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1. INTRODUCTION

One of the fundamental concepts in the theory of pseudodifferential op-
erators (henceforth: PSDO) is that of the principal symbol. The conventional
definition of a PSDO (as discussed in, e.g. [48] and Chapter 2 of [42]) is as foll-
lows: first, for m ∈ R the symbol class Sm(Rd × Rd) is defined to be the set of
σ ∈ C∞(Rd × Rd) such that for all multi-indices α and β there exists a constant
Cα,β such that

|∂β
x∂α

ξ σ(x, ξ)| 6 Cα,β(1 + |ξ|)m−|α|.

Then the pseudodifferential operator Tσ defined by σ ∈ Sm(Rd ×Rd) is the linear
operator on the Schwartz class S(Rd) given by the integral,

(Tσ f )(x) = (2π)−d/2
∫
Rd

σ(x, ξ) f̂ (ξ)ei(x,ξ) dξ, x ∈ Rd, f ∈ S(Rd)

where f̂ denotes the Fourier transform of f . The operator Tσ is a well-defined
linear map from S(Rd) to S(Rd) ([42], Theorem 2.1.6). We denote Ψm(Rd) :=
{Tσ : σ ∈ Sm(Rd ×Rd)}, which we call the set of order m PSDO.

Given Tσ ∈ Ψ0(Rd), the principal symbol of Tσ is usually defined by the
following procedure (as outlined in Section 2.5.3 of [42]). First, one assumes that
there is a formal asymptotic expansion

σ ∼
∞

∑
k=0

σ−k
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where each σ−k is in S−k(Rd ×Rd), and the meaning of the asymptotic expansion

is that for all N > 0, the difference σ −
N
∑

k=0
σ−k is in S−N−1(Rd × Rd). Further-

more, each function σ−k is assumed to be positively homogeneous “away from
zero” in the sense that for each k there exists an r > 0 such that for all λ > 1,
x ∈ Rd and |ξ| > r, we have σ−k(x, λξ) = λ−kσ−k(x, ξ).

If such an asymptotic expansion exists, then the operator Tσ is called a clas-
sical pseudodifferential operator of order 0, and the set of all such operators is
denoted Ψ0

cl(R
d). Then the principal symbol of Tσ ∈ Ψ0

cl(R
d) is defined to be

σ0. Since σ0 is homogenous in the second variable, it is canonically identified
with a function on Rd ⊗ Sd−1. It can be shown that the mapping Ψ0

cl(R
d) →

C∞(Rd × Sd−1) given by Tσ 7→ σ0 is well-defined, and is in fact an algebra homo-
morphism in the sense that it is linear and if T, S ∈ Ψ0

cl(R
d), then T ◦ S ∈ Ψ0

cl(R
d)

and the principal symbol of T ◦ S is the product of the principal symbols of T and
S (see Theorem 2.5.1 of [42]).

In applications it is often useful to work with a C∗-subalgebra of the algebra
of all bounded linear operators on L2(Rd) containing Ψ0(Rd). The purpose of
this paper is twofold: first, to illustrate that if one restricts attention to order zero
classical pseudodifferential operators then the principal symbol may be defined
in a straightforward algebraic manner, and secondly we define a C∗-subalgebra
Π of the set of bounded linear operators on L2(Rd) which is general enough that
Π contains (possibly up to compact perturbations) all of Ψ0(Rd), and in addi-
tion it contains operators such as pointwise multiplication by bounded functions
which need not be smooth or even continuous. We then show that with this new
definition there is a unique extension of the principal symbol as a C∗-algebra ho-
momorphism from Π to L∞(Rd × Sd−1).

We illustrate the usefulness of this extension of the principal symbol map-
ping by providing a variant of Connes’ trace formula (Theorem 1.5), and using
this extension to give a simple proof of an equality recently established by the
authors by an ad hoc method in [29] (see Theorem 1.7 below).

The observation that the principal symbol map of pseudo-differential oper-
ators can be extended to C∗-algebras is not new, but mainly it has involved maps
to continuous functions ([43], Remark 1.8; [40], p. 134; [33], p. 288; [26], p. 197).
Principal symbol maps are well-known as inverses of quantisation [3], [21], [39].
The principal symbol introduced here is associated to Kohn–Nirenberg quantisa-
tion.

Here we restrict attention to the study of pseudodifferential operators on
Rd. In a subsequent paper [32], we will consider a more general case including
an extension to certain noncommutative spaces.

Let Dk = ∂
i∂tk

, k = 1, . . . , d be the k-th partial derivative operator on Rd.

These operators extend to unbounded self-adjoint operators on L2(Rd) within
the common invariant core S(Rd). In what follows, ∇ := (D1, . . . , Dd) and
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∆ :=
d
∑

k=1

∂2

∂2tk
= −

d
∑

k=1
D2

k denote the gradient and the Laplacian, respectively. For

1 6 k 6 d, the operator Dk
(−∆)1/2 is defined by the Borel functional calculus (that

is, we apply a bounded function t → tk
|t| to the commuting tuple ∇). The opera-

tors Dk
(−∆)1/2 , 1 6 k 6 d, form a set of mutually commuting bounded self-adjoint

operators whose joint spectrum lies in Sd−1. Using the Borel functional calculus
(see e.g. Section 6.5 in [7]), given g ∈ L∞(Sd−1) we may then define the bounded

operator g
(

∇
(−∆)1/2

)
on L2(Rd) (which should be viewed a homogeneous Fourier

multiplier on L2(Rd)).
Let L(L2(Rd)) denote the algebra of all bounded linear operators on the

Hilbert space L2(Rd). We work primarily with the following C∗-subalgebra of
L(L2(Rd)).

DEFINITION 1.1. Let π1 : L∞(Rd) → L(L2(Rd)) and π2 : L∞(Sd−1) →
L(L2(Rd)) be the unital ∗-representations given by the formulae:

π1( f ) = M f , f ∈ L∞(Rd), π2(g) = g
( ∇
(−∆)1/2

)
, g ∈ L∞(Sd−1).

Let Π be the C∗-subalgebra in L(L2(Rd)) generated by the algebras π1(L∞(Rd))
and π2(L∞(Sd−1)).

In what follows, we denote by L∞(Rd)⊗L∞(Sd−1) the closure in the weak
operator topology of the algebraic tensor product L∞(Rd)⊗ L∞(Sd−1). We iden-
tify L∞(Rd)⊗L∞(Sd−1) with the algebra L∞(Rd × Sd−1).

We now state the main results of the paper.

THEOREM 1.2. There exists a unique ∗-homomorphism

symb : Π → L∞(Rd)⊗L∞(Sd−1)

such that:

symb(π1( f )) = f ⊗ 1, f ∈ L∞(Rd), symb(π2(g)) = 1⊗ g, g ∈ L∞(Sd−1).

We call symb the principal symbol mapping.

We recall that ∗-homomorphisms between C∗-algebras are necessarily con-
tinuous and norm-decreasing. Therefore, we have

‖symb(T)‖∞ 6 ‖T‖∞, T ∈ Π.

The C∗-algebraic setting is important in Theorem 1.2. Indeed, we show in
Lemma 3.5 that the principal symbol mapping does not extend (as a ∗-homomor-
phism) to the weak closure of Π.

In Lemma 8.2 below, we show that for a uniform compactly based classical
PSDO, our notion of a principal symbol coincides with the one in [45]. In fact, our
notion of the principal symbol extends the traditional one.
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In Theorem 1.2 above we have restricted attention to homogeneous func-
tions of the gradient. It is tempting to ask if one can obtain a similar result allow-
ing arbitrary bounded functions of the gradient. The following theorem shows
that this is not possible in general.

THEOREM 1.3. Let π3 be the representation of L∞(Rd) on L2(Rd) given by,

π3(g) = g(∇).

Let A be the C∗-algebra generated by π1(L∞(Rd)) and π3(L∞(Rd)). There is no ∗-
homomorphism π : A → L∞(Rd ×Rd) such that

π(π1( f )π3(g)) = f ⊗ g, f , g ∈ L∞(Rd).

One application of PSDO theory is A. Connes’ result [13] linking the Wodz-
icki residue of a classical PSDO of order −d on a d-dimensional compact Rie-
mannian manifold with a (Dixmier) trace of the latter operator. In particular, this
result allows the “deduction of ordinary differential forms and the natural con-
formal invariant norm on them from the quantized forms” (p. 674 in [13]). With
the principal symbol in Theorem 1.2 we extend two results from [13] with new
and direct proofs.

There have been many extension of Connes’ results (see e.g. [25], [30], or
earlier results in special cases [38], [12], to name a few). This is the first, we be-
lieve, to extend the result to bounded operators associated to essentially bounded
symbols, and the appearance of the principal symbol homomorphism makes the
result below particularly elegant. The novel feature of our approach is a consis-
tent use of Cwikel-type estimates (see e.g. Chapter 4 in [46]). The proof is the
most direct we know of, and since it involves continuous traces it uses, besides
the Cwikel-type estimates, only the Riesz–Markov theorem. Prior to the versions
in [25] and here, other versions of the trace theorem on Rd, e.g., [12] and [38] were
limited to a subset of the algebra π1(L∞(Rd)).

DEFINITION 1.4. An operator T ∈ Π is compactly based if there is a com-
pactly supported φ ∈ L∞(Rd) such that Tπ1(φ) = T.

THEOREM 1.5. If T ∈ Π is compactly based, then T(1− ∆)−d/2 ∈ L1,∞. For
every continuous normalised trace ϕ on L1,∞, we have

(1.1) ϕ(T(1−∆)−d/2) =
∫

Rd×Sd−1

symb(T).

In particular, for every compactly supported f ∈ L∞(Rd), we recover the
known result (see e.g. [25] and prior versions on p. 34 in [2] and Corollary 7.21
in [22]),

(1.2) ϕ(π1( f )(1−∆)−d/2) = cd

∫
Rd

f (t)dt.
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An easy corollary of Theorem 1.5 is the known trace theorem due to Connes
(on compact manifolds); see e.g. [13] [25]. Recall P is uniform if p(t, s) and its
derivatives are bounded in t; P is compactly based if Pπ1(φ) = P for some com-
pactly supported smooth function φ. Equivalently, the integral kernel of P is com-
pactly supported in the second variable. In theorem below, the Wodzicki residue,
ResW, may be understood in the following sense:

ResW(P(1−∆)−d/2) =
∫

Rd×Sd−1

p(t, s)dtds,

where p is the principal symbol of the PSDO P.

THEOREM 1.6. If P is a uniform compactly based classical pseudo-differential op-
erator of order 0 on Rd, then

ϕ(P(1−∆)−d/2) = ResW(P(1−∆)−d/2)

for every bounded normalised trace ϕ on L1,∞.

In this paper, D denotes the Dirac operator (an unbounded self-adjoint op-
erator on the Hilbert space Cm(d) ⊗ L2(Rd), where m(d) = 2bd/2c),

D =
d

∑
k=1

γk ⊗ Dk

for some choice of self-adjoint matrices {γk}d
k=1 ⊂ Mm(d)(C) with γjγk + γkγj

= 2δj,k.
The following assertion is proved in [29] by a somewhat ad hoc method

(smoothing was introduced and then eliminated). With the method of this paper
non-smooth symbols can be used directly. The assertion is the key to the charac-
terisation of quantum differentiable functions given in [29]. Using Theorem 1.5
we are able to give a simple proof of the main result of [29].

THEOREM 1.7. For every f ∈ L∞(Rd) such that∇ f ∈ Ld(Rd,Cd), we have that
[sgn(D), 1⊗ π1( f )] ∈ Ld,∞ and

ϕ(|[sgn(D), 1⊗ π1( f )]|d) =
∫
Rd

‖(∇ f )(t)‖d
2dt

for every continuous normalised trace ϕ on L1,∞.

The paper is structured as follows. Section 2 contains preliminary mate-
rial. Section 3 contains the proof of Theorems 1.2 and 1.3. Section 4 contains the
proof of (1.2). Sections 5, 6 and 7 contain the proof of Theorem 1.5. Section 8
derives Theorem 1.6 from Theorem 1.5. Finally, Section 9 contains the proof of
Theorem 1.7.
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2. PRELIMINARIES

2.1. GENERAL NOTATION. Fix throughout a separable infinite dimensional Hil-
bert space H. We let L(H) denote the algebra of all bounded operators on H.
For a compact operator T on H, let µ(T) := {µ(k, T)}∞

k=0 denote the sequence of
singular values of T, arranged in non-increasing order with multiplicities.

The standard trace on L(H) is denoted by Tr.
Fix an orthonormal basis in H (the particular choice of a basis is inessential).

We identify the algebra l∞ of bounded sequences with the subalgebra of all diag-
onal operators with respect to the chosen basis. For a given sequence α ∈ l∞, we
denote the corresponding diagonal operator by diag(α).

2.2. SCHATTEN IDEALS Lp . For p ∈ [1, ∞), the Schatten class Lp is defined as

Lp = {T ∈ L(H) : Tr(|T|p) < ∞}.

As usual, Lp is equipped with the norm

‖T‖p = (Tr(|T|p))1/p, T ∈ Lp.

For every p > 1, ‖ · ‖p is a norm and (Lp, ‖ · ‖p) is a Banach space.
The assertion below is used twice in Section 6. It follows immediately from

Lemma 8 in [47].

PROPOSITION 2.1. If a, b ∈ L(H) are self-adjoint operators, b > 0, then

‖bλab1−λ‖1 6 ‖ab‖1, 0 < λ < 1.

2.3. WEAK SCHATTEN IDEALS Lp,∞ . Given p > 1, we let Lp,∞ denote the ideal
on L(H) defined as:

Lp,∞ = {T ∈ L(H) : µ(k, T) = O((k + 1)−1/p)}.

We set
‖T‖p,∞ = sup

k>0
(k + 1)1/pµ(k, T), T ∈ Lp,∞.

For every p > 1, ‖ · ‖p,∞ is a quasi-norm (in other words, it satisfies the norm
axioms, except that the triangle inequality is replaced by ‖x + y‖ 6 K(‖x‖+ ‖y‖)
for some uniform constant K > 1) and (Lp,∞, ‖ · ‖p,∞) is a quasi-Banach space.
For p > 1, ‖ · ‖p,∞ is equivalent to a (unitarily invariant Banach) norm. For p = 1,
the space (L1,∞, ‖ · ‖1,∞) is not Banach — that is, its quasi-norm is not equivalent
to any norm. In [36], the Banach envelope of L1,∞ was thoroughly investigated.

We have
|T|p ∈ L1,∞ ⇐⇒ T ∈ Lp,∞.

The following Hölder property is widely used throughout the paper: for all
p, q, r > 1 satisfying 1

p = 1
q +

1
r there exists a positive constant cq,r such that

(2.1) ‖AB‖p,∞ 6 cq,r‖A‖q,∞‖B‖r,∞.
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2.4. TRACES ON L1,∞ .

DEFINITION 2.2. If I is an ideal in L(H), then a unitarily invariant linear
functional ϕ : I → C is said to be a trace.

Since U−1TU − T = [U−1, TU] for all T ∈ I and for all unitaries U ∈
L(H), and since the set of unitary operators spans L(H), it follows that traces are
precisely the linear functionals on I satisfying the condition

ϕ(TS) = ϕ(ST), T ∈ I , S ∈ L(H).

The latter may be reinterpreted as the vanishing of the linear functional ϕ on the
commutator subspace which is denoted [I ,L(H)] and defined to be the linear
span of all commutators [T, S] : T ∈ I , S ∈ L(H).

It is shown in Lemma 5.2.2 of [30] that if T1 and T2 are two positive operators
with identical singular value sequences, i.e. µ(T1) = µ(T2), then for all traces ϕ
we have ϕ(T1) = ϕ(T2).

For p > 1, the ideal Lp,∞ does not admit a non-zero trace [18], while for p =
1, there exists a plethora of traces on L1,∞ (see e.g. [11], [30] or [44]). A standard
example of a set of traces on L1,∞ is the class of Dixmier traces introduced in [16].

An extensive discussion of traces, and more recent developments in the the-
ory, may be found in [30] including a discussion of the following facts. We refer
the reader to an alternative approach to the theory of traces on L1,∞ suggested in
[44] (based on the fundamental paper [35] by Pietsch):

(i) All Dixmier traces on L1,∞ are positive.
(ii) All positive traces on L1,∞ are continuous in the quasi-norm topology.

(iii) There exist positive traces on L1,∞ which are not Dixmier traces (see [44]).
(iv) There exist traces on L1,∞ which fail to be continuous (see [30]).

We say that a trace ϕ on L1,∞ is normalised if ϕ(A) = 1 for any (and, hence,
for every) positive A ∈ L1,∞ such that µ(A) = { 1

k+1}k>0.

2.5. FOURIER TRANSFORM. We follow the convention that the Fourier transform
on L2(Rd) is defined by the formula

(Fξ)(t) = (2π)−d/2
∫
Rd

ξ(u)e−i〈t,u〉du, t ∈ Rd.

So the inverse Fourier transform is given by the formula

(F−1ξ)(t) = (2π)−d/2
∫
Rd

ξ(u)ei〈t,u〉du, t ∈ Rd.

Since the constant coefficients (2π)−d/2 do not play any role in our paper, we
often omit them.

The Fourier transform relates the representations π1 and π3 as follows:

π1(x) = F−1π3(x)F , x ∈ L∞(Rd).
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In particular, the operator π3(x) acts by the formula

(2.2) (π3(x)ξ)(t) =
∫
Rd

(F−1x)(t− u)ξ(u)du, t ∈ Rd.

In the following we require information about the Fourier transform of the
function t 7→ (1 + |t|2)−d/2. This Fourier transform may be conveniently ex-
pressed in terms of a modified Bessel function of the second kind, which may be
defined by the improper integral:

(2.3) K0(x) :=
∞∫

0

cos(xt)√
1 + t2

dt, x > 0.

(see Formula 9.6.21 of [1]). Then an elementary computation shows that the
Fourier transform of t 7→ (1 + |t|2)−d/2 is

(2.4) F (t 7→ (1 + |t|2)−d/2)(u) = cdK0(|u|)

where cd is a positive constant depending only on d.

2.6. CWIKEL-TYPE ESTIMATES. The following observation is made in Chapter 4
in [46]: there is a constant cd > 0 such that

(2.5) ‖π1( f1)π3( f2)‖2 = cd‖ f1‖2‖ f2‖2, f1, f2 ∈ L2(Rd).

The following result is due to Cwikel [15], and is stated as Theorem 4.2
in [46].

THEOREM 2.3. If f1 ∈ Lp(Rd) and f2 ∈ Lp,∞(Rd), p > 2, then π1( f1)π3( f2) ∈
Lp,∞. Moreover,

‖π1( f1)π3( f2)‖p,∞ 6 cp,d‖ f1‖p‖ f2‖p,∞.

Recall that the spaces (lp(Lq))(Rd) and (lp,∞(Lq))(Rd) are defined as fol-
lows. Let K = [0, 1]d be a fixed unit cube. For every locally integrable function f ,
we set

‖ f ‖lp(Lq) = ‖{‖ f ‖Lq(m+K)}m∈Zd‖p, 1 6 p, q 6 ∞,

‖ f ‖lp,∞(Lq) = ‖{‖ f ‖Lq(m+K)}m∈Zd‖p,∞, 1 6 p, q 6 ∞.

Observe that f ∈ (l1(L2))(Rd) implies that f ∈ L1(Rd).
Theorem 2.4 below is due to Birman and Solomyak [5], [6]. We refer the

reader to Theorem 4.5 of [46] for a modern proof of Theorem 2.4.

THEOREM 2.4. If f1 ∈ (l1(L2))(Rd) and f2 ∈ (l1(L2))(Rd), then π1( f1)π3( f2)
∈ L1. Moreover, we have

‖π1( f1)π3( f2)‖1 6 cd‖ f1‖l1(L2)
‖ f2‖l1(L2)

.
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In particular, we have that π1( f1)π3( f2) ∈ L1 for all compactly supported
f1, f2 ∈ L∞(Rd).

The following Cwikel estimate is proved by Birman, Karadzhov and Solo-
myak ([4], Assertion 5.8, p. 104). We refer the reader to the forthcoming paper
[27] which proves a more general (and much stronger) result.

THEOREM 2.5. If f1∈ (l1(L2))(Rd) and f2∈ (l1,∞(L2))(Rd), then π1( f1)π3( f2)
∈ L1,∞. Moreover, we have

‖π1( f1)π3( f2)‖1,∞ 6 cd‖ f1‖l1(L2)
‖ f2‖l1,∞(L2)

.

In particular, applying Theorem 2.5 to the function f2 : t → (1 + |t|2)−d/2,
t ∈ Rd, we obtain

‖π1( f )(1−∆)−d/2‖1,∞ 6 cd‖ f ‖l1(L2)
, f ∈ (l1(L2))(Rd).

2.7. LEBESGUE POINTS OF A LOCALLY INTEGRABLE FUNCTION. Recall that the
Lebesgue points of a locally integrable function x on Rd are those points t ∈ Rd

such that
lim
r→0

1
Vol(B(t, r))

∫
B(t,r)

|x(u)− x(t)|du = 0.

In particular, we have

x(t) = lim
r→0

1
Vol(B(t, r))

∫
B(t,r)

x(u)du.

The Lebesgue differentiation theorem (see e.g. Theorem 7.7 of [41]) states
the following.

THEOREM 2.6. If x is a locally integrable function on Rd, then almost every t ∈
Rd is a Lebesgue point for x.

3. THE PRINCIPAL SYMBOL IN THE C∗-ALGEBRAIC SETTING

The main result of this section is Theorem 1.2. The following simple result
is well known (see e.g. Proposition 2.4.1 in [8]).

LEMMA 3.1. Let {An}n>0, {Bn}n>0 ⊂ L(H) be bounded sequences. If An → A
and Bn → B in the strong operator topology, then AnBn → AB in the strong operator
topology.

For a function x on Rd, the dilation operator σn is defined by

(σnx)(s) = x
( s

n

)
, s ∈ Rd

for n > 0. Similarly, the translation operator Tt, t ∈ Rd is defined by

(Ttx)(s) = x(s− t).
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On L2(Rd), we frequently use an alternative expression

Tt = ei(t,∇).

LEMMA 3.2. If 0 is a Lebesgue point for x ∈ L∞(Rd), then as n → ∞, we have
π1(σnx)→ x(0)1 in the strong operator topology.

Proof. Without loss of generality, ‖x‖∞ 6 1. Fix ξ ∈ L2(Rd). We claim that
π1(σnx)ξ → x(0)ξ in L2(Rd).

To see the claim, fix ε > 0 and choose η ∈ C∞
c (Rd) such that ‖ξ − η‖L2 6 ε.

Let η be supported in a ball centred at 0 of radius R. We have:

‖(σnx− x(0)) · η‖2 =
∫
|t|6R

∣∣∣x( t
n

)
− x(0)

∣∣∣2 · |η(t)|2dt

6 2‖η‖2
∞ · nd

∫
|t|6R/n

|x(t)− x(0)|dt.

By the definition of a Lebesgue point, the right hand side tends to 0 as n → ∞.
Fix N sufficiently large such that if n > N,

2‖η‖2
∞ · nd

∫
|t|6R/n

|x(t)− x(0)|dt 6 ε2.

It follows that for all n > N we have

‖(σnx− x(0)) · η‖ 6 ε.

Thus,

‖(σnx− x(0)) · ξ‖ 6 ‖(σnx− x(0)) · η‖+ ‖(σnx− x(0)) · (ξ − η)‖
6 ε + ‖σnx− x(0)‖∞‖ξ − η‖ 6 3ε,

for all n > N. Thus, π1(σnx)ξ → x(0)ξ in L2(Rd).

The following is a simple consequence of the fact that for each 1 6 k 6 d the
operator Dk

(−∆)1/2 commutes with translations and dilations.

LEMMA 3.3. For all f ∈ L∞(Rd), g ∈ L∞(Sd−1) and for every n ∈ N, we have

σnπ1( f )σ1/n = π1(σn f ), σnπ2(g)σ1/n = π2(g), and

Ttπ1( f )T−t = π1(Tt f ), Ttπ2(g)T−t = π2(g).

Moreover, we have
Ttπ3( f ) = π3( f )Tt.

Proof. We have

Ttπ3( f ) = ei(t,∇) f (∇) = f (∇)ei(t,∇) = π3( f )Tt.
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If g ∈ L∞(Sd−1), then set

f (t) = g
( t
|t|

)
, t ∈ Rd.

Hence,
π2(g)Tt = π3( f )Tt = Ttπ3( f ) = Ttπ2(g).

For ξ ∈ L2(Rd), we have

(Ttπ1( f ))(ξ) = Tt( f ξ) = (Tt f ) · (Ttξ) = (π1(Tt f )Tt)(ξ).

This proves the last assertions. The proofs of the first equalities are similar and
are, therefore, omitted.

It is at this point that the assumption that we work with homogeneous func-
tions of the gradient is used, since Lemma 3.3 is false when π2 is replaced with
π3. Indeed, the equality σnπ3(g)σ1/n is not equal to π3(g) for inhomogeneous
functions g ∈ L∞(Rd).

The following simple lemma contains in fact a crucial piece of the proof of
Theorem 1.2.

LEMMA 3.4. Let fk ∈ L∞(Rd) and let gk ∈ L∞(Sd−1), 1 6 k 6 m. If 0 is a
Lebesgue point for every fk, 1 6 k 6 m, then

σn ·
m

∏
k=1

π1( fk)π2(gk) · σ1/n →
m

∏
k=1

fk(0) ·
m

∏
k=1

π2(gk), n→ ∞,

in the strong operator topology.

Proof. Clearly,

σn ·
m

∏
k=1

π1( fk)π2(gk) · σ1/n =
m

∏
k=1

(σnπ1( fk)σ1/n · σnπ2(gk)σ1/n).

By Lemma 3.3, we have

σn ·
m

∏
k=1

π1( fk)π2(gk) · σ1/n =
m

∏
k=1

π1(σn fk)π2(gk).

By Lemma 3.2, we have π1(σn fk) → fk(0) strongly. The assertion follows now
from Lemma 3.1.

Now, we prove our first main result.

Proof of Theorem 1.2. Let P ⊂ Π be the ∗-subalgebra in L(L2(Rd)) generated
by π1(L∞(Rd)) and π2(L∞(Sd−1)). So if A ∈ P, then A can be written as a linear
combination of products of elements of π1(L∞(Rd)) and π2(L∞(Sd−1)):

(3.1) A =
p

∑
l=1

m

∏
k=1

π1( fk,l)π2(gk,l), 1 6 p, m < ∞,
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where each fk,l ∈ L∞(Rd) and each gk,l ∈ L∞(Rd). Define the mapping symb on
the algebra P by setting

(3.2) symb :
p

∑
l=1

m

∏
k=1

π1( fk,l)π2(gk,l) 7→
p

∑
l=1

m

∏
k=1

fk,l ⊗ gk,l .

We claim symb is well-defined, and is continuous in the norm topology.
Applying Lemma 3.3, we get

Tt AT−t =
p

∑
l=1

m

∏
k=1

π1(Tt fk,l)π2(gk,l).

Choose a point t which is a Lebesgue point for every fk,l , 1 6 k 6 m, 1 6 l 6 p.
We have that (Tt fk,l)(0) = fk,l(t) and hence 0 is a Lebesgue point for every Tt fk,l ,
1 6 k 6 m, 1 6 l 6 p. Then applying Lemma 3.4, we have that as n→ ∞

σnTt AT−tσ1/n →
p

∑
l=1

m

∏
k=1

fk,l(t)π2(gk,l)

in the strong operator topology. By the Fatou property of the operator norm of
L(L2(Rd)), we have∥∥∥ p

∑
l=1

m

∏
k=1

fk,l(t)π2(gk,l)
∥∥∥

∞
6 lim inf

n→∞
‖σnTt AT−tσ1/n‖∞

=⇒
∥∥∥π2

( p

∑
l=1

m

∏
k=1

fk,l(t)gk,l

)∥∥∥
∞
6 ‖A‖∞.

We claim that π2 is an isometry. The claim follows via the spectral representation
of the gradient. Precisely, take g ∈ L∞(Sd−1) and extend it to a function h ∈
L∞(Rd) by setting

h(t) = g
( t
|t|

)
, t ∈ Rd.

Clearly, this extension preserves the uniform norm. We have

π2(g) = π3(h) = F−1π1(h)F .

Therefore,

‖π2(g)‖∞ = ‖F−1π1(h)F‖∞ = ‖π1(h)‖∞ = ‖h‖∞ = ‖g‖∞.

Since π2 is an isometric embedding of L∞(Sd−1) into L(L2(Rd)) we arrive at

(3.3)
∥∥∥ p

∑
l=1

m

∏
k=1

fk,l(t)gk,l

∥∥∥
∞
6
∥∥∥ p

∑
l=1

m

∏
k=1

π1( fk,l)π2(gk,l)
∥∥∥

∞

for every t ∈ Rd which is a Lebesgue point for every fk,l , 1 6 k 6 m, 1 6 l 6 p.
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By Theorem 2.6, almost every point of Rd is a Lebesgue point of each fk,l . So
(3.3) holds for almost every t ∈ Rd. Taking the essential supremum over t ∈ Rd,
and using the formula∥∥∥ N

∑
n=1

an ⊗ bn

∥∥∥
∞
= sup ess

t∈Rd

∥∥∥ N

∑
n=1

an(t)bn

∥∥∥
∞

valid for all {an}N
n=1 ⊂ L∞(Rd) and {bn}N

n=1 ⊂ L∞(Sd−1), we infer∥∥∥ p

∑
l=1

m

∏
k=1

fk,l ⊗ gk,l

∥∥∥
∞
6
∥∥∥ p

∑
l=1

m

∏
k=1

π1( fk,l)π2(gk,l)
∥∥∥

∞
= ‖A‖∞.

This now shows that the mapping (3.2) is well defined, since if A has two distinct
representations in (3.1) such as

A =
p

∑
l=1

m

∏
k=1

π1( fk,l)π2(gk,l) =
p′

∑
l=1

m′

∏
k=1

π1( f ′k,l)π2(g′k,l)

then ∥∥∥ p

∑
l=1

m

∏
k=1

fk,l ⊗ gk,l −
p′

∑
l=1

m′

∏
k=1

f ′k,l ⊗ g′k,l

∥∥∥
∞
6 ‖A− A‖∞ = 0.

Hence, the mapping symb from (3.2) is well defined, and immediately,

(3.4) ‖symb(A)‖∞ 6 ‖A‖∞, A ∈ P,

so symb is also norm-continuous on P.
The fact that symb is a ∗-homomorphism on P follows directly from the

definition. Since symb contracts the uniform norm, it extends to the uniform
closure of P, that is to Π. That this map is unique follows from the norm-density
of P in Π.

Proof of the Theorem 1.3. Assume the contrary. Let π : A → L∞(R2d) be a
∗-homomorphism such that

π(π1( f1)π3( f2)) = f1 ⊗ f2, f1, f2 ∈ L∞(Rd).

Take f ∈ (L2 ∩ L∞)(Rd). Since π is a ∗-homomorphism of C∗-algebras, it is con-
tractive. We have

‖ f ⊗ f ‖∞ 6 ‖π1( f )π3( f )‖∞.

However, ‖ f ⊗ f ‖∞ = ‖ f ‖2
∞. Since ‖ · ‖∞ 6 ‖ · ‖2 in the setting of Schatten ideals,

it follows from (2.5) that

‖π1( f )π3( f )‖∞ 6 ‖π1( f )π3( f )‖2 = cd‖ f ‖2
2.

Thus, ‖ f ‖2
∞ 6 cd‖ f ‖2

2. The latter inequality is false for general f . This contradic-
tion proves the claim.
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Theorem 1.2 shows that one can define a symbol mapping on the opera-
tor norm closure of the subalgebra of L(L2(Rd)) generated by π1(L∞(Rd)) and
π2(L∞(Sd−1)). It is natural to ask whether the same is true for the closure in the
weak operator topology. The following lemma shows that this is impossible.

LEMMA 3.5. The closure of Π in the weak operator topology is all of L(L2(Rd)),
and there is no ∗-homomorphism extending symb to all of L(L2(Rd)).

Proof. To show that the weak closure of Π, or equivalently the double com-
mutant Π′′, is all ofL(L2(Rd)) it suffices to show that the commutant Π′ is trivial.

If T ∈ Π′, then T in particular commutes with all of π1(L∞(Rd)). However
since π1(L∞(Rd)) is a maximal abelian subalgebra in L(L2(Rd)) it is equal to
its commutant, hence T = π1( f ) for some f ∈ L∞(Rd). Since T additionally
commutes with every element of π2(L∞(Sd−1)), we have that for all 1 6 k 6 d,

(3.5)
[ Dk

(−∆)1/2 , π1( f )
]
= 0.

This implies that f is constant. One way of seeing this is to apply Theorem 1.7. Let
{hn}n>0 be an approximate identity on Rd (i.e., a sequence of positive Schwartz
functions such that ‖hn‖1 = 1 and such that hn → δ (Dirac point measure) in the
space of tempered distributions as n → ∞). Setting fn = f ∗ hn, we have (here,
t→ Tt is a group of translations on Rd):

π1( fn) =
∫
Rd

hn(t)π1(Tt( f ))dt.

Therefore, [ Dk

(−∆)1/2 , π1( fn)
]
=
∫
Rd

hn(t)
[ Dk

(−∆)1/2 , π1(Tt f )
]
dt.

By Lemma 3.3, we have (recall that translations commute with functions of the
gradient):[ Dk

(−∆)1/2 , π1(Tt f )
]
=
[ Dk

(−∆)1/2 , Ttπ1( f )T−t

]
= Tt

[ Dk

(−∆)1/2 , π1( f )
]

T−t = 0.

Since

sgn(D) =
d

∑
k=1

γk ⊗
Dk

(−∆)1/2 ,

it follows that [sgn(D), 1⊗ π1( fn)] = 0. Taking the absolute value, raising to the
d-th power and using Theorem 1.7, we get∫

Rd

‖∇ fn(t)‖d
2 dt = ϕ(|[sgn(D), 1⊗ π1( fn)]|d) = 0.

Hence, fn is a constant function for every n > 0. Since fn → f in the space of
tempered distributions, it follows that f is also a constant function.
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If φ : L(L2(Rd))→ A is a homomorphism to a commutative algebra A, then
the kernel of φ contains the linear span of the set of all commutators of elements
of L(L2(Rd). However every element in L(L2(Rd)) can be expressed as a finite
sum of commutators [23]. In particular, φ must vanish on Π so cannot be an
extension of symb.

4. THE LEBESGUE INTEGRAL FROM THE TRACE FORMULA

The main result of this section is Proposition 4.1 below. It is crucially used
in Section 5.

PROPOSITION 4.1. Let f ∈ l1(L2(Rd)). For every continuous normalised trace
ϕ on L1,∞, we have

ϕ(π1( f )(1−∆)−d/2) = cd

∫
Rd

f (t)dt.

That π1( f )(1−∆)−d/2 ∈ L1,∞ follows directly from Theorem 2.5.
We begin with a compact analogue of Proposition 4.1. Here, ∆T (respec-

tively, ∇T) is the Laplacian (respectively, gradient) on the torus Td. Given f ∈
L∞(Td), the operator M f denotes the operator of pointwise multiplication by f
on L2(T).

LEMMA 4.2. There exists a constant cd > 0 such that

ϕ(M f (1−∆T)
−d/2) = cd

∫
Td

f (t)dt, f ∈ C(Td),

for every continuous normalised trace ϕ on L1,∞.

Proof. Fix a continuous trace ϕ on L1,∞ and consider a linear functional θ on
C(Td) defined by the formula

θ( f ) = ϕ(M f (1−∆T)
−d/2), f ∈ C(Td).

This functional is bounded because

|θ( f )| 6 ‖ϕ‖L∗1,∞
‖ f ‖∞

∥∥∥{ 1
(1 + |n|2)d/2

}
n∈Zd

∥∥∥
1,∞

.

Let t → Ut be the representation of Td on L2(Td) by translations, that is
(Utξ)(s) = ξ(s + t), ξ ∈ L2(Td). We have that

Ut(1−∆T)
−d/2 = ei〈t,∇T〉 · (1 + |∇T|2)−d/2 = (1 + |∇T|2)−d/2 · ei〈t,∇T〉

= (1−∆T)
−d/2Ut.

Clearly,
Ut M f U−1

t = MUt f t ∈ Td.
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Since ϕ is unitarily invariant functional, it follows that

θ( f ) = ϕ(Ut M f (1−∆T)
−d/2U−1

t ) = ϕ(Ut M f U−1
t (1−∆T)

−d/2)

= ϕ(MUt f (1−∆T)
−d/2) = θ(Ut f ).

Thus, θ is a translation invariant bounded linear functional on C(Td).
By the Riesz–Markov theorem (see Theorem V.14 in [37]), a bounded linear

functional on C(Td) corresponds to a Baire measure on Td. Clearly, a translation
invariant functional corresponds to a translation invariant measure. A translation
invariant measure on Td is uniformly distributed in the sense of Definition 3.3 in
[31]. By Theorem 3.4 in [31], every translation invariant measure is a scalar mul-
tiple of the usual Lebesgue measure. Hence, there exists a constant cϕ,d such that

ϕ(M f (1−∆T)
−d/2) = cϕ,d

∫
Td

f (t)dt, f ∈ C(Td).

We now show that cϕ,d depends only on d.
By setting f = 1, we obtain that

cϕ,d = (2π)−d ϕ(a), a =
{ 1
(1 + |n|2)d/2

}
n∈Zd

.

We have

Card({n∈Zd : a(n)> (1+r2)−d/2})=Card({n∈Zd : |n|6r})= cdrd+O(rd−1),

where cd is the volume of the unit ball in Rd. Thus,

Card({n ∈ Zd : a(n) > t}) = cdt−1 + O(t(1/d)−1).

In other words, we have

µ(k, a) = cd(k + 1)−1 + O((k + 1)−1−(1/d)), k ∈ Z+.

Since {(k + 1)−1−(1/d)}k>0 ∈ l1 and since ϕ vanishes on L1, it follows that ϕ(a)
= cd.

LEMMA 4.3. The Banach dual of (l1(L2))(Rd) is (l∞(L2))(Rd). Specifically, ev-
ery bounded linear functional on (l1(L2))(Rd) is given by the formula

(4.1) f →
∫
Rd

( f F)(u)du for some F ∈ (l∞(L2))(Rd).

Proof. Firstly, let us establish that (4.1) indeed provides a bounded linear
functional on (l1(L2))(Rd). Indeed, we have∣∣∣ ∫

Rd

( f F)(u)du
∣∣∣ 6 ∑

m∈Zd

∣∣∣ ∫
m+K

( f F)(u)du
∣∣∣ 6 ∑

m∈Zd

‖ f χm+K‖2‖Fχm+K‖2

6 sup
m∈Zd

‖Fχm+K‖2 · ∑
m∈Zd

‖ f χm+K‖2 = ‖F‖l∞(L2)
‖ f ‖l1(L2)

.
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Let θ be a bounded linear functional on (l1(L2))(Rd). For a fixed m ∈ Zd, the
Hilbert space L2(m + K) is linearly and isometrically embedded into l1(L2(Rd))
by inclusion. Hence, θ is a bounded linear functional on L2(m + K). By the Riesz
representation theorem for the dual of a Hilbert space, there exists a function
Fm ∈ L2(m + K) such that

θ( f ) =
∫

m+K

( f Fm)(u)du, f ∈ L2(m + K).

By gluing Fm over all m ∈ Zd, we obtain a function F on Rd.
We have

‖θ‖(l1(L2))∗ = sup
f∈l1(L2(Rd))
‖ f ‖l1(L2)

=1

|θ( f )| > sup
m>0

sup
f∈L2(m+K)
‖ f ‖2=1

|θ( f )|

= sup
m>0

sup
f∈L2(m+K)
‖ f ‖2=1

∣∣∣ ∫
m+K

( f F)(u)du
∣∣∣ = sup

m>0
‖Fχm+K‖2 = ‖F‖l∞(L2)

.

Therefore, F ∈ (l∞(L2))(Rd).
Let now θ0 be a bounded linear functional given by (4.1) (with the function

F defined above). For every fixed m ∈ Zd and for every f ∈ L2(m + K), we have
θ( f ) = θ0( f ). By linearity, we have θ( f ) = θ0( f ) for every compactly supported
f ∈ (l1(L2))(Rd). Since the set of compactly supported functions is norm-dense
in (l1(L2))(Rd) and since both θ and θ0 are continuous, it follows that θ = θ0.

The following lemma is enough to prove Proposition 4.1 without the re-
quirement that cd has no dependence on ϕ.

LEMMA 4.4. For every continuous trace ϕ on L1,∞, there exists a constant cϕ,d
such that

ϕ(π1( f )(1−∆)−d/2) = cϕ,d

∫
Rd

f (u)du, f ∈ (l1(L2))(Rd).

Proof. By Theorem 2.5, we have that π1( f )(1−∆)−d/2 ∈ L1,∞ for every f ∈
(l1(L2))(Rd). Fix a continuous trace ϕ on L1,∞ and consider a linear functional θ

on (l1(L2))(Rd) defined by the formula

θ( f ) = ϕ(π1( f )(1−∆)−d/2), f ∈ (l1(L2))(Rd).

Due to Theorem 2.5, the functional θ is bounded:

|θ( f )| 6 cd‖ϕ‖L∗1,∞
‖ f ‖l1(L2)

‖t→ 1
(1 + |t|2)d/2 ‖l1,∞(L2)

.

Recall that Tt denotes the unitary action of t ∈ Rd on L2(Rd) by translations.
For all t the operator Tt commutes with (1−∆)−d/2 by Lemma 3.3.
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Since ϕ is a unitarily invariant functional, it follows that

θ( f ) = ϕ(Ttπ1( f )(1−∆)−d/2T−1
t ) = ϕ(Ttπ1( f )T−1

t (1−∆)−d/2)

= ϕ(π1(Tt f )(1−∆)−d/2) = θ(Tt f ).

Thus, θ is a translation invariant functional on (l1(L2))(Rd).
Let F ∈ (l∞(L2))(Rd) be the function corresponding to the functional θ as

in Lemma 4.3. We claim that F is translation invariant. Indeed, for every f ∈
(l1(L2))(Rd) and for every t ∈ Rd, we have∫

Rd

f (u)F(u)du = θ( f ) = θ(Tt f ) =
∫
Rd

f (u + t)F(u)du =
∫
Rd

f (u)F(u− t)du.

Thus, F = T−tF for every t ∈ Rd. Since the only translation invariant functions
on Rd are constants, it follows that the only translation invariant bounded linear
functional is an integral with respect to the Lebesgue measure (modulo some
constant factor cϕ,d). The assertion follows immediately.

We now focus on removing the dependence of the constant cϕ,d on ϕ. The
following assertion is absolutely crucial for the proofs in this section. Here,∇T is
the gradient on the torus. If a ∈ l∞(Zd), then a(∇T) is defined by the functional
calculus. Note that the operators on the left and right hand sides in lemma below
leave the subspace L2([0, 1]d) invariant and, so, the restrictions make sense.

LEMMA 4.5. Let f ∈ L∞([0, 1]d) and let φ ∈ C∞(Rd) be supported in [−3, 3]d

such that φ|[−1,1]d = 1. We have

π1( f )(1−∆)−d/2π1( f )|L2([0,1]d) = M f a(∇T)M f |L2([0,1]d).

Here, a is the sequence of Fourier coefficients of the function t→ K0(|t|)φ(t) on the cube
[−π, π]d and K0 is the modified Bessel function from (2.3).

Proof. According to (2.4), the Fourier transform of the mapping t → (1 +
|t|2)−d/2, t ∈ Rd, is given (up to a constant) by the formula t → K0(|t|), t ∈ Rd.
Applying (2.2), we obtain

(4.2) ((1−∆)−d/2ξ)(t) =
∫
Rd

K0(|t− u|)ξ(u)du, t ∈ Rd.

It clearly follows that

(π1( f )(1−∆)−d/2π1( f )ξ)(t) =
∫

[0,1]d

f (t) f (u)K0(|t− u|)ξ(u)du, t ∈ [0, 1]d.

If t, u ∈ [0, 1]d, then t− u ∈ [−1, 1]d. In particular, we have (distance from a point
to a set is taken in the usual Euclidean norm):

|t− u| = dist(t− u, 2πZd), t, u ∈ [0, 1]d.
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Since φ = 1 on [−1, 1]d, it follows that

K0(|t− u|) = K0(dist(t− u, 2πZd))ψ(t− u), t, u ∈ [0, 1]d,

where ψ is the 2π-periodic extension of φ|[−π,π]d .
Define an operator S on L2([−π, π]d) by setting

(4.3) (Sξ)(t)=
∫

[−π,π]d

f (t) f (u)K0(dist(t−u, 2πZd))ψ(t−u)ξ(u)du, t∈ [−π, π]d.

Comparing the right hand sides in (4.2) and (4.3), we obtain

π1( f )(1−∆)d/2π1( f )|L2([0,1]d) = S|L2([0,1]d).

Clearly, S = M f TM f , where

(4.4) (Tξ)(t) =
∫

[−π,π]d

K0(dist(t− u, 2πZd))ψ(t− u)ξ(u)du, t ∈ [−π, π]d.

Writing
K0(dist(t, 2πZ))ψ(t) = ∑

n∈Zd

a(n)ei〈n,t〉,

we obtain that
(Tξ)(t) = ∑

n∈Zd

a(n)ei〈n,t〉〈x, ei〈n,·〉〉.

In other words, T = a(∇T). Hence, S = M f a(∇T)M f and the assertion
follows.

LEMMA 4.6. If a is as in Lemma 4.5, then there exists a constant cd such that

a(n) =
cd

(1 + |n|2)d/2 + O((1 + |n|2)−p/2), n ∈ Zd,

for every p > d.

Proof. Since φ is supported on [−π, π]d (see Lemma 4.5), it follows that

a(n) =
∫

[−π,π]d

K0(|t|)φ(t)e−i〈n,t〉dt =
∫
Rd

K0(|t|)φ(t)e−i〈n,t〉dt, n ∈ Z.

Define a Schwartz function ψ on Rd by setting ψ(t) = K0(|t|) · (1− φ(t)), t ∈ Rd.
It immediately follows that

a(n) =
∫
Rd

K0(|t|)e−i〈n,t〉dt−
∫
Rd

ψ(t)e−i〈n,t〉dt, n ∈ Zd.

Since the Fourier transform of the mapping t→K0(|t|), t∈Rd, is given by the for-
mula t→ (1+|t|2)−d/2, t∈Rd, (see Example 2.4) and since the Fourier transform
of a Schwartz function is again a Schwartz function, the assertion follows.
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Now we may complete the proof of Proposition 4.1, by removing the de-
pendence on ϕ of the constant cϕ,d in Lemma 4.4.

Proof of Proposition 4.1. Suppose first that f ∈ C(Rd) is positive and sup-
ported on [0, 1]d. Let f = h2. Since ϕ is a trace, we have

ϕ(π1( f )(1−∆)−d/2) = ϕ(π1(h)(1−∆)−d/2π1(h))

= ϕ(π1(h)(1−∆)−d/2π1(h)|L2([−1,1]d)).

Using Lemma 4.5, we obtain

ϕ(π1( f )(1−∆)−d/2) = ϕ(Mha(∇T)Mh|L2([−1,1]d)) = ϕ(Mha(∇T)Mh).

Lemma 4.6 yields that a ∈ l1,∞ and that a = a1 + a2, where

a1(n) =
cd

(1 + |n|2)d/2 , a2(n) = O
( 1
(1 + |n|2)(d+1)/2

)
, n ∈ N.

However Mha2(∇T)Mh ∈ L1 and since ϕ vanishes on L1, it follows from Lem-
ma 4.2 that

(4.5) ϕ(π1( f )(1−∆)−d/2) = cd ϕ(M f (1−∆T)
−d/2) = cd

∫
Rd

f (t)dt.

This proves the assertion for positive f ∈ C(Rd) supported on [0, 1]d.
Consider now the general case and fix f ∈ (l1(L2))(Rd). Without loss of

generality, ∫
Rd

f (t)dt > 0

(otherwise, consider − f instead). Let f1 ∈ C(Rd) be positive and supported
on [0, 1]d and having the same integral as f . Set f2 = f − f1. It follows from
Lemma 4.4 that

ϕ(π1( f )(1−∆)−d/2) = ϕ(π1( f1)(1−∆)−d/2) + ϕ(π1( f2)(1−∆)−d/2).

The first summand does not depend on ϕ by (4.5). The second summand vanishes
by Lemma 4.4.

5. TRACE FORMULA: FIRST ORDER APPROXIMATION

The main result of this section is Proposition 5.1 below. It delivers a mini-
malist version of Connes’ trace formula, which is further used in Proposition 7.1
as a base of induction.

Observe that, by Theorem 2.5, π1( f )(1 − ∆)−d/2 ∈ L1,∞ for every func-
tion f ∈ (l1(L2))(Rd). Since π2(g) is a bounded operator which commutes with
(1 − ∆)−d/2, it follows that also π1( f )π2(g)(1 − ∆)−d/2 ∈ L1,∞ for every f ∈
(l1(L2))(Rd), g ∈ L∞(Sd−1).
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PROPOSITION 5.1. Let f∈L∞(Rd) be compactly supported, and let g∈L∞(Sd−1).
Then

ϕ(π1( f )π2(g)(1−∆)−d/2) =
∫
Rd

f (t)dt ·
∫

Sd−1

g(s)ds

for every continuous normalised trace ϕ on L1,∞.

LEMMA 5.2. Let f ∈ (l1(L2))(Rd) and let g ∈ L∞(Sd−1). If
∫
Rd

f (x)dx = 0,

then
ϕ(π1( f )π2(g)(1−∆)−d/2) = 0

for every continuous trace ϕ on L1,∞.

Proof. Fix a continuous trace ϕ on L1,∞ and consider a bounded linear func-
tional θ on (l1(L2))(Rd) defined by the formula

θ( f ) = ϕ(π1( f )π2(g)(1−∆)−d/2), f ∈ (l1(L2))(Rd).

Repeating the argument in Lemma 4.4, we obtain that θ is translation invariant
and is, therefore, an integral (modulo a constant factor).

LEMMA 5.3. Let f ∈ L∞(Rd) and g ∈ C(Sd−1). If f is compactly supported and
rotation invariant and if

∫
Sd−1

g(s)ds = 0, then

ϕ(π1( f )π2(g)(1−∆)−d/2) = 0

for every continuous trace ϕ on L1,∞.

Proof. Fix a continuous trace ϕ on L1,∞ and consider a linear functional θ on
C(Sd−1) defined by the formula

θ(g) = ϕ(π1( f )π2(g)(1−∆)−d/2), g ∈ C(Sd−1).

This functional is bounded because (due to Theorem 2.5)

|θ(g)| 6 cd‖ϕ‖L∗1,∞
‖g‖∞‖ f ‖l1(L2)

∥∥∥t→ 1
(1 + |t|2)d/2

∥∥∥
l1,∞(L2)

.

For a given R ∈ SO(d), let U : L2(Rd) → L2(Rd) be the unitary operator
given by the formula Uξ = ξ ◦R for ξ ∈ L2(Rd). Since by assumption f is rotation
invariant, the operator U commutes with π1( f ). Also, U commutes with ∆ and
hence with (1−∆)−d/2.

Now, set h(t) = g
( t
|t|
)
, t ∈ Rd. Since U commutes with the Fourier trans-

form F , it follows that

Uπ2(g)U−1 = UF−1π1(h)FU−1 = F−1Uπ1(h)U−1F

= F−1π1(h ◦ R)F = π2(g ◦ R).
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Since ϕ is unitarily invariant, it follows that

θ(g) = ϕ(Uπ1( f )π2(g)(1−∆)−d/2U−1) = ϕ(π1( f )Uπ2(g)U−1(1−∆)−d/2)

= ϕ(π1( f )π2(g ◦ R)(1−∆)−d/2) = θ(g ◦ R).

Since R is arbitrary, it follows that θ is rotation invariant. Hence, the Baire mea-
sure on Sd−1 defined by θ via the Riesz–Markov theorem is also rotation invariant,
and therefore coincides with the usual rotation invariant measure on Sd−1.

Recalling that by assumption
∫

Sd−1

g(s)ds=0, so we arrive at the assertion.

The following is a consequence of Fubini’s theorem. A complete proof may
be found in proof of Theorem 2.f.2 of [28].

FACT 5.4. Let (Xj, νj), j = 1, 2 be σ-finite measure spaces and p ∈ [1, ∞]. If
v ∈ Lp(X1, ν1) and w ∈ Lp,∞(X2, ν2), then v⊗ w ∈ Lp,∞(X1 × X2, ν1 × ν2) and

‖v⊗ w‖Lp,∞ 6 ‖v‖Lp‖w‖Lp,∞ .

LEMMA 5.5. Let p ∈ (d, ∞), and let v ∈ Lp(Sd−1),. Define

h(t) = v
( t
|t|

)
(1 + |t|2)−d/2, t ∈ Rd.

Then there is a constant cd,p > 0 such that

‖h‖l1,∞(L2)
6 cd,p‖v‖p.

Proof. Select q > 1 such that 1
p + 1

q = 1, and write h as

h(t) = v
( t
|t|

)
w(|t|)y(t), t ∈ Rd,

where

w(r) = (1 + r2)−d/(2p), r > 0 and, y(t) = (1 + |t|2)−d/(2q), t ∈ Rd.

Let u(t) := v
( t
|t|
)
w(|t|).

The proof proceeds by showing first that

(5.1) ‖h‖l1,∞(L2)
6 cp‖u‖lp,∞(L2)

‖y‖lq,∞(L∞),

and secondly that

(5.2) ‖u‖lp,∞(L2)
6 cd,p‖v‖Lp‖w‖Lp,∞(R+ ,rd−1dr).

Then the proof is completed by showing that ‖y‖lq,∞(L∞) and ‖w‖Lp,∞(R+ ,rd−1dr)
are finite.

First we show (5.1).
For every m ∈ Zd we have:

‖uyχm+[0,1]d‖L2 6 ‖uχm+[0,1]d‖L2‖yχm+[0,1]d‖L∞ .
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Thus,

‖uy‖l1,∞(L2)
6 ‖{‖uχm+[0,1]d‖L2}m∈Zd · {‖yχm+[0,1]d‖L∞}m∈Zd‖l1,∞ .

Now applying (2.1) we get ‖uy‖l1,∞(L2)
6 cp‖u‖lp,∞(L2)

‖y‖lq,∞(L∞). Since h = uy,
this yields (5.1).

Now we prove (5.2). Consider the mapping

i : Rd → (Sd−1, ds)× (R+, rd−1dr)

given by the formula i(t) =
( t
|t| , |t|

)
. This mapping is measure preserving. So we

have u ◦ i = v⊗ w. Then using Fact 5.4, it follows that

‖u‖Lp,∞ = ‖u ◦ i‖Lp,∞(Sd−1×R+ ,ds×rd−1dr)

= ‖v⊗ w‖Lp,∞(Sd−1×R+ ,ds×rd−1dr) 6 ‖v‖Lp‖w‖Lp,∞(R+ ,rd−1dr).

However, we also have that for p > 2, ‖u‖lp,∞(L2)
6 ‖u‖Lp,∞ . This can be seen

from the pair of inequalities,

‖u‖l2(L2)
6 ‖u‖L2 , ‖u‖lp(L2)

6 ‖u‖Lp .

The first inequality is in fact an equality, and the second follows from the assump-
tion that p > 2. Then applying the method of real interpolation (see e.g. [28]), it
follows that for p > 2 that ‖u‖lp,∞(L2)

6 ‖u‖Lp,∞ . So now we have shown that

‖u‖lp,∞(L2)
6 ‖u‖Lp,∞ 6 ‖v‖Lp‖w‖Lp,∞(R+ ,rd−1dr),

thus proving (5.2). Finally, to show that ‖y‖lq,∞(L∞) and ‖w‖Lp,∞(R+ ,rd−1dr) are fi-
nite follows easily from their definitions.

LEMMA 5.6. Let f ∈ L∞(Rd) and g ∈ L∞(Sd−1). If f is compactly supported
and rotation invariant and if g is mean zero, then

ϕ(π1( f )π2(g)(1−∆)−d/2) = 0

for every continuous trace ϕ on L1,∞.

Proof. Select a sequence of mean zero functions {gn}n>1 ⊂ C(Sd−1) such
that ‖gn − g‖2d → 0 as n→ ∞. Set

h(t) := g
( t
|t|

)
(1 + |t|2)−d/2, hn(t) := gn

( t
|t|

)
(1 + |t|2)−d/2, t ∈ Rd.

By Lemma 5.5, we have that hn → h in (l1,∞(L2))(Rd) as n → ∞. Then applying
(2.5) for all n > 0 we have

‖π1( f )π2(gn − g)(1−∆)−d/2‖1,∞ 6 cd‖ f ‖l1(L2)
‖hn − h‖l1,∞(L2)

and hence as n → ∞ we have ‖π1( f )π2(gn − g)(1−∆)−d/2‖L1,∞ → 0. Since ϕ is
continuous, it follows that as n→ ∞,

ϕ(π1( f )π2(gn)(1−∆)−d/2)→ ϕ(π1( f )π2(g)(1−∆)−d/2).
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The assertion follows now from Lemma 5.3.

Proof of Proposition 5.1. Select a compactly supported rotation invariant func-
tion f1 ∈ L∞(Rd) having the same integral as f . Set f2 := f − f1,

g1 :=
∫

Sd−1

g(s)ds, g2 := g− g1.

We have

ϕ(π1( f )π2(g)(1−∆)−d/2)

= ϕ(π1( f2)π2(g)(1−∆)−d/2) + ϕ(π1( f1)π2(g2)(1−∆)−d/2)

+
( ∫
Sd−1

g(s)ds
)
· ϕ(π1( f1)(1−∆)−d/2).

Examining the right hand side, the first summand vanishes by Lemma 5.2 and
the second summand vanishes by Lemma 5.6. It follows from Proposition 4.1
that

ϕ(π1( f1)(1−∆)−d/2) =
∫
Rd

f1(t)dt =
∫
Rd

f (t)dt.

This concludes the proof.

6. COMMUTATOR ESTIMATES IN L1

In the following lemma, C∞(Rd) denotes the collection of all infinitely dif-
ferentiable functions f on Rd such that f and all its derivatives are bounded.

The main result of this section is Proposition 6.1 below. It is used crucially
in the proof of Lemma 7.1.

PROPOSITION 6.1. If φ ∈ C∞
c (Rd) and if f ∈ C∞(Rd) and g ∈ C∞(Sd−1), then

[π1( f ), π2(g)(1−∆)−d/2π1(φ)] ∈ L1.

The argument of the proof of Lemma 6.2 below is somewhat similar to the
one in Lemma 2.29 of [10], to which we refer the reader for additional informa-
tion.

LEMMA 6.2. If φ ∈ C∞
c (Rd), then

(6.1) [(1−∆)1/2, π1(φ)](1−∆)−(d+1)/2 ∈ L1.

Proof. In order to lighten the notation, denote K := 1 − ∆. We have the
integral formulae:

K−1/2 =
1
π

∞∫
0

1
λ1/2(λ + K)

dλ and(6.2)
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K−3/2 =
2
π

∞∫
0

1
λ1/2(λ + K)2 dλ.(6.3)

Hence, since 1
π

∞∫
0

K1/2

λ1/2(λ+K) dλ = 1 and 1
π

∞∫
0

K3/2

λ1/2(λ+K)2 dλ = 1
2 , we arrive at the

useful expression,

(6.4)
1
π

∞∫
0

( K1/2

λ + K
− K3/2

(λ + K)2

) dλ

λ1/2 =
1
2

.

Multiplying (6.2) by K and taking the commutator with π1(φ) yields:

[K1/2, π1(φ)] =
1
π

∞∫
0

[ K
λ + K

, π1(φ)
] dλ

λ1/2 .

Focusing on the commutator inside the integral,[ K
λ+K

, π1(φ)
]
=K[(λ + K)−1, π1(φ)] + [K, π1(φ)](λ + K)−1

=− K
λ + K

[K, π1(φ)](λ + K)−1 + [K, π1(φ)](λ + K)−1

=
(

1− K
λ + K

)
[K, π1(φ)](λ + K)−1

=
(

1− K
λ + K

)
([[K, π1(φ)], (λ + K)−1] + (λ + K)−1[K, π1(φ)])

=
( 1

λ + K
− K

(λ + K)2

)
[K, π1(φ)]

+
( K
(λ + K)2 −

1
λ + K

)
[[K, π1(φ)], K](λ + K)−1

=
( 1

λ+K
− K
(λ+K)2

)
[K, π1(φ)]+

λ

(λ+K)2 [K, [K, π1(φ)]](λ+K)−1.

We introduce the operators L(φ) and R(φ), defined as:

L(φ) := K−1/2[K, π1(φ)] and R(φ) := K−1[K, [K, π1(φ)]].

So we have[ K
λ + K

, π1(φ)
]
=
( K1/2

λ + K
− K3/2

(λ + K)2

)
L(φ) +

λK
(λ + K)2 R(φ)(λ + K)−1.

So integrating over λ and applying (6.4) we obtain:

[K1/2, π1(φ)] =
1
2

L(φ) +
1
π

∞∫
0

λK
(λ + K)2 R(φ)(λ + K)−1 dλ

λ1/2 .
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Then multiplying on the right by K−(d+1)/2,

[K1/2,π1(φ)]K−(d+1)/2

=
1
2

L(φ)K−(d+1)/2 +
1
π

∞∫
0

λK
(λ + K)2 R(φ)(λ + K)−1K−(d+1)/2 dλ

λ1/2 .

We claim that L(φ)K−(d+1)/2 ∈ L1. Indeed, from Lemma 2.1,

‖L(φ)K−(d+1)/2‖1 = ‖K−1/2[K, π1(φ)]K−(d+1)/2‖1 6 ‖[K, π1(φ)]K−(d+2)/2‖1.

Then expanding out the commutator,

[K, π1(φ)]K−(d+2)/2 = [−∆, π1(φ)](1−∆)−(d+2)/2

=
d

∑
j=1

(Dj[Dj, π1(φ)] + [Dj, π1(φ)]Dj)(1−∆)−(d+2)/2

=
d

∑
j=1

(−π1(∂
2
j φ)− 2iπ1(∂jφ)Dj)(1−∆)−(d+2)/2.

Since φ ∈ C∞
c (Rd), we may apply Lemma 2.4 that each of the above summands

is in L1, hence L(φ)K−(d+1)/2 ∈ L1.
Applying Theorem 2.4, the operator L(φ)(1 − ∆)−(d+1)/2 is in L1, so the

proof is completed on showing
∞∫

0

λK
(λ + K)2 R(φ)(λ + K)−1K−(d+1)/2 dλ

λ1/2 ∈ L1.

Again applying Lemma 2.1 and Theorem 2.4, one can show that

R(φ)K−(d+1)/2 ∈ L1.

Note that for all λ > 0 we have∥∥∥ λK
(λ + K)2

∥∥∥
∞
6 1 and

∥∥∥ 1
λ + K

∥∥∥
∞
6

1
1 + λ

.

So there is a constant C such that∥∥∥ λK
(λ + K)2 R(φ)K−(d+1)/2(λ + K)−1

∥∥∥
L1

6 C(1 + λ)−1.

Hence,∥∥∥ ∞∫
0

λK
(λ + K)2 R(φ)(λ + K)−1K−(d+1)/2 dλ

λ1/2

∥∥∥
L1

6 C
∞∫

0

1
λ1/2(1 + λ)

dλ < ∞.

Thus, [K1/2, π1(φ)]K−(d+1)/2 ∈ L1.
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LEMMA 6.3. If φ ∈ C∞
c (Rd), then

[π1(φ), (1−∆)−d/2] ∈ L1.

Proof. Without loss of generality assume that φ is real-valued. Using the
Leibniz rule we can write

[π1(φ), (1−∆)−d/2] =
d−1

∑
k=0

(1−∆)−k/2[π1(φ), (1−∆)−1/2](1−∆)−(d−1−k)/2

=
d−1

∑
k=0

(1−∆)−(k+1)/2[(1−∆)1/2, π1(φ)](1−∆)−(d−k)/2.

Since φ is real-valued, the operator i[(1− ∆)1/2, π1(φ)] is self-adjoint. Now ap-
plying Lemma 2.1 to each summand, we arrive at

‖(1−∆)−(k+1)/2[(1−∆)1/2, π1(φ)](1−∆)−(d−k)/2‖1

6 ‖[(1−∆)1/2, π1(φ)](1−∆)−(d+1)/2‖1.

So by Lemma 6.2 each summand is in L1.

LEMMA 6.4. If φ ∈ C∞
c (Rd), then[

π1(φ),
Dk

(−∆)1/2

]
(1−∆)−d/2 ∈ L1, 1 6 k 6 d.

Proof. Without loss of generality, assume that φ is real-valued. Let

gk(t) :=
tk
|t| −

tk

(1 + |t|2)1/2 =
tk
|t| ·

1
(1 + |t|2)1/2(|t|+ (1 + |t|2)1/2)

, t ∈ Rd.

We decompose the operator
[
π1(φ),

Dk
(−∆)1/2

]
(1 − ∆)−d/2 into four parts as fol-

lows: [
π1(φ),

Dk

(−∆)1/2

]
(1−∆)−d/2 = I + II + III + IV,

where

I=
Dk

(1−∆)1/2 [(1−∆)1/2, π1(φ)](1−∆)−(d+1)/2, II=[π1(φ), Dk](1−∆)−(d+1)/2,

III=π1(φ)gk(∇)(1−∆)−d/2, IV = −gk(∇)π1(φ)(1−∆)−d/2.

It follows from Lemma 6.2 that I ∈ L1. Since [Dk, π1(φ)] = π1(Dkφ), it
follows from Theorem 2.4 that II ∈ L1. It follows from Theorem 2.4 that

‖III‖1 6 ‖π1(φ)(1−∆)−1−(d/2)‖1 < ∞.

It follows from Theorem 2.4 and Lemma 2.1 that

‖IV‖1 6 ‖(1−∆)−1π1(φ)(1−∆)−d/2‖1 6 ‖π1(φ)(1−∆)−1−(d/2)‖1 < ∞.

A combination of all four inclusions completes the proof.
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LEMMA 6.5. If φ ∈ C∞
c (Rd) and if v ∈ C∞(Sd−1), then

[π1(φ), π2(v)](1−∆)−d/2 ∈ L1.

Proof. Let B = ∇
(−∆)1/2 =

{
Dk

(−∆)1/2

}d

k=1
. We may extend v to a smooth com-

pactly supported function w on Rd. For example, we may set w(t) = v
( t
|t|
)
φ0(|t|),

t ∈ Rd, where φ0 is a Schwartz function on R which vanishes outside of the inter-
val on ( 1

2 , 3
2 ) and such that φ0(1) = 1.

The Fourier transform of w is also a Schwartz function. By Definition 1.1,
we have

π2(v) = v(B) = w(B) = (2π)−d/2
∫
Rd

(Fw)(t)ei〈B,t〉dt.

Therefore,

[π1(φ), π2(v)](1−∆)−d/2 = (2π)−d/2
∫
Rd

(Fw)(t)[π1( f ), ei〈B,t〉](1−∆)−d/2dt.

An elementary computation yields

[x, eiy] = i
1∫

0

eisy[y, x]ei(1−s)yds

for all bounded operators x and self-adjoint bounded operators y. Thus, for every
t ∈ Rd,

‖[π1(φ), ei〈B,t〉](1−∆)−d/2‖1 6
d

∑
k=1
|tk| · ‖[π1(φ), Bk](1−∆)−d/2‖1.

Taking the maximum of the L1-norms and noting that
d
∑

k=1
|tk| 6 d1/2|t|, we obtain

‖[π1(φ), π2(v)](1−∆)−d/2‖1

6d1/2(2π)−d/2
∫
Rd

|(Fw)(t)| · |t|dt · max
16k6d

‖[π1(φ), Bk](1−∆)−d/2‖1.

The assertion follows now from Lemma 6.4.

Proof of Proposition 6.1. We consider the decomposition

[π1( f ), π2(g)(1−∆)−d/2π1(φ)]

= π1( f )π2(g)(1−∆)−d/2π1(φ)− π2(g)(1−∆)−d/2π1( f φ)

= I + II + III + IV
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where

I = π1( f )(1−∆)−d/2[π2(g), π1(φ)], II = π1( f )[(1−∆)−d/2, π1(φ)]π2(g),

III = [π1( f φ), π2(g)](1−∆)−d/2, IV = π2(g)[π1( f φ), (1−∆)−d/2].

By Lemma 6.5, we have I, III ∈ L1. By Lemma 6.3, we also have II, IV ∈ L1. A
combination of all four inclusions completes the proof.

7. CONNES’ TRACE THEOREM IN TERMS OF THE PRINCIPAL SYMBOL

In this section, we prove Theorem 1.5 in full generality. The following
proposition is a crucial component of the proof of Theorem 1.5.

PROPOSITION 7.1. For every normalised continuous trace ϕ on L1,∞, for every
m > 1, and for every φ ∈ C∞

c (Rd), we have

(7.1) ϕ(Tm,f,g(1−∆)−d/2π1(φ)) =
∫

Rd×Sd−1

symb(Tm,f,gπ1(φ)).

Here, for f = ( f1, . . . , fm) ∈ L∞(Rd)m and g = (g1, . . . , gm) ∈ L∞(Sd−1)m, we write

Tm,f,g =
m

∏
k=1

π1( fk)π2(gk).

Our proof of Proposition 7.1 is by induction. The following two lemmas are
essential ingredients of the induction step.

LEMMA 7.2. Fix m > 1, and suppose that (7.1) is true for all f ∈ L∞(Rd)m and
g ∈ L∞(Sd−1)m with fm ∈ C∞(Rd) and gm ∈ C∞(Sd−1). Then (7.1) holds for all
f ∈ L∞(Rd)m and g ∈ L∞(Sd−1)m with gm ∈ C∞(Sd−1).

Proof. Let f ∈ L∞(Rd)m and g ∈ L∞(Sd−1)m. Define for each 1 6 k < m,
hk := fk, and hm = fmφ. Clearly,

[π2(gm)(1−∆)−d/2, π1(φ)]

= π2(gm)[(1−∆)−d/2, π1(φ)] + [π2(gm), π1(φ)](1−∆)−d/2.

By Lemmas 6.3 and 6.5, the above hand side of the latter equality belongs to L1.
Hence,

Tm,f,g(1−∆)−d/2π1(φ)− Tm,h,g(1−∆)−d/2

= Tm−1,f,gπ1( fm)[π2(gm)(1−∆)−d/2, π1(φ)] ∈ L1.

Since ϕ vanishes on L1, it follows that

(7.2) ϕ(Tm,f,g(1−∆)−d/2π1(φ)) = ϕ(Tm,h,g(1−∆)−d/2).
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By the assumption that (7.1) holds for f ∈ L∞(Rd)m and g ∈ L∞(Sd−1)m

with fm ∈ C∞(Rd) and gm ∈ C∞(Sd−1) and (7.2), we have

(7.3) ϕ(Tm,h,g(1−∆)−d/2) =
∫

Rd×Sd−1

symb(Tm,h,g)

under the same conditions on f and g.
We now estimate both sides of (7.3). As π2(gm) commutes with (1−∆)−d/2,

we have

Tm,h,g(1−∆)−d/2 = Tm−1,f,g · π1( fmφ)(1−∆)−d/2 · π2(gm).

Since ϕ is continuous, it follows that

|ϕ(Tm,h,g(1−∆)−d/2)| 6
m−1

∏
k=1
‖ fk‖∞ ·

m

∏
k=1
‖gk‖∞ · ‖π1( fmφ)(1−∆)−d/2‖1,∞.

By Theorem 2.5, we have

|ϕ(Tm,h,g(1−∆)−d/2)| 6 cd

m−1

∏
k=1
‖ fk‖∞ ·

m

∏
k=1
‖gk‖∞ · ‖ fmφ‖l1(L2)

.

Now, estimating the right hand side of (7.3) yields∣∣∣ ∫
Rd×Sd−1

symb(Tm,h,g)
∣∣∣ 6 m−1

∏
k=1
‖ fk‖∞ ·

m

∏
k=1
‖gk‖∞ · ‖ fmφ‖l1(L2)

.

That is, both sides of (7.3) are continuous functionals of fm in the norm
fm → ‖ fmφ‖l1(L2)

. Consider the semi-norm on L∞(Rd) given by the formula
f → ‖ f φ‖l1(L2)

(this semi-norm is well defined because φ is finitely supported,
so that f φ ∈ l1(L2(Rd))). Clearly, C∞(Rd) is dense in L∞(Rd) in the latter semi-
norm. Thus, (7.3) holds true provided that fm ∈ L∞(Rd) and gm ∈ C∞(Sd−1). The
assertion follows now from (7.2).

LEMMA 7.3. If, for a given m > 1, (7.1) holds for every f ∈ L∞(Rd)m and for
every g ∈ L∞(Sd−1)m satisfying the condition gm ∈ C∞(Sd−1), then (7.1) holds for all
f ∈ L∞(Rd)m and for all g ∈ L∞(Sd−1)m.

Proof. Let um(t) = gm
( t
|t|
)
(1 + |t|2)−d/2, t ∈ Rd. Recalling the notation π3

from Theorem 1.3, we write

Tm,f,g(1−∆)−d/2π1(φ) = Tm−1,f,gπ1( fm) · π3(um)π1(φ).

Since ϕ is continuous, it follows that

|ϕ(Tm,f,g(1−∆)−d/2π1(φ))| 6
m

∏
k=1
‖ fk‖∞ ·

m−1

∏
k=1
‖gk‖∞‖π3(um)π1(φ)‖1,∞.

By Theorem 2.5 and Lemma 5.5 (with p = 2d), there exists a constant cd such that

‖π3(um)π1(φ)‖1,∞ 6 cd‖φ‖l1(L2)
‖gm‖2d.
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Therefore, we have

|ϕ(Tm,f,g(1−∆)−d/2π1(φ))| 6 cd

m

∏
k=1
‖ fk‖∞ ·

m−1

∏
k=1
‖gk‖∞ · ‖gm‖2d‖φ‖l1(L2)

.

That is, the left hand side of (7.1) is a continuous functional of gm with re-
spect to the norm ‖ · ‖2d. Clearly, the right hand side of (7.1)∫

Rd×Sd−1

symb(Tm,f,gπ1(φ)) =
∫
Rd

φ(t)
m

∏
k=1

fk(t)dt ·
∫

Sd−1

m

∏
k=1

gk(s)ds

is also a continuous functional of gm with respect to the norm ‖ · ‖2d. By the as-
sumption, (7.1) holds for every gm ∈ C∞(Sd−1). Note that C∞(Sd−1) is dense
in L∞(Sd−1) with respect to the norm ‖ · ‖2d. Thus, (7.1) holds for every gm ∈
L∞(Sd−1).

LEMMA 7.4. For a given m > 1, if (7.1) holds for m− 1, then (7.1) holds for m for
every f ⊂ L∞(Rd) satisfying the condition fm ∈ C∞(Rd) and for every g ⊂ L∞(Sd−1)
satisfying the condition gm ∈ C∞(Sd−1).

Proof. Set uk = fk, 1 6 k < m, vk = gk, 1 6 k < m− 1 and vm−1 = gm−1gm.
By Proposition 6.1, we have

Tm,f,g(1−∆)−d/2π1(φ)− Tm−1,u,v(1−∆)−d/2π1( fmφ)

= Tm−1,f,g · [π1( fm), π2(gm)(1−∆)−d/2π1(φ)] ∈ L1.

Since ϕ vanishes on L1, it follows that

ϕ(Tm,f,g(1−∆)−d/2π1(φ)) = ϕ(Tm−1,u,v(1−∆)−d/2π1( fmφ)).

By the assumption, we have

ϕ(Tm−1,u,v(1−∆)−d/2π1( fmφ)) =
∫
Rd

( fmφ)(t)
m−1

∏
k=1

uk(t)dt ·
∫

Sd−1

m−1

∏
k=1

vk(s)ds

=
∫
Rd

φ(t)
m

∏
k=1

fk(t)dt ·
∫

Sd−1

m

∏
k=1

gk(s)ds.

A combination of these two equalities concludes the argument.

Proof of Proposition 7.1. We prove the assertion by induction on m. The base
of the induction, that is, the assertion for m = 1, follows from Proposition 5.1 due
to the trace property of ϕ. We now prove the induction step.

If (7.1) holds for m− 1, then, by Lemma 7.4, (7.1) holds for m provided that
fm ∈ C∞(Rd) and gm ∈ C∞(Sd−1). By Lemma 7.2, (7.1) holds for m provided that
gm ∈ C∞(Sd−1). By Lemma 7.3, (7.1) holds for m in full generality. This completes
the proof.
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Proof of Theorem 1.5. Let P ⊂ Π be the ∗-subalgebra in L(L2(Rd)) generated
by π1(L∞(Rd)) and π2(L∞(Sd−1)). If

S =
m

∏
k=1

π1( fk)π2(gk), then, by Theorem 1.2, symb(S) =
m

∏
k=1

fk ⊗
m

∏
k=1

gk.

By Proposition 7.1, we have

(7.4) ϕ(S(1−∆)−d/2π1(φ)) =
∫

Rd×Sd−1

symb(Sπ1(φ)).

By linearity, equality (7.4) holds true for every S ∈ P.
Let T ∈ Π and let φ be in C∞

c (Rd) be such that Tπ1(φ) = T. Fix Sn ∈ P such
that ‖Sn − T‖∞ → 0 as n→ ∞. By Lemma 6.3, we have

[π1(φ), (1−∆)−d/2] ∈ L1.

Since ϕ vanishes on L1, it follows that

ϕ(Snπ1(φ)(1−∆)−d/2) = ϕ(Sn(1−∆)−d/2π1(φ)).

Thus,

ϕ(T(1−∆)−d/2)− ϕ(Sn(1−∆)−d/2π1(φ)) = ϕ((T − Sn)π1(φ)(1−∆)−d/2).

Hence,

|ϕ(T(1−∆)−d/2)−ϕ(Sn(1−∆)−d/2π1(φ))|6‖Sn− T‖∞‖π1(φ)(1−∆)−d/2‖1,∞→0

as n → ∞. Since the principal symbol mapping is continuous (see Theorem 1.2),
it follows that

symb(Snπ1(φ))→ symb(Tπ1(φ)), n→ ∞,

in the uniform norm. However, all these functions are supported in the com-
pact set supp(φ)× Sd−1. Since the latter set has finite measure, it follows that the
convergence holds also in L1-norm. Thus, we also have∫

Rd×Sd−1

symb(Snπ1(φ))→
∫

Rd×Sd−1

symb(Tπ1(φ)) =
∫

Rd×Sd−1

symb(T).

Therefore, using (7.4) for Sn ∈ P, we conclude that

ϕ(T(1−∆)−d/2) = lim
n→∞

ϕ(Sn(1−∆)−d/2π1(φ)) = lim
n→∞

∫
Rd×Sd−1

symb(Snπ1(φ))

=
∫

Rd×Sd−1

symb(T).

This completes the proof.
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8. APPLICATIONS TO PSEUDO-DIFFERENTIAL OPERATORS

In the following lemma, C∞(Rd × Sd−1) denotes the collection of all infin-
itely differentiable functions f on Rd × Sd−1 such that f and all its derivatives are
bounded.

LEMMA 8.1. Let p ∈ C∞(Rd × Sd−1) and let the operator T be initially defined
on Schwartz functions on Rd by the formula

(Tx)(t) = (2π)−d/2
∫
Rd

ei〈t,u〉p
(

t,
u
|u|

)
(Fx)(u)du, x ∈ S(Rd)

that admits a bounded extension T : L2(Rd)→ L2(Rd). Moreover, we have T ∈ Π and
symb(T) = p.

Proof. For every fixed t ∈ Rd, we write p(t, ·) as a Fourier series with respect
to the spherical harmonics on the sphere Sd−1 [19]. For every n > 0, let Hn be the
(finite-dimensional) eigenspace of the spherical Laplacian ∆Sd−1 [19]

Hn = { f ∈ L2(Sd−1) : −∆Sd−1 f = n(n + d− 2) f }.

It is well-known (see Theorem 4.6 in [19]) that Hn is orthogonal to Hm for n 6= m.
Let {Yn,j}

dim(Hn)
j=1 be some orthonormal basis in Hn. By Theorem 4.27 in [19], the

double sequence
{Yn,j : n > 0, 1 6 j 6 dim(Hn)},

is an orthonormal basis in L2(Sd−1). The key estimate given in Proposition 4.16
in [19] states that

(8.1) ‖Yn,j‖∞ 6 (dim(Hn))
1/2.

For every s ∈ Sd−1, we have (the convergence below is taken with respect
to L2-norm on Sd−1):

p(t, ·) =
∞

∑
n=0

dim(Hn)

∑
j=1

pn,j(t)Yn,j(·).

Here, pn,j(t) are the Fourier coefficients of the function p(t, ·) with respect to the
spherical harmonics. Thus, the definition of T can be formally rewritten as fol-
lows:

(Tx)(t) =
∞

∑
n=0

dim(Hn)

∑
j=1

pn,j(t)
∫
Rd

ei〈t,u〉Yn,j

( u
|u|

)
(Fx)(u)du, x ∈ S(Rd).

That is, we formally have

(8.2) T =
∞

∑
n=0

dim(Hn)

∑
j=1

π1(pn,j)π2(Yn,j).
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We claim that the series in (8.2) actually converges in the uniform norm.
Indeed,

pn,j(t) = 〈p(t, ·), Yn,j(·)〉 = (n(n + d− 2))−d〈p(t, ·), (−∆Sd−1)dYn,j(·)〉

= (n(n + d− 2))−d〈(−∆Sd−1)d p(t, ·), Yn,j(·)〉.

Thus,

|pn,j(t)| 6 (n(n + d− 2))−d‖(−∆Sd−1)d p(t, ·)‖∞‖Yn,j‖∞,

‖pn,j‖∞ 6 (n(n + d− 2))−d‖(1⊗−∆Sd−1)d p‖L∞(Rd×Sd−1)‖Yn,j‖∞.

Here, (1⊗−∆Sd−1)d p is bounded by the assumption.
We can then bound,

∞

∑
n=1

dim(Hn)

∑
j=1

‖pn,j‖∞‖Yn,j‖∞

6 ‖(1⊗−∆Sd−1)d p‖L∞(Rd×Sd−1) ×
∞

∑
n=1

(n(n + d− 2))−d
dim(Hn)

∑
j=1

‖Yn,j‖2
∞.

Using (8.1) and Theorem 4.4 in [19], we infer that

∞

∑
n=1

(n(n + d− 2))−d
dim(Hn)

∑
j=1

‖Yn,j‖2
∞ 6

∞

∑
n=1

(n(n + d− 2))−ddim2(Hn)
def
= cd < ∞.

Thus,

∞

∑
n=1

dim(Hn)

∑
j=1

‖pn,j‖∞‖Yn,j‖∞ 6 cd‖(1⊗−∆Sd−1)d p‖L∞(Rd×Sd−1).

Hence, the series in (8.2) converges in the uniform norm.
Since every summand in (8.2) belongs to the algebra Π, it follows that also

T ∈ Π. Since the symbol mapping is continuous in the uniform norm, it fol-
lows that

symb(T) =
∞

∑
n=0

dim(Hn)

∑
j=1

symb(π1(pn,j)π2(Yn,j)) =
∞

∑
n=0

dim(Hn)

∑
j=1

pn,j ⊗Yn,j,

where the convergence is with respect to the uniform norm. Thus, symb(T)
= p.

LEMMA 8.2. Let P be a uniform classical compactly based pseudo-differential op-
erator of order 0. Then there exists S ∈ Π such that:

(i) symb(S) coincides with the principal symbol of the operator P in the sense of
pseudo-differential operator theory;

(ii) S is also compactly based in the sense of Definition 1.4;
(iii) P− S ∈ K(L2(Rd)).
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Proof. Choose a positive φ ∈ C∞
c (Rd) such that P = Pπ1(φ). By the def-

inition of a classical pseudo-differential operator (see [45]), one can write P =
P1 + P2, where P1 is a uniform pseudo-differential operator of order 0 such that

pP1(t, λu) = pP1(t, u), λ > 1, t, u ∈ Rd, |u| > 1,

and where P2 is a uniform pseudo-differential operator of order −1. Let p be
the principal symbol of the operator P in the sense [45] of pseudo-differential
operator theory, that is,

p(t, s) = pP1(t, s), t ∈ Rd, s ∈ Sd−1,

and let T be the operator defined in Lemma 8.1 for this p. Let ψ be a smooth
function on Rd such that ψ(u) = 1 for |u| > 2 and ψ(u) = 0 for |u| < 1. We have

p
(

t,
u
|u|

)
ψ(u) = pP1(t, u)ψ(u), t, u ∈ Rd.

In other words, the integral kernels of the operators P1ψ(∇) and Tψ(∇) coincide.
It follows that P1ψ(∇) = Tψ(∇).

Thus,
P = T + P1(1− ψ(∇))− T(1− ψ(∇)) + P2

and therefore

P = Pπ1(φ) = Tπ1(φ) + P1 · (1− ψ(∇))π1(φ)− T · (1− ψ(∇))π1(φ) + P2π1(φ).

By Lemma 8.1, T is bounded. Since both φ and 1− ψ are smooth and compactly
supported functions, it follows from Theorem 2.4 that (1 − ψ(∇))π1(φ) ∈ L1.
Thus,

T · (1− ψ(∇))π1(φ) ∈ K(L2(Rd)).

By Theorem 2.4.2 in [42], the uniform pseudo-differential operator P1 of order 0
is bounded. Thus,

P1 · (1− ψ(∇))π1(φ) ∈ K(L2(Rd)).

The operator P2(1 − ∆)1/2 is a uniform pseudo-differential operator of order 0
and is, therefore, bounded. By Theorem 2.3, we have

(1−∆)−1/2π1(φ) ∈ K(L2(Rd)).

Therefore,

P2π1(φ) = P2(1−∆)1/2 · (1−∆)−1/2π1(φ) ∈ K(L2(Rd)).

Finally, we get
P− Tπ1(φ) ∈ K(L2(Rd)).

Setting S = Tπ1(φ), we see that S ∈ Π (see Definition 1.1) and this completes the
proof.

The following simple fact is well-known. We include it here for convenience
of the reader.
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LEMMA 8.3. If V ∈ L1,∞ and if A is a compact operator, then

ϕ(AV) = 0

for every continuous trace on L1,∞.

Proof. As discussed in Subsection 2.4, all continuous traces on L1,∞ are sin-
gular. That is, if ϕ is a continuous trace on L1,∞ then ϕ(T) = 0 for all finite rank
operators T (see Corollary 5.7.7 of [30] for a proof of this fact).

Let {An}∞
n=0 be a sequence of finite rank operators converging to A in the

operator norm. Then ‖AnV − AV‖ 6 ‖An − A‖∞‖V‖1,∞, so AnV → AV in the
L1,∞ quasi-norm. Since each An is finite rank, each operator AnV is also finite
rank. Since ϕ is continuous and singular,

ϕ(AV) = lim
n→∞

ϕ(AnV) = 0.

Proof of Theorem 1.6. Let P be a uniform classical compactly based pseudo-
differential operator of order 0. Choose a positive φ1 ∈ C∞

c (Rd) such that P =
Pπ1(φ1). Let S ∈ Π be the operator defined in Lemma 8.2. Choose a positive
φ2 ∈ C∞

c (Rd) such that S = Sπ1(φ2). Choose a positive φ ∈ C∞
c (Rd) such that

φk = φ · φk, k = 1, 2. We then have P = Pπ1(φ) and S = Sπ1(φ).
By Theorem 2.5, we have

π1(φ)(1−∆)−d/2 ∈ L1,∞(L2(Rd)).

Therefore,

S(1−∆)−d/2 = S · π1(φ)(1−∆)−d/2 ∈ L1,∞(L2(Rd)).

Also, using Lemma 8.2, we obtain

(P− S)(1−∆)−d/2 = (P− S) · π1(φ)(1−∆)−d/2 ∈ K(L2(Rd)) · L1,∞(L2(Rd)).

By Lemma 8.3, we have

ϕ(P(1−∆)−d/2) = ϕ(S(1−∆)−d/2).

It follows from Theorem 1.5 that

ϕ(S(1−∆)−d/2) =
∫

Rd×Sd−1

symb(S).

By Lemma 8.2, symb(S) coincides with the principal symbol of the operator P in
the sense of pseudo-differential operator theory. Thus,

ϕ(P(1−∆)−d/2) =
∫

Rd×Sd−1

symb(S) = ResW(P).
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9. APPLICATION TO QUANTISED DIFFERENTIALS

In this section, we prove Theorem 1.7. It computes the trace of a d-th power
of the absolute value of a quantised derivative

[sgn(D), 1⊗ π1( f )]

of the function f on Rd from a certain homogeneous Sobolev space.
We start with the following simple extension of Theorem 1.5. Here, T ∈

Mn(C)⊗Π is called compactly based if there is a compactly supported φ ∈ L∞(Rd)
such that T · (1⊗ π1(φ)) = T.

LEMMA 9.1. If T ∈ Mn(C) ⊗Π is compactly based, then T(1 + D2)−d/2 ∈
L1,∞. For every continuous normalised trace ϕ on L1,∞, we have

ϕ(T(1 + D2)−d/2) =
∫

Rd×Sd−1

Tr((id⊗ symb)(T)).

Proof. Let ek,l , 1 6 k, l 6 n, be the basis of the set of n× n matrices Mn(C)
of matrices with (k, l)th entry equal to 1 and 0 elsewhere. By linearity, it suffices
to prove the assertion for the case T = ekl ⊗ S, where S ∈ Π. Note that

T(1 + D2)−d/2 = ekl ⊗ S(1−∆)−d/2.

That is, we want to prove

ϕ(ekl ⊗ S(1−∆)−d/2) = δkl

∫
Rd×Sd−1

symb(S).

If k 6= l, then ekl = [ekl , ell ] and, therefore,

ekl ⊗ S(1−∆)−d/2 = [ekl ⊗ S(1−∆)−d/2, ell ⊗ 1].

Since ϕ vanishes on the commutators, it follows that

ϕ(ekl ⊗ S(1−∆)−d/2) = 0.

If k = l, then

emm ⊗ S(1−∆)−d/2 = (Umk ⊗ 1) · (ekk ⊗ S(1−∆)−d/2) · (U−1
mk ⊗ 1), 1 6 m 6 n,

for some permutation matrix Umk ∈ Mn(C). Thus,

ϕ(ekk ⊗ S(1−∆)−d/2) = ϕ(emm ⊗ S(1−∆)−d/2), 1 6 m 6 n.

Summation over k ∈ [1, n] yields

ϕ(ekk ⊗ S(1−∆)−d/2) =
1
n

ϕ(1⊗ S(1−∆)−d/2) =
1
n
· Tr(1) · ϕ(S(1−∆)−d/2).

By Theorem 1.5, we conclude

ϕ(ekk ⊗ S(1−∆)−d/2) =
∫

Rd×Sd−1

symb(S).
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We have covered both the k = l and k 6= l cases, so this completes the
proof.

LEMMA 9.2. If f ∈ C∞
c (Rd), then [sgn(D), 1⊗ π1( f )] ∈ Ld,∞ and

ϕ(|[sgn(D), 1⊗ π1( f )]|d) =
∫
Rd

‖(∇ f )(t)‖d
2dt.

Proof. Fix f ∈ C∞
c (Rd) and choose φ ∈ C∞

c (Rd) such that f φ = f . For all
1 6 k 6 d, define an operator Ak ∈ Π by setting

Ak = π1( fk)−
1
2

d

∑
j=1

(π1( f j)π2(sksj)π1(φ) + π1(φ)π2(sksj)π1( f j)).

Here, fk = iDk f and the mapping s → sksj, s ∈ Sd−1, is also denoted by sksj
to save the space. Define a (compactly based) operator A ∈ Mm(d)(C) ⊗Π by
setting

A =
d

∑
k=1

γk ⊗ Ak.

An argument similar to that of Lemma 15 in [29] shows that

|[sgn(D), 1⊗ π1( f )]|d ∈ |A|d(1 + D2)−d/2 + L1.

Since ϕ vanishes on L1, it follows from Lemma 9.1 that

ϕ(|[sgn(D), 1⊗π1( f )]|d)= ϕ(|A|d(1+D2)−d/2) =
∫

Rd×Sd−1

Tr((id⊗symb)(|A|d)).

Clearly,

(id⊗ symb)(A) =
d

∑
k=1

γk ⊗ symb(Ak).

By Theorem 1.2, we have

(id⊗ symb)(|A|d) = 1⊗
( d

∑
k=1
|symb(Ak)|2

)d/2
.

It is immediate that

(symb(Ak))(t, s) = fk(t)−
d

∑
j=1

f j(t)sksj, t ∈ Rd, s ∈ Sd−1.

Thus,

(9.1) ϕ(|[sgn(D), 1⊗ π1( f )]|d) =
∫

Rd×Sd−1

|(∇( f ))(t)− s〈(∇( f ))(t), s〉|ddsdt.
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For an arbitrary a ∈ Rd, we have∫
Sd−1

|a− s〈a, s〉|dds = cd|a|d.

Indeed, for every rotation R ∈ SO(d), we have

|a− s〈a, s〉| = |Ra− Rs〈Ra, Rs〉|, s ∈ Sd−1.

Taking R such that a = |a| · Re1, we obtain∫
Sd−1

|a− s〈a, s〉|dds = |a|d ·
∫

Sd−1

|e1 − s〈e1, s〉|dds = cd|a|d.

For every t ∈ Rd, the preceding paragraph yields∫
Sd−1

|(∇( f ))(t)− s〈(∇( f ))(t), s〉|dds = cd|(∇ f )(t)|d.

This concludes the argument.

Proof of Theorem 1.7. Let f ∈ L∞(Rd) be such that ∇ f ∈ Ld(Rd,Cd). Choose
a sequence { fn}n>1 ⊂ C∞

c (Rd) such that fn → f almost everywhere and such
that ∇( fn − f ) → 0 in Ld(Rd) (see Theorem 2.1 in [34]). It is proved in [29] (see
the proof of Theorem 11 on p.19 there) that

‖[sgn(D), 1⊗ π1( f )]− [sgn(D), 1⊗ π1( fn)]‖d,∞ 6 ‖∇( fn − f )‖d → 0, n→ ∞.

Since the absolute value mapping is Lipschitz in Ld,∞ (see Theorem 3.4 in [17]), it
follows that

‖ |[sgn(D), 1⊗ π1( f )]| − |[sgn(D), 1⊗ π1( fn)]|‖d,∞ → 0, n→ ∞.

For bounded operators A, B, we have

Ad − Bd =
d−1

∑
k=0

Ak(A− B)Bd−1−k.

Hence, for A, B ∈ Ld,∞, it follows from Hölder inequality that

‖Ad − Bd‖1,∞ 6 cd

d−1

∑
k=0
‖A‖k

d,∞‖A− B‖d,∞‖B‖d−1−k
d,∞

6 cd‖A− B‖d,∞(‖A‖d,∞ + ‖B‖d,∞)d−1.

Applying the latter inequality to

A = |[sgn(D), 1⊗ π1( f )]|, B = |[sgn(D), 1⊗ π1( fn)]|,

we obtain

‖ |[sgn(D), 1⊗ π1( f )]|d − |[sgn(D), 1⊗ π1( fn)]|d‖1,∞ → 0, n→ ∞.
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Since ϕ is continuous, it follows that

ϕ(|[sgn(D), 1⊗ π1( fn)]|d)→ ϕ(|[sgn(D), 1⊗ π1( f )]|d), n→ ∞.

By Lemma 9.2, we have

ϕ(|[sgn(D), 1⊗ π1( fn)]|d) =
∫
Rd

‖(∇ fn)(t)‖d
2dt.

Since ∇( fn − f )→ 0 in Ld(Rd), it follows that∫
Rd

‖(∇ fn)(t)‖d
2dt→

∫
Rd

‖(∇ f )(t)‖d
2dt, n→ ∞.

A combination of the last three equalities completes the proof.
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