∩ Pn is a primary ideal in Pn. Since
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In+1 =
k⋂

i=1
p
(i)
n+1,

In = In+1 ∩ Pn =
k⋂

i=1

(p
(i)
n+1 ∩ Pn)

is an irredundant primary decomposition of In. Besides, by (2.1)

rn(p
(i)
n ) = m

(i)
n = rn(p

(i)
n+1 ∩ Pn),

and note that for each i (1 6 i 6 k) m(i)
n is a minimal prime ideal associated with

In. Then by the corollary of the second uniqueness theorem ([2], p. 54, Corol-
lary 4.11), p(i)n = p

(i)
n+1 ∩ Pn. For 1 6 i 6 k, set

p(i) =
∞⋃

n=N
p
(i)
n .

Then p(i) is an ideal of P∞. For each positive integer n, if n > N, then

zn − λ
(i)
n ∈ m

(i)
n = rn(p

(i)
n ) ⊆ r(p(i));

if n < N, zn − λ
(i)
n ∈ m

(i)
N = rN(p

(i)
N ) ⊆ r(p(i)). Then r(p(i)) = Mλ(i) , and p(i) is

Mλ(i) -primary. Since for n > N,

In =
k⋂

i=1

p
(i)
n =

k⋂
i=1

(p(i) ∩ Pn) =
( k⋂

i=1

p(i)
)
∩ Pn,

it follows that I =
k⋂

i=1
p(i). Again by the corollary of the second uniqueness theo-

rem [2], it is immediate to see that the primary decomposition of I is unique.

3. FINITE CODIMENSIONAL SUBMODULES OF H2
∞

The purpose of this section is to present a generalization of Ahern and
Clark’s algebraic reduction theorem to the situation of H2

∞. In what follows we
endow the ring P∞ with the topology of H2

∞. Then an ideal I is closed in this
topology if and only if [I ] ∩ P∞ = I , where [I ] is the closure of I in H2

∞. For
λ = (λ1, λ2, . . .) ∈ C∞, letMλ be the ideal of all polynomials that vanish at λ.

The following is needed in the sequel.

LEMMA 3.1. For λ ∈ C∞,Mλ is dense in H2
∞ if and only if λ /∈ D∞

2 . Equiva-
lently,Mλ is closed if and only if λ ∈ D∞

2 .

Proof. For λ ∈ D∞
2 , let Kλ denote the reproducing kernel of H2

∞ at λ. Then
the reproducing kernel Kλ lies inM⊥

λ , and thusMλ is not dense.
Now assume that λ /∈ D∞

2 and there are two cases to distinguish: either
λ 6∈ D∞ or λ 6∈ l2.
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Case 1. λ 6∈ D∞. Then there exists a positive integer N such that |λN | > 1.
Since λN − zN is an outer function in H2(D) (in zN-variable), there are polynomi-
als pk in zN such that (λN − zN)pk(zN) tends to 1 in the norm of H2(D). Then it
follows that P∞ ⊆ [Mλ], and thusMλ is dense in H2

∞.
Case 2. λ /∈ l2. Let c00 denote the linear space consisting of all finitely-

supported complex sequences (cn). Then λ induces an unbounded linear func-
tional F on (c00, ‖ · ‖l2), defined by

F((c1, c2, . . .)) =
∞

∑
i=1

ciλi.

Since F is not continuous at zero, there is a sequence {a(k)} in c00 such that for
k > 1, F(a(k)) = 1 and

‖a(k)‖l2 → 0 (k→ ∞).

Put

qk =
∞

∑
i=1

a(k)i (λi − zi) = F(a(k))−
∞

∑
i=1

a(k)i zi, (finite sum)

and then {qk} converges to 1 in the norm of H2
∞. Since qk ∈ Mλ for each k,

1 ∈ [Mλ], forcing P∞ ⊆ [Mλ]. ThereforeMλ is dense in H2
∞.

The following is the H2
∞ version of Ahern and Clark’s characterization for

finite codimensional submodules of H2(Dn).

THEOREM 3.2. Suppose M is a submodule of finite codimension k. Then M∩P∞
is a closed ideal of P∞ and

(i) M ∩ P∞ is dense in M;
(ii) dimP∞/M ∩ P∞ = k;

(iii) Z(M ∩ P∞) is a finite subset of D∞
2 .

Proof. Our method of proof follows the same techniques used in Proposi-
tion 2.4 of [11].

Since (P∞ + M)/M is dense in H2
∞/M and dim H2

∞/M < ∞, it follows that
(P∞ + M)/M is closed, and (P∞ + M)/M = H2

∞/M. Then

dim P∞/M ∩ P∞ = dim (P∞ + M)/M = dim H2
∞/M = k.

Thus there exists a k-dimensional subspace N of P∞ such that

M ∩ P∞ + N = P∞,

and hence M + N ⊇ [M ∩ P∞] + N ⊇ [P∞] = H2
∞, forcing

(3.1) M + N = [M ∩ P∞] + N = H2
∞.

Since dim H2
∞/M = dim N = k, M ∩ N = {0}, which by (3.1) gives

M = [M ∩ P∞].

Thus both (i) and (ii) are proved. By (i), M ∩ P∞ is closed.
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It remains to prove (iii). In fact, for each point λ in Z(M ∩ P∞),

M ∩ P∞ ⊆Mλ ⊆ P∞.

By (ii) M ∩ P∞ has finite codimension in P∞, and thus there exists a finite di-
mensional subspace Nλ of P∞ such that Mλ = M ∩ P∞ + Nλ. For each poly-
nomial q ∈ (M + Nλ) ∩ P∞, write q = q1 + q2 with q1 ∈ M and q2 ∈ Nλ. Then
q1 = q− q2 ∈ P∞, and thus q ∈ M ∩ P∞ + Nλ. This shows that

M ∩ P∞ + Nλ ⊇ (M + Nλ) ∩ P∞,

which immediately implies

Mλ = M ∩ P∞ + Nλ = (M + Nλ) ∩ P∞.

Then by (i)

Mλ = (M + Nλ) ∩ P∞ = ([M ∩ P∞] + Nλ) ∩ P∞ ⊇ [Mλ] ∩ P∞,

which gives [Mλ] 6= H2
∞. Thus Lemma 3.1 implies that λ ∈ D∞

2 . Therefore,
Z(M ∩ P∞) ⊆ D∞

2 .
To show Z(M ∩ P∞) is finite, note that for λ ∈ Z(M ∩ P∞),

Kλ ∈ (M ∩ P∞)⊥ = M⊥

where Kλ is the reproducing kernel of H2
∞ at λ. Since

dim M⊥ = codim M < ∞,

it follows from the linear independence of reproducing kernel vectors that the
zero variety Z(M ∩ P∞) contains only finitely many points.

Concerning the opposite direction of Ahern and Clark’s theorem in infinite
variables, there is a great difference from the case in finitely many variables. This
is illustrated by the next example.

EXAMPLE 3.3. Let I be the ideal generated by the following polynomials:

{z2
1, z2

2}; {z1 − z2n−1 : n > 2}; {z2 − 2nz2n : n > 2}.
Writing 0 = (0, 0, . . .), then Z(I) = {0} ⊆ D∞

2 , and one can show that

(3.2) dimP∞/I = 4 > dim H2
∞/[I ].

Hence I is not closed.

Below we present the proof of (3.2). It is straightforward to show

(3.3) P∞ = I+̇C1+̇Cz1+̇Cz2+̇Cz1z2,

which gives dimP∞/I = 4. Since {z1 − z2n−1} converges weakly to z1 in the
Hilbert space H2

∞, z1 belongs to [I ]. It follows that I ( [I ] ∩ P∞; that is, I is not
closed. Also, by (3.3), dim H2

∞/[I ] < ∞, and hence the map σ : P∞/[I ] ∩ P∞ →
H2

∞/[I ] is an isomorphism by mapping p̃ to p̂. This implies that

dim H2
∞/[I ] = dimP∞/[I ] ∩ P∞ < dimP∞/I = 4.
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However, from Lemma 3.1 and Theorem 3.2, the mapMλ 7→ [Mλ] estab-
lishes a one-to-one correspondence from maximal ideals Mλ (λ ∈ D∞

2 ) of P∞
onto submodules of H2

∞ with codimension 1.
Before going on, we say more about Theorem 3.2. From Theorem 3.2 we

see that being different from the case of finitely many variables, each proper sub-
module of H2

∞ generated by finitely many polynomials is necessarily of infinite
codimension. Now applying this to the semigroup (Pn) of power dilation oper-
ators on H2

0(D) mentioned in Introduction, shows that each finite codimensional
invariant subspace of (Pn) is necessarily generated by infinitely many polynomi-
als since B(C0[z]) = P∞, where C0[z] = {p ∈ C[z] : p(0) = 0}. This means that
each invariant subspace of (Pn) generated by finitely many polynomials either is
H2

0(D), or is of infinite codimension.
Below we apply Theorem 3.2 to a Hilbert space of Dirichlet series. A Dirich-

let series is a formal series f (s) =
∞
∑

n=1
ann−s involving a complex variable s. In

the norm of

‖ f ‖ =
(

∑
n
|an|2

)1/2
< ∞,

such Dirichlet series form, in a natural way, a Hilbert space of analytic functions
on the half-plane Rs > 1/2, denoted by H. This space is a reproducing kernel
function space on the half-planeRs > 1/2 with the kernel Kw(z) = ζ(z+w) [15],
where ζ(z) is the Riemann zeta function. Note that the space H has a canonical
orthonormal basis {en = n−s : n = 1, 2, . . .}. For each natural number m, define
an isometric operator Mm on H by Mmek = emk (k = 1, 2, . . .). Then Mm f (s) =
m−s f (s) for f ∈ H and m = 1, 2, . . .. This says that invariant subspaces of (Mm)
are just those for multipliers of H. For a complex number s with Rs > 1/2,
the space Ms = { f ∈ H : f (s) = 0} is an invariant subspace of codimension
1. Not every 1-codimensional invariant subspace has such a form. An example
is the invariant subspace generated by {n−s : n = 2, 3, . . .}. By Theorem 3.2
and the Bohr transform, for φ ∈ H, if Bφ dose not have a zero point in D∞

2 ,
then φ has necessarily no zero point in the half-plane Rs > 1/2. For Rτ > 1/2,
write λ = (p−τ

1 , p−τ
2 , . . .), where p1, p2, . . . are consecutive prime numbers. Then

λ ∈ D∞
2 . Setting φτ(s) =

∞
∑

n=1
n−τn−s, one has φτ(s) ∈ H, and

Bφτ(z) = ∑
n

n−τzα(n) = ∑
n

λα(n)zα(n) = ∏
n

1
1− p−τ

n zn
= Kλ(z),

where Kλ(z) is the reproducing kernel of H2
∞ at λ. Since Kλ(z) has no zero point

in D∞
2 , φτ(s) has no zero point in the half-plane Rs > 1/2 for each Rτ > 1/2.

This gives the well known fact that the Riemann zeta function ζ(z) =
∞
∑

n=1
n−s has

no zero point in the half-plane Rs > 1. A stronger conclusion is that φτ(z) is a
cyclic vector inH, see [15], [18].
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By developing the techniques of characteristic spaces, the codimension for-
mula related to zero varieties, and some algebraic reduction theorems were achie-
ved in [9], [13], [14].

In what follows we will try to generalize the codimension formula in finitely
many variables to the case of H2

∞. Firstly let us recall the characteristic space
method used in [9], [13], [14]. Let q = ∑

α∈Zn
+

cαzα be a complex polynomial involv-

ing finitely many variables z1, . . . , zn, where all cα = 0 except for finitely many α.
Denote by q(D) the linear partial differential operator

q(D) = ∑
α∈Zn

+

cα
∂|α|

∂zα1
1 · · · ∂zαn

n
.

For a proper ideal I of P∞ and a point λ ∈ Z(I), the set

Iλ = {q ∈ P∞ : q(D)p|λ = 0 for every p ∈ I}

is called the characteristic space of I at the zero point λ. The multiplicity of I at
the zero point λ is defined to be dim Iλ. A careful verification shows that for any
polynomials q and p,

(3.4) q(D)(zj p)|λ = λjq(D)p|λ +
∂q
∂zj

(D)p|λ, j = 1, 2, . . . .

Therefore Iλ is invariant under the action of the basic partial differential opera-
tors {∂/∂z1, ∂/∂z2, . . .}.

The envelope, Ie
λ of I at λ is defined as

Ie
λ = {p ∈ P∞ : q(D)p|λ = 0, ∀q ∈ Iλ}.

The preceding equalities imply that Ie
λ is an ideal of P∞ containing I .

Similarly, for a submodule M of H2
∞, we can define the characteristic space

Mλ of M at a zero point λ ∈ Z(M). Then Mλ is invariant under the basic partial
differential operators {∂/∂z1, ∂/∂z2, . . .}. The multiplicity of M at a zero point λ
is defined to be dim Mλ.

THEOREM 3.4. If M is a submodule of H2
∞ of finite codimension k, then

(3.5) ∑
λ∈Z(M)

dim Mλ 6 k.

To prove this theorem we need the following lemma.

LEMMA 3.5. If M is a submodule of H2
∞ of finite codimension k, then for each

λ ∈ Z(M), the multiplicity of M at the zero point λ is finite, that is, dim Mλ 6 k.

Proof. For each polynomial q in Mλ, define a linear functional γq on H2
∞ by

setting γq( f ) = q(D) f |λ. It will be proved that γq is continuous. In fact, there is a
positive integer N such that q ∈ PN . Define a linear map EN from H2

∞ to H2(DN)
by putting EN f (z1, z2, . . .) = f (z1, . . . , zN , λN+1, λN+2, . . .).
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We claim that EN is continuous. For this, put

A = {α ∈ Z∞
+ : αn = 0, n > N + 1}, B = {α ∈ Z∞

+ : α1 = · · · = αN = 0},
and

λ̃ = (0, . . . , 0, λN+1, λN+2, . . .).

Since λ ∈ D∞
2 , ∑

n>N+1
|λn|2 < ∞, then

∑
β∈B
|λ̃β|2 = ∏

n>N+1

1
1− |λn|2

< ∞.

For each f ∈ H2
∞, write f (z) = ∑

α∈Z∞
+

cαzα. Thus

EN f (z1, . . . , zN) = ∑
α∈A,β∈B

cα+βλ̃βzα1
1 · · · z

αN
N .

Then

‖EN f ‖2 = ∑
α∈A

∣∣∣ ∑
β∈B

cα+βλ̃β
∣∣∣2 6 ∑

α∈A

(
∑
β∈B
|cα+β|2

)(
∑
β∈B
|λ̃β|2

)
=
(

∑
β∈B
|λ̃β|2

)
·
(

∑
α∈A,β∈B

|cα+β|2
)
=
(

∑
β∈B
|λ̃β|2

)
· ‖ f ‖2.

The proof of the claim is finished.
Note that γq( f ) = γq(EN f ) for each f ∈ H2

∞. Since γq is continuous on
H2(DN) and EN is continuous, γq is continuous on H2

∞. By the Riesz representa-
tion theorem there exists a unique function fq in H2

∞ such that γq( f ) = 〈 f , fq〉 for
f ∈ H2

∞. Then q 7→ fq defines an injective conjugate linear map from Mλ to M⊥.
Therefore, dim Mλ 6 k. The proof is finished.

Proof of Theorem 3.4. Write J = M ∩ P∞; then by Theorem 3.2 we see that
Z(J ) = Z(M) is a finite subset of D∞

2 . Let this subset be {λ(1), . . . , λ(m)}. Take a

positive integer d such that µi 6= µj for i 6= j, where µi = (λ
(i)
1 , λ

(i)
2 , . . . , λ

(i)
d ) for

i = 1, 2, . . . , m. By Theorem 3.2 the codimension of J in P∞ also is k, and hence
there exists a linear subspaceR of P∞ with dimension k such that

P∞ = J +̇R.

By Lemma 3.5 for each zero point λ(i) of M, the characteristic space Mλ(i) is a
polynomial space of finite dimension. This insures that there exists a positive
integer l such that all polynomials in R and Mλ(i) (i = 1, . . . , m) only depend on
variables z1, z2, . . . , zl . Take a positive integer N > max{d, l}, then it holds

PN = P∞ ∩ PN = J ∩ PN+̇R.

Let W denote the closure of J ∩ PN in H2(DN). Then it is a submodule of
H2(DN), and µi ∈ Z(W) for i = 1, 2, . . . , m. Since H2(DN) = W +R, the sub-
module W has codimension at most k in H2(DN). It is obvious that Mλ(i) ⊆ Wµi
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for i = 1, 2, . . . , m. Thus by Theorem 3.1 of [13] we see that

∑
λ∈Z(M)

dim Mλ =
m

∑
i=1

dim Mλ(i) 6
m

∑
i=1

dim Wµi 6 dim(H2(DN)/W) 6 k.

The proof is complete.

In Theorem 3.4 equality does not always hold in (3.5) in general, but this
is not the case in finitely many variables [13]. To see this, let us revisit Ex-
ample 3.3. Let I be the ideal given in Example 3.3 and put M = [I ]. Then
Z(M) = Z(I) = {0}, and dim H2

∞/M < 4. By a verification similar to that in the
subsequent Example 3.6, the characteristic space M0 of M at the point 0 is C, and
hence dim M0 = 1. Below we will show dim H2

∞/M > 2. Obviously 1 ∈ M⊥.
Let f (z) = z2 + ∑

n>2
z2n/2n. We claim that f ⊥ M. In fact, for n > 2 and α ∈ Z∞

+ ,

〈 f , z2
1zα〉 = 〈 f , z2

2zα〉 = 〈 f , (z1 − z2n−1)zα〉 = 0;

for n > 2 and |α| > 1, 〈 f , (z2 − 2nz2n)zα〉 = 0, and

〈 f , z2 − 2nz2n〉 =
〈

z2 + ∑
n>2

z2n

2n
, z2 − 2nz2n

〉
= 0.

Hence {1, f } ⊆ M⊥ and it follows that dim H2
∞/M > 2.

The next example shows that in the case of infinitely many variables, the
relation between multiplicities of zeros and codimensions of submodules is un-
clear.

EXAMPLE 3.6. Let I be the ideal generated by {z2
n : n > 2} and

{zn − kznk : n > 1, k > 2}.

Taking n = 1, k = 2, then z1 ∈ I , and hence Z(I) = {0}. We will show that
dim I0 = 1, but dim H2

∞/[I ] = ∞.

First, we prove that dim I0 = 1. For this, assume q is a polynomial in I0.
For each polynomial p, by the equality (3.4) we have

∂q
∂z1

(D)p|0 = q(D)(z1 p)|0 = 0.

Then ∂q/∂z1 = 0. Similarly, for n > 2 and k > 2,( ∂q
∂zn
− k

∂q
∂znk

)
(D)p|0 = q(D)((zn − kznk )p)|0 = 0,

and hence
∂q
∂zn

= k
∂q

∂znk
.
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Since there is a positive integer l such that q only depends on z1, . . . , z2l , then
nl+1 > nl > 2l for n > 2, and thus

∂q
∂zn

= (l + 1)
∂q

∂znl+1
= 0.

In summary, ∂q/∂zn = 0 for n > 1, and hence q is a constant. Therefore, I0 = C
and dim I0 = 1.

It remains to prove that dim H2
∞/[I ] = ∞. For this, it is sufficient to show

that fp(z) = ∑
m>1

zpm /m ∈ [I ]⊥ for each prime number p; and this reduces to

show the following:

(1) 〈 fp, z2
nzα〉 = 0 for each n > 2 and α ∈ Z∞

+ ;
(2) 〈 fp, (zn − kznk )zα〉 = 0 for each n > 1, k > 2 and |α| > 1;
(3) 〈 fp, zn − kznk 〉 = 0 for each n > 1 and k > 2.

In fact, (1) and (2) follow from the fact that 〈 fp, zβ〉 = 0 for each β ∈ Z∞
+ with

|β| > 2. For (3), if n = pl for some positive integer l, then

〈 fp, zn − kznk 〉 =
〈

∑
m>1

zpm

m
, zpl − kzplk

〉
=

1
l
− k

lk
= 0;

otherwise, n is not a power of p, and then 〈 fp, zn〉 = 〈 fp, znk 〉 = 0, forcing 〈 fp, zn−
kznk 〉 = 0. This completes the proof.

REMARK 3.7. It is shown in Theorem 2.1 of [14] that for each proper ideal I
of Pn,

I =
⋂

λ∈Z(I)
Ie

λ,

where Ie
λ = {p ∈ Pn : q(D)p|λ = 0 for each q ∈ Iλ}. Examples 3.3 and 3.6

imply that this conclusion fails in the case of infinitely many variables. In both
examples, Z(I) = {0}, I0 = C1 and Ie

0 = {p ∈ P∞ : p|0 = 0} =M0. However,
dim H2

∞/[I ] > 1 = dim H2
∞/[Ie

0 ], which leads to I 6= Ie
0 .

4. CLOSEDNESS AND DENSITY OF IDEALS OF P∞

This section first studies those ideals in P∞ with finitely many zeros, and
determines when they are closed in P∞ or dense in H2

∞. By a closed ideal I we
mean [I ] ∩ P∞ = I .

Let I be an ideal of finitely many zeros λ(1), . . . , λ(k). By Proposition 2.4, I
admits a primary decomposition; that is,

I =
k⋂

i=1

p(i),
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where the radical ideal of p(i) is the maximal idealMλ(i) . In this case, I is dense in
H2

∞ if and only if each ideal p(i) is dense in H2
∞. Note that each ideal p(i) contains

exactly one zero point λ(i). Let D∞ denote the product of countably many unit
disks; i.e., D∞ = {(c1, c2, . . .) : |cn| < 1 for every n}. If λ(i) /∈ D∞, then |λ(i)

n | > 1
for some positive integer n. Since r(p(i)) =Mλ(i) , there exists a positive integer k
such that

(zn − λ
(i)
n )k ∈ p(i),

which implies that p(i) is dense in H2
∞. In conclusion, if I is an ideal of finitely

many zeros and Z(I) ∩D∞ = ∅, then I is dense in H2
∞.

It is worthy to mention that Lemma 3.1 characterizes the density of maximal
ideals: the maximal idealMλ is dense in H2

∞ if and only if λ /∈ D∞
2 . But in general,

this is not true for a primary ideal with one zero point.
The following will first elaborate on the closedness and density of a class of

ideals for which each is only of one zero point inside D∞. To be precise, suppose
|an| < 1 for each n > 1, and {kn} is a sequence of positive integers. Let J denote
the ideal generated by

{(zn − an)
kn : n > 1}.

Then J is primary since r(J ) =Ma, where a = (a1, a2, . . .). The closedness and
density of the ideal J are completely characterized by the following theorem.

THEOREM 4.1. The ideal J is closed if and only if

∑
n>1
|an|2kn < +∞.

Moreover, in the case ∑
n>1
|an|2kn = ∞, J is dense in H2

∞.

To prove Theorem 4.1, we need some preparations. Write

J (n) = (zn − an)
knC[zn],

and J ⊥(n) is the orthogonal complement of J (n) in the Hardy space H2(D), in
variable zn. Put

H′n = span{zα : α1 = · · · = αn = 0};
that is, H′n consists of functions in H2

∞ only depending on the variables zn+1,
zn+2, . . . . Set P ′n = H′n ∩ P∞, the polynomial ring in the variables zn+1, zn+2, . . . .
Denote by Jn the ideal of Pn generated by

{(zi − ai)
ki : 1 6 i 6 n},

and J ′n the ideal of P ′n generated by {(zi − ai)
ki : i > n + 1}. It is clear that

(4.1) Jn = Jn−1[zn] + J (n)[z1, . . . , zn−1]

for n > 2, and

(4.2) J = 〈Jn〉+ 〈J ′n〉,
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where 〈Jn〉, 〈J ′n〉 denote the ideals of P∞ generated by Jn and J ′n, respectively.
Therefore,

〈Jn〉 = span {pq : p ∈ Jn, q ∈ P ′n}, and(4.3)

〈J ′n〉 = span {pq : p ∈ Pn, q ∈ J ′n}.(4.4)

DefineHn = H2(Dn). Then by (4.3) and (4.4)

(4.5) [〈Jn〉] = [Jn]⊗H′n, [〈J ′n〉] = Hn ⊗ [J ′n],

where [Jn] and [J ′n] are the closures of Jn and J ′n in Hn and H′n, respectively.
Similarly, for n > 2,

(4.6) [Jn−1[zn]] = [Jn−1]⊗ H2(D), [J (n)[z1, . . . , zn−1]] = Hn−1 ⊗ [J (n)].

Denote

Kn = Hn 	 [Jn] and K′n = H′n 	 [J ′n].

We need the following lemma.

LEMMA 4.2. For each positive integer n, we have Kn = J ⊥(1)⊗ · · · ⊗ J ⊥(n),
and J ⊥ = Kn ⊗K′n.

Proof. By (4.2) and (4.5) it follows that

J ⊥ = 〈Jn〉⊥ ∩ 〈J ′n〉⊥ = [〈Jn〉]⊥ ∩ [〈J ′n〉]⊥ = ([Jn]⊗H′n)⊥ ∩ (Hn ⊗ [J ′n])⊥

= (Kn ⊗H′n) ∩ (Hn ⊗K′n) = Kn ⊗K′n.(4.7)

Similarly, for n > 2, by (4.8) and (4.6)

Kn = (Hn 	 ([Jn−1]⊗ H2(D))) ∩ (Hn 	 (Hn−1 ⊗J (n)))

= (Kn−1 ⊗ H2(D)) ∩ (Hn−1 ⊗J ⊥(n)) = Kn−1 ⊗J ⊥(n),

and so by induction,

Kn = J ⊥(1)⊗ · · · ⊗ J ⊥(n).

Now we are ready to present the proof of Theorem 4.1.

Proof of Theorem 4.1. Let φn(z) = ((an − zn)/(1− anzn))kn , and let K0
n de-

note the reproducing kernel of J ⊥(n) at 0 in H2(D). Then by a simple computa-
tion,

K0
n(zn) = (I − Tφn T∗φn)K0 = 1− φn(zn)φ(0) = 1− a kn

n φn(zn),

where Tφn is the Toeplitz operator on H2(D) with symbol φn, and K0 is the repro-
ducing kernel of H2(D) at 0. Therefore, we have

‖K0
n‖2 = K0

n(0) = 1− |an|2kn .
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Recall that J is the ideal generated by {(zn − an)kn : n > 1}. Assume that
∑

n>1
|an|2kn < ∞. First we prove that J ⊥ 6= {0}. Let

fn =
K0

n

‖K0
n‖2

, and

hn(z) =
n

∏
i=1

fi(zi).(4.8)

Then for each n
hn+1(z1, . . . , zn, 0) = hn(z).

Write
cα(n) = 〈hn, zα〉,

and for each α ∈ Z∞
+ , {cα(n)} is an eventually constant sequence with the limit cα.

Since ∑
n>1
|an|2kn < ∞, the infinite product ∏

n>1
(1− |an|2kn) converges to a positive

number C. Then by (4.8)

‖hn‖ =
n

∏
i=1
‖ fi‖ =

1
n
∏
i=1

√
1− |ai|2ki

6
1√
C

.

Therefore,

‖hn‖2 = ∑
α∈Z∞

+

|cα(n)|2 6
1
C

.

Letting n→ ∞ yields that

∑
α∈Z∞

+

|cα|2 6
1
C

.

Also, (cα(n)) converges to (cα) in l2; that is, {hn} converges to a nonzero function
h(z) = ∑

α
cαzα in H2

∞. Since fi(zi) ⊥ J (i) for each i (1 6 i 6 n), Lemma 4.2

implies that hn ⊥ Jn. Then by (4.8)

hn+k ⊥ 〈Jn〉, k = 0, 1, . . . .

Since {hn} converges to h, h ⊥ 〈Jn〉 for each n, which immediately leads to
h ⊥ J . Therefore, J ⊥ 6= 0.

Now we are ready to prove that J is closed in P∞. For each polynomial
p ∈ [J ] ∩ P∞, there exists a positive integer N such that p ∈ PN . By Lemma 4.2

J ⊥ = KN ⊗K′N .

This gives K′N 6= 0, and then there are nonzero functions ψ in K′N and q in P ′N
such that 〈q, ψ〉 6= 0. For each ϕ ∈ KN , since ϕ⊗ ψ ∈ J ⊥ and pq ∈ [J ] ∩ P∞, it
follows that 〈pq, ϕ⊗ ψ〉 = 0. That is,

〈p, ϕ〉〈q, ψ〉 = 0,
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forcing 〈p, ϕ〉 = 0. By arbitrariness of ϕ, p ⊥ KN , and hence p belongs to [JN ] ∩
PN . By the Ahern–Clark theorem [1] (Theorem 1.2), [JN ] ∩ PN = JN , and thus
p ∈ J . Then J = [J ] ∩ P∞; that is, J is closed.

It remains to prove that if

∑
n>1
|an|2kn = ∞,

then J is dense in H2
∞. For this, assume, to the contrary, that J ⊥ 6= {0}. Since

J is an ideal, the submodule [J ] of H2
∞ does not contain 1. This implies that

there exists a function g ∈ J ⊥ with g(0) 6= 0. To get a contradiction it suffices
to derive g(0) = 0. For this, write g(n)(z) = g(z1, . . . , zn, 0, 0, . . .). Since g ∈ J ⊥,
this induces g(n) ∈ J ⊥n . By Lemma 4.2, it holds

g(0) = g(n)(0) =
〈

g(n),
n

∏
i=1

K0
i (zi)

〉
,

which leads to

|g(0)| 6 ‖g(n)‖
n

∏
i=1
‖K0

i ‖ 6 ‖g‖
n

∏
i=1

√
1− |ai|2ki .

Then |g(0)|2 6 ‖g‖2 ∏
n>1

(1 − |an|2kn) = 0, where the last identity follows from

∑
n>1
|an|2kn = ∞. Thus g(0) = 0, a contradiction.

The proof of Theorem 4.1 is complete.

If I is an ideal of the polynomial ring Pn with one single zero point outside
Dn, then the ideal I contains a power of a maximal ideal that is dense in H2(Dn)
([2], Proposition 7.14), and therefore I is dense. However, Theorem 4.1 implies
that there exists an idealJ of the ringP∞ such that Z(J ) contains exactly a single
point outside the domain D∞

2 , but J is not dense in H2
∞. To see this, we have the

following example.

EXAMPLE 4.3. Set an = 1/
√

n + 1, n = 1, 2, . . .. Then a = (an) /∈ D∞
2 . Let

J be the ideal generated by {(zn − an)2 : n > 1}. By Theorem 4.1, J is closed in
P∞, and not dense in H2

∞.

In fact, Theorem 4.1 could be generalized as follows through a modified
proof.

THEOREM 4.4. Suppose that {pn}∞
n=1 is a sequence of non-constant monic poly-

nomials in one complex variable. Let I denote the ideal generated by {pn(zn) : n > 1}.
Then the ideal I is closed in P∞ if and only if Z(pn) ⊆ D for each positive integer n and

∑
n>1
|pn(0)|2 < +∞.
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As in the proof of Theorem 4.1, we first give a characterization of the density
of the ideal I . More generally, we come to the following conclusion.

PROPOSITION 4.5. Suppose that { fn}∞
n=1 is a sequence of non-zero functions in

the Hardy space H2(D). Then { fn(zn) : n > 1} is a generating set of the Hardy module
H2

∞ if and only if either there is a positive integer N such that fN is outer in H2(D) or

∑
n>1
|ηn(0)|2 = +∞,

where ηn is the inner factor of fn.

Before giving the proof of Proposition 4.5, let us recall some classical results
on quotient modules of H2(D). It follows from Beurling’s theorem that every
quotient module of H2(D) is of the form H2(D)	 ηH2(D) for some inner function
η. Rewrite Qη for this quotient module. It is well known that the orthogonal
projection Pη from H2(D) onto Qη coincides with the operator I − TηT∗η , where
Tη is the Toeplitz operator on H2(D) with symbol η. Thus, one can compute the
distance from the constant function 1 to ηH2(D) as follows:

(4.9) ‖Pη1‖2 = ‖1− TηT∗η 1‖2 = ‖1− η(0)η‖2 = ‖η − η(0)‖2 = 1− |η(0)|2.

Now we need to introduce a bit more notations. Let M denote the submod-
ule generated by the set { fn(zn) : n > 1}. Denote by Mn the submodule of Hn
generated by { fi(zi) : 1 6 i 6 n}, and M′n the submodule of H′n generated by
{ fi(zi) : i > n + 1}, where Hn = H2(Dn) and H′n = span{zα : α1 = · · · = αn =
0}. Write Nn and N′n for the quotient modules of Mn and M′n, respectively; that
is, Nn = Hn 	 Mn and N′n = H′n 	 M′n. The following conclusion is actually a
generalization of Lemma 4.2.

LEMMA 4.6. For each positive integer n, we have Nn = Qη1 ⊗ · · · ⊗ Qηn and
M⊥ = Nn ⊗ N′n.

The proof is similar to that of Lemma 4.2.

REMARK 4.7. The notion of Jordan block plays an important role in operator
theory. In [20], [21], [22], [23], Qin, Yang and Sarkar studied Jordan blocks of the
multi-variable Hardy module. From the point of view in [21] and Lemma 4.6, the
quotient module M⊥ can be considered as a Jordan block in the infinite-variables
setting.

Now we are ready to prove Proposition 4.5 and Theorem 4.4.

Proof of Proposition 4.5. For a set E ⊆ H2
∞, denote by dist(1, E) the distance

from 1 to E. It is clear that dist(1, Mn) → dist(1, M) (n → ∞). Then M = H2
∞ if

and only if dist(1, Mn)→ 0 (n→ ∞). By Lemma 4.6, we have

PNn = Pη1 ⊗ · · · ⊗ Pηn ,
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where PNn is the orthogonal projection from H2
∞ onto Nn. Therefore, by (4.9)

dist(1, Mn)
2 = ‖PNn 1‖2 = ‖Pη11⊗ · · · ⊗ Pηn 1‖2 =

n

∏
i=1
‖Pηi 1‖

2 =
n

∏
i=1

(1− |ηi(0)|2).

This implies that M = H2
∞ if and only if either |ηN(0)| = 1 for some positive

integer N or

∑
n>1
|ηn(0)|2 = +∞,

which completes the proof.

Proof of Theorem 4.4. For each positive integer n denote by Bn the inner fac-
tor of pn. Note that Bn is a finite Blaschke product.

Suppose that I is closed in P∞. Then I is not dense in H2
∞, and by Proposi-

tion 4.5,

∑
n>1
|Bn(0)|2 < +∞.

Now we claim that Z(pn) ⊆ D for each positive integer n. To reach a contra-
diction, assume conversely that there exist a positive integer N and a number
a ∈ C \ D such that pN(a) = 0. Then pN(zN) = (zN − a)q(zN) for some poly-
nomial q in one complex variable. Since zN − a is cyclic in H2

∞, it follows that
q(zN) ∈ [I ] ∩ P∞ = I . Then there exist a positive integer d and polynomials
{qn}d

n=1, such that

q(zN) =
d

∑
n=1

qn(z)pn(zn).

For n 6= N, let zn be a zero point of pn in the identity above. Therefore, there is a
polynomial r in one complex variable satisfying q(zN) = r(zN)pN(zN). It follows
that 1 = (zN − a)r(zN), which leads to a contradiction. Thus the claim is proved.

Since pn is monic, we have |pn(0)| = |Bn(0)| for each positive integer n.
Therefore,

∑
n>1
|pn(0)|2 = ∑

n>1
|Bn(0)|2 < +∞.

Now suppose that for each positive integer n all zero points of pn are con-
tained in D and ∑

n>1
|pn(0)|2 < +∞, which immediately gives that

(4.10) ∑
n>1
|Bn(0)|2 < +∞.

Take an arbitrary polynomial p ∈ [I ] ∩ P , there is a positive integer N such that
p ∈ PN . By (4.10) and Proposition 4.5, I⊥ 6= 0. Then one can apply Lemma 4.6
and the argument in the proof of Theorem 4.1 to show that p ∈ [IN ] ∩PN , where
IN is the ideal of PN generated by {pi(zi) : 1 6 i 6 N}. Since Z(IN) ⊆ DN ,
the Ahern–Clark theorem implies that [IN ] ∩ PN = IN . Thus p ∈ IN ⊆ I as
desired.
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To conclude this section, we record the following example.

EXAMPLE 4.8. For a complex number a, denote by I the ideal generated by
{zn

n − an : n > 1}. Note that Z(I) ∩D∞
2 = ∅ whenever a 6= 0. By Theorem 4.4

and Proposition 4.5, I is closed in P∞ if and only if |a| < 1; I is dense in H2
∞ if

and only if |a| > 1. When a 6= 0, Z(I) is an uncountable set. In this case, it is easy
to see that I has no finite primary decomposition.
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