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ABSTRACT. The residual and ∗-residual parts of the unitary dilation proved
to be especially useful in the study of contractions. A more direct approach to
these components, originated in B. Sz.-Nagy, Acta Sci. Math. (Szeged) 11(1947),
152–157, leads to the concept of unitary asymptote, and opens the way for
generalizations to more general settings. In this paper a systematic study of
unitary asymptotes of commuting n-tuples of general Hilbert space operators
is initiated. Special emphasis is put on the study of the quasianalyticity prop-
erty, which constitutes homogeneous behaviour in localization, and plays a
crucial role in the quest for proper hyperinvariant subspaces.
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INTRODUCTION

The theory of Hilbert space operators contains many beautiful results, yet
some of its fundamental questions, like the hyperinvariant subspace problem,
are still open; see, e.g., the monographs [4], [6], [7], and [27]. Beside the struc-
ture of single operators, multivariable operator theory also came into the focus of
researchers’ interest; see, e.g., [5], [10], and [25]. The spectral analysis of unitary
operators makes possible to explore their structure. Hence, it has been reasonable
to relate more general operators to unitaries. Such connection has been made for
contractions by Sz.-Nagy’s dilation theorem; the resulting theory is presented in
[30]. The residual and ∗-residual parts of the unitary dilation proved to be espe-
cially useful in the study of contractions.

A more direct approach to these components, originated in [29], leads to
the concept of unitary asymptote, and opens the way for generalizations to more
general settings. The fundamental properties of unitary asymptotes have been
summarized for contractions in Chapter IX of [30], for power bounded operators
in [14], for commuting n-tuples of power bounded operators in [1], for represen-
tations of abelian semigroups in [15] and [20]; see also the references therein.
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In the present paper we initiate a systematic study of unitary asymptotes
for commuting n-tuples of general Hilbert space operators, following the cate-
gorical approach applied in [2] and Chapter IX of [30]. We note that most of
the results are new even in the single variable case, since general operators are
considered. In the quest for proper hyperinvariant subspaces of asymptotically
non-vanishing contractions, the crucial class is formed by the quasianalytic con-
tractions, which show homogeneous behaviour in localization. For their study
see, e.g., [16], [17], [21], [22], and [23]. These investigations were extended to
polynomially bounded operators in [18] and [19]; see also [11].

In this paper we provide a systematic study of quasianalyticity in the setting
of commuting n-tuples of general Hilbert space operators.

Our paper is organized in the following way.
In Section 1 the concepts of unitary intertwining pairs and unitary asymp-

totes are introduced. Fundamental properties, like minimality, norm-control and
uniqueness are examined. Necessary condition is given for the existence of the
unitary asymptote in terms of the spectral radius. Adjoints and restrictions to
invariant subspaces are considered.

In Section 2 it is shown that the Lower Orbit Condition (LOC) is a sufficient
but not necessary condition of the existence of unitary asymptotes. Application
of invariant means yields that (LOC) holds in the power bounded case. A classi-
fication is made relying on the annihilating subspace.

Section 3 deals with quasianalyticity and hyperinvariant subspaces. The
commutant mapping relates the commutant of the n-tuple

T = (T1, . . . , Tn)

to the commutant of the corresponding n-tuple

U = (U1, . . . , Un)

of unitaries. We obtain that hyperinvariant subspaces of U induce hyperinvariant
subspaces of T. The basic facts of the spectral analysis of U are recalled; in partic-
ular, the spectral subspaces are hyperinvariant. Quasianalyticity of T means that
the localizations of the spectral measure E of U at non-zero vectors, correspond-
ing to vectors in the space of T, are equivalent. If this homogeneity breaks, then
T has proper hyperinvariant subspaces.

In Section 4 the local residual sets are introduced. Exploiting the lattice
structure of the Borel sets on Tn, the quasianalytic spectral set π(T) is defined.
Quasianalyticity is related to the cyclicity property of the commutant of U. The
absolutely continuous (a.c.) case is also studied. The a.c. global residual set
ωa(T) is the measurable support of the spectral measure E, and quasianalytic-
ity is equivalent to the coincidence πa(T) = ωa(T).

We shall use the following notation: N,Z+,Z,R+,R and C stand for the set
of positive integers, non-negative integers, integers, non-negative real numbers,
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real numbers and complex numbers, respectively. For any n ∈ N,

Nn := {k ∈ N : k 6 n}, and T := {z ∈ C : |z| = 1}.

1. EXISTENCE OF UNITARY ASYMPTOTES

Let T = (T1, . . . , Tn) be a commuting n-tuple of (bounded, linear) operators
on the (complex, separable) Hilbert space H (n ∈ N). Giving any other commut-
ing n-tuple T̃ = (T̃1, . . . , T̃n) of operators on the Hilbert space H̃, the intertwin-
ing set I(T, T̃) consists of those (bounded, linear) transformations X : H → H̃,
which satisfy the conditions XTi = T̃iX (i ∈ Nn). For any X ∈ I(T, T̃) and
k = (k1, . . . , kn) ∈ Zn

+, XTk = T̃kX holds, where Tk := Tk1
1 · · · T

kn
n . Hence

Xp(T) = p(T̃)X is true for every polynomial p(z) = ∑
k

ckzk in the variable

z = (z1, . . . , zn) ∈ Cn, where zk := zk1
1 · · · z

kn
n . It is clear that I(T, T̃) is a Ba-

nach space with the operator norm. The commutant {T}′ := I(T, T) of T is a
Banach subalgebra of the operator algebra L(H).

Let U = (U1, . . . , Un) be a commuting n-tuple of unitary operators on the
Hilbert space K. If X ∈ I(T, U), then (X, U) is called a unitary intertwining pair
of T. The subspace K0 =

∨{UkXH : k ∈ Zn} is the smallest one, reducing
U and containing the range of X. The restriction U0 = (U10, . . . , Un0), where
Ui0 = Ui|K0 (i ∈ Nn), is a commuting n-tuple of unitaries on K0. Setting X0 :
H → K0, h 7→ Xh, the unitary intertwining pair (X0, U0) of T is called the minimal
part of (X, U). We say that (X, U) is minimal, if K0 = K.

The unitary intertwining pairs (X, U) and (X̃, Ũ) of T are called similar, in
notation: (X, U) ≈ (X̃, Ũ), if there exists an invertible Z ∈ I(U, Ũ) satisfying the
condition X̃ = ZX. These pairs are called equivalent, in notation: (X, U) ' (X̃, Ũ),
if there exists a unitary Z ∈ I(U, Ũ) such that X̃ = ZX.

The unitary intertwining pair (X, U) of T is a unitary asymptote of T, if it is
universal in the sense that for any other unitary intertwining pair (X′, U′) of T
there exists a unique Y′ ∈ I(U, U′) such that X′ = Y′X. It readily follows that
every unitary asymptote is minimal.

If U′ is a commuting n-tuple of unitaries on K′ and Y′ ∈ I(U, U′), then
(X′ = Y′X, U′) is obviously a unitary intertwining pair of T and ‖X′‖ 6 ‖Y′‖ ·
‖X‖. We say that the unitary asymptote (X, U) of T has norm-control with κ ∈
R+, if ‖Y′‖ 6 κ‖Y′X‖ holds for every unitary intertwining pair (Y′, U′) of U.
The smallest possible κ is called the optimal norm-control, and it is denoted by
κop = κop(X, U).

Relying on polar decompositions a routine computation yields that the min-
imal unitary intertwining pairs of T can be obtained, up to equivalence, by the
aid of operators in the commutant of U.
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PROPOSITION 1.1. Assume that (X, U) is a unitary asymptote of T. Let (X′, U′)
be a unitary intertwining pair of T, where X′ = Y′X with unique Y′ ∈ I(U, U′).
Then the minimal part of (X′, U′) is equivalent to the minimal part of (|Y′|X, U), where
|Y′| ∈ {U}′.

It turns out that norm-control is a general property.

PROPOSITION 1.2. Assume that (X, U) is a unitary asymptote of T.
(i) The linear mapping Γ = Γ(X,U) : {U}′ → I(T, U), Y′ 7→ Y′X is invertible.

(ii) The unitary asymptote (X, U) has optimal norm-control with κop = ‖Γ−1‖.
Proof. The mapping Γ is bounded linear, for any unitary intertwining pair

of T. It is obvious that Γ is bijective, whenever (X, U) is a unitary asymptote of
T. In this case Γ−1 is also bounded by the open mapping theorem.

Let (X′, U′) be a unitary intertwining pair of T, X′ = Y′X with Y′ ∈
I(U, U′). Since |Y′| ∈ {U}′, it follows that ‖Y′‖ = ‖|Y′|‖ 6 ‖Γ−1‖ · ‖|Y′|X‖.
In view of Proposition 1.1 we know that ‖|Y′|X‖ = ‖X′‖, and so ‖Y′‖ 6 ‖Γ−1‖ ·
‖X′‖. It is clear that ‖Γ−1‖ is the optimal norm-control.

The question of the uniqueness of unitary asymptotes can be settled easily.
The straightforward proof of the following statement is left to the reader,

PROPOSITION 1.3. Suppose that (X, U) is a unitary asymptote of T, and (X̃, Ũ)
is a unitary intertwining pair of T.

(i) Then (X̃, Ũ) is a unitary asymptote of T if and only if (X̃, Ũ) ≈ (X, U).
(ii) If Z ∈ I(Ũ, U) is invertible with ZX̃ = X, then

κop(X̃, Ũ) 6 ‖Z‖ · κop(X, U) 6 ‖Z‖ · ‖Z−1‖ · κop(X̃, Ũ).

REMARK 1.4. Let (X, U) be a unitary asymptote of T. Clearly, κop(X, U) = 0
holds exactly when X = 0. Let us assume that X 6= 0. Given any 0 6= c ∈ C, and
applying Proposition 1.3 with Ũ = U and Z = cI, we obtain that (X̃ = (1/c)X, U)

is also a unitary asymptote of T and κop(X̃, U) = |c|κop(X, U). Hence the prod-
ucts ‖X̃‖ · κop(X̃, U) = ‖X‖ · κop(X, U) are independent of the particular choice
of c; we call this common value the absolute optimal norm-control of (X, U), and
denote it by κaop(X, U). Clearly, κop(X, U) = ‖X‖−1κaop(X, U). Notice also that
‖Γ(X,U)‖ 6 ‖X‖ yields that κop(X, U) = ‖Γ−1

(X,U)
‖ > 1/‖X‖, whence κaop(X, U) >

1 follows.

REMARK 1.5. If (X, U) and (X̃, Ũ) are unitary asymptotes of T with norm-
control 1, and ‖X‖ 6 1, ‖X̃‖ 6 1, then an easy computation shows that (X, U) '
(X̃, Ũ); furthermore ‖X‖ = 1, provided X 6= 0.

Similarity preserves the existence of unitary asymptotes.

PROPOSITION 1.6. If (X̃, Ũ) is a unitary asymptote of the commuting n-tuple T̃
with norm-control κ and Z ∈ I(T, T̃) is invertible, then (X̃Z, Ũ) is a unitary asymptote



QUASIANALYTIC n-TUPLES OF HILBERT SPACE OPERATORS 7

of T with norm-control κ‖Z−1‖. Furthermore, we have κaop(X̃Z, Ũ) 6 ‖Z‖ · ‖Z−1‖ ·
κaop(X̃, Ũ).

Proof. Let (X′, U′) be a unitary intertwining pair of T. Then (X′Z−1, U′) is
a unitary intertwining pair of T̃, and so there is a unique Y′ ∈ I(Ũ, U′) such that
X′Z−1 = Y′X̃. The last equality is equivalent to X′ = Y′(X̃Z). Furthermore,
‖Y′‖ 6 κ‖X′Z−1‖ 6 κ‖Z−1‖‖X′‖.

As an application, we are able to provide simple examples for unitary
asymptotes.

COROLLARY 1.7. Let W be a commuting n-tuple of unitaries on a non-zero space,
and let Z ∈ I(T, W) be invertible. Then

(i) (I, W) is a unitary asymptote of W with optimal norm-control 1;
(ii) (Z, W) is a unitary asymptote of T with norm-control ‖Z−1‖.

The following example shows that the norm-control with ‖Z−1‖ is not op-
timal (even not comparable to the optimal), in general. For simplicity, we deal
with the single operator case; i.e., n = 1 is assumed.

EXAMPLE 1.8. Given any λ ∈ T \ {1}, let us consider the operators

T =

[
λ 0
1 1

]
and W =

[
λ 0
0 1

]
,

acting on the Hilbert space C2. It can be easily checked that

Z =

[
1 0
1

1−λ 1

]
∈ I(T, W) is invertible with Z−1 =

[
1 0
−1

1−λ 1

]
.

Thus, (Z, W) is a unitary asymptote of T with norm-control ‖Z−1‖. It is clear that
‖Z−1‖ > 1/|1 − λ| can be made as large as we wish, approaching λ to 1. On
the other hand, in view of Proposition 1.2, the optimal norm-control for (Z, W) is
κop = ‖Γ−1‖, where Γ : {W}′ → I(T, W), Y′ 7→ Y′Z. The general form of Y′ is

Y′ =
[

η1 0
0 η2

]
, whence Y′Z =

[
η1 0
η2

1−λ η2

]
.

Obviously,

‖Γ−1‖ = sup
{ ‖Y′‖
‖Y′Z‖ : 0 6= Y′ ∈ {W}′

}
= (inf{‖Y′Z‖ : Y′ ∈ {W}′, ‖Y′‖ = 1})−1.

If 1 = ‖Y′‖ = max{|η1|, |η2|}, then ‖Y′Z‖ > max{|η1|, |η2|} = 1; moreover,
‖Y′Z‖ = 1 when η1 = 1 and η2 = 0. Thus, κop = ‖Γ−1‖ = 1.

Necessary conditions for the existence of non-zero unitary intertwining pairs
can be given in terms of the spectral radius. We say that the commuting n-tuple
T = (T1, . . . , Tn) is invertible, if each Ti is invertible (i ∈ Nn); then T−1 :=
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(T−1
1 , . . . , T−1

n ) is also a commuting n-tuple. The proof of the following statement
is left to the reader.

PROPOSITION 1.9. Let us assume that there is a unitary intertwining pair (X, U)
of T, with X 6= 0.

(i) Then r(Tk) > 1 holds, for all k ∈ Zn
+.

(ii) If T is invertible, then r(Tk) = 1 is true, for all k ∈ Zn.

We say that T is of 0-type, if X = 0 whenever (X, U) is a unitary intertwin-
ing pair of T. In this case (0, 0) is a degenerate unitary asymptote of T, where
0 = (0, . . . , 0) acts on the zero space {0}. As a consequence, we obtain further
examples for unitary asymptotes.

COROLLARY 1.10. If T is invertible and r(Tk) 6= 1 for some k ∈ Zn, then (0, 0)
is a unitary asymptote of T.

We turn to orthogonal sums. If Tj = (Tj1, . . . , Tjn) is a commuting n-tuple
of operators on Hj, for j = 1, 2, then T1 ⊕ T2 := (T11 ⊕ T21, . . . , T1n ⊕ T2n) is a
commuting n-tuple of operators on the Hilbert spaceH1 ⊕H2.

PROPOSITION 1.11. For j = 1, 2, let Tj = (Tj1, . . . , Tjn) be a commuting n-
tuple of operators on the Hilbert space Hj, and let us assume that (Xj, Uj) is a unitary
asymptote of Tj with norm-control κj. Then (X = X1 ⊕ X2, U = U1 ⊕ U2) will be a
unitary asymptote of T = T1 ⊕ T2 with norm-control κ =

√
2 max(κ1, κ2).

Proof. It is clear that (X, U) is a minimal unitary intertwining pair of T. Sup-
pose that (X′, U′) is also a unitary intertwining pair of T. For j = 1, 2, the restric-
tion X′j := X′|Hj belongs to I(Tj, U′), and so there is a unique Y′j ∈ I(Uj, U′)
such that X′j = Y′j Xj. Then Y′ = [Y′1 Y′2] is the unique transformation in I(U, U′)
satisfying Y′X = X′. Furthermore, we have

‖Y′‖6
√

2 max(‖Y′1‖, ‖Y′2‖)6
√

2 max(κ1‖X′1‖, κ2‖X′‖)6
√

2 max(κ1, κ2)‖X′‖.

The next statement deals with the opposite direction.

PROPOSITION 1.12. Let us assume that (X, U) is a unitary asymptote of T =
T1⊕T2, acting onH = H1⊕H2, with norm-control κ. For j = 1, 2, let us consider the
reducing subspace Kj =

∨{UkXHj : k ∈ Zn} of U, and the restrictions Uj := U|Kj

and Xj := X|Hj ∈ I(Tj, Uj). Then (Xj, Uj) will be a unitary asymptote of Tj (j = 1, 2)
with norm-control κ; furthermore, (X, U) ≈ (X1 ⊕ X2, U1 ⊕U2).

Proof. It is clear that (Xj, Uj) is a minimal unitary intertwining pair of Tj (j =
1, 2). Suppose that (X′j, U′j) is also a unitary intertwining pair of Tj. Then (X̃j, U′j)

will be a unitary intertwining pair of T with X̃jh := X′jPjh (h ∈ H), where
Pj ∈ L(H) denotes the orthogonal projection onto Hj. Hence there exists unique
Ỹj ∈ I(U, U′j) such that ỸjX = X̃j. We infer that Y′j := Ỹj|Kj ∈ I(Uj, U′j) and
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Y′j Xj = ỸX|Hj = X̃j|Hj = X′j. Assuming that Y′′j ∈ I(Uj, U′j) and Y′′j Xj = X′j, the
relations

Y′′j Uk
j Xj = U′j

kY′′j Xj = U′j
kY′j Xj = Y′j Uk

j Xj (k ∈ Zn)

yield that Y′′j = Y′j . Finally, ‖Y′j ‖ 6 ‖Ỹj‖ 6 κ‖X̃j‖ = κ‖X′j‖, and so (Xj, Uj) is a
unitary asymptote of Tj with norm-control κ.

Similarity is an immediate consequence of Propositions 1.11 and 1.3.

Concluding this section we provide an example of an operator, which does
not have a unitary asymptote (and so it is necessarily not of 0-type). Furthermore,
we shall see that, taking restrictions to invariant subspaces or taking adjoints, the
existence of unitary asymptotes can be lost.

EXAMPLE 1.13. Let {ej}j∈Z be an orthonormal basis in the Hilbert space
Ẽ , and let S̃ ∈ L(Ẽ) be the bilateral shift defined by S̃ej = ej+1 (j ∈ Z). Let us
consider the operator R̃ = 2S̃ and its restriction R = R̃|E to the invariant subspace
E =

∨{ej}j∈Z+
. It is evident that (X̃, S̃) is a unitary intertwining pair of R, where

the injective transformation X̃ is defined by X̃ej = 2−jej (j ∈ Z+). Thus, R is far
from being of 0-type.

Let us assume that there exists a unitary asymptote (X, U) of R. For any λ ∈
T, (Xλ, λIC) is a unitary intertwining pair of R, where Xλh =

∞
∑

j=0
2−jλj〈h, ej〉 (h ∈

E). Hence there is a unique Yλ ∈ I(U, λIC) such that Xλ = YλX. We may easily
infer that λ is an eigenvalue of U. Since the eigenspaces corresponding to distinct
eigenvalues are orthogonal to each other, it follows that ∑

λ∈T

⊕
ker(U − λI) is a

subspace of the domain K of U, which means that the Hilbert space K is not
separable. But this is impossible, because E is separable and (X, U) is minimal.
Therefore, R does not have a unitary asymptote.

The operator R̃ is invertible and r(R̃) = 2, hence R̃ is of 0-type by Corol-
lary 1.10. Let W be a unitary operator on a non-zero Hilbert space F . Then
(0⊕ I, 0⊕W) is a unitary asymptote of T̃ = R̃ ⊕W (see Proposition 1.11). The
subspace H = E ⊕ F is invariant for T̃; but the restriction T := T̃|H = R ⊕W
does not have a unitary asymptote, since R fails to have a unitary asymptote (see
Proposition 1.12).

If (X, U) is a unitary intertwining pair of R∗, then 0 = ‖X(R∗)j+1ej‖ =

‖U j+1Xej‖ = ‖Xej‖ (j ∈ Z+); hence X = 0, and so R∗ is of 0-type. We conclude
that the adjoint T∗ = R∗ ⊕W∗ has a unitary asymptote: (0⊕ I, 0⊕W∗).

Analogous counterexamples can be obtained for commuting n-tuples with
n > 1, observing that (X, U) is a unitary asymptote of T exactly when the pair
(X, (U, I, . . . , I)) is a unitary asymptote of (T, I, . . . , I).
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2. ORBIT CONDITIONS

Let T = (T1, . . . , Tn) be a commuting n-tuple of operators on the Hilbert
space H. The orbit-infimum of T at the vector h ∈ H is defined by o-inf(T, h) :=
inf{‖Tkh‖ : k ∈ Zn

+}. If (X′, U′) is any unitary intertwining pair of T, then
‖X′h‖ = ‖U′kX′h‖ = ‖X′Tkh‖ 6 ‖X′‖ · ‖Tkh‖ (h ∈ H, k ∈ Zn

+), and so the
Upper Orbit Condition (UOC) automatically holds:

‖X′h‖ 6 ‖X′‖ · o-inf(T, h) for all h ∈ H.

The opposite Lower Orbit Condition (LOC) with bound-control κ ∈ R+ is an extra
requirement:

o-inf(T, h) 6 κ‖X′h‖ for all h ∈ H.

The latter condition together with minimality are sufficient for being a unitary
asymptote.

PROPOSITION 2.1. Let (X, U) be a minimal unitary intertwining pair of T. If
(LOC) holds for (X, U) with bound-control κ, then (X, U) is a unitary asymptote of T
with norm-control κ.

Proof. Let (X′, U′) be any unitary intertwining pair of T. Given any h ∈ H,
the (UOC) for (X′, U′) yields ‖X′h‖ 6 ‖X′‖ · o-inf(T, h), while the (LOC) for
(X, U) results o-inf(T, h) 6 κ‖Xh‖. Thus ‖X′h‖ 6 ‖X′‖ · κ‖Xh‖ (h ∈ H), and
so there is a unique Y′+ ∈ L((XH)−, (X′H)−) such that Y′+Xh = X′h (h ∈ H);
in particular, ‖Y′+‖ 6 κ‖X′‖. By the minimality of (X, U), there exists a unique
Y′ ∈ L(K,K′) such that Y′Uky = U′kY′+y holds for all y ∈ (XH)− and k ∈ Zn.
It can be easily seen that Y′ ∈ I(U, U′), Y′X = X′ and ‖Y′‖ = ‖Y′+‖ 6 κ‖X′‖.

Let us consider the homogeneous set H00(T) := {h ∈ H : o-inf(T, h) =
0}. If (X′, U′) is a unitary intertwining pair of T, then the (UOC) implies that
H00(T) ⊂ ker X′. Assuming that (X, U) is a unitary asymptote of T, the relation
X′ = Y′X yields that ker X ⊂ ker X′. In particular, if (X̃, Ũ) is another unitary
asymptote of T, then ker X̃ = ker X; this common nullspace H0(T) is called the
annihilating subspace of T. Clearly,H0(T) contains the setH00(T). It is immediate
that coincidence is ensured by the (LOC).

Let us assume that T has a unitary asymptote. Relying on the annihilating
subspaceH0(T), we may classify the n-tuples:

(i) T ∈ C0·, if H0(T) = H; this happens exactly, when (0, 0) is a unitary
asymptote, that is when T is of 0-type;

(ii) T ∈ C∗·, ifH0(T) 6= H; then T is called asymptotically non-vanishing;
(iii) T ∈ C1·, if H0(T) = {0} 6= H; then T is called asymptotically strongly

non-vanishing.

If the adjoint T∗ also has a unitary asymptote, then T ∈ C·j by definition if
T∗ ∈ Cj· (j = 0, ∗, 1). Finally, Cij = Ci· ∩ C·j.



QUASIANALYTIC n-TUPLES OF HILBERT SPACE OPERATORS 11

Clearly, H00(T) = H implies that T ∈ C0·. However, Corollary 1.10 shows
that T ∈ C0· may happen in many other cases, even when (LOC) fails.

The (LOC) does hold in the power bounded setting. Namely, the tech-
nique, originated in [29], provides a canonical way of constructing suitable uni-
tary asymptote. Let us assume that T is a commuting n-tuple of power bounded
operators on H, that is s := sup{‖Tk‖ : k ∈ Z+} < ∞. Let M : `∞(Zn

+) → C
be an invariant mean; see, e.g., [8] and [26]. Then, there exists a minimal unitary
intertwining pair (XM, UM) of T, such that

‖XMh‖2 = M- lim
k
‖Tkh‖2

holds, for every h ∈ H; see, e.g., [1] and [15]. It follows that (XM, UM) satisfies the
(LOC) with bound-control 1. Since ‖XM‖ 6 s, we deduce from Proposition 2.1
that (XM, UM) is a unitary asymptote of T and κaop(XM, UM) 6 s.

It would be interesting to give examples for a commuting n-tuple T of op-
erators, such that T is not power bounded, and T has a unitary asymptote (X, U)
satisfying (LOC). An example like that would provide negative answer to the
following question.

QUESTION 2.2. Is power boundedness of T a necessary condition for the existence
of a unitary asymptote (X, U) (possibly with injective X), satisfying (LOC)?

REMARK 2.3. Let T=(T1, . . . , Tn) be a commuting n-tuple of power bounded
operators on H. For any i ∈ Nn, o-inf(T, h) 6 o-inf(Ti, h) holds for every h ∈ H,
and soH0(Ti) = H00(Ti) ⊂ H00(T) = H0(T). In particular, if T is asymptotically
(strongly) non-vanishing, then Ti is also asymptotically (strongly) non-vanishing.
Taking appropriate analytic Toeplitz operators, it can be seen that the converse
implication is not true (see Example 3.9).

The following proposition, inspired by a remark of Maria Gamal’, shows
that unitary asymptotes, not satisfying (LOC), arise naturally.

PROPOSITION 2.4. Let T be a commuting n-tuple of invertible operators on H,
and let (X, U) be a unitary asymptote of T with norm-control κ.

(i) Then (X, U−1) is a unitary asymptote of T−1, with norm-control κ.
(ii) If T is power bounded, then the following conditions are equivalent:

(a) T−1 has a unitary asymptote satisfying (LOC);
(b) the given (X, U−1) satisfies (LOC);
(c) X is invertible;
(d) T is similar to a commuting n-tuple of unitaries.

Proof. (i) Let (X′, U′−1) be a unitary intertwining pair of T−1. Since (X′, U′)
is a unitary intertwining pair of T, there is a unique Y′ ∈ I(U, U′) such that
X′ = Y′X. Then Y′ ∈ I(U−1, U′−1) also holds, whence the statement follows. We
note also that (XH)− is reducing for U, and so X has dense range by minimality.
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(ii) Suppose that T is power bounded: s := sup{‖Tk‖ : k ∈ Zn
+} < ∞.

(Then the existence of the unitary asymptote is guaranteed.) If T−1 has a unitary
asymptote satisfying (LOC), then (X, U−1) satisfies (LOC) too by similarity (see
Proposition 1.3).

For every h ∈ H, we have o-inf(T−1, h) > ‖h‖/s. Indeed, if o-inf(T−1, h) <
‖h‖/s, then ‖T−kh‖ < ‖h‖/s holds for some k ∈ Zn

+, and so we infer that ‖h‖ =
‖TkT−kh‖ 6 s‖T−kh‖ < ‖h‖, what is a contradiction. Therefore, if (LOC) holds
for (X, U−1) with a bound-control κ > 0, then the inequalities

1
s
‖h‖ 6 o-inf(T−1, h) 6 κ‖Xh‖ (h ∈ H)

imply that X is invertible, and so T is similar to the unitary n-tuple U.
Finally, if T is similar to a unitary n-tuple, then T−1 is power bounded, and

so it has a unitary asymptote satisfying (LOC).

Now we give a specific example for an invertible T ∈ C1·, where (LOC) fails
for T−1.

EXAMPLE 2.5. Let us consider the Hilbert space `2(Zn, β) consisting of the
sequences ξ : Zn → C satisfying ‖ξ‖2

β := ∑
k∈Zn

|ξ(k)|2β(k)2 < ∞, where log2 β(k)

= −
n
∑

i=1
min(0, ki) for k = (k1, . . . , kn) ∈ Zn. The commuting invertible contrac-

tions T = (T1, . . . , Tn) are defined on `2(Zn, β) by (Tiξ)(k) = ξ(k− e(i)), where
e(i) = (δi1, . . . , δin) (i ∈ Nn). The commuting unitaries U = (U1, . . . , Un) are de-
fined on `2(Zn) by the same formula: (Uiξ)(k) = ξ(k− e(i)). The transformation
X : `2(Zn, β) → `2(Zn), ξ 7→ ξ intertwines T with U, and ‖Xξ‖ = lim

k
‖Tkξ‖β =

‖ξ‖ 6 ‖ξ‖β holds, for every ξ ∈ `2(Zn, β). We obtain that (X, U) is a unitary
asymptote of T, satisfying (LOC) with bound-control 1. Since the injective X is
not invertible, we infer by Proposition 2.4 that (LOC) fails for the unitary asymp-
tote (X, U−1) of T−1 ∈ C1·.

3. QUASIANALYTIC n-TUPLES OF OPERATORS

Let T = (T1, . . . , Tn) be a commuting n-tuple of operators on the Hilbert
space H, and let U = (U1, . . . , Un) be a commuting n-tuple of unitaries on K. Let
us assume that (X, U) is a unitary asymptote of T with norm-control κ, where X 6= 0,
and so T ∈ C∗·.

Given any C ∈ {T}′, (XC, U) is a unitary intertwining pair of T. Hence,
there exists a unique D∈I(U, U)={U}′ such that XC=DX. The transformation

γ = γX : {T}′ → {U}′, C 7→ D

is called the commutant mapping associated with the unitary asymptote (X, U).
Obviously, γ(Tk) = Uk holds for all k ∈ Zn

+. This mapping has been studied in
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many particular settings; see, e.g., [14], [17], [19] and [21], [30]. The novelty in the
next statement is the boundedness of γ, what is an immediate consequence of the
norm-control.

PROPOSITION 3.1. The commutant mapping γ is a bounded algebra-homomor-
phism, with ‖γ‖ 6 κ‖X‖; taking κ optimal, we obtain ‖γ‖ 6 κaop(X, U).

REMARK 3.2. Assuming that (X̃, Ũ) is another unitary asymptote of T, let
Z ∈ I(U, Ũ) be the invertible transformation satisfying ZX = X̃ (see Proposi-
tion 1.3). Given any C ∈ {T}′, let us consider the operators D = γX(C) ∈ {U}′
and D̃ = γX̃(C) ∈ {Ũ}

′. Since (X, U) is a unitary asymptote of T, D̃ZX = D̃X̃ =

X̃C = ZXC = ZDX ∈ I(T, Ũ) and D̃Z, ZD ∈ I(U, Ũ), it follows that D̃Z = ZD.
Observing that (Z, Ũ) is a unitary asymptote of U (see Corollary 1.7), we can see
that D̃ = ZDZ−1 = γZ(D). Therefore, we obtain that γX̃ = γZ ◦ γX .

The hyperinvariant subspace lattice Hlat T of T consists of those subspacesM
ofH, which are invariant for the commutant {T}′, that is CM⊂M holds for all
C ∈ {T}′. The relation {T}′ ⊂ {Ti}′ readily implies that Hlat T ⊃ Hlat Ti is true,
for every i ∈ Nn. To illustrate this connection we give an example.

EXAMPLE 3.3. Let S be the unilateral shift on the Hardy–Hilbert space H2;
that is S f = χ f ( f ∈ H2), where χ(z) = z is the identical function. Let us consider
the commuting pair T = (T1, T2) of the operators T1 = S⊕S and T2 = I⊕ 0 acting
on the Hilbert spaceH = H2 ⊕ H2.

It is well-known that the commutant of S consists of the analytic Toeplitz
operators on H2 (see, e.g., Section 147 in [12]). Hence the invariant subspaces are
also hyperinvariant for S, and by Beurling’s theorem they are of the form ϑH2,
where ϑ ∈ H∞ is an inner function (|ϑ(ζ)| = 1 for a.e. ζ ∈ T) or ϑ = 0. Since C =
[Cij]2 ∈ {T1}′ exactly when Cij ∈ {S}′ for all 1 6 i, j 6 2, it can be easily seen that
Hlat T1 = {ϑ(H2 ⊕ H2) : ϑ ∈ H∞ inner or ϑ = 0}. Obviously, {T2}′ = {A⊕ B :
A, B ∈ L(H2)} and Hlat T2 = {{0}, H2 ⊕ {0}, {0} ⊕ H2,H}. We conclude that
{T}′ = {T1}′ ∩ {T2}′ = {Tϕ ⊕ Tψ : ϕ, ψ ∈ H∞}, and so Hlat T = {ϑH2 ⊕ ηH2 :
ϑ, η ∈ H∞ inner or 0}.

Since {U}′ is a C∗-algebra, the subspaces in Hlat U are reducing. Further-
more, spectral theory provides many subspaces in Hlat U, as we shall see soon.
The hyperinvariant subspaces of U induce hyperinvariant subspaces of T.

PROPOSITION 3.4. For every N ∈ Hlat U, we have M = X−1N ∈ Hlat T; in
particular,H0(T) = X−1({0}) ∈ Hlat T.

Proof. Given any C ∈ {T}′, let us consider D = γ(C) ∈ {U}′. For any h ∈
M, Xh ∈ N implies DXh ∈ N . Since XCh = DXh, it follows that Ch ∈ M.

Now we turn to the spectral analysis of the commuting n-tuple U of uni-
taries. We recall that the spectrum of the abelian C∗-algebra, generated by U, can
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be identified with a non-empty, compact subset of the n-dimensional torus Tn,
called the (joint) spectrum of U, and denoted by σ(U) (see, e.g., [28]). We note
also that σ(U) coincides with the (joint) approximate point spectrum of U (see
[24] and [25]). By the spectral theorem (see, e.g., [6]) there exists a unique spec-
tral measure EU : Bn → P(K) such that Uk =

∫
Tn

zk dEU(z) holds for all k ∈ Zn.

(Here Bn denotes the σ-algebra of all Borel subsets of Tn, and P(K) stands for the
set of orthogonal projections in K.) The support of EU is the spectrum σ(U). We
note yet that D ∈ {U}′ if and only if D commutes with every spectral projection
EU(ω) (ω ∈ Bn). Hence, the spectral subspaces EU(ω)K are all hyperinvariant for U.

The localization of the spectral measure E = EU at the vector v ∈ K is the
finite positive Borel measure Ev on Tn, defined by Ev(ω) := 〈E(ω)v, v〉 (ω ∈
Bn). Clearly, Ev(Tn) = ‖v‖2. Let M+(Tn) be the set of all finite, positive Borel

measures on Tn. Given any µ, ν ∈ M+(Tn), the notation µ
a
≺ ν means that µ is

absolutely continuous with respect to ν, that is ν(ω) = 0 implies µ(ω) = 0 (ω ∈
Bn). The measures µ and ν are equivalent, in notation: µ

a∼ ν, if µ
a
≺ ν and ν

a
≺ µ,

that is µ(ω) = 0 holds exactly when ν(ω) = 0.
Let Ũ = (Ũ1, . . . , Ũn) be also a commuting n-tuple of unitary operators,

acting on the non-zero Hilbert space K̃, and let Ẽ : Bn → P(K̃) be the spectral
measure of Ũ. Given any Z ∈ I(U, Ũ), let us consider the unitary intertwining
pair (X̃, Ũ) of T, where X̃ := ZX. The following technical lemma relates localiza-
tions of E and Ẽ.

LEMMA 3.5. If Z is injective, then ẼX̃h = E|Z|Xh
a∼ EXh hold, for every h ∈ H.

Proof. Taking the polar decomposition Z = W|Z|, it can be easily seen that
|Z| ∈ {U}′ is injective and W ∈ I(U, Ũ) is an isometry. The subspace K̃1 =

WK is reducing for Ũ, so the restriction Ũ1 := Ũ|K1 is a commuting n-tuple of
unitaries on K̃1. Let Ẽ1 : Bn → P(K̃1) be the spectral measure of Ũ1. Clearly,
W1 ∈ I(U, Ũ1) is a unitary transformation, where W1v = Wv (v ∈ K). Relying
on the uniqueness part of the Riesz representation theorem, it is easy to show that
W1E(ω)W∗1 = Ẽ1(ω)= Ẽ(ω)|K̃1

hold for all ω∈Bn. Thus, for any h∈H, we have

ẼX̃h(ω)= 〈Ẽ(ω)X̃h, X̃h〉= 〈Ẽ1(ω)W1|Z|Xh, W1|Z|Xh〉
= 〈W1E(ω)|Z|Xh, W1|Z|Xh〉=〈E(ω)|Z|Xh, |Z|Xh〉=E|Z|Xh(ω) (ω∈Bn).

Since |Z| ∈ {U}′, it follows that |Z|E(ω) = E(ω)|Z|, and so E(ω)|Z|Xh =
|Z|E(ω)Xh. Taking into account that |Z| is injective, we infer that E|Z|Xh(ω) = 0
if and only if EXh(ω) = 0. (Notice that Ev(ω) = ‖E(ω)v‖2, for all v ∈ K.)
Therefore, we obtain that ẼX̃h = E|Z|Xh

a∼ EXh.

We say that the unitary intertwining pair (X′, U′) of T is quasianalytic, if X′ 6=
0 and E′X′u

a∼ E′X′v holds for all u, v ∈ H\{0}, where E′ : Bn → P(K′) denotes the
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spectral measure of U′. The commuting n-tuple T of operators is called quasiana-
lytic, if it has a quasianalytic unitary asymptote (X, U). In view of Proposition 1.3
and Lemma 3.5, we can see that if one of the unitary asymptotes is quasianalytic,
then so are all of them.

PROPOSITION 3.6. If T is a quasianalytic commuting n-tuple of operators, then
it is asymptotically strongly non-vanishing: T ∈ C1·.

Proof. Let (X, U) be a unitary asymptote of T, and let u ∈ H be a vector
such that Xu 6= 0. Then, for every 0 6= v ∈ H, the relation EXv

a∼ EXu 6= 0 yields
that EXv 6= 0, and so Xv 6= 0. Thus,H0(T) = ker X = {0}.

Quasianalyticity is a property of homogeneity type. If it is broken, then
hyperinvariant subspaces arise.

THEOREM 3.7. If the asymptotically non-vanishing, commuting n-tuple T of op-
erators is not quasianalytic, then Hlat T is non-trivial.

Proof. Since T ∈ C∗·, it has a unitary asymptote (X, U), where ker X =
H0(T) 6= H. In view of Proposition 3.4, we may assume thatH0(T) = {0}, when
X is injective. Let E : Bn → P(K) be the spectral measure of U. Since T is not

quasianalytic, we can find non-zero vectors u, v ∈ H so that EXu 6
a
≺ EXv. Thus,

there exists ω1 ∈ Bn such that EXv(ω1) = 0 and EXu(ω1) > 0. Setting ω2 =
Tn \ω1, let us consider the decomposition K = N1 ⊕N2, where Nj = E(ωj)K ∈
Hlat U for j = 1, 2. We know from Proposition 3.4 that M = X−1N2 ∈ Hlat T.
The equality EXv(ω1) = 0 yields that Xv ∈ N2, whence v ∈ M follows. On the
other hand, EXu(ω1) > 0 implies that Xu 6∈ N2, and so u 6∈ M. Consequently,
M is a proper hyperinvariant subspace of T.

COROLLARY 3.8. Let T be a commuting n-tuple of class C∗·. If there exists an
injection Y ∈ I(Ũ, T), where Ũ is a commuting n-tuple of unitaries on K̃ and the
spectrum σ(Ũ) is not a single point of Tn, then T is not quasianalytic, and so Hlat T is
non-trivial.

Proof. Let Ẽ denote the spectral measure of Ũ. Since σ(Ũ) is not a single-
ton, a Borel set ω1 ∈ Bn can be given so that Ẽ(ω1) 6= 0 and Ẽ(ω2) 6= 0 with
ω2 = Tn \ ω1. Choosing non-zero vectors vj ∈ Ẽ(ωj)K̃ (j = 1, 2), the relation
Ẽ(ω1)Ẽ(ω2) = 0 yields that the non-zero localizations Ẽv1 and Ẽv2 are singular to
each other.

Let (X, U) be a unitary asymptote of T, and let E be the spectral measure
of U. Suppose that T is quasianalytic. Then X is injective by Proposition 3.6,
and so Z = XY ∈ I(Ũ, U) is also injective. Since (I, Ũ) is a unitary asymptote
of Ũ (see Corollary 1.7), an application of Lemma 3.5 results in that EZvj

a∼ Ẽvj

for j = 1, 2. Thus EX(Yv1)
is not equivalent to EX(Yv2)

, which means that T is not
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quasianalytic. We arrived at a contradiction, and so T cannot be quasianalytic.
Theorem 3.7 implies that Hlat T is non-trivial.

We conclude this section with an example.

EXAMPLE 3.9. For every i ∈ Nn, let a non-constant function ϕi ∈ H∞ be
given so that ‖ϕi‖∞ = 1 and Ω(ϕi) = {ζ ∈ T : |ϕi(ζ)| = 1} is of positive

Lebesgue measure. Let us assume also that Ω :=
n⋂

i=1
Ω(ϕi) and T \ Ω are of

positive measure. Let us consider the commuting n-tuple T = (Tϕ1 , . . . , Tϕn) of
analytic Toeplitz operators on the Hardy–Hilbert space H2; that is Tϕi f = ϕi f
for all f ∈ H2 (i ∈ Nn). Let us consider also the commuting n-tuple U =
(Uϕ1 , . . . , Uϕn) of unitary multiplication operators on the Hilbert space L2(Ω) =

χΩL2(T), where χΩ stands for the characteristic function of Ω and L2(T) is de-
fined with respect to the normalized Lebesgue measure m on T. Thus, Uϕi g = ϕig
for all g ∈ L2(Ω) (i ∈ Nn). It is clear that X ∈ I(T, U), where X f := χΩ f ( f ∈
H2). In view of the F. & M. Riesz theorem f (ζ) 6= 0 for a.e. ζ ∈ T, whenever
0 6= f ∈ H2. Hence X is injective. Furthermore, for every 0 6= f ∈ H2, X f is
cyclic for the unitary operator UΩ, defined by UΩg = χg (g ∈ L2(Ω)); that is∨
j∈Z+

U j
ΩX f = L2(Ω) (see, e.g., Section 146 in [12] and [3]). In particular, X has

dense range, and so (X, U) is a minimal unitary intertwining pair of T. Since
the (LOC) holds with bound-control κ = 1, it follows that (X, U) is a unitary
asymptote of T with norm-control κ = 1 (see Proposition 2.1). We obtain also
that H0(T) = ker X = {0}, that is T ∈ C1·. Taking into account that UΩ ∈ {U}′,
we conclude that X f is cyclic for the commutant {U}′ :

∨{DX f : D ∈ {U}′} =
L2(Ω), for every 0 6= f ∈ H2. Therefore, T must be quasianalytic; see the proof
of Theorem 3.7.

Notice also that T is of 0-type when m(Ω) = 0, while Ti ∈ C1· holds for all
i ∈ Nn. Furthermore, if m(Ω) = 1 then T is a quasianalytic n-tuple of commuting
isometries.

4. LOCAL AND GLOBAL SPECTRAL INVARIANTS

Let T = (T1, . . . , Tn) be again a commuting n-tuple of operators on the sepa-
rable Hilbert space H. Let U = (U1, . . . , Un) be a commuting n-tuple of unitaries
on the Hilbert space K, and let us assume that (X, U) is a unitary asymptote of T
with X 6= 0; that is T ∈ C∗·. Let E : Bn → P(K) denote the spectral measure of
U, where Bn stands for the σ-algebra of all Borel subsets of Tn.

We say that the Borel sets ω1, ω2 ∈ Bn are equal E-a.e., in notation: ω1
E
= ω2,

if E(ω14ω2) = 0, that is when E(ω1) = E(ω2). In this way we obtain an
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equivalence relation on Bn. The Borel set ω1 is contained in ω2 E-a.e., in nota-

tion: ω1
E
⊂ ω2, if E(ω1 \ ω2) = 0, that is when E(ω1) 6 E(ω2). This partial

ordering makes Bn (actually, the quotient set Bn/ E
=) to be a complete lattice. (The

separability of K is exploited here.)
Let us consider the localization of E at a vector y ∈ K : Ey(ω) = 〈E(ω)y, y〉

= ‖E(ω)y‖2 (ω ∈ Bn). It is immediate that Ey(ω) = 0 if and only if E(ω)y = 0,
and Ey(ω) = ‖y‖2 exactly when E(ω)y = y. Furthermore, Ey(ω) = ‖y‖2 if and
only if Ey(ωc) = 0. The Borel set

ω(U, y) :=
E∧
{ω ∈ Bn : Ey(ω) = ‖y‖2} =

( E∨
{ω′ ∈ Bn : Ey(ω

′) = 0}
)c

is called the local residual set of U at y; it is determined E-a.e.. Clearly,

E(ω(U, y))K =
⋂
{E(ω)K : y ∈ E(ω)K} and

E(ω(U, y)c)K =
∨
{E(ω′)K : E(ω′)y = 0}.

The next proposition contains further basic properties; the proof is left to the
reader.

PROPOSITION 4.1. Using the previous notation, we have:
(i) For every y ∈ K, E(ω(U, y))K is the smallest spectral subspace containing y.

(ii) For any y1, y2 ∈ K, we have Ey1
a∼ Ey2 if and only if ω(U, y1) = ω(U, y2).

(iii)
E∨{ω(U, y) : y ∈ K} = Tn.

For every vector h ∈ H, ω(T, h) := ω(U, Xh) is called the local residual set of
T at h. This Borel set is determined E-a.e., and it is independent of the particular
choice of the unitary asymptote (see Lemma 3.5 and its proof). Since the reducing
subspace K =

∨{E(ω(T, h))K : h ∈ H} contains the range of X, we infer that
K = K, and so

E∨
{ω(T, h) : h ∈ H} = Tn.

The Borel set π(T) :=
E∧{ω(T, h) : h ∈ H \ {0}} is called the quasianalytic spectral

set of T. It is also determined E-a.e. and independent of the special choice of
(X, U). In view of Proposition 4.1 we obtain the following theorem.

THEOREM 4.2. The commuting n-tuple T ∈ C∗· is quasianalytic if and only if
π(T) = Tn holds E-a.e..

Quasianalyticity can be also characterized in terms of cyclicity. To deduce
this theorem we need some auxiliary results concerning the spectral analysis of
U. The following two propositions must be known.

The measure µ = µU ∈ M+(Tn) is called a scalar spectral measure of U, if it is
equivalent to the spectral measure E : µ(ω) = 0 if and only if E(ω) = 0 (ω ∈ Bn).
The next statement can be proved applying the technique of Chapter IX in [6].
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PROPOSITION 4.3. We have:
(i) For any y ∈ K, the localization Ey is a scalar spectral measure of U if and only if

ω(U, y) = Tn.
(ii) There exists a vector y ∈ K such that ω(U, y) = Tn.

Let µ be a scalar spectral measure of U. The mapping ΦU : L∞(µ) →
L(K), f 7→ f (U) :=

∫
Tn

f dE is a well-defined, faithful representation, called the

functional calculus for U, induced by the spectral measure E. Applying basic tools
of functional analysis (see Section V.12 in [6], Section 12 in [7] and Section I.3.4 in
[9]), the range of ΦU can be identified.

PROPOSITION 4.4. The range of the functional calculus ΦU coincides with the
double commutant {U}′′, and so Hlat U = {E(ω)K : ω ∈ Bn}.

Now we can prove the cyclic characterization.

THEOREM 4.5. For the commuting n-tuple T ∈ C∗·, the following conditions are
equivalent:

(i) T is quasianalytic;
(ii) the vector Xh is cyclic for the commutant {U}′, for every non-zero h ∈ H;

(iii) for every non-zero h ∈ H, E(ω)Xh 6= 0 whenever E(ω) 6= 0 (ω ∈ Bn).

Proof. Suppose that, for a non-zero h ∈ H, the vector Xh is not cyclic for
{U}′. Then the hyperinvariant subspaceN = {DXh : D ∈ {U}′}− of U, induced
by Xh, is not equal to K. By Proposition 4.4, there exists a Borel set ωh ∈ Bn such
that E(ωh)K = N . Since ω(T, h) = ωh does not essentially coincide with Tn

with respect to E, we infer that T is not quasianalytic (see Proposition 4.3 and
Theorem 4.2). Thus, (i) implies (ii).

Since the spectral subspaces are hyperinvariant, it is immediate that (ii)
yields (iii). Finally, (iii) means that, for every non-zero h ∈ H, EXh is a scalar
spectral measure. Hence all these localizations are equivalent, and so T is quasi-
analytic.

A finer distinction can be made among Borel sets in the absolutely contin-
uous (a.c.) case. Let mn denote the normalized Lebesgue measure on Tn. (More
precisely, we consider its restriction to Bn.) Let us assume that T ∈ C∗· is an

a.c. commuting n-tuple, which means that µ
a
≺ mn, where µ is a scalar spectral

measure of U. Taking the Radon–Nikodym derivative 0 6 gE = dµ/dmn ∈
L1(mn) = L1(Tn), the Borel set ωa(U) := {z ∈ Tn : gE(z) > 0} is called the

a.c. (global) residual set of U. For every y ∈ K, Ey
a
≺ mn also holds. Taking

0 6 gy = dEy/dmn ∈ L1(Tn), the Borel set ωa(U, y) := {z ∈ Tn : gy(z) > 0} is
called the a.c. local residual set of U at y. It is immediate that E(ωa(U, y))K is the
smallest spectral subspace, containing y. It is clear also that ωa(U, y) ⊂ ωa(U) for
all y ∈ K, and ωa(U, y) = ωa(U) for some y ∈ K (see Proposition 4.3). We obtain
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that ωa(U) is the measurable support of E (with respect to mn), that is E(ω) 6= 0
holds exactly when mn(ω ∩ωa(U)) > 0 (ω ∈ Bn).

For any ω1, ω2 ∈ Bn, the equivalence relation ω1
e
= ω2 holds by definition

if mn(ω14ω2) = 0. The relation ω1
e
⊂ ω2, defined by mn(ω1 \ ω2) = 0, is a

partial ordering on Bn, which makes Bn (actually, the quotient set Bn/ e
=) to be a

complete lattice.
For any h ∈ H, ωa(T, h) := ωa(U, Xh) is called the a.c. local residual set

of T at h. It follows by the minimality of (X, U) that the a.c. (global) residual set

ωa(T) :=
e∨{ωa(T, h) : h ∈ H} of T coincides with ωa(U).

The Borel set πa(T) :=
e∧{ωa(T, h) : 0 6= h ∈ H} is called the a.c. quasian-

alytic spectral set of T. The previous spectral invariants are determined up to sets
of zero Lebesgue measure, and they are independent of the special choice of the
unitary asymptote. We note also that these definitions are compatible with those
given in [19] for single a.c. polynomially bounded operators.

For any ω1, ω2 ∈ Bn, ω1
E
⊂ ω2 holds if and only if ω1 ∩ ωa(U)

e
⊂ ω2 ∩

ωa(U). Furthermore, ωa(T, h) E
= ω(T, h) is true for every h ∈ H. It follows that

ωa(T)
E
= ω(T) E

= Tn and πa(T)
E
= π(T). Thus, the following statement can be

derived from Theorem 4.2.

THEOREM 4.6. For the a.c. commuting n-tuple T ∈ C∗·, the following conditions
are equivalent:

(i) T is quasianalytic;
(ii) πa(T) = ωa(T);

(iii) ωa(T, h) = ωa(T), for all non-zero h ∈ H.
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