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ABSTRACT. Kadison characterized the diagonals of projections and observed
the presence of an integer. Arveson later recognized this integer as a Fredholm
index obstruction applicable to any normal operator with finite spectrum coin-
cident with its essential spectrum whose elements are the vertices of a convex
polygon. Recently, in joint work with Kaftal, the author linked the Kadison
integer to essential codimension of projections.

This paper provides an analogous link between Arveson’s obstruction and
essential codimension as well as a new approach to Arveson’s theorem which
also allows for generalization to any finite spectrum normal operator. In fact,
we prove that Arveson’s theorem is a corollary of a trace invariance prop-
erty of arbitrary normal operators. An essential ingredient is a formulation of
Arveson’s theorem in terms of diagonalization by a unitary which is a Hilbert–
Schmidt perturbation of the identity.
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1. INTRODUCTION

A diagonal of a bounded linear operator T ∈ B(H) is a sequence of inner
products (〈Ten, en〉) where {en}∞

n=1 is an orthonormal basis for the Hilbert space
H. In other words, a diagonal of T is the diagonal of some matrix representation
of T with respect to an orthonormal basis.

In his seminal papers on the Pythagorean theorem [12], [13] Kadison proved
the following characterization of diagonals of projections.

THEOREM 1.1 (Kadison). A sequence (dn) is the diagonal of a projection P if and
only if it takes values in the unit interval and the quantities

a := ∑
dn<1/2

dn and b := ∑
dn>1/2

(1− dn)
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satisfy one of the mutually exclusive conditions:
(i) a + b = ∞;

(ii) a + b < ∞ and a− b ∈ Z.

The existence of the integer a− b is not at all obvious and Kadison himself
referred to it as “curious.” Since Kadison’s initial paper, both Arveson ([3], Theo-
rem 3) and Argerami ([2], Theorem 4.6) have provided new proofs that a− b ∈ Z.
Recently, the author and Kaftal further clarified this integer in [14] as the essential
codimension between the projection P and a natural diagonal projection associ-
ated to a, b. Essential codimension was developed by Brown, Douglas and Fill-
more in Remark 4.9 of [5] (see also Definition 2.1 below) for pairs of projections
whose difference is compact.

Arveson also recognized the Kadison integer as the index of a Fredholm op-
erator in [3], and referred to it as an “index obstruction” to an arbitrary sequence
with values in the unit interval being a diagonal of a projection. Arveson was
able to extend this index obstruction to any normal operator with finite spectrum
coincident with its essential spectrum whose elements are the vertices of a convex
polygon. In order to state his main theorem, Arveson associated several objects
to a finite set X ⊆ C.

DEFINITION 1.2. For a finite set X ⊆ C, the sequences which accumulate
summably at X are

Lim1(X) :=
{
(dn) ∈ `∞ :

∞

∑
n=1

dist(dn, X) < ∞
}

.

DEFINITION 1.3. For a set X = {λ1, . . . , λm} ⊆ C, let KX denote the Z-
module of linear combinations over Z of elements of X whose coefficients sum
to zero. This can also be expressed as the free Z-module generated by λ1 −
λ2, . . . , λ1 − λm.

DEFINITION 1.4. For a finite set X ⊆ C there is a natural map s : Lim1(X)→
C/KX . For (dn) ∈ Lim1(X), since X is finite there are xn ∈ X for which |dn −
xn| = dist(dn, X), and therefore the series

∞
∑

n=1
(dn − xn) is absolutely summable.

Arveson proved in Proposition 1 of [3] that the coset of this sum in C/KX is inde-
pendent of the choices of xn ∈ X, so the map

s(d) :=
∞

∑
n=1

(dn − xn) + KX ∈ C/KX

is well-defined. The element s(d) is called the renormalized sum of d.

We reproduce Arveson’s Theorem 4 of [3] verbatim for reference. Here,
N (X) denotes the set of normal operators with finite spectrum X coincident with
their essential spectrum.
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THEOREM 1.5 (Arveson). Let X = {λ1, . . . , λm} be the set of vertices of a convex
polygon P ⊆ C and let d = (d1, d2, . . .) be a sequence of complex numbers satisfying
dn ∈ P for n > 1, together with the summability condition

(1.1)
∞

∑
n=1
| f (dn)| < ∞,

where f (z) = (z − λ1)(z − λ2) · · · (z − λm). Then d ∈ Lim1(X); and if d is the
diagonal of an operator N ∈ N (X), then s(d) = 0.

The summability condition (1.1) is equivalent to (dn) ∈ Lim1(X) via a rou-
tine analysis argument (see Proposition 2 of [3]). Moreover, using the notation
of Defintion 1.4, s(d) = 0 is equivalent by definition to the existence of integers
c1, . . . , cm (which depend on the choices xn ∈ X) whose sum is zero for which

(1.2)
∞

∑
n=1

(dn − xn) =
m

∑
k=1

ckλk ∈ KX .

When X = {0, 1} = σ(N), N is a projection, and the condition (dn) ∈
Lim1({0, 1}) is equivalent to a + b < ∞, where a, b are defined as in Theorem 1.1.
Moreover, K{0,1} = Z, so that Arveson’s theorem is a generalization of the for-
ward implication Theorem 1.1(ii) in the situation where P is an infinite and co-
infinite projection.

Our focus is to provide a new approach to Arveson’s theorem that, by link-
ing it to the notion of diagonalization by unitaries which are Hilbert–Schmidt
perturbations of the identity, permits us both to identify the integers ck of (1.2)
implicit in the theorem in terms of essential codimension and to eliminate some
of the hypotheses in the theorem. Our intent is to bring a fresh perspective on

two key parts of Arveson’s theorem: the quantity
∞
∑

n=1
(dn − xn) and the condition

(dn) ∈ Lim1(σ(N)). We identify the sum
∞
∑

n=1
(dn− xn) as Tr(E(N−N′)) for some

diagonal operator N′ with σ(N′) ⊆ σ(N) (Proposition 3.5). Here E : B(H) → A
denotes the canonical trace-preserving conditional expectation onto the atomic
masa associated to an orthonormal basis; that is, E is the operation of “taking the
main diagonal”. Then we prove that if N is normal and U is a unitary which is
a Hilbert–Schmidt perturbation of the identity, then E(N −UNU∗) is trace-class
and Tr(E(N −UNU∗)) = 0 (Theorem 3.8). Next, we establish that the condition
(dn) ∈ Lim1(σ(N)) is equivalent to the diagonalizability of N by a unitary which
is a Hilbert–Schmidt perturbation of the identity (Lemma 4.1). The proof relies on
essential codimension and a geometric lemma (Theorem 4.1) which is similar to
Lemma 1 of [3]. This culminates in a generalization of Arveson’s theorem (Theo-
rem 4.3) proved using techniques involving essential codimension, which allows
for the identification of the integers ck in terms of the essential codimensions of
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pairs of spectral projections of N and a diagonal operator N′. Finally, we show
how our results may be used to derive Arveson’s Theorem 1.5.

2. ESSENTIAL CODIMENSION

A fundamental tool we use throughout is the notion of essential codimen-
sion due to Brown, Douglas and Fillmore ([5], Remark 4.9). It associates an in-
teger to a pair of projections P, Q whose difference is compact by means of the
Fredholm operator QP : PH → QH.

DEFINITION 2.1. Given a pair of projections P, Q whose difference is com-
pact, the essential codimension of P in Q, denoted [P : Q], is the integer defined by

[P : Q] :=


Tr P− Tr Q if Tr P, Tr Q < ∞,

ind(V∗W)
if Tr(P) = Tr(Q) = ∞, where
W∗W = V∗V = I, WW∗ = P, VV∗ = Q.

Equivalently, essential codimension maybe be defined as

[P : Q] := ind(QP), where QP : PH → QH.

Several simple properties of essential codimension which we use are col-
lated here for reference. Proofs can be found in, for example, Proposition 2.2 of
[7]. Each property can be derived from standard facts about Fredholm index.

PROPOSITION 2.2. Let P1, P2 and Q1, Q2 each be mutually orthogonal pairs of
projections with the property that Pj − Qj is compact for j = 1, 2. Suppose also that R1
is a projection for which Q1 − R1 is compact. Then

(i) [P1 : Q1] = −[Q1 : P1];
(ii) [P1 : Q1] + [P2 : Q2] = [P1 + P2 : Q1 + Q2];

(iii) [P1 : R1] = [P1 : Q1] + [Q1 : R1].

The original result of Brown, Douglas and Fillmore ([5], Remark 4.9) char-
acterizes when projections can be conjugated by a unitary which is a compact
perturbation of the identity. More specifically, they proved that there is a unitary
U = I + K with K compact which conjugates P, Q if and only if P−Q is compact
and their essential codimension is zero. The next proposition comes from Propo-
sition 2.7(ii) of [14] and extends the Brown–Douglas–Fillmore result verbatim to
an arbitrary proper operator ideal J , where J is two-sided but not necessarily
norm-closed. Herein, J will always denote a proper operator ideal.

PROPOSITION 2.3. If P, Q are projections and J is a proper operator ideal, then
Q = UPU∗ for some unitary U = I + K with K ∈ J if and only if P− Q ∈ J and
[P : Q] = 0.

The following proposition is a reformulation of Proposition 2.8 in [14] for
the case when the ideal is the Hilbert–Schmidt class C2. This proposition relates
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the Kadison integer to essential codimension in the following manner. If P is a
projection with diagonal (dn) and a, b are as in Theorem 1.1 with a + b < ∞, then,
by choosing Q to be the projection onto span{en : dn > 1/2}, Proposition 2.4
guarantees P− Q is Hilbert–Schmidt (a fact which was known to Arveson) and
that a− b = [P : Q].

PROPOSITION 2.4. Suppose P, Q are projections. Then P−Q is Hilbert–Schmidt
if and only if in some (equivalently, every) orthonormal basis {en}∞

n=1 which diagonalizes
Q, the diagonal (dn) of P satisfies a + b < ∞, where

a := ∑
en∈Q⊥H

dn = Tr(Q⊥PQ⊥) and b := ∑
en∈QH

(1− dn) = Tr(Q−QPQ).

Whenever P−Q is Hilbert–Schmidt, a− b = [P : Q].

3. RESTRICTED DIAGONALIZATION

It is elementary that finite spectrum normal operators are diagonalizable.
However, one may ask about the possibility of diagonalization relative to a fixed
orthonormal basis (or atomic masa) by a unitary of the form U = I + K where
K lies in a given proper operator ideal J . For this we use the term restricted
diagonalization. This concept has been studied by others in the aforementioned
paper of Brown–Douglas–Fillmore [5], as well as by Beltiţă–Patnaik–Weiss [8],
and Hinkkanen [11]. To our knowledge, the term restricted diagonalization was
introduced by Beltiţă–Patnaik–Weiss.

3.1. CONDITIONS FOR RESTRICTED DIAGONALIZATION. The next result is a corol-
lary of Propositions 2.3 and 2.4, . It describes the conditions under which a pro-
jection experiences restricted diagonalization. In the special case of the Hilbert–
Schmidt ideal, this corollary shows that it suffices to examine the diagonal of the
projection.

COROLLARY 3.1. For a projection P and a proper operator ideal J , the following
are equivalent:

(i) P is diagonalizable by a unitary U = I + K with K ∈ J ;
(ii) there exists a diagonal projection Q for which P−Q ∈ J .

If J = C2, then these are also equivalent to:
(iii) the diagonal (dn) of P lies in Lim1({0, 1}).

Proof. (i) ⇒ (ii) Suppose that P is diagonalizable by a unitary U = I + K
with K ∈ J . Then setting Q := UPU∗, we have P−Q=−KP− PK∗−KPK∗∈J .

(ii) ⇒ (i) Suppose Q is a diagonal projection for which P − Q ∈ J . By
replacing Q with a diagonal projection Q′ that is a finite perturbation of Q, we
can assume that [P : Q] = 0. Indeed, notice that if [P : Q] < 0, then Tr Q > −[P :
Q], so there is a diagonal subprojection Q′ of Q with Tr(Q − Q′) = −[P : Q].
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Similarly, if [P : Q] > 0, then Tr Q⊥ > [P : Q], so there is a diagonal subprojection
R of Q⊥ with Tr R = [P : Q], and in this case we set Q′ = Q+ R. In either case, the
construction guarantees [P : Q] = −[Q : Q′], and hence by Proposition 2.2(iii),
[P : Q′] = [P : Q] + [Q : Q′] = 0. Therefore by Proposition 2.3, P and Q′ are
conjugated by a unitary U= I+K with K∈J , and hence P is diagonalized by U.

(ii)⇒ (iii) If P− Q ∈ C2, then by Proposition 2.4, for a, b defined as in that
proposition, a + b < ∞. Equivalently, (dn) ∈ Lim1({0, 1}).

(iii)⇒ (ii) If the diagonal (dn) of P lies in Lim1({0, 1}), then there are some
choices xn ∈ {0, 1} for which (dn − xn) ∈ `1. Let Q be the diagonal projection
onto the span{en : xn = 1}. Then for a, b as defined in Proposition 2.4, a + b < ∞,
and so P−Q ∈ C2 by that result.

We will generalize Corollary 3.1 to finite spectrum normal operators. The
equivalence (i) ⇔ (ii) is generalized by Theorem 3.4, and (i) ⇔ (iii) by Theo-
rem 4.2.

Proposition 2.3 can be bootstrapped by induction to characterize when a
pair of finite collections of mutually orthogonal projections can be simultaneously
conjugated by a unitary U = I + K with K ∈ J .

LEMMA 3.2. Suppose {Pk}m
k=1, {Qk}m

k=1 are each finite sets of mutually orthogo-
nal projections, and J is a proper operator ideal. Then there is some unitary U = I + K
with K ∈ J for which Qk = UPkU∗ for 1 6 k 6 m if and only if Pk − Qk ∈ J and
[Pk : Qk] = 0 for all 1 6 k 6 m.

Proof. One direction is straightforward. Namely, if there exists a unitary
U = I + K with K ∈ J for which Qk = UPkU∗ for all 1 6 k 6 m, then by
Proposition 2.3 Pk −Qk ∈ J and [Pk : Qk] = 0.

For the other direction, we use induction on m, and the base case m = 1
follows from Proposition 2.3. Let m ∈ N and suppose that if {Pk}m

k=1, {Qk}m
k=1

are each sets of mutually orthogonal projections and satisfy Pk − Qk ∈ J and
[Pk : Qk] = 0, then there is a single unitary U = I + K with K ∈ J which
conjugates Pk into Qk, i.e., Qk = UPkU∗.

Now suppose we have two sets of m + 1 mutually orthogonal projections
satisfying these conditions. By Proposition 2.3 there is a unitary V = I + K with
K ∈ J for which Qm+1 = VPm+1V∗. Moreover, for 1 6 k 6 m, P′k := VPkV∗

satisfies Pk − P′k ∈ J and [Pk : P′k] = 0. Therefore P′k − Qk ∈ J and [P′k : Qk] =
0 by Proposition 2.2(iii). Applying the inductive hypothesis to the collections
{P′k}

m
k=1, {Qk}m

k=1 on the Hilbert space Q⊥m+1H yields a unitary W = Q⊥m+1 + K′

acting on Q⊥m+1H with K′ ∈ J , and which conjugates P′k into Qk for 1 6 k 6 m.
Extending this to the unitary Qm+1 ⊕W acting on H and setting U = (Qm+1 ⊕
W)V, we find that U is of the desired form and UPkU∗ = Qk for 1 6 k 6 m+ 1.

The following lemma weakens the sufficient condition of Theorem 3.2 so
long as we are allowed to perturb the diagonal projections.
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LEMMA 3.3. Suppose that {Pk}m
k=1, {Qk}m

k=1 are each collections of mutually or-

thogonal projections for which Pk − Qk ∈ J and
m
∑

k=1
[Pk : Qk] = 0. Then for ev-

ery atomic masa A containing {Qk}m
k=1, there exist mutually orthogonal projections

{Q′k}
m
k=1 ⊆ A for which Pk −Q′k ∈ J and [Pk : Q′k] = 0.

Proof. Suppose {Qk}m
k=1 lies in an atomic masa. Note that such a masa al-

ways exists since this is a finite collection of mutually orthogonal (hence commut-
ing) projections. The argument is by induction on m. When m = 1, the claim is
trivial.

Now suppose m > 1. Either [Pk : Qk] = 0 for all k already, or there are two
indices 1 6 i, j 6 m with [Pi : Qi] < 0 < [Pj : Qj]. Notice that Tr Qi > −[Pi : Qi].
Let Q be a diagonal subprojection of Qi with Tr Q = min{−[Pi : Qi], [Pj : Qj]}.
Then we replace Qi with Qi − Q and Qj with Qj + Q. By construction, either
[Pi : (Qi − Q)] = 0 or [Pj : (Qj + Q)] = 0. So now we have n − 1 pairs of
projections for which the sum of the essential codimensions is zero. By induction
we can actually force them all to be zero while maintaining the condition that the
Q′k projections are diagonal.

THEOREM 3.4. Suppose J is a proper operator ideal. A finite spectrum normal
operator is diagonalizable by a unitary U = I + K with K ∈ J if and only if each
spectral projection differs from a diagonal projection by an element of J .

Proof. Let N =
m
∑

k=1
λkPk be a finite spectrum normal operator with spectral

projections Pk associated to the eigenvalues λk. One direction is trivial, namely,
if N is diagonalizable by a unitary U = I + K with K ∈ J , then the projections
Qk := UPkU∗ are diagonal and Pk −Qk ∈ J .

For the other direction, suppose that for each Pk there is a diagonal pro-
jection Qk for which Pk − Qk ∈ J . The operators QjQk are projections because
Qj, Qk are commuting projections. Then since PjPk = δjkPj, for j 6= k we obtain

QjQk = (Pj + (Qj − Pj))(Pk + (Qk − Pk))

= (Qj − Pj)Pk + Pj(Qk − Pk) + (Qj − Pj)(Qk − Pk) ∈ J .
(3.1)

Therefore QjQk are finite projections when j 6= k.
Now let Q′1 := Q1 and inductively define Q′j = Qj − Qj(Q′1 + · · ·+ Q′j−1)

for 1 < j < m and finally Q′m = I − (Q′1 + · · ·+ Q′m−1). It is clear that for 1 6
j < m, Q′j is in the algebra generated by {Q1, . . . , Qj} and is therefore diagonal.
Moreover, for 1 6 j < m, by (3.1) and induction Q′j −Qj is finite rank, and hence
Pj − Q′j ∈ J . Thus, Q′m is a J -perturbation of I − (P1 + · · ·+ Pm−1) = Pm, and
hence Pm −Q′m ∈ J as well. By Proposition 2.2(ii),

m

∑
k=1

[Pk : Q′k] =
[ m

∑
k=1

Pk :
m

∑
k=1

Q′k
]
= [I : I] = 0.
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So, by Lemma 3.3, we may assume by passing to a possibly different collection of
diagonal Q′k that, in fact, [Pk : Q′k] = 0 for 1 6 k 6 m. Finally, by Lemma 3.2 there
is a unitary U = I + K with K ∈ J for which Q′k = UPkU∗ for each 1 6 k 6 m.

Therefore, UNU∗ =
m
∑

k=1
λkQ′k, which is a diagonal operator.

3.2. CONSEQUENCES OF RESTRICTED DIAGONALIZATION. This subsection is mo-
tivated by the following observation about the condition (dn) ∈ Lim1(σ(N)) in
Arveson’s theorem.

PROPOSITION 3.5. Let N be a normal operator with finite spectrum and let (dn)
be the diagonal of N. Then (dn) ∈ Lim1(σ(N)) if and only if there exists a diagonal
operator N′ = diag(xn) such that σ(N′) ⊆ σ(N), and E(N − N′) is trace-class, in
which case

(3.2) Tr(E(N − N′)) =
∞

∑
n=1

(dn − xn).

Proof. (⇒) Suppose (dn) ∈ Lim1(σ(N)). Then there is a sequence (xn) with
xn ∈ σ(N) such that (dn − xn) is absolutely summable, and we may take N′ :=
diag(xn). Therefore, since (dn − xn) is absolutely summable,

Tr|E(N − N′)| =
∞

∑
n=1
|dn − xn| < ∞,

and hence E(N − N′) is trace-class.
(⇐) Suppose N′ is a diagonal operator with σ(N′) ⊆ σ(N) and E(N − N′)

trace-class, and let (xn) denote the diagonal of N′. Then xn ∈ σ(N′) ⊆ σ(N) and
since E(N − N′) is trace-class,

∞

∑
n=1
|dn − xn| = Tr|E(N − N′)| < ∞.

Therefore (dn − xn) is absolutely summable and hence dn ∈ Lim1(σ(N)).
Notice that whenever either of the equivalent conditions is satisfied, we

have the equality

Tr(E(N − N′)) =
∞

∑
n=1

(dn − xn).

The remainder of the section is devoted to analyzing the expression E(N −
N′) when N′ is a restricted diagonalization of a normal operator N (not necessar-
ily with finite spectrum), i.e., when N′ = UNU∗ where U = I + K is unitary and
K ∈ J .

As in [10], the arithmetic mean closure J − of an operator ideal J is the set of
operators T whose singular values are weakly majorized by the singular values
of an operator A ∈ J ; that is, if s(T) denotes the singular value sequence of a
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compact operator T,

J − :=
{

T ∈ B(H) : ∃B ∈ J , ∀n ∈ N,
n

∑
j=1

sj(T) 6
n

∑
j=1

sj(B)
}

.

An ideal J is said to be arithmetic mean closed if J = J −. Common examples of
arithmetic mean closed ideals are the Schatten ideals Cp of which the trace-class
ideal C1 and Hilbert–Schmidt ideal C2 are special cases.

In [15], Kaftal and Weiss investigated the relationship between an ideal J
and the elements of its image E(J ) under a trace-preserving conditional expecta-
tion onto an atomic masa A, and they established the following characterization
([15], Corollary 4.4).

COROLLARY 3.6. For every operator ideal J , E(J ) = J − ∩A.

Our next result says if an operator N can be diagonalized by a unitary U =
I + K with K ∈ J then the diagonals of N and its diagonalization differ by an
element of the arithmetic mean closure of J 2.

PROPOSITION 3.7. Let N be a diagonal operator, J an operator ideal, and U =
I + K a unitary with K ∈ J . Then E(UNU∗ − N) ∈ (J 2)−.

Proof. Irrespective of the condition K ∈ J , note that U = I + K is unitary if
and only if K is normal and K + K∗ = −K∗K because

UU∗ = I + K + K∗ + KK∗, U∗U = I + K + K∗ + K∗K.

Then

E(UNU∗−N)=E(KN + NK∗ + KNK∗) = E(KN) + E(NK∗) + E(KNK∗)

=E(K)N+NE(K∗)+E(KNK∗)=E(K+K∗)N+E(KNK∗)∈ (J 2)−,

by Corollary 3.6.

When J = C2, which is the primary concern in this paper, we can say more.

THEOREM 3.8. Suppose N is a normal operator. There is an atomic masa such that
for every unitary U = I + K with K Hilbert–Schmidt, E(UNU∗−N) is trace-class and
has trace zero. Moreover, if N is diagonalizable, any atomic masa containing N suffices.

Proof. Suppose first that N is diagonalizable and consider an atomic masa
in which N lies. Let U = I + K be unitary with K Hilbert–Schmidt. By Propo-
sition 3.7 with J = C2 and its proof, each term of E(UNU∗ − N) = E(K +
K∗)N + E(KNK∗) is trace-class because K + K∗ = −K∗K and KNK∗ are trace-
class, and because the trace-class is arithmetic mean closed (in fact, it is the small-
est arithmetic mean closed ideal). Then, because the conditional expectation is
trace-preserving, we find

Tr(E(KNK∗))=Tr(KNK∗)=Tr(K∗KN)=−Tr((K+K∗)N)=−Tr(E(K+K∗)N),

and therefore Tr(E(UNU∗ − N)) = 0.
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Now suppose N is an arbitrary normal operator. By Voiculescu’s extension
[16] of the Weyl–von Neumann–Berg theorem we can write N = D + J where D
is diagonalizable and J is Hilbert–Schmidt. Then UJU∗ − J = KJ + JK∗ + KJK∗

and each term is trace-class. Moreover,

Tr(KJK∗) = Tr(K∗KJ) = −Tr((K + K∗)J)

= −Tr(KJ)− Tr(K∗ J) = −Tr(KJ)− Tr(JK∗),

and hence Tr(UJU∗ − J) = 0. Therefore, if E is a conditional expectation onto an
atomic masa containing D, then E(UNU∗ − N) = E(UDU∗ −D) + E(UJU∗ − J)
has trace zero.

The previous theorem establishes a kind of trace invariance property for ar-
bitrary normal operators. To see why we use this terminology, consider that a
trace-class operator A has a trace which is invariant under unitary conjugation.
That is, for any unitary U, Tr A = Tr(UAU∗). Rearranging, we can write this as
Tr(UAU∗− A) = 0, and since the canonical expectation is trace-invariant, we can
rewrite this as Tr(E(UAU∗ − A)) = 0. Under more restrictive hypotheses, The-
orem 3.8 ensures the same condition for normal operators instead of trace-class
operators.

REMARK 3.9. The reader may have noticed that the normality in the previ-
ous theorem was only used in order to write the operator as a Hilbert–Schmidt
perturbation of a diagonal operator. Therefore, the above theorem remains valid
under this substitution of the hypothesis, and a slightly more general result is
obtained.

EXAMPLE 3.10. One may wonder if in Proposition 3.7 and Theorem 3.8 we
may take any trace-preserving conditional expectation instead of the special ones
chosen. The answer is negative in general as this example shows. Consider com-
muting positive operators C, S in B(H) with zero kernel satisfying C2 + S2 = I.
Then consider the operators P, U ∈ M2(B(H)) ∼= B(H⊕H)

P :=
1√
2

(
I I
I I

)
, U :=

(
C S
−S C

)
,

which are a projection and a unitary, respectively. Thus

UPU∗ =
1√
2

(
I + 2CS C2 − S2

C2 − S2 I − 2CS

)
.

Now, choose S = diag(sin(θn)) and C = diag(cos(θn)) with (θn) ∈ `2 \ `1. Then
S ∈ C2, C− I ∈ C1 and hence U − (I ⊕ I) ∈ C2. Moreover, 2CS = diag(sin(2θn))
which is Hilbert–Schmidt but not trace-class. Thus, if E is the expectation onto an
atomic masa containing C, S, and Ẽ := E⊕ E, then Ẽ(UPU∗ − P) = (1/

√
2)(2CS

⊕− 2CS) ∈ C2 \ C1.
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4. ARVESON’S THEOREM REVISITED

In this section we apply the results concerning restricted diagonalization to
prove a few key facts which will yield a reformulation and extension of Arve-
son’s theorem (Theorem 4.3). Our first result in this direction is Theorem 4.2
which characterizes the condition (dn) ∈ Lim1(σ(N)) in terms of restricted diag-
onalization. In order to prove Theorem 4.2, we use a straightforward geometric
lemma which serves a similar purpose as Lemma 1 of [3].

LEMMA 4.1. Suppose λ1, . . . , λm ∈ C are distinct and x =
m
∑

j=1
cjλj is a convex

combination, and L is a line separating λk from the remaining λj. If x lies on a line
parallel to L separating λk from L, then

m

∑
j=1, j 6=k

cj 6
|x− λk|

dist(λk, L)
.

Proof. Relabel the λj if necessary so that k = 1. By applying a rotation,
translation and scaling (which preserve proportional distances), we may suppose
that λ1 = 1 and L = −a + iR for some a > 0 so that the real part <(x) = 0. Note
that −a > max

j>2
{<(λj)}. Since 0 ∈ [−a, 1] we may write

t(−a) + (1− t)1 = 0, for t =
1

1 + a
.

Now

0 = <(x) =
m

∑
j=1

cj<(λj) 6
( m

∑
j=2

cj

)
max
j>2
{<(λj)}+ c1λ1 6

( m

∑
j=2

cj

)
(−a) + c11.

Since we have two convex combinations of −a, 1 and the latter is closer to 1 than
the former, the convexity coefficients satisfy

m

∑
j=2

cj 6 t =
1

1 + a
=

dist(<(x), λ1)

dist(λ1, L)
6
|x− λ1|

dist(λ1, L)
.

THEOREM 4.2. Let N be a normal operator with finite spectrum and diagonal
(dn), and let X be the vertices of the convex hull of its essential spectrum. Then (dn) ∈
Lim1(X) if and only if σess(N) = X and N is diagonalizable by a unitary which is a
Hilbert–Schmidt perturbation of the identity.

Proof. We first reduce to the case when σ(N) = σess(N). Since N is a nor-
mal operator with finite spectrum, by the spectral theorem there is a finite rank
perturbation N′ of N for which N′ is normal and σ(N′) = σess(N′) = σess(N). In
particular, if Pλ are the spectral projections of N onto {λ}, and λ′ ∈ σess(N) is a
distinguished element, then we can choose

N′ := λ′P + ∑
λ∈σess(N)

λPλ, where P = ∑
λ/∈σess(N)

Pλ.
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Since N′ − N is finite rank, the diagonals of N′ and N differ by an absolutely
summable sequence, so (dn) ∈ Lim1(X) if and only if the diagonal of N′ is in
Lim1(X). Moreover, the spectral projections of N and N′ differ from one another
by finite projections. Therefore, the spectral projections of N each differ from a
diagonal projection by a Hilbert–Schmidt operator if and only if the same holds
true for N′. By Theorem 3.4, N is diagonalizable by a unitary which is a Hilbert–
Schmidt perturbation of the identity if and only if N′ is as well. Therefore, by the
above reduction, it suffices to prove the theorem with the added assumption that
σ(N) = σess(N).

(⇒) Enumerate the elements of σess(N) = σ(N) as λ1, . . . , λm. Let Pj denote

the spectral projection corresponding to the eigenvalue λj, so that N =
m
∑

j=1
λjPj.

Let {en}∞
n=1 denote the orthonormal basis corresponding to the diagonal (dn).

Suppose (dn) ∈ Lim1(X), and so there exist xn ∈ X for which (dn − xn) ∈ `1. Let
Λk := {n ∈ N : xn = λk} be the index set where the sequence (xn) takes the value
λk ∈ X.

The projections Pj sum to the identity, so for each n ∈ N,
m
∑

j=1
〈Pjen, en〉 = 1

and therefore

dn = 〈Nen, en〉 =
m

∑
j=1
〈Pjen, en〉λj

is a convex combination of the spectrum.
For λk ∈ X, let Lk be a line separating λk from the remaining elements of

σess(N). Such a line Lk exists because λk is an extreme point of the convex hull of
σess(N), and this is a finite set. Since (dn) ∈ Lim1(X) we know that (dn− λk)n∈Λk
is absolutely summable for every k. Therefore, for all but finitely many indices
n ∈ Λk, the diagonal entry dn lies on a line parallel to Lk separating λk from Lk
and hence also σess(N) \ {λk}.

By Lemma 4.1, for these indices n ∈ Λk,

(4.1)
m

∑
j=1, j 6=k

〈Pjen, en〉 6
|dn − λk|

dist(λk, Lk)
.

Since this inequality holds for all but finitely many n ∈ Λk, and dist(λk, Lk) is
independent of n ∈ Λk, and (dn − λk)n∈Λk is absolutely summable, (4.1) proves
(〈Pjen, en〉)n∈Λk lies in Lim1({0}) = `1 when j 6= k. If λj ∈ σess(N) \ X, by letting
λk run through X, we find (〈Pjen, en〉)n∈N is absolutely summable since

⋃
λk∈X

Λk =

N. This implies Pj is trace-class and hence a finite projection, contradicting the fact
that λj ∈ σess(N). Therefore X = σess(N).

Now consider λj ∈ X = σess(N). By analogy with the previous paragraph,
using the fact that (〈Pjen, en〉)n∈Λk ∈ `1 when j 6= k and letting λk run through
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X \ λj, we find (〈Pjen, en〉)n/∈Λj
∈ `1. Finally, for n ∈ Λj,

1− 〈Pjen, en〉 =
m

∑
k=1, k 6=j

〈Pken, en〉,

and hence (1− 〈Pjen, en〉)n∈Λk is a finite sum of absolutely summable sequences,
and is therefore absolutely summable. Thus (〈Pjen, en〉)n∈Λk ∈ Lim1({1}), so
(〈Pjen, en〉) ∈ Lim1({0, 1}). Therefore, by Corollary 3.1, Pj differs from a diagonal
projection by a Hilbert–Schmidt operator. Since this is true of all the spectral pro-
jections of N, we may apply Theorem 3.4 to conclude that N is a diagonalizable
by a Hilbert–Schmidt perturbation of the identity.

(⇐) This implication is a direct corollary of Theorem 3.8. To see this, sup-
pose σess(N) = X and N is diagonalizable by a unitary U which is a Hilbert–
Schmidt perturbation of the identity. Thus UNU∗ = diag(xn) for some sequence
xn ∈ σess(N) = X. Then by Theorem 3.8, E(N −UNU∗) is trace-class. That is,

Tr(E(N −UNU∗)) =
∞
∑

n=1
(dn − xn) is an absolutely summable series, so (dn) ∈

Lim1(X).

We now establish our generalized operator-theoretic reformulation of Arve-
son’s Theorem 1.5 by means of Theorem 3.8. After the proof we will explain how
to derive Theorem 1.5 from Theorem 4.3.

THEOREM 4.3. Let N be a normal operator with finite spectrum. If N is diagonal-
izable by a unitary which is a Hilbert–Schmidt perturbation of the identity, then there is
a diagonal operator N′ with σ(N′) ⊆ σ(N) for which E(N − N′) is trace-class, and for
any such N′, Tr(E(N − N′)) ∈ Kσ(N). In particular,

(4.2) Tr(E(N − N′)) = ∑
λ∈σ(N)

[Pλ : Qλ]λ,

where Pλ, Qλ are the spectral projections onto {λ} of N, N′, respectively. Moreover,
Pλ −Qλ is Hilbert–Schmidt for each λ ∈ σ(N).

Proof. Suppose N is normal operator with finite spectrum which is diago-
nalizable by a unitary U that is a Hilbert–Schmidt perturbation of the identity.
Then by Theorem 3.8, E(UNU∗ − N) is trace-class with trace zero. Moreover,
σ(UNU∗) = σ(N), thereby proving that an N′ as in the statement exists.

Now, let N′ be any diagonal operator with σ(N′) ⊆ σ(N) for which E(N −
N′) is trace-class. Since N′ and UNU∗ are diagonal, we find

(4.3) UNU∗ − N′ = E(UNU∗ − N′) = E(UNU∗ − N) + E(N − N′)

is trace-class, diagonal, and has finite spectrum contained in the set of differences
σ(N)− σ(N). Together, these conditions imply this operator is finite rank. More-
over, the (diagonal) spectral projections of UNU∗, N′, which we denote Rλ, Qλ,
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respectively for λ ∈ σ(N), each differ by a finite rank operator. Here we allow
for the case Qλ = 0 when λ ∈ σ(N) \ σ(N′). This guarantees

[Rλ : Qλ] = Tr(Rλ −Qλ),

using, for example, Proposition 2.4; however, this formula for essential codimen-
sion holds whenever the difference of the projections is trace-class and is widely
known (see for instance Theorem 4.1 of [4], Theorem 3 of [1], or Corollary 3.3
of [9]).

Therefore,

(4.4) Tr(UNU∗ − N′) = Tr
(

∑
λ∈σ(N)

(λRλ − λQλ)
)
= ∑

λ∈σ(N)

[Rλ : Qλ]λ.

Moreover, we can replace Rλ with Pλ in the right-most side of the above display.
Indeed, since U conjugates Pλ, Rλ, [Pλ : Rλ] = 0 by Proposition 2.3, and further-
more [Pλ : Qλ] = [Pλ : Rλ] + [Rλ : Qλ] by Propositon 2.2(iii).

Finally, since Tr(E(UNU∗ − N)) = 0, using (4.3) and (4.4) we find that

Tr(E(N − N′)) = Tr(UNU∗ − N′) = ∑
λ∈σ(N)

[Pλ : Qλ]λ.

We now illustrate how our results may be used to provide a new proof of
Arveson’s theorem.

Proof of Theorem 1.5. Let X = {λ1, . . . , λm} and d = (d1, d2, . . .) be as in The-
orem 1.5. That is, X is the set of vertices of a convex polygon in C, and d satisfies

∞

∑
n=1
| f (dn)| < ∞,

where f (z) = (z− λ1)(z− λ2) · · · (z− λm). As we remarked after Theorem 1.5,
this summability condition is equivalent to d ∈ Lim1(X) by Proposition 2 of [3].
Now suppose d is the diagonal of an operator N ∈ N (X) (i.e., N is normal with
σ(N) = σess(N) = X). Then by Theorem 4.2, N is diagonalizable by a unitary
U = I + K with K Hilbert–Schmidt. Therefore, we may apply Theorem 4.3 to
conclude that Tr(E(N − N′)) ∈ Kσ(N) = KX for some diagonal operator N′ with
σ(N′) ⊆ σ(N) and E(N−N′) is trace-class. Finally, equation (3.2) of Theorem 3.5
establishes

∞

∑
n=1

(dn − xn) = Tr(E(N − N′)) ∈ KX

where (xn) is the diagonal of N′, so xn ∈ σ(N′) = σ(N) = X. Hence s(d) = 0.

REMARK 4.4. In [6], Bownik and Jasper completely characterized the diag-
onals of selfadjoint operators with finite spectrum. A few of the results we have
presented herein are generalizations of Theorem 4.1 in [6], which consists of some
necessary conditions for a sequence to be the diagonal of a finite spectrum selfad-
joint operator. In particular, the statement (dn) ∈ Lim1(X) implies X = σess(N)
of our Theorem 4.2 is an extension to finite spectrum normal operators of their
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corresponding result ([6], Theorem 4.1(ii)) for selfadjoint operators. Similarly, our
formula (4.2) of Theorem 4.3 generalizes Theorem 4.1(iii) of [6].

We conclude with another perspective on the trace Tr(E(N − N′)). Our
next corollary shows that when the Z-module Kσ(N) has full rank (i.e., rank Kσ(N)

is one less than the number of elements in the spectrum), this trace is zero if and
only if N′ is a diagonalization of N by a unitary U = I + K with K Hilbert–
Schmidt.

COROLLARY 4.5. Suppose N is a normal operator with σ(N) = {λ1, . . . , λm}
such that λ1 − λ2, . . . , λ1 − λm are linearly independent in the Z-module Kσ(N). Sup-
pose further that N is diagonalizable by a unitary which is a Hilbert–Schmidt perturba-
tion of the identity. If N′ is a diagonal operator such that E(N − N′) is trace-class and
Tr(E(N − N′)) = 0, then there is a unitary U = I + K with K Hilbert–Schmidt such
that UNU∗ = N′.

Proof. By Theorem 4.3, the differences Pk −Qk are Hilbert–Schmidt and

0 = Tr(E(N − N′)) =
m

∑
k=1

[Pk : Qk]λk.

Since
m
∑

k=1
[Pk : Qk] = 0, we have [P1 : Q1] = −

m
∑

k=2
[Pk : Qk] and so we may

rearrange the equality above to

0 =
m

∑
k=2

[Pk : Qk](λ1 − λk).

Since λ1 − λ2, . . . , λ1 − λm are linearly independent in Kσ(N), we conclude that
the coefficients [Pk : Qk] = 0 for 2 6 k 6 m. In turn, this implies [P1 : Q1] = 0.
Therefore, by Lemma 3.2, there is a unitary U = I + K with K Hilbert–Schmidt
conjugating each Pk to Qk. Thus UNU∗ = N′.
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