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ABSTRACT. We define the graph product of unital completely positive maps
on a universal graph product of unital C∗-algebras and show that it is unital
completely positive itself. To accomplish this, we introduce the notion of the
non-commutative length of a word, and we obtain a Stinespring construction
for concatenation. This result yields the following consequences. The graph
product of positive-definite functions is positive-definite. A graph product
version of von Neumann’s inequality holds. Graph independent contractions
on a Hilbert space simultaneously dilate to graph independent unitaries.
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INTRODUCTION

In operator algebras, graph products unify the notions of free products and
tensor products. In particular, given a simplicial graph Γ = (V, E) assign an
algebra to each vertex. If there is an edge between two vertices then the two
corresponding algebras commute with each other in the graph product; if there
is no edge between two vertices then the two corresponding algebras have no
relations with each other within the graph product. Thus free products are given
by edgeless graphs, and tensor products are given by complete graphs.

Such products were initially studied in the group theory context where the
most prominent examples are the so-called right-angled Artin groups (RAAGs),
first introduced by Baudisch in [3], and right-angled Coxeter groups, first intro-
duced by Chiswell in [8]. One of the most high-profile appearances of RAAGs is
their role in the article [16] by Haglund–Wise whose results are utilized in Agol’s
celebrated resolution of the virtual Haken conjecture [1]. There has been exten-
sive work on this subject in group theory, and we cannot possibly acknowledge
all of the significant contributions to the topic. A very incomplete list of some
notable references in the group context are Droms’s series of papers [12], [13],
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[14], Green’s general treatment [15], Januskiewicz’s representation theoretic re-
sult [17], Valette’s weak amenability result [27], Charney’s survey [7], and Wise’s
book [31].

Graph products have been recently imported into operator algebras by sev-
eral authors under just about as many names. Młotkowski developed some of the
theory under the name “Λ-free probability“ in the context of non-commutative
probability in [20]. In [24], Speicher-Wysoczański revived Młotkowski’s work,
looking at the related cumulant combinatorics and calling the idea “ε- indepen-
dence“ . Independently, in [6], Caspers–Fima drew inspiration directly from
Green’s thesis [15] and took a foundational approach to graph products from
both operator algebraic and quantum group theoretic perspectives. We also in-
clude some relevant dilation theoretic references: [10], [18], [19], [28].

The purpose of the present paper is to write down a graph product of unital
completely positive maps and show that it is again unital completely positive
in the spirit of [4]. This was done particularly for graph products of finite von
Neumann algebras in Proposition 2.30 of [6] in order to prove that the Haagerup
property is preserved under taking graph products. This article gives the result
for the much more general C∗-algebraic setting.

The strategy for proving the main result, Theorem 2.1, is largely combinato-
rial. While there are alternative avenues potentially available (especially in light
of the recent preprint [11]), the appeal of the approach in this article is the de-
velopment of some tools addressing the less-familiar combinatorics presented by
graph products. In particular, in Subsection 2.1, we introduce the notion of the
non-commutative length of a reduced word in a graph product (see Definition 2.5).
Just as the length of a word is an indispensable tool in the theory of free products,
the non-commutative length of a word in a graph product can be used analo-
gously to organize arguments by ignoring, in a sense, letters that commute. In
fact, in the free product (edgeless graph) case, the two notions essentially coin-
cide, see Remark 2.6. Additionally, in Subsection 2.2, we develop a Stinespring
construction for concatenation within a finite subset of words in a graph product.
This construction yields a version of Schwarz’s inequality for our setting. Imme-
diately after the proof of Theorem 2.1, in Subsection 2.4, we illustrate how our
proof strategy applies in the complete graph case; this gives a new combinatorial
proof of the fact that the tensor product of ucp maps on a max tensor product is
again ucp.

Following the festival of induction in Section 2, we record several conse-
quences in Section 3. The first is Corollary 3.1, giving the graph product analog
of Choda’s main result from [9] . Next, we present Theorem 3.4 which states that
the graph product of positive-definite functions on a graph product of groups is
itself positive-definite. We conclude the paper with some results regarding uni-
tary dilation in the graph product context. In particular, we obtain graph product
versions of the Sz.-Nagy–Foia

’
s dilation theorem (Theorem 3.5), von Neumann’s
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inequality (Corollary 3.8), and unitary dilation of graph independent contractions
(Theorem 3.10).

1. PRELIMINARIES

Fix a simplicial (i.e. undirected, no single-vertex loops, at most one edge
between vertices) graph Γ = (V, E), where V denotes the set of vertices of Γ and
E ⊂ V ×V denotes the set of edges of Γ. Given discrete groups {Gv}v∈V one can
define the graph product of the Gv’s as follows.

DEFINITION 1.1 ([6], [15]). The graph product FΓGv is given by the free
product ∗Gv modulo the relations [g, h] = 1 whenever g ∈ Gv, h ∈ Gw and
(v, w) ∈ E.

In the context of C∗-algebras, per usual, there are two flavors of graph prod-
ucts: universal and reduced. Some set-up is in order before presenting these con-
structions. Both [6] and [20] present cosmetically differing constructions of the
same objects, but since we are adhering to the language of graphs, we will draw
primarily from the discussion in [6].

When working with graph products, the bookkeeping can be done by con-
sidering words with letters from the vertex set V. Such words are given by finite
sequences of elements from V and will be denoted with bold letters. In order to
encode the commuting relations given by Γ, we consider the equivalence relation
generated by the following relations:

(v1, . . . , vi, vi+1, . . . , vn) ∼ (v1, . . . , vi, vi+2, . . . , vn) if vi = vi+1,

(v1, . . . , vi, vi+1, . . . , vn) ∼ (v1, . . . , vi+1, vi, . . . , vn) if (vi, vi+1) ∈ E.

The concept of a reduced word is central to the theory of graph products. The
following definition is Definition 3.2 of [21] in graph language; the equivalent
definition in [6] appears differently.

DEFINITION 1.2. A word v = (v1, . . . , vn) is reduced if whenever vk = vl , k <
l, then there exists a p with k < p < l such that (vk, vp) /∈ E. LetWred denote the
set of all reduced words. We take the convention that the empty word is reduced.

PROPOSITION 1.3 ([6], [15]). (i) Every word v is equivalent to a reduced word
w = (w1, . . . , wn). (We let |w| = n denote the length of the reduced word.)

(ii) If v ∼ w ∼ w′ with both w and w′ reduced, then the lengths of w and w′ are
equal and w′ = (wσ(1), . . . , wσ(n)) is a permutation of w. Furthermore, this permuta-
tion σ is unique if we insist that whenever wk = wl , k < l then σ(k) < σ(l).

LetWmin be a set of representatives of every reduced word such that each equiv-
alence class has exactly one representative inWmin. An element ofWmin is called
a minimal word.
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1.1. UNIVERSAL GRAPH PRODUCTS. To define universal graph products we fol-
low the discussion from [20] which gives a more constructive definition com-
pared to the equivalent definition appearing in [6].

DEFINITION 1.4. Given a graph Γ = (V, E) and unital C∗-algebras Av for
every v ∈ V, the universal graph product C∗-algebra is the unique unital C∗-algebra
FΓAv together with unital ∗-homomorphisms ιv : Av → FΓAv satisfying the
following universal properties:

(i) ιv(a)ιw(b) = ιw(b)ιv(a) whenever a ∈ Av, b ∈ Aw, (v, w) ∈ E;
(ii) for any unital C∗-algebra B with ∗-homomorphisms fv : Av → B such

that fv(a) fw(b) = fw(b) fv(a) whenever a ∈ Av, b ∈ Aw, (v, w) ∈ E, there exists
a unique ∗-homomorphism FΓ fv : FΓAv → B such that FΓ fv ◦ ιv0 = fv0 for
every v0 ∈ V.

The graph product FΓAv is the universal C∗-algebraic free product ∗v∈VAv
modulo the ideal generated by the commutation relations encoded in the graph Γ.

The following constructive description of universal graph product C∗- alge-
bras also appears in [20]. Ignoring the norm topology, we can consider the uni-
versal ∗-algebraic graph product of the Av’s, IΓAv, as the universal ∗-algebraic
free product of the Av’s modulo the ideal generated by the commutation rela-
tions coming from the graph Γ. For each v ∈ V fix a state ϕv ∈ S(Av), and let
Åv = ker(ϕv). For each v = (v1, . . . , vn) ∈ Wmin let Åv = Åv1 ⊗ · · · ⊗ Åvn with
Åe = C1 where e is the empty word. We can identify IΓAv (as a vector space)
with the following direct sum of tensor products:

IΓAv =
⊕

v∈Wmin

Åv.

Then the C∗-algebraic graph product FΓAv is the enveloping C∗-algebra of the ∗-
algebraic graph product IΓAv. Compare this with the discussion in Sections 1.2
and 1.4 of [30].

DEFINITION 1.5. A reduced word a ∈ IΓAv is an element of the form a =
a1 · · · am where ak ∈ Åvk and (v1, . . . , vm) ∈ Wred. In such an instance we write
(v1, . . . , vm) = va and say |a| = m, denoting the length of a (well-defined by
Proposition 1.3). Accepting the common risks of abusing notation, we let Wred
also denote the set of reduced words in IΓAv. The linear span ofWred ∪ {1} is
dense in FΓAv (see [20]).

1.2. REDUCED GRAPH PRODUCTS. The following construction can be found in
[6]. The reduced graph product of C∗-algebras is defined in the presence of states
and depends on the construction of a graph product of Hilbert spaces, defined in
a way similar to that of the definition of a free product of Hilbert spaces.

For each v ∈ V let Hv be a Hilbert space with a distinguished unit vector
ξv ∈ Hv. Put H̊v := Hv 	Cξv. Given v = (v1, . . . , vn) ∈ Wred, define

H̊v := H̊v1 ⊗ · · · ⊗ H̊vn .
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If v, w ∈ Wred with v ∼ w then by Proposition 1.3 there is a uniquely determined
unitaryQv,w : H̊v → H̊w. Since each reduced word v has a unique representative
v′ ∈ Wmin, we write Qv instead of Qv,v′ .

DEFINITION 1.6. Define the graph product Hilbert space (FΓHv, Ω) as fol-
lows:

FΓHv := CΩ⊕
⊕

w∈Wmin

H̊w.

Next, given v0 ∈ V we define a canonical (left) representation of B(Hv0) in
B(FΓHv). Let Wl(v0) ⊂ Wmin be the set of minimal words w such that v0w is
still reduced. Put

Hl(v0) := CΩ⊕
⊕

w∈Wl(v0)

H̊w.

We have that FΓHv ∼= Hv0 ⊗Hl(v0) via the unitary Ul(v0) defined as follows:

Ul(v0) : Hv0 ⊗Hl(v0)→FΓHv,

ξv0 ⊗Ω 7→ Ω,

H̊v0 ⊗Ω 7→ H̊v0 ,

ξv0 ⊗ H̊w 7→ H̊w,

H̊v0 ⊗ H̊w 7→ Qv0w(H̊v0 ⊗ H̊w).

Then we define λv0 : B(Hv0)→ B(FΓHv) by

λv0(x) = Ul(v0)(x⊗ 1)Ul(v0)
∗.

DEFINITION 1.7. For each v ∈ V let Av be a unital C∗-algebra, let ϕv ∈
S(Av) be a state, and let (πv,Hv, ξv) be the corresponding GNS triple. The (left)
reduced graph product C∗-algebra is denoted FΓ(Av, ϕv) and is defined to be the
C∗-subalgebra in B(FΓHv) generated by {λv(πv(Av))}v∈V . The vector state
〈 ·Ω |Ω〉 on FΓ(Av, ϕv) is the reduced graph product state denoted FΓ ϕv.

REMARK 1.8. As outlined in [6], one can analogously construct right rep-
resentations ρv0 : B(Hv0) → B(FΓHv) and subsequently define a right reduced
graph product C∗-algebra.

1.3. GRAPH INDEPENDENCE. We briefly discuss graph products in the context of
non-commutative probability. Compare this discussion with [20], [24].

DEFINITION 1.9. A non-commutative probability space is given by a pair (A, ϕ)
where A is a unital C∗-algebra and ϕ ∈ S(A) is a state on A.

DEFINITION 1.10. Given a non-commutative probability space (A, ϕ) and
a graph Γ = (V, E), let {Av}v∈V ⊂ A be a family of unital C∗-subalgebras. Put
Åv := ker(ϕ|Av). An element a ∈ C∗(

⋃
v∈V Av) is reduced with respect to ϕ if

a = a1 · · · am where aj ∈ Åvj for 1 6 j 6 m and (v1, . . . , vm) is reduced in the
sense of Definition 1.2.
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DEFINITION 1.11 ([20], [24]). Given a non-commutative probability space
(A, ϕ) and a graph Γ = (V, E), a family of unital C∗-subalgebras {Av}v∈V ⊂
(A, ϕ) is Γ independent (or graph independent when context is clear) if

(i) (v, v′) ∈ E⇒ Av and Av′ commute;
(ii) for any a ∈ C∗(

⋃
v∈V Av) such that a is reduced with respect to ϕ, ϕ(a) = 0.

A family of random variables {xv}v∈V ⊂ A is Γ independent if the family of their
generated unital C∗-algebras {C∗(1, xv)}v∈V is Γ independent.

EXAMPLE 1.12. By construction, {λv(πv(Av))}v∈V ⊂ (FΓ(Av, ϕv),FΓ ϕv)
is Γ independent.

Consider the following analog of Lemma 5.13 of [21].

LEMMA 1.13. Let (A, ϕ) be a non-commutative probability space. Let Γ = (V, E)
be a graph, and let the unital subalgebras Av, v ∈ V, be Γ independent in (A, ϕ). Let B
be the C∗-algebra generated by the Av’s. Then ϕ|B is uniquely determined by ϕ|Av for
all v ∈ V.

The proof follows directly from (the proof of) Lemma 1 in [20].

REMARK 1.14. Although this is not the topic of the present paper, we note
that the existence of left and right (cf. Remark 1.8) representations on graph prod-
uct Hilbert spaces sets the stage for an investigation into “bi-graph indepen-
dence“, see [29].

2. GRAPH PRODUCTS OF MAPS

This section presents the main result of the present article, establishing the
existence of graph products of unital completely positive maps. The max ten-
sor product and the universal free product are both examples of universal graph
products; so the following result is a generalization and unification of the max
tensor product and Boca’s universal free product of completely positive maps
appearing in [4].

Let Γ = (V, E) be a graph. Let B be a unital C∗-algebra. For each v ∈
V, let Av be a unital C∗-algebra, and let θv : Av → B be a unital completely
positive map with the property that if (v, v′) ∈ E then θv(Av) commutes with
θv′(Av′). Furthermore, for each v0 ∈ V, fix a state ϕv0 ∈ S(Av0), and let ιv0 :
Av0 → FΓAv be the inclusion given in Definition 1.4. We densely define the
unital graph product map FΓθv with respect to the states ϕv onWred ∪ {1} and
extend linearly. For aj ∈ Åvj := ker(ϕvj), 1 6 j 6 n, (v1, . . . , vn) ∈ Wred,

FΓθv

( n

∏
j=1

ιvj(aj)
)

:=
n

∏
j=1

θvj(ιvj(aj)).(2.1)

From now on, we suppress the ιv’s.
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THEOREM 2.1. The map FΓθv densely defined on the linear span ofWred∪{1} by
the relation (2.1) extends by continuity to a unital completely positive map FΓAv→B.

The proof we present at the end of this section is an adaptation of Boca’s
original proof in [4]. It deserves mentioning that a recently posted preprint ([11])
by Davidson–Kakariadis exhibits an alternative proof of the corresponding result
in the amalgamated free product case using a dilation theoretic approach. While
a graph product companion to Davidson–Kakariadis’s technique is worth pur-
suing, generalizing Boca’s strategy to the graph product setting has the benefit
of developing some tools and facts regarding the less familiar, and sometimes
frustrating, combinatorics of graph products. Due to the subtlety of the combina-
torics, some preparation is in order.

For the sake of simpler notation we will denote FΓθv by Θ. As in [4] assume
that B ⊂ B(H) for some Hilbert space H and that IH ∈ B. It is well-known that
it suffices to show that for any n ∈ N, x1, . . . , xn ∈FΓAv, ξ1, . . . , ξn ∈ H,

n

∑
i,j=1
〈Θ(x∗i xj)ξ j : ξi〉 > 0.

By an argument identical to the one in [4], we can further reduce the required
inequality to the following. It is enough to check that for any finite set X inWred ∪
{1} and any function ξ : X → H, we have

∑
x,y∈X

〈Θ(x∗y)ξ(y) : ξ(x)〉 > 0.

Although the following fact is very simple, it deserves to be recorded sepa-
rately because it is so fundamental to the proceeding arguments.

PROPOSITION 2.2. Let x, y ∈ Wred. If x∗y is not reduced, there exist orderings
of vx = (v1, . . . , vn) and vy = (v′1, . . . , v′m) such that v1 = v′1.

2.1. NON-COMMUTATIVE LENGTH. We now discuss useful tools for the relevant
combinatorics of this question.

DEFINITION 2.3. A finite subset X ⊂ Wred ∪ {1} is complete if 1 ∈ X and
whenever a1 · · · am ∈ X we have aσ(2) · · · aσ(m) ∈ X and aσ(1) · · · aσ(m−1) ∈ X for
every permutation σ ∈ Sm such that a1 · · · am = aσ(1) · · · aσ(m). In other words X
is complete if it contains the unit and is closed under left and right truncations of
any equivalent rearrangements. Compare this to Boca’s definition of a complete
set in [4]. Let vX := {v ∈ Wred : v = va for some a ∈ X}.

Since every finite set in Wred ∪ {1} is contained in a complete set, we can
make one final reduction of the desired inequality as follows. For any complete
set X ⊂ Wred ∪ {1} and any function ξ : X → H, we have

∑
x,y∈X

〈Θ(x∗y)ξ(y) : ξ(x)〉 > 0.(2.2)
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DEFINITION 2.4. We can place a partial order � onWred ∪ {1} with respect
to truncation as follows. For every x ∈ Wred, 1 � x; and given x, y ∈ Wred, y � x
if either x = y or x truncates (as in Definition 2.3) to y. This order also applies to
the words in V.

Let Y ⊂ Wred ∪ {1} be any finite nonempty subset. Put

Y� := {x ∈ Wred ∪ {1} : ∃y ∈ Y : x � y}.

Clearly, Y� is complete.

DEFINITION 2.5. Fix v0 ∈ V. Let v = (v1, . . . , vn, v0) be reduced. We let
...v

...v0

denote the (right-hand) non-commutative length of v with respect to v0, given by

...v
...v0 := Card({i : 1 6 i 6 n, (vi, v0) /∈ E}).

Note that the presence of a repeated v0 contributes to this length because Γ has
no single-vertex loops. If v cannot be written with v0 at the right-hand end, put
...v

...v0 = −1. If w ∈ FΓAv is reduced, let
...w

...v0 =
...vw

...v0 . Given a finite set X of
reduced words (of vertices or algebra elements), we define the (right-hand) non-

commutative length of X with respect to v0, denoted
...X

...v0 to be given by

...X
...v0 := max

w∈X

...w
...v0 .

REMARK 2.6. Observe that in a free product (graph product over a graph
with no edges), the length of a reduced word is always one more than the non-
commutative length of a reduced word.

DEFINITION 2.7. Fix v0 ∈ V. Let x ∈ Wred be such that v0 ∈ x. Suppose
y, c, b ∈ Wred, satisfy the following properties:

(i) x = ycv0b;

(ii) b is the word of smallest length so that ycv0 � x and
...ycv0

...v0 =
...{x}�

...v0 ;

(iii) y is the word of smallest length so that yv0 � x and
...yv0

...v0 =
...{x}�

...v0 .
Then we say that x = ycv0b is in standard form with respect to v0. We extend this
definition to reduced words of algebra elements.

It may be helpful to interpret the standard form as follows. Given a reduced
word x with v0 ∈ x, the decomposition x = ycv0b is in standard form with re-
spect to v0 if x = ycv0b = yv0cb are two decompositions satisfying the following
properties. The visible v0 in the former decomposition is the right-most possible
position of the right-most v0 in x. The visible v0 in the latter decomposition is the
left-most possible position of the right-most v0 in x.

EXAMPLE 2.8. Consider the following examples illustrating the standard
form.
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(i) Let Γ be the following graph:

v3

v0 v1

v2

Let x = v0v3v1v3v2v1. Then the standard form of x with respect to v0 is given by

x = v3v1v3v1︸ ︷︷ ︸
c

v0 v2︸︷︷︸
b

where y is the empty word. Also note that
...{x}�

...v0 = 0.
(ii) Let Γ be the following graph:

v0 v1 v2 v3

Let x = v1v3v0v1v2v0. Then the standard form of x with respect to v0 is given by

x = v1v3v0v2︸ ︷︷ ︸
y

v1︸︷︷︸
c

v0

where b is the empty word. Observe that
...{x}�

...v0 =
...x

...v0 = 3.
(iii) Let Γ be the following graph:

v0 v1

v2

v3

v4

Let x = v4v0v2v1v0v4v2v1v4. Then the standard form of x with respect to v0 is
given by

x = v4v0v2︸ ︷︷ ︸
y

v1v4v1︸ ︷︷ ︸
c

v0 v2v4︸︷︷︸
b

.

Note that
...{x}�

...v0 = 2.

The following proposition follows from a straightforward induction argu-
ment using the fact that truncation preserves standard form; the proof is left as
an exercise.
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PROPOSITION 2.9. If x = ycv0b is in standard form with respect to v0, then the
words y, c, and b are unique.

Given a ∈ Av, let å := a− ϕv(a)1. We have the following lemma.

LEMMA 2.10. Fix v0 ∈ V. Let x ∈ Wred be such that v0 ∈ x. Say x = ycv0b
is in standard form with respect to v0. Let y, c, a, b ∈ Wred ∪ {1} be such that vy =

y, vc = c, vb = b, and a ∈ Åv0 . If x′ is such that
...{x′}�

...v0 <
...{x}�

...v0 , then for every
x′ ∈ Wred such that x′ = vx′ ,

Θ(b∗a∗c∗y∗x′) = Θ(b∗a∗)Θ(c∗y∗x′).

Proof. We proceed by induction on
...{x}�

...v0 .

Step 1.
...{x}�

...v0 = 0. We proceed by further induction on |x′|.
(a) |x′| = 0. x′ = 1, and the statement is obviously true.
(b) |x′| = k > 0. If b∗a∗c∗y∗x′ is reduced then the equality holds. Sup-

pose b∗a∗c∗y∗x′ is not reduced. Because
...{x}�

...v0 = 0, we can take y = 1 due
to the nature of the standard form. Let c = c1 · · · cm and x′ = x′1 · · · x′k. By the
definition of standard form and Proposition 2.2, we have that we can rearrange
the ci’s and x′i’s so that vc1 = vx′1

. That is, none of the b terms can cross past a;
otherwise the minimality of |b| would be contradicted. So we have

Θ((b∗a∗c∗m · · · c∗1 x′1 · · · x′k))

=Θ(b∗a∗c∗m · · · c∗2( ˚c∗1 x′1)x′2 · · · x′k) + ϕvx′1
(c∗1 x′1)Θ(b∗a∗c∗m · · · c∗2 x′2 · · · x′k)

=Θ(b∗a∗)Θ(c∗m· · ·c∗2( ˚c∗1 x′1)x′2· · ·x′k)+ϕvx′1
(c∗1 x′1)Θ(b∗a∗)Θ(c∗m· · ·c∗2 x′2· · ·x′k)

=Θ(b∗a∗)Θ(c∗m · · · c∗1 x′1 · · · x′k)(2.3)

where (2.3) follows from the fact that
...{x′2 · · · xk}�

...v0 is less than
...{( ˚c∗1 x′1)

∗c2 · · ·

cmab}�
...v0 and

...{c2 · · · cmab}�
...v0 , and thus the inductive hypothesis gives the de-

sired equality.

Step 2.
...{x}�

...v0 > 0. Again we induct further on |x′|.
(a) |x′| = 0. Trivial.
(b) |x′| = k > 0. If b∗a∗c∗y∗x′ is reduced then the equality holds. Sup-

pose b∗a∗c∗y∗ is not reduced, and let yc = z1 · · · zm and x′ = x′1 · · · x′k. As be-
fore, we can rearrange the zi’s and x′i’s so that vz1 = vx′1

. If (vz1 , v0) ∈ E then

the argument in the
...{x}�

...v0 = 0 case holds. Assume that (vz1 , v0) /∈ E. Then
...z2 · · · zma

...v0 =
...yca

...v0 − 1 > 0. It is a quick check to see that if
...{x′}�

...v0 6= −1
then deleting x′1 from the left decreases the non-commutative length by one, and

if
...{x′}�

...v0 = −1, then deleting x′1 leaves the non-commutative length alone. In
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either case, the inductive hypothesis applies, yielding the equality as illustrated
above.

LEMMA 2.11. Fix v0 ∈ V. Let x, x′ ∈ Wred be such that
...{x}�

...v0 =
...{x′}�

...v0 >
0. Let y, y′, c, c′, b, b′ ∈ Wred be such that x = ycv0b and x′ = y′c′v0b′ are both
in standard form with respect to v0. If y 6= y′ then for every y, y′, c, c′, a, a′, b, b′ ∈
Wred ∪ {1} such that vy = y, vy′ = y′, vc = c, vc′ = c′, vb = b, vb′ = b′, and
a, a′ ∈ Åv0 we have

Θ(b∗a∗c∗y∗y′c′a′b′) = Θ(b∗a∗)Θ(c∗y∗y′c′a′b′)(= Θ(b∗a∗)Θ(c∗y∗y′c′)Θ(a′b′)).

Proof. Let yc = z1 · · · zm and y′c′ = z′1 · · · z′m′ . We proceed by induction on
...{x}�

...v0 .

Step 1.
...{x}�

...v0 = 1. We induct further on m + m′.
(a) m + m′ = 2. Since y 6= y′, we immediately get that b∗a∗z∗1z′1a′b′ is

reduced. So the equality follows.
(b) m+m′ > 2. If b∗a∗c∗y∗y′c′a′b′ is reduced then we are done. Suppose

b∗a∗c∗y∗y′c′a′b′ is not reduced. Then we can rearrange the z and z′ terms so that
vz1 = vz′1

. Then we have

Θ(b∗a∗z∗m · · · z∗1z′1 · · · z′m′ a
′b′) = Θ(b∗a∗z∗m · · · z∗2( ˚z∗1z′1)z

′
2 · · · z′m′ a

′b′)

+ ϕvz1
(z∗1z′1)Θ(b∗a∗z∗m · · · z∗2z′2 · · · z′m′ a

′b′).(2.4)

Since y 6= y′ we have that (vz1 , v0) ∈ E. The inductive hypothesis on m + m′

applies, yielding the desired equality.

Step 2.
...{x}�

...v0 > 1. Again, induct further on m + m′.

(a) m+m′ = 2
...{x}�

...v0 . Suppose b∗a∗c∗y∗y′c′a′b′ is not reduced and that
vz1 = vz′1

. Then we obtain the same decomposition as in (2.4). Then by applying
Lemma 2.10 to the first term on the right-hand side of (2.4) and the inductive

hypothesis on
...{x}�

...v0 to the second term, we obtain the desired equality.

(b) m + m′ > 2
...{x}�

...v0 . Suppose b∗a∗c∗y∗y′c′a′b′ is not reduced and
that vz1 = vz′1

; consider the decomposition from (2.4). If (vz1 , v0) /∈ E, then as in

the m+m′ = 2
...{x}�

...v0 case, apply Lemma 2.10 to the first term on the right-hand

side of (2.4) and apply the inductive hypothesis on
...{x}�

...v0 to the second term.
If (vz1 , v0) ∈ E, apply the inductive hypothesis on m + m′ to both terms on the
right-hand side of (2.4).

2.2. A STINESPRING CONSTRUCTION FOR CONCATENATION. The goal of this
subsection is to show the following generalization of Schwarz’s inequality.
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PROPOSITION 2.12. Let X ⊂ Wred ∪ {1} be a complete set, and assume that for
every function ξ : X → H, (2.2) holds. For 1 6 i 6 N, let ci, bi, cibi ∈ X. If additionally
we have Θ(b∗i c∗i cj) = Θ(b∗i )Θ(c∗i cj) for every 1 6 i, j 6 N, then we have the following
matrix inequality:

[Θ(b∗i c∗i cjbj)]ij > [Θ(b∗i )Θ(c∗i cj)Θ(bj)]ij.

It is a direct consequence of Lemma 2.10 that for any c, b, cb ∈ Wred ∪
{1}, Θ(b∗c∗c) = Θ(b∗)Θ(c∗c). So Proposition 2.12 yields that for any c, b, cb ∈ X
where X is a complete set for which (2.2) holds for every ξ : X → H,

Θ(b∗c∗cb) > Θ(b∗)Θ(c∗c)Θ(b).

We will prove Proposition 2.12 by making use of a Stinespring construction
for (left-hand) concatenation. Consider C|X| with standard basis {ex}x∈X . The
inequality (2.2) implies that we can define a positive semi-definite sesquilinear
form onH⊗C|X| given by

〈ξ ⊗ ey : η ⊗ ex〉 = 〈Θ(x∗y)ξ : η〉.

By standard arguments this yields a Hilbert space that we will denote by H⊗Θ

C|X|. For each x ∈ X let Vx : H → H ⊗Θ C|X| be given by Vx(ξ) = ξ ⊗Θ ex.
Observe that V1 is an isometry:

‖V1ξ‖2
H⊗ΘC|X|

= 〈ξ ⊗Θ e1 : ξ ⊗Θ e1〉 = 〈Θ(1)ξ : ξ〉 = ‖ξ‖2
H.

Given x ∈ X with |x| = 1, we define the left-concatenation operator Lx :
H⊗Θ C|X| → H⊗Θ C|X| as follows:

Lx(ξ ⊗Θ ey) =

{
0 if xy /∈ X,
ξ ⊗Θ exy if xy ∈ X.

PROPOSITION 2.13. Let X ⊂ Wred ∪ {1} be a complete set, and assume that for
every function ξ : X → H, (2.2) holds. Given x ∈ X with |x| = 1, the left-concatenation
operator Lx is bounded.

Proposition 2.13 is all we need to prove Proposition 2.12.

Proof of Proposition 2.12. Given a = a1 · · · am ∈ X, Proposition 2.13 provides
that the corresponding left-concatenation operator La := La1 · · · Lam is bounded.
Evidently, given x, y ∈ X,

Θ(x∗y) = V∗1 L∗xLyV1.

Observe that
V1V∗1 (ξ ⊗Θ ex) = (Θ(x)ξ)⊗Θ e1.

Our goal is to show

[V∗1 L∗bi
L∗ci

Lcj Lbj
V1]ij > [V∗1 L∗bi

V1V∗1 L∗ci
Lcj V1V∗1 Lbj

V1]ij,
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or equivalently

N

∑
i,j=1
〈(V∗1 L∗bi

L∗ci
Lcj Lbj

V1 −V∗1 L∗bi
V1V∗1 L∗ci

Lcj V1V∗1 Lbj
V1)ξ j : ξi〉 > 0

for any ξ1, . . . , ξN ∈ H. First, for any 1 6 i, j 6 N, consider the following equality:

〈L∗ci
Lcj V1V∗1 (ξ j ⊗Θ ebj

) : (I −V1V∗1 )(ξi ⊗Θ ebi
)〉

= 〈(Θ(bj)ξ j)⊗Θ ecj |ξi ⊗Θ ecibi
〉 − 〈(Θ(bj)ξ j)⊗Θ ecj : (Θ(bi)ξi)⊗Θ eci 〉

= 〈Θ(b∗i c∗i cj)Θ(bj)ξ j|ξi〉 − 〈Θ(c∗i cj)Θ(bj)ξ j|Θ(bi)ξi〉
= 〈Θ(b∗i )Θ(c∗i cj)Θ(bj)ξ j|ξi〉 − 〈Θ(c∗i cj)Θ(bj)ξ j|Θ(bi)ξi〉 = 0.

Thus we have:
N

∑
i,j=1
〈(V∗1 L∗bi

L∗ci
Lcj Lbj

V1 −V∗1 L∗bi
V1V∗1 L∗ci

Lcj V1V∗1 Lbj
V1)ξ j : ξi〉

=
N

∑
i,j=1
〈L∗ci

Lcj(ξ j ⊗Θ ebj
) : ξi ⊗Θ ebi

〉−〈L∗ci
Lcj V1V∗1 (ξ j ⊗Θ ebj

) : V1V∗1 (ξi ⊗Θ ebi
)〉

=
N

∑
i,j=1
〈L∗ci

Lcj(I −V1V∗1 )(ξ j ⊗Θ ebj
) : (I −V1V∗1 )(ξi ⊗Θ ebi

)〉

+ 2Re〈L∗ci
Lcj V1V∗1 (ξ j ⊗Θ ebj

)|(I −V1V∗1 )(ξi ⊗Θ ebi
)〉

=
N

∑
i,j=1
〈L∗ci

Lcj(I −V1V∗1 )(ξ j ⊗Θ ebj
) : (I −V1V∗1 )(ξi ⊗Θ ebi

)〉 > 0.

We have reduced the goal of the current subsection to proving Proposition 2.13.
We accomplish this by making one last reduction. The following technical lemma
can be used to prove Proposition 2.13.

LEMMA 2.14. Let X ⊂ Wred ∪ {1} be a complete set with |X| > 2, and assume
that for every function ξ : X → H, (2.2) holds. Let (v0) ∈ vX and let y ∈ X be such
that v0vy ∈ vX . For any a ∈ Av0 ,

Θ(y∗a∗ay) > Θ(y∗)Θ(a∗a)Θ(y) = Θ(y∗)θv0(a∗a)Θ(y) > 0.

Proof of Proposition 2.13. Let x ∈ X be such that |x| = 1, and let y ∈ X be
such that xy ∈ X. We have that ‖x∗x‖ − x∗x > 0, so there is some a ∈ Avx such
that a∗a = ‖x∗x‖ − x∗x. Then by Lemma 2.14,

Θ(y∗(‖x∗x‖ − x∗x)y) = Θ(y∗a∗ay) > Θ(y∗)Θ(a∗a)Θ(y) > 0.

Thus

‖Lx(ξ ⊗Θ ey)‖2
H⊗ΘC|X|

= ‖ξ ⊗Θ exy‖2
H⊗ΘC|X|

= 〈Θ(y∗x∗xy)ξ : ξ〉

6 〈Θ(y∗‖x∗x‖y)ξ : ξ〉 = ‖x‖2‖ξ ⊗Θ ey‖2
H⊗ΘC|X|

.
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Proof of Lemma 2.14. We proceed by induction on |X|.
Step 1. |X| = 2. Then |X| = {1, a}, and for y to satisfy the hypothesis, y = 1.

So the statement holds trivially.
Step 2. |X| > 2. We induct further on |y|.

(a) |y| = 0. Trivial.
(b) |y| > 0. Let y = y1 · · · ym so that yj ∈ Åvj , 1 6 j 6 m. If for every

1 6 j 6 m, (v0, vj) ∈ E, then

Θ(y∗a∗ay) = θv0(a∗a)Θ(y∗y).

Consider the complete set X′ := {y}�. Since {1} ( X′ ( X, we have that X′ is
a complete set with |X′| > 2 such that for every function ξ : X → H, (2.2) holds.
By the inductive hypothesis on the cardinality of the complete set and the proofs
of Propositions 2.13 and 2.12, we have that

Θ(y∗y) > Θ(y∗)Θ(y).

Because θv0(a∗a) is positive and θv0(a∗a) and Θ(y∗y)−Θ(y∗)Θ(y) commute, we
have that

Θ(y∗a∗ay) = θv0(a∗a)Θ(y∗y) > θv0(a∗a)Θ(y∗)Θ(y) = Θ(y∗)θv0(a∗a)Θ(y).

If there exists 1 6 j 6 m such that (v0, vj) /∈ E, let 1 6 J 6 m be the largest index
(among all equivalent permutations) such that vJ = vj. Consider

Θ(y∗m · · · y∗1 a∗ay1 · · · ym)

= Θ(y∗m · · · y∗1( ˚a∗a)y1 · · · ym) + ϕv0(a∗a)Θ(y∗m · · · y∗1y1 · · · ym).

Notice that
...( ˚a∗a)y1 · · · yJ

...vJ >
...y1 · · · yJ

...vJ . Since we chose the largest possible J,

( ˚a∗a)y1 · · · yJ−1(yJ)(yJ+1 · · · ym)

is in standard form with respect to vJ . So applying Lemma 2.10 twice, we get that

Θ(y∗m · · · y∗1 a∗ay1 · · · ym)=Θ(y∗m · · · y∗J )Θ(y∗J−1 · · · y∗1( ˚a∗a)y1 · · · yJ−1)Θ(yJ · · · ym)

+ϕv0(a∗a)Θ(y∗m · · · y∗J y∗J−1 · · · y∗1y1 · · · yJ−1yJ · · · ym).

The same inductive argument as in the commuting case and the remark immedi-
ately following Proposition 2.12 applied to the strictly smaller complete set {y}�
gives

Θ(y∗m · · · y∗J )Θ(y∗J−1 · · · y∗1( ˚a∗a)y1 · · · yJ−1)Θ(yJ · · · ym)

+ ϕv0(a∗a)Θ(y∗m · · · y∗J y∗J−1 · · · y∗1y1 · · · yJ−1yJ · · · ym)

> Θ(y∗m · · · y∗J )Θ(y∗J−1 · · · y∗1( ˚a∗a)y1 · · · yJ−1)Θ(yJ · · · ym)

+ ϕv0(a∗a)Θ(y∗m · · · y∗J )Θ(y∗J−1 · · · y∗1y1 · · · yJ−1)Θ(yJ · · · ym)

= Θ(y∗m · · · y∗J )Θ(y∗J−1 · · · y∗1 a∗ay1 · · · yJ−1)Θ(yJ · · · ym)
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> Θ(y∗m · · · y∗J )Θ(y∗J−1 · · · y∗1)Θv0(a∗a)Θ(y1 · · · yJ−1)Θ(yJ · · · yM)

= Θ(y∗m · · · y∗1)Θv0(a∗a)Θ(y1 · · · ym)(2.5)

where (2.5) follows from the inductive hypothesis on |y|.

We use our version of Schwarz’s inequality to prove the following lemma.

LEMMA 2.15. Let {xi}N
i=1 ∈ (Wred ∪ {1})N be a finite sequence such that for

every 1 6 i 6 N, we have v0 ∈ vxi . For each 1 6 i 6 N, let xi = yiciaibi be in standard
form with respect to v0 (ai ∈ Åv0 ). Assume the following:

(i) For every 1 6 i, j 6 N, vyi = vyj .
(ii) For every complete set X ( ({xi}N

i=1)
� and any function ξ : X → H, (2.2) holds.

Then
[Θ(x∗i xj)]ij > [Θ(b∗i a∗i )Θ(c∗i y∗i yjcj)Θ(ajbj)]ij.

Proof. Step 1. First suppose
...({xi}N

i=1)
�...v0 = 0. Then for every 1 6 i 6

N, yi = 1. So xi = ciaibi. Standard form implies that for each 1 6 i 6 N, ci
commutes with ai. Thus,

Θ(b∗i a∗i c∗i cjajbj) = Θ(b∗i a∗i ajc∗i cjbj) = Θ(b∗i ( ˚a∗i aj)c∗i cjbj) + ϕv0(a∗i aj)Θ(b∗i c∗i cjbj)

= Θ(b∗i ( ˚a∗i aj))Θ(c∗i cjbj) + ϕv0(a∗i aj)Θ(b∗i c∗i cjbj)(2.6)

= Θ(b∗i )Θ( ˚a∗i aj)Θ(c∗i cjbj) + ϕv0(a∗i aj)Θ(b∗i c∗i cjbj)

= Θ(b∗i )Θ(( ˚a∗i aj)c∗i cjbj) + ϕv0(a∗i aj)Θ(b∗i c∗i cjbj)

= Θ(b∗i )Θ(c∗i cj( ˚a∗i aj)bj) + ϕv0(a∗i aj)Θ(b∗i c∗i cjbj)

= Θ(b∗i )Θ(c∗i cj)Θ(( ˚a∗i aj)bj) + ϕv0(a∗i aj)Θ(b∗i c∗i cjbj)(2.7)

= Θ(b∗i )Θ(c∗i cj)Θ( ˚a∗i aj)Θ(bj) + ϕv0(a∗i aj)Θ(b∗i c∗i cjbj)

where (2.6) and (2.7) follow from Lemma 2.10. Now, {cibi}N
i=1 is a sequence of el-

ements from a complete set X strictly contained in ({xi}N
i=1)

�. So by assumption
(ii), we have that (2.2) holds for X. The nature of the standard form gives that
for every 1 6 i, j 6 N, Θ(b∗i c∗i cj) = Θ(b∗i )Θ(c∗i cj), and so by Proposition 2.12, we
have

[Θ(b∗i c∗i cjbj)]ij > [Θ(b∗i )Θ(c∗i cj)Θ(bj)]ij.

And since [ϕv0(a∗i aj)]ij is positive and the ϕv0(a∗i aj)’s are central, we have by
Lemma IV.4.24 in [26] that

[ϕv0(a∗i aj)Θ(b∗i c∗i cjbj)]ij > [ϕv0(a∗i aj)Θ(b∗i )Θ(c∗i cj)Θ(bj)]ij.

Also, we have that [Θ(c∗i cj)]ij > 0 by (ii), and again by the classical version of
Schwarz’s inequality,

[Θ(a∗i aj)]ij = [θv0(a∗i aj)]ij > [θv0(a∗i )θv0(aj)]ij = [Θ(a∗i )Θ(aj)]ij.
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So since the Θ(c∗i cj)’s commute with the Θ(a∗i aj)’s and Θ(a∗i )Θ(aj)’s, then again
by [26],

[Θ(c∗i cj)Θ(a∗i aj)]ij > [Θ(c∗i cj)Θ(a∗i )Θ(aj)]ij.
Thus we have

[Θ(x∗i xj)]ij = [Θ(b∗i )Θ(c∗i cj)Θ( ˚a∗i aj)Θ(bj)]ij + [ϕv0(a∗i aj)Θ(b∗i c∗i cjbj)]ij

> [Θ(b∗i )Θ(c∗i cj)Θ( ˚a∗i aj)Θ(bj)]ij + [ϕv0(a∗i aj)Θ(b∗i )Θ(c∗i cj)Θ(bj)]ij

=[Θ(b∗i )(Θ(c∗i cj)Θ(a∗i aj))Θ(bj)]ij> [Θ(b∗i )(Θ(c∗i cj)Θ(a∗i )Θ(aj))Θ(bj)]ij

=[Θ(b∗i )Θ(a∗i )Θ(c∗i cj)Θ(aj)Θ(bj)]ij = [Θ(b∗i a∗i )Θ(c∗i cj)Θ(ajbj)]ij.

Step 2. Now suppose that
...({xi}N

i=1)
�...v0 > 0. Say that yi = y1(i) · · · ym(i).

Observe that

Θ(b∗i a∗i c∗i y∗i yjcjajbj)

= Θ(b∗i a∗i c∗i ym(i)∗ · · · y2(i)∗( ˚y1(i)∗y1(j))y2(j) · · · ym(j)cjajbj)

+ ϕvy1(1)
(y1(i)∗y1(j))Θ(b∗i a∗i c∗i ym(i)∗ · · · y2(i)∗y2(j) · · · ym(j)cjajbj)

= Θ(b∗i a∗i )Θ(c∗i ym(i)∗ · · · y2(i)∗( ˚y1(i)∗y1(j))y2(j) · · · ym(j)cj)Θ(ajbj)

+ ϕvy1(1)
(y1(i)∗y1(j))Θ(b∗i a∗i c∗i ym(i)∗ · · · y2(i)∗y2(j) · · · ym(j)cjajbj)(2.8)

where (2.8) follows from Lemma 2.11. Note that by Lemma 2.10,

Θ(b∗i a∗i c∗i ym(i)∗ · · ·y2(i)∗y2(j) · · · ym(j)cj)

= Θ(b∗i a∗i )Θ(c∗i ym(i)∗ · · · y2(i)∗y2(j) · · · ym(j)cj).

So, since ({y2(i) · · · ym(i)ciaibi}N
i=1)

� is a strictly smaller complete set, then as-
sumption (ii) combined with Proposition 2.12 and [26] gives that

[ϕvy1(1)
(y1(i)∗y1(j))Θ(b∗i a∗i c∗i ym(i)∗ · · · y2(i)∗y2(j) · · · ym(j)cjajbj)]ij

> [ϕvy1(1)
(y1(i)∗y1(j))Θ(b∗i a∗i )Θ(c∗i ym(i)∗ · · · y2(i)∗y2(j) · · · ym(j)cj)Θ(ajbj)]ij.

The desired inequality follows.

2.3. PROOF OF THE MAIN THEOREM. We are now prepared to prove Theorem 2.1.

Proof of Theorem 2.1. It will suffice to show that Θ is completely positive on
the linear span of Wred ∪ {1}. Indeed, Proposition 2.1 of [23] would then give
that Θ is bounded and thus extends by continuity to a completely positive map
on FΓAv.

As discussed above, this problem reduces to showing that given a complete
set X ⊆ Wred ∪ {1} and any function ξ : X → H the inequality (2.2) holds. We
proceed by induction on |X|.

Step 1. |X| = 1. Trivial.
Step 2. |X| > 2. Let (v0) ∈ vX . Put

X1 := {x ∈ X :
...{x}�

...v0 =
...X

...v0},
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and let x0 ∈ X1 be an element of longest length in X1. Say that x0 = y0c0a0b0 is in
standard form with respect to v0 (and so a0 ∈ Åv0 ). Define

Y1 := {x ∈ X1 : in standard form x = ycab (a ∈ Åv0), vy = vy0}.

Note the following decomposition:

∑
x,y∈X
〈Θ(x∗y)ξ(y) : ξ(x)〉= ∑

w,z∈X\Y1

〈Θ(w∗z)ξ(z) : ξ(w)〉+ ∑
x,x′∈Y1

〈Θ(x∗x′)ξ(x′) : ξ(x)〉

+ ∑
x∈Y1,z∈X\Y1

2Re〈Θ(x∗z)ξ(z) : ξ(x)〉.

Consider X \ Y1 ⊂ (X \ Y1)
�. By our choice of x0, we have that x0 /∈ (X \ Y1)

�,
so the inductive hypothesis on |X| applies to the strictly smaller complete set
(X \ Y1)

�. By the discussion in Subsection 2.2, there is a Hilbert space K and
operators Vw ∈ B(H,K) for every w ∈ X \Y1 such that V∗wVz = Θ(w∗z) for every
w, z ∈ X \Y1.

For x, x′ ∈ Y1, let x = ycab and x′ = y′c′a′b′ be their standard forms with
respect to v0. By Lemmas 2.10 and 2.11, we have that

∑
x∈Y1,z∈X\Y1

2Re〈Θ(x∗z)ξ(z) : ξ(x)〉= ∑
ycab∈Y1,z∈X\Y1

2Re〈Θ(b∗a∗)Θ(c∗y∗z)ξ(z) : ξ(ycab)〉

= ∑
ycab∈Y1,z∈X\Y1

2Re〈Vzξ(z) : VycΘ(ab)ξ(ycab)〉.

By Lemma 2.15, we have that

∑
x,x′∈Y1

〈Θ(x∗x′)ξ(x′) : ξ(x)〉> ∑
x=ycab,x′=y′c′a′b′∈Y1

〈Θ(b∗a∗)Θ(c∗y∗y′c′)Θ(a′b′)ξ(y′c′a′b′) : ξ(ycab)〉

= ∑
ycab,y′c′a′b′∈Y1

〈Vy′c′Θ(a′b′)ξ(y′c′a′b′) : VycΘ(ab)ξ(ycab)〉

=
∥∥∥ ∑

ycab∈Y1

VycΘ(ab)ξ(ycab)
∥∥∥2

.

We also have

∑
w,z∈X\Y1

〈Θ(w∗z)ξ(z) : ξ(w)〉 = ∑
w,z∈X\Y1

〈V∗wVzξ(z) : ξ(w)〉

= ∑
w,z∈X\Y1

〈Vzξ(z) : Vwξ(w)〉 =
∥∥∥ ∑

w∈X\Y1

Vwξ(w)
∥∥∥2

.
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Thus we have

∑
x,y∈X
〈Θ(x∗y)ξ(y) : ξ(x)〉= ∑

w,z∈X\Y1

〈Θ(w∗z)ξ(z) : ξ(w)〉+ ∑
x,x′∈Y1

〈Θ(x∗x′)ξ(x′) : ξ(x)〉

+ ∑
x∈Y1,z∈X\Y1

2Re〈Θ(x∗z)ξ(z) : ξ(x)〉

>
∥∥∥ ∑

w∈X\Y1

Vwξ(w)
∥∥∥2

+
∥∥∥ ∑

x=ycab∈Y1

VycΘ(ab)ξ(ycab)
∥∥∥2

+ ∑
x=ycab∈Y1,z∈X\Y1

2Re〈Vzξ(z) : VycΘ(ab)ξ(ycab)〉

=
∥∥∥ ∑

w∈X\Y1

Vwξ(w)+ ∑
x=ycab∈Y1

VycΘ(ab)ξ(ycab)
∥∥∥2

>0.

2.4. TENSOR PRODUCT EXAMPLE. Due to the technical nature of the above proof,
it is illustrative to write out the case where Γ is a complete graph. This gives a
new combinatorial proof of the fact that the tensor product of ucp maps on the
maximal tensor product of unital C∗-algebras is ucp.

Let Av, ϕv, θv,B ⊂ B(H) be as in the statement of Theorem 2.1, and sup-
pose that Γ is a complete graph. Let Θ := FΓθv. We wish to show that for any
complete set X ⊂ Wred ∪ {1} and any function ξ : X → H we have the following
inequality:

∑
x,y∈X

〈Θ(x∗y)ξ(y) : ξ(x)〉 > 0.

Let v0 ∈ V be such that (v0) ∈ vX . We proceed by induction on |X|. The base case
is again trivial. Following the definitions in the proof of Theorem 2.1, we have

X1 = Y1 = {x ∈ X : v0 ∈ vx};

furthermore, for any x ∈ Y1, vx = (. . . , v0) because Γ is complete. So for any
x ∈ Y1, we can write x in standard form with respect to v0 as follows:

x = ca where a ∈ Åv0 and v0 /∈ vc.(2.9)

Again, consider the decomposition given by:

∑
x,y∈X

〈Θ(x∗y)ξ(y) : ξ(x)〉 = ∑
w,z∈X\Y1

〈Θ(w∗z)ξ(z) : ξ(w)〉

+ ∑
x,x′∈Y1

〈Θ(x∗x′)ξ(x′) : ξ(x)〉

+ ∑
x∈Y1,z∈X\Y1

2Re〈Θ(x∗z)ξ(z) : ξ(x)〉.

As before, we have

∑
w,z∈X\Y1

〈Θ(w∗z)ξ(z) : ξ(w)〉 = ∑
wz∈X\Y1

〈V∗wVzξ(z) : ξ(w)〉 =
∥∥∥ ∑

w∈X\Y1

Vwξ(w)
∥∥∥2

.
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By (2.9), it is clear that

∑
x∈Y1,z∈X\Y1

2Re〈Θ(x∗z)ξ(z) : ξ(x)〉 = ∑
x=ca∈Y1,z∈X\Y1

2Re〈Θ(a∗c∗z)ξ(z) : ξ(ca)〉

= ∑
ca∈Y1,z∈X\Y1

2Re〈Vzξ(z) : VcΘ(a)ξ(a)〉.

Lastly we have

∑
x,x′∈Y1

〈Θ(x∗x′)ξ(x′) : ξ(x)〉 = ∑
x=ca,x′=c′a′∈Y1

〈Θ(a∗c∗c′a′)ξ(c′a′) : ξ(ca)〉

= ∑
ca,c′a′∈Y1

〈Θ(a∗a′)Θ(c∗c′)ξ(c′a′) : ξ(ca)〉(2.10)

> ∑
ca,c′a′∈Y1

〈Θ(a∗)Θ(a′)Θ(c∗c′)ξ(c′a′) : ξ(ca)〉(2.11)

=
∥∥∥ ∑

ca,c′a′∈Y1

VcΘ(a)ξ(ca)
∥∥∥2

where (2.10) follows from the fact that Γ is complete, and (2.11) follows from the
classical Schwarz Inequality applied to the ucp map θv0 combined with Lemma
IV.4.24 in [26]. Combining these observations yields:

∑
x,y∈X

〈Θ(x∗y)ξ(y) : ξ(x)〉 >
∥∥∥ ∑

w∈X\Y1

Vwξ(w)
∥∥∥2

+
∥∥∥ ∑

ca,c′a′∈Y1

VcΘ(a)ξ(ca)
∥∥∥2

+ ∑
ca∈Y1,z∈X\Y1

2Re〈Vzξ(z) : VcΘ(a)ξ(ca)〉

=
∥∥∥ ∑

w∈X\Y1

Vwξ(w) + ∑
ca,c′a′∈Y1

VcΘ(a)ξ(ca)
∥∥∥2

> 0.

3. CONSEQUENCES

3.1. REDUCED VERSION. We record the graph product version of Proposition 2.1
in [9]. As in the amalgamated free product case, this result follows directly from
Theorem 2.1. It should be noted that although the reduced version follows di-
rectly from Boca’s result in the amalgamated free product setting, Choda’s ap-
proach explicitly constructs a dilation on a Hilbert space containing the free prod-
uct Hilbert space. We present the graph product version as a direct corollary to
Theorem 2.1, but it is not unreasonable to expect that one can give a graph prod-
uct adaptation of Choda’s proof.

COROLLARY 3.1. Let Γ = (V, E) be a graph, and for each v ∈ V let Av and Bv
be unital C∗-algebras with states ϕv ∈ S(Av) and ψv ∈ S(Bv). For each v ∈ V let
θv : Av → Bv be a unital completely positive map with ψv ◦ θv = ϕv. Then there exists
a unital completely positive map FΓθv : FΓAv →FΓ(Bv, ψv) such that:
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(i) FΓψv ◦FΓθv = FΓ ϕv;
(ii) FΓθv(a1 · · · an) = θv1(a1) · · · θvn(an) for aj ∈ Åvj , (v1, . . . , vn) ∈ Wred.

Proof. Take FΓθv to be the graph product ucp map as in in (2.1) defined
with respect to the states ϕv. Part (i) follows from Lemma 1.13.

3.2. GRAPH PRODUCTS OF POSITIVE-DEFINITE FUNCTIONS. We show here that
the graph product of positive-definite functions is positive-definite itself. This is
a graph product version of Theorem 7.1 in [5].

DEFINITION 3.2. Let G be a group and H be a Hilbert space. A function
f : G → B(H) is positive-definite if for every finite subset {g1, . . . , gn} ⊂ G, the
n× n matrix

[ f (g−1
i gj)]ij

is positive.

DEFINITION 3.3. Let H be a Hilbert space, and for each v ∈ V, let Gv be
a group and fv : Gv → B(H) be positive-definite with fv(e) = 1. If (v, v′) ∈
E ⇒ fv(Gv) and fv′(Gv′) commute, then we define the graph product of the fv’s,
FΓ fv : FΓGv → B(H), as follows:

(i) FΓ fv(e) = 1;
(ii) if for 1 6 k 6 n, gk ∈ Gvk \ {1} and (v1, . . . , vn) ∈ Wred, then

FΓ fv(g1 · · · gn) := fv1(g1) · · · fvn(gn).

It is well-known that there is a 1-1 correspondence between positive-definite
functions f : G → B(H), f (e) = 1 and ucp maps θ : C∗(G) → B(H) in the
following sense. If ug ∈ C∗(G) denotes the unitary corresponding to the group
element g ∈ G, then

f → θ f (ug) := f (g)

fθ(g) := θ(ug)← θ.

THEOREM 3.4. Let Gv, fv and H be as in Definition 3.3. Then FΓ fv is positive-
definite.

Proof. Let FΓθ fv be the graph product of the ucp maps on C∗(Gv) corre-
sponding to fv defined with respect to states given by the canonical traces (from
the left-regular representation) on C∗(Gv). By Theorem 2.1, FΓθ fv is ucp. Then it
is easy to check that fFΓθ fv

= FΓ fv.

3.3. UNITARY DILATION. We conclude the paper with some results on unitary
dilation in the graph product context. Consider the following version of the
Sz.-Nagy–Foia

’
s dilation theorem.

THEOREM 3.5. Let Γ = (V, E) be a graph. LetH be a Hilbert space and {Tv}v∈V
⊂ B(H) be contractions such that if (v, v′) ∈ E then Tv and Tv′ doubly commute
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([Tv, Tv′ ] = [T∗v , Tv′ ] = 0). Then there exist a Hilbert space K containing H and uni-
taries Uv ∈ B(K) for each v ∈ V such that for any polynomial p ∈ C〈Xv〉v∈V in |V|
non-commuting indeterminates we have

p({Av}v∈V) = PHp({Uv}v∈V)|H.

Proof. By Stinespring, we will be done if we obtain a ucp map Θ : FΓC∗(Z)
→ B(H) such that Θ(p((xv))) = p((Tv)). Indeed, let Uv be the image of xv under
the resulting Stinespring representation.

Define the ucp map θv on the vth copy of C∗(Z) as follows:

θv(xm
v ) =

{
Tm

v if m > 0,
(T∗v )−m if m < 0.

(This map is ucp by Sz.-Nagy’s unitary dilation theorem.) Then the map Θ =
FΓθv : FΓC∗(Z) = C∗(FΓZ) → B(H) defined with respect to the canonical
trace on C∗(Z) does the job.

REMARK 3.6. It should be emphasized that the doubly commuting assump-
tion is important for the above theorem. In particular, Opěla showed in The-
orem 2.3 of [22] that if Γ = (V, E) is a graph with n ∈ N vertices containing
a cycle (a closed path of edges) then there are contractions T1, . . . , Tn such that
if (vi, vj) ∈ E then [Ti, Tj] = 0 (not doubly commuting) with no simultaneous
unitary dilation. On the other hand, if Γ has no cycles, then plain (single) com-
mutation relations according to Γ can be dilated.

The following corollary is a graph product version of Theorem 8.1 of [5] and
follows immediately from Theorem 3.5. First a definition is in order.

DEFINITION 3.7. Given a graph Γ = (V, E), let FΓZ denote the graph prod-
uct group FΓGv where Gv = Z for every v ∈ V. This is the graph product analog
of Fn.

COROLLARY 3.8. Let Γ = (V, E) be a graph. Let H be a Hilbert space and
{Tv}v∈V ⊂ B(H) be contractions such that if (v, v′) ∈ E then Tv and Tv′ doubly
commute ([Tv, Tv′ ] = [T∗v , Tv′ ] = 0). Let p ∈ C〈Xv〉v∈V be a polynomial in |V| non-
commuting indeterminates. Then

‖p({Tv}v∈V)‖ 6 ‖p({xv}v∈V)‖C∗(FΓZ)

where for each v ∈ V, xv denotes the unitary corresponding to the canonical generator of
the vth copy of Z.

REMARK 3.9. Note that by the universality of C∗(F|V|) we have

‖p‖C∗(FΓZ) 6 ‖p‖C∗(F|V|).

Lastly, we have a version of Theorem 3.5 viewed through the lens of non-
commutative probability. The statement and proof are simple adaptations of the
free versions presented in [2].
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THEOREM 3.10. Given a graph Γ = (V, E) and Γ independent contractions
{Tv}v∈V in the noncommutative probability space (B(H), ϕ), there exist a Hilbert space
K containing H and unitaries {Uv}v∈V ⊂ B(K) that are Γ independent with respect
to ϕ ◦ Ad(PH) such that for any polynomial p ∈ C〈Xv〉v∈V in |V| non-commuting
indeterminates we have

p({Tv}v∈V) = PHp({Uv}v∈V)|H.

Furthermore, this dilation is unique up to unitary equivalence if K is minimal.

Proof. We use the same dilation as in Theorem 3.5, letting π : FΓC∗(Z) →
B(K) denote the corresponding Stinespring representation; and for every v ∈ V
let Uv = π(xv) where xv is unitary corresponding to the canonical generator of
the vth copy of Z. It remains to show the Γ independence of {Uv}v∈V ⊂ B(K)
and uniqueness in the case that K is minimal.

To show that the random variables in {Uv}v∈V are Γ independent with re-
spect to ϕ ◦ Ad(PH), let a = a1 · · · am where aj ∈ ˚C∗(Uvj) for 1 6 j 6 m be
reduced with respect to ϕ ◦Ad(PH). For 1 6 j 6 m, let bj be an element of the vth

j
copy of C∗(Z) such that π(bj) = aj. It follows that

FΓθv(b1 · · · bm) = θv1(b1) · · · θvm(bm)

is reduced with respect to ϕ. Then by the Γ independence of {Tv}v∈V , we have

ϕ(PHa1 · · · am|H) = ϕ(PHπ(b1 · · · bm)|H) = ϕ(FΓθv(b1 · · · bm))

= ϕ(θv1(b1) · · · θvm(bm)) = 0.

The minimality argument follows from the same argument presented in the
proof of Theorem 3.2 in [2] using Lemma 1.13 in place of Lemma 5.13 from [21].

REMARK 3.11. (i) If Γ is complete then, as shown in [2], [25], we can take p
to be a ∗-polynomial.

(ii) By Theorem 1 in [20], we have that ϕ ◦Ad(PH) is tracial on C∗({Uv}v∈V).
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